第14章 一次函数单元综合测评(含答案)
一次函数综合测试题及答案
八 年 级 一 次 函 数 测 试 题姓名 一、填空 (10×3´=30´)1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
2、若函数y= -2x m+2是正比例函数,则m 的值是 。
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。
5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。
6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。
7、已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。
8、地面气温是20℃,如果每升高1000m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。
9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(2,-3)。
二、选择题 (10×3´=30´)11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 12、下面哪个点不在函数32+-=x y 的图像上( ) (A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y 15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34m <(B )314m -<< (C )1m <- (D )1m >-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t(时)的函数关系的图象是( )(A) (B) (C ) (D )18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( ).19.一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于A.21B.21-C.23D.以上答案都不对20.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28021、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值23、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。
(完整版),一次函数单元测试题(含答案),推荐文档
9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车 发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了 速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生 画出他行进的路程 y(千米)与行进时间 t(小时)的函数图象的 示意图,同学们画出的图象如图所示,你认为正确的是( )
10.一次函数 y=kx+b 的图象经过点(2,-1)和(0,3),那么这个一
次函数的解析式为( )
A.y=-2x+3
B.y=-3x+2
C.y=3x-2
1
D.y= x-3
2
二、你能填得又快又对吗?(每小题 3 分,共 30 分)
11.已知自变量为 x 的函数 y=mx+2-m 是正比例函数,则 m=________,
-5-
(2)当 x=10 时,y 的值是多少?
减少,则 k____0,b______0.(填“>”、“<”或“=”)
(3)当 y=12 时,x 的值是多少?
17.已知直线 y=x-3 与 y=2x+2 的交点为(-5,-8),则方程组
x y 3 0 2x y 2 0 的解是________.
答下列问题: (1)农民自带的零钱是多少? (2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克 0.4 元将剩余土豆售完,这时他手中的钱 (含备用零钱)是 26 元,问他一共带了多少千克土豆?
25.(12 分)已知雅美服装厂现有 A 种布料 70 米,B 种布料 52 米,现 计划用这两种布料生产 M、N 两种型号的时装共 80 套.已知做一套 M 型 号的时装需用 A 种布料 1.1 米,B 种布料 0.4 米,可获利 50 元;做一 套 N 型号的时装需用 A 种布料 0.6 米,B 种布料 0.9 米,可获利 45 元.设生产 M 型号的时装套数为 x,用这批布料生产两种型号的时装所 获得的总利润为 y 元.
八年级数学第十四章一次函数单元测试题(含答案)
第十四章 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。
初二 第14章 一次函数 单元测试含答案
八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。
1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
第14章 一次函数单元测试卷(含答案)
第14章一次函数单元测试卷(总分:100分,时间:100分钟)题号一1 二2 三3 四4 五5 六6 七7 八8 得分角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题4分,共32分)1.已知函数y=kx(k≠0)中,y随x的增大而增大,那么一次函数y=kx-k的图象经过() A.一,二,三象限 B.一,二,四象限 C.一,三,四象限 D.二,三,四象限2.下面的哪个点在函数y=2x-3的图象上()A.(-5,-7) B.(0,3) C.(1,-1) D,(-2,7)3.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b>0的解集是()A.x>-2 B.x>3 C.x<-2 D.x<34.函数y=2x+的自变量x的取值范围是()A.x≥-2且x≠3 B.x>-2且x≠3C.x≥-2 D.x>-25.已知直线y=kx+b中,当x1>x2时,y1>y2,则下列结论中一定正确的是()A.k>0 B.k<0 C.b>0 D.b<06.下图中表示y是x函数的图象是()7.一次函数y 1=kx+b与y2=x+a的图象如图测所示,则下列结论:①k<0;②a>0;•③当x<3时,y1<y2中,正确的个数是()A.0个 B.1个 C.2个 D.3个8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图测所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),•小王根据图象得到如下四个信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙两人中先到达终点的是乙C.甲、乙同时起跑D.甲在这次赛跑中的速度为5m/s二、填空题(每小题4分,共28分)9.y-2与x成正比例,当x=-2时,y=4,则y与x的函数关系式是______.10.根据图测所示的程序,计算当输入x=3时,输出的结果y=_______.(第10题) (第13题)11.生物学家研究表明,某种蛇的长度ycm是其尾长xcm的一次函数,•当蛇的尾长为6cm 时,蛇长45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,•这条蛇的长度是_______cm.12.直线y=3x向下平移2个单位得到直线________.13.如图测,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x,y的二元一次方程,.y ax by kx=+⎧⎨=⎩的解是________.14.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系,当x=36(kPa)时,y=108(g/m3),•请写出y与x的函数关系式_____________.三、解答题(共40分)16.(12分)•某公司市场营销售部的营销员的个人月收入与该营销员每月的销售成一次函数关系,其图象如图测所示,根据图象提供的信息,解答下列问题:(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式.(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.17.(12分)如图测,已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)18.(16分)第三届南宁国际龙舟赛于2006年6月3日至4日在南湖举行,甲、•乙两队在比赛时,路程y(米)与时间x(分钟)的函数图象如图测所示,根据函数图象填空和解答问题:(1)最先到达终点的是_____队,比另一个队领先_____分钟到达.(2)在比赛过程中,乙队_____分钟和_____分钟时两次加速,•图中点A•的坐标是_______,点B的坐标是_______.(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、•乙两队谁先到达终点?请说明理由.参考答案1.C 2.C 3.A 4.A 5.A 6.C 7.B 8.C9.y=-x+2 10.2 11.75.5 12.y=3x-213.42x y =-⎧⎨=-⎩ 14.y=3x 15.如y=-4x-2(答案不唯一)16.(1)设y=kx+b (k ≠0).因为图象过点(0,400)和(2,1600)两点,所以400,600,21600.400.b k k b b ==⎧⎧⎨⎨+==⎩⎩解这个方程组,得 所以所求的函数关系式为y=600x+400(x ≥0).(2)当x=1.2时,y=600×1.2+400=1120(元).17.(1)设直线L 1的解析式为y=kx+b ,由题意,得0,1,2 3. 1.k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 所以直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m-(-1)=m+1,有S △APB =12×(m+1)×3=3,解得m=1.此时点P的坐标为(1,0).当点P在点A的左侧时,AP=-1-m,有S△APB=12×(-m-1)×3=3,解得m=-3,此时,点P的坐标为(-3,0).综上所述,m的值为1或-3.18.(1)乙 0.6 (2)1 3 (1,100)(3,450)(3)易求得直线AB的解析式为y=175x-75,当y=800时,即800=175x-75,x=5.所以甲、乙两队同时到达终点.可以编辑的试卷(可以删除)。
第14章 一次函数全章水平测试(含答案)
第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。
第14章《一次函数》慈云中学单元测试题(含答案)
y=ax-3y=2x+bOy-2-5x慈云中学八年级《一次函数》测试题题号 一1 二2 三3 四4 五5 六6 七7 八8 得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级 姓名 座号 评分______________一. 填空(每题4分,共28分)1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是______2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .4. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .5.写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小。
(2)图象经过点(1,-3)6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 质量x (千克) 1 2 3 4 …… 售价y (元)3.60+0.207.20+0.2010.80+0.2014.40+0.2……由上表得y 与x 之间的关系式是 . 7.已知函数2y x b =+和3y ax =-的图像交于点(25)P --,,则根据图像可得不等式23x b ax +>-的解集是 .二、选择题(每题3分,共21分)8.下列函数(1)y =πx (2)y=2x -1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一x (cm )2052012.5 次函数的有( )A 、4个B 、3个C 、2个D 、1个9.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 y 2大小关系是( )A 、y 1 >y 2B 、y 1 =y 2C 、y 1 <y 2D 、不能比较10.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )A 、BC D11.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<012.弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是( )A 、9cmB 、10cmC 、10.5cmD 、11cm 13.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是 ( )A 、 y=2xB 、y=2x -6C 、 y=5x -3D 、y=-x -3 14.下面函数图象不经过第二象限的为 ( )A 、y=3x+2B 、 y=3x -2C 、y=-3x+2D 、 y=-3x -2三、解答题(每题9+10+10++10+12=51分,共51分)15.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题: (1)当行驶2千米时,收费应为 元;20 4h (厘米) t (小时)204 h (厘米) t (小时)204h (厘米) 204 h (厘米) t (小时)Yx(2)从图象上你能获得哪些信息?(请写出2条)①②(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式。
一次函数综合练习附答案
一次函数综合练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列函数①5y x =-;②21y x =-+;③2y x =;④162y x =+;⑤21y x =-中,是一次函数的有( ) A .1个 B .2个C .3个D .4个【答案】C2.在下列各图象中,y 不是x 函数的是( )A .B .C .D .【答案】B3.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A5.已知方程()00kx b k +=≠的解是3x =,则函数()0y kx b k =+≠的图象可能是( )A.B.C.D.【答案】C6.如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是()A.m>-3 B.m>0 C.m>-1 D.m<3【答案】C7.小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m【答案】C8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【答案】D二、填空题9.已知一次函数y=2x+m的图象是由一次函数y=2x﹣3的图象沿y轴向上平移8个单位得到的,则m=_____.【答案】5.10.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.【答案】8011.在同一平面直角坐标系中,函数y1=kx+b与y2=mx+n的图象如图所示,则关于x 的不等式kx+b≥mx+n的解集为__.【答案】x≥212.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第___象限.【答案】一.13.甲、乙两人分别从A 、B 两地出发,相向而行.图中的1l ,2l 分别表示甲、乙离B 地的距离()km y 与甲出发后所用时间()h x 的函数关系图象,则甲出发_______小时与乙相遇.【答案】1.414.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________. 53三、解答题15.已知13y x =-+,234y x =-,当x 取哪些值时,12y y >?你是怎样做的?与同伴交流. 【答案】74x <,见解析. 16.(1)在同一直角坐标系内画出函数2y x =-+,2y x =+的图象,这两个图象有怎样的位置关系?(2)函数32y x =-+,32y x =+的图象又有怎样的位置关系?一般地,你有怎样的猜想?【答案】(1)图见解析,这两个图象关于y 轴对称;(2))这两个图象关于y 轴对称;一般地,函数y kx b =+和y kx b =-+的图象关于y 轴对称.17.某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y (千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y 与x 的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【答案】(1)y =﹣10x +300;(2)能在保质期内销售完这批蜜柚,理由见解析 18.为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.19.如图,在平面直角坐标系中,点A B ,的坐标分别为3(,0)2-,3(,1)2,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【答案】(1)3(;(2)332y =+ 20.如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ) (1)求b ,m 的值(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别相交于C ,D ,若线段CD 长为2,求a 的值【答案】(1)-1;(2)53或13.21.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得利润700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案,方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【答案】(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm23.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q 与t 的关系式; ②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远. 【答案】①Q =100﹣6t ;② 70L ;③25003km . 24.在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只,该厂的生产能力是:若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只,已知生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.若设该厂在这次任务中生产了A 型口罩x 万只.(1)该厂生产A 型口罩可获利润 万元,生产B 型口罩可获利润 万元.(2)设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A 型和B 型口罩的只数?最短时间是几天?【答案】(1)0.5x ;1.5-0.3x ;(2)y=0.2x+1.5,1.8≤x≤4.2;(3)安排A 型:4.2万只,B 型:0.8万只,最大利润是2.34万元;(4)生产A 型1.8万只,生产B 型3.2万只,最短时间是7天。
一次函数单元测试题(含答案)
第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
数学:第十四章《一次函数》单元测试(八年级)
数学:第十四章《一次函数》单元测试(八年级)班级:____________姓名:____________座号:____________评分:____________一、填空题:(每空3分,共42分)1.已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x ;④(12)y x =-;⑤y=4x ;⑥y=-(2-x),其中,y 的值随x 的增大而增大的函数是_____________;y 的值随x 的增大而减小的函数是________________;图像经过原点的函数是_____________.(只填序号) 2. 在数学25+-=x y 中,K = ,b=3.函数y=x -1x -2自变量x 的取值范围是_________. 4.在432-=x y 中,当y=-6时,x = 5. 若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表质量x (千克) 1 2 3 4 …… 售价y (元)3.60+0.207.20+0.2010.80+0.2014.40+0.2……由上表得y 与x 之间的关系式是 . 7.已知直线y x a =-与2y x b =+的交点为(5,-8),则方程组020x y a x y b --=⎧⎨-+=⎩的解是____________.8.若直线y=kx+b 平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ .9.已知y+2和x 成正比例,当x=2时,y=4,则y 与x 的函数关系式是_________________. 10.已知正比例函数y =(m -1)25m x-的图象在第二、四象限,则m 的值为_________,二、选择题:(每题3分,共18分) 11.函数y=2x+1的图象经过( ) A .(2 , 0)B .(0 , 1)C. (1 , 0)D .(12, 0)12.下列各曲线中不能表示y 是x 的函数是( )。
一次函数综合测试卷试题及含答案.docx
精品文档一次函数测试题一、填空(10× 3′=30′)1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是。
2、若函数y= - 2x m+2是正比例函数,则m 的值是。
3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。
4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。
5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。
6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函数的表达式是 ______________。
7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是____。
8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m)的函数关系式是 __________。
9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。
( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。
二、选择题 (10×3′=30′)11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次xy函数的有()( A) 4 个( B) 3 个(C)2 个( D) 1 个112、下面哪个点不在函数 y 2 x 3 的图像上()O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1)13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第13题图)( A)1111 2222 14、下列一次函数中,随着增大而减小而的是()( A)y 3x(B)y 3x 2( C)y 3 2x(D)y3x 215、已知一次函数y=kx+b的图象如图所示,则 k,b的符号是 ()(A) k>0 ,b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0(第 15 题图)16、函数 y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么 m的取值范围是 ()( A)3()3()()1 m B 1 m C m 1 D m4417、一支蜡烛长 20 厘米 ,点燃后每小时燃烧 5 厘米 ,燃烧时剩下的高度 h (厘米 )与燃烧时间 t (时)的函数关系的图象是 ()(A)(B)(C)(D)18、下图中表示一次函数y= mx+n与正比例函数 y= mnx(m ,n 是常数,且 mn<0)图像的是 ( ).19. 一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于113A. 2B.2C.2D.以上答案都不对20. 某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示 .由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.280三、计算题(21、22、25 各 8 分, 23、24、26 各 12 分)21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4) ,且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知 y - 2 与 x 成正比,且当 x=1 时, y= - 6(1)求 y 与 x 之间的函数关系式(2)若点 (a,2)在这个函数图象上,求a 的值1 23、已知一次函数y=kx+b的图象经过点 (- 1, - 5),且与正比例函数y=2 x 的图象相交于点 (2, a),求(1)a 的值(2)k, b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。
第14章 一次函数单元复习测试卷(含答案)
第十四章 一次函数单元复习测试卷的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级 姓名 座号 成绩一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 . 8.函数14y x =-中,自变量x 的取值范围是 . 9.直线142y x =-可以由直线112y x =+向 平移 个单位得到. 10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值.15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答:(1)小华何时第一次休息?(2)小华离家最远的距离是多少?(3)返回时平均速度是多少?(4)请你描述一下小华购物的情况.16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x名工人进行水产品精加工.(1)求每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?参考答案一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( D )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( B )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( D )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( A )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( C ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( C )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 =- 5y x . 8.函数14y x =-中,自变量x 的取值范围是 ≠ 4x . 9.直线142y x =-可以由直线112y x =+向 下 平移 5 个单位得到.10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= 9 .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 (1,0) . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 12>y y . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.解:(1)y 与x 的函数关系式为=+273y x(2)当=20x 时,=⨯+=27203543y .14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值. 解:(1)设一次函数的解析式为=+y kx b 则有3549k b k b +=⎧⎨-+=-⎩解得21k b =⎧⎨=-⎩∴一次函数的解析式为=-21y x (2)∵点(,2)m 在一次函数=-21y x 图象上 ∴212m -= ∴32m =15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答: (1)小华何时第一次休息? (2)小华离家最远的距离是多少? (3)返回时平均速度是多少?(4)请你描述一下小华购物的情况. 答:(1)小华在上午9点第一次休息; (2)小华离家最远的距离是30千米; (3)返回时平均速度是15千米/小时; (4)略16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg ,或将当日所捕捞的水产品40kg 进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x 名工人进行水产品精加工. (1)求每天做水产品精加工所得利润y (元)与x 的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?解:(1)每天做水产品精加工所得利润y (元)与x 的函数关系式为1840720y x x =⨯=; (2)设一天所获的利润为W 元,则[] 720650(200)4018060000W x x x x =+⨯⨯--=+又∵x x ⨯--50(200)40≥0,∴x ≤11119.∵=>1800k ,∴y 随x 的增大而增大∴当=111x 时,利润最大, 1801116000079980W =⨯+=最大(元)答:应安排111名工人进行水产品精加工,安排89名工人捕捞水产品,所获利润最大,最大利润为79 980元.可以编辑的试卷(可以删除)。
八年级数学上册 第14章 一次函数综合练习(含答案)
第十四章一次函数基础【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b中b=0时特殊的一次函数。
2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。
3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),( ,0)两点的一条直线。
4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴。
5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。
6.一次函数经常与一次方程、一次不等式相联系。
【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004·福州)已知正比例函数y=kx(k≠0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(2003·甘肃)结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是( )A.y=1B.1≤y<4C.y=4D.y>44.(2004·哈尔滨)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的电话费是38.7元,则通话时间是分钟,若通话时间62分钟,则电话费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.③对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD⊥x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0,表示汽车向数轴正方向行驶;速度c<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图像的形式画在了同一直角坐标系中,如图.请解答下列问题:(1)就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格.(2)甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.参考答案:1.B2.A3.D4.C5.y =0.15x+24,98,33.3 6.①,,亏损②3 ③y1=x ④y=x—27.(1)超过3000千米,(2)3000千米(3)个体8.(1)(2)当a≤—1时,S=2;当—1<a≤0时,S=2—(1+a)2;当0<a≤1时,S=(1—a)2;当a≥1时,S=0。
第十四章_一次函数单元测试题
xy-4o2 4 51 30 t(月)C(件)第十四章一次函数单元测试题一.选择题(每小题3分,共30分)1.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A.2.5米B.2米C.1.5米D.1米2.在下列函数中,与y=x-2图像完全相同的函数是( )A. B. C. D.3.关于函数21y x=-+,下列结论正确的是()A.图象经过点(-2,1)B.图象经过第一、二、三象限C.当12x>时,0y< D.图象可由2y x=-的图象向下平移1个单位长度得到4.过点A(0,-2),且与直线5y x=平行的直线是()A.52y x=+ B. 52y x=-+ C.52y x=- D. 52y x=--5.如右图,直线y kx b=+与x轴交于点(-4,0),则0y>时,x的取值范围是()A.4x>- B. 0x> C.4x<- D. 0x<6.已知圆柱体的侧面积为80πcm2,若圆柱底面半径为r(cm),高线长为h(cm),则h关于r的函数的图象大致是( )7. 如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有().A.1个B.2个C.3个D.4个8.幸福村办工厂今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象,如图,则该厂对这种商品来说().A.1月至3月每月生产总量不变,4、5两月停止生产;B.1月至3月每月生产总量逐月增加,4、5两月停止生产;C.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少;D.1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平.B C A P 9.要从y=34x 的图像得到直线y=324-x ,就要把直线y=34x ( ) A.向上平移32个单位 B.向下平移32个单位 C.向上平移2个单位 D.向下平移2个单位 10.若直线2y x k =-+(k 为正整数)与坐标轴围成的三角形内的整点(含边界)有100个,则k 等于( )A. 9 B. 16 C. 18 D. 22二.填空题:(每小题3分,共18分)11.函数y=112x x +-- 的自变量x 取值范围是_____________. 12.把等腰三角形的一个底角的度数y 表示成顶角度数x 函数解析式是_____, 自变量x 的取值范围是____.13.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k = .14.出租车收费按路程计算,2km 内(包括2km)收费3元,超过2km ,每增加1km 加收1元,则路程x ≥2km 时,车费y (元)与x 之间的函数关系为_____________________.15.若直线y=x-k 与 y=3x-1的交点在第三象限,则k 的取值范围是_______________.16. 如图,先观察图形,然后填空:(1)当x 时,1y >0;(2)当x 时,2y <0;(3)当x 时,1y >0且2y >0.三、解答题(共72分)17.(8分)已知:如图,在R t △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,设PC=x ,若用y 表示△APB 的面积, (1)求y 与x 的函数关系式,并求自变量x 的取值范围;(2)画出此函数图象.18.(6分) 已知y-m 与x+n 成正比例,m,n 是常数,(1)试说明:y 是x 的一次函数.(2)如果x=3时,y=5;x=2时,y=2,求当x=-3时,y 的值.19. (6分)已知点(3,3)在函数6y ax =-的图象上,(1)求a 的值;(2)求此图象上到x 轴距离为6的点的坐标.20.(8分) 已知点M 坐标为(-5,0),点N 在第三象限坐标为(x,y)且x+y=-6,设面积为S. (1)求S 关于x 的函数表达式;(2)求x 的取值范围;(3)当S=10时,求N 点坐标.21. (8分)为调动销售人员的积极性,A 、B 两公司均采取:“总收入=基本工资+奖金”的支付方式,其中A 公司每月2 000元基本工资,另加销售额的2%作为奖金;B 公司每月1 600元基本工资,另加销售额的4%作为奖金.已知A 、B 公司两位销售员小李、小张1~6月份的销售额如下表:(1)请问小李与小张2月份的总收入各是多少?(2)小李1~6月的销售额1y 与月份x 的函数关系式是1040012001+=x y ,小张1~6月的销售额2y 是月份x 的一次函数,请求出2y 与x 函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的总收入高于小李?22. (8分)机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q (升)与行驶时间t (时)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶___________小时后加油;(2)加油前油箱余油量Q 与行驶时间t 之间的函数关系式是_______,中途加油_____升;(3)如果加油站距目的地还有230千米,车速为40千米/时,要达到目的地,油箱中的油是否够用?请说明理由?月份 销售额 销售额(单位:元)1月 2月 3月 4月 5月 6月 小李(A 公司) 11600 12800 14000 15200 16400 17600 小张(B 公司) 7400 9200 11000 12800 14600 1640023. (10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A 、B 两种产品获总利润是y (元),其中一种的生产件数是x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?24.(8分)平面直角坐标系中,点A 的坐标是(2,0),点P 在直线y =-x +m 上,且AP =OP =2.求m 的值.25.(10分)如图,动点P 从A 开始在线段AO 上以每秒2个单位的速度向原点O 运动,直线EF 从x 轴开始以每秒1个长度单位的速度向上平行移动(即EF//x 轴),并分别与y 轴、线段AB 交于E 、F 两点,连结PF 、PB ,设动点P 与直线EF 同时出发,并且运动时间为t 秒。
(完整版)一次函数单元测试题(含答案),推荐文档
1 加 2 教育
19.±6 20.y=x+2;4
建议收藏下载本文,以便随21时.①学y=习16 x!;②y=1 x+ 7
9
55
22.y=x-2;y=8;x=14
23.①5 元;②0.5 元;③45 千克
24.①当 0<t≤3 时,y=2.4;当 t>3
时,y=t-0.6.
②2.4 元;6.4 元
答案:
一、相信你一定能填对!(每小题 3 分,共 30 分)
下图中的( )
1.下列函数中,自变量 x 的取值范围是 x≥2 的是( )
A.y= 2 x
1
B.y=
x2
C.y= 4 x2
D.y=
x2· x2
9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车
1
2.下面哪个点在函数 y= x+1 的图象上( )
②∵y 随 x 的增大而增大, ∴当 x=44 时,y 最大=3820, 即生产 M 型号的时装 44 套时, 该厂所获利润最大,最大利润是 3820 元.
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天 -5-
值为( )
次函数的解析式为( )
1
A.m>
2
1
B.m=
2
1
C.m<
2
1
D.m=-
2
A.y=-2x+3
B.y=-3x+2
C.y=3x-2
1
D.y= x-3
2
6.若一次函数 y=(3-k)x-k 的图象经过第二、三、四象限,则 k 的取
二、你能填得又快又对吗?(每小题 3 分,共 30 分)
八年级数学:一次函数单元测试题(含解析)
八年级数学:一次函数单元测试题(含解析)(时间:90分钟 分值:100分)一、选择题(每小题2分,共24分)1.若正比例函数的图像经过点(-1,2),则这个函数的图像必经过点( D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)解析:设正比例函数的表达式为y =kx (k ≠0),因为正比例函数y =kx 的图像经过点(-1,2),所以2=-k ,解得k =-2,所以y =-2x .把这四个选项分别代入y =-2x 中验证,易得这个图像必经过点(1,-2).故选D.2.已知点(-4,y 1),(2,y 2)都在直线y =-x +2上,则y 1,y 2的大小关系是( A ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能比较 解析:-1<0,∴函数值y 随x 的增大而减小. 又∵-4<2,∴y 1>y 2.故选A.3.若k ≠0,b <0,则y =kx +b 的图像可能是下图中的( B )解析:b <0时,直线与y 轴交于负半轴.故选B.4.若一次函数y =2mx +(m 2-2m )的图像经过坐标原点,则m 的值为( A ) A .2 B .0 C .0或2 D .无法确定 解析:由2m ×0+(m 2-2m )=0,得m =0或m =2.由2m ≠0,得m ≠0.故m =2.故选A.5.已知直线y =kx +b 经过点(k,3)和(1,k ),则k 的值为( B ) A. 3 B .± 3 C. 2 D .± 2 解析:由⎩⎨⎧k 2+b =3,k +b =k ,得⎩⎨⎧k 2=3,b =0,∴k =± 3.故选B.6.下列各点中,在函数y =-12x +5的图像上的点是( C )A .(2,5)B .(-2,4)C .(4,3)D .(-4,9)解析:当x=4时,y=-12×4+5=3,故点(4,3)在图像上.故选C.7.在平面直角坐标系中,函数y=-x+1的图像经过( D )A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限解析:根据题意有a<0,c>0,∴函数y=ax+c的图像经过第一、二、四象限.故选D.8.(2017·大庆)对于函数y=2x-1,下列说法正确的是( D )A.它的图像过点(1,0) B.y值随着x值增大而减小C.它的图像经过第二象限D.当x>1时,y>0解析:把x=1代入关系式得到y=1,即函数图像经过(1,1),不经过点(1,0),故A选项错误;函数y=2x-1中,k=2>0,则该函数图像y值随着x值增大而增大,故B选项错误;函数y =2x-1中,k=2>0,b=-1<0,则该函数图像经过第一、三、四象限,故C选项错误;当x>1时,2x -1>1,则y>1,故y>0正确,故D选项正确.故选D.9.直线y=43x+4与x轴交于点A,与y轴交于点B,则△AOB的面积为( B )A.12 B.6 C.3 D.4解析:A(-3,0),B(0,4),S△AOB=12×3×4=6.故选B.10.已知一次函数y1=kx+b与y2=x+a的图像如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2,其中正确的有( B )A.0个 B.1个 C.2个 D.3个解析:因为y1=kx+b的图像从左到右是下降的,所以k<0.因为y2=x+a的图像与y轴的交点在x轴的下方,所以a<0.因为当x<3时,y2的图像在y1的下方,所以y2<y1,所以正确的只有①.故选B.11.一次函数y=kx+2过点(1,1),那么这个一次函数是( B )A.y随x的增大而增大B.y随x的增大而减小C.图像经过原点D.图像不经过第二象限解析:由k+2=1,得k=-1.∵-1<0,∴y随x的增大而减小.故选B.12.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( A )A.将l1向右平移3个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度 D.将l1向上平移4个单位长度解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选A.二、填空题(每小题3分,共18分)13.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=2.解析:2×2+b=0,b=-4.∵2x+b=0,∴2x-4=0,∴x=2.14.一次函数y=12x+5的图像经过第一、二、三象限.解析:图像过(0,5),且从左到右上升,∴图像经过第一、二、三象限.15.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为-2.解析:∵点A (-1,1),正方形ABCD 的对称中心与原点重合,由对称点,可知B (1,1). ∵点B 在直线y =kx +3上,∴1=k +3.解得k =-2.16.直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是-1<m <1.解析:解⎩⎨⎧y =-2x +m ,y =2x -1,得⎩⎪⎨⎪⎧x =m +14,y =m -12.解⎩⎪⎨⎪⎧m +14>0,m -12<0.得-1<m <1.17.已知一次函数y =2x +a 与y =-x +b 的图像都经过点A (-3,0),且与y 轴分别交于B ,C 两点,则△ABC 的面积为272.解析:将A (-3,0)代入y =2x +a ,得a =6,∴B (0,6);将A (-3,0)代入y =-x +b ,得b =-3,∴C (0,-3),∴S △ABC =12×9×3=272.18.如图所示,直线m 的函数关系式为y =x ,点A 的坐标是(-1,0),点B 是直线m 上的一个动点,连接AB ,当线段AB 最短时,点B 的坐标是⎝ ⎛⎭⎪⎫-12,-12.解析:当线段AB 最短时,AB ⊥m ,垂足为B ,过点B 作BC ⊥x 轴,垂足为C ,则△AOB 与△BOC 都是等腰直角三角形,则OC =BC =12OA =12,所以点B ⎝ ⎛⎭⎪⎫-12,-12.三、解答题(共58分)19.(6分)已知函数y =(m -1)x +m +2,则当m 为何值时,这个函数是一次函数,并且图像经过第二、三、四象限?解:由y =(m -1)x +m +2是一次函数,并且图像经过第二、三、四象限,得⎩⎨⎧m -1<0,m +2<0,解得m <-2.20.(7分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y (米)和所经过的时间x (分钟)之间的函数图像如图所示.请根据图像回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间? (2)小敏几点几分返回到家?解:(1)速度为3 00010=300(米/分钟),逗留时间为30分钟. (2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得 ⎩⎨⎧3 000=40k +b ,2 000=45k +b ,解得⎩⎨⎧k =-200,b =11 000,∴函数表达式为y =-200x +11 000,当y =0时,x =55,∴返回到家的时间为8:55. 21.(7分)如果用x 表示鞋子的“码数”,用y 表示厘米数,那么y 是x 的一次函数.已知34码的鞋厘米数为22,40码的鞋厘米数为25.(1)求y 与x 的函数表达式;(2)一个人的鞋子为38码时,厘米数为多少? 解:(1)设y 与x 的函数表达式为y =kx +b ,∴⎩⎨⎧34k +b =22,40k +b =25.解得⎩⎨⎧k =12,b =5.∴y 与x 的函数表达式为y =12x +5.(2)当x =38时,y =12×38+5=24.22.(8分)小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段y 1,y 2分别表示小东、小明离B 地的距离y (km)与所用时间x (h)的关系.(1)试用文字说明:交点P 所表示的实际意义; (2)试求出A ,B 两地之间的距离.解:(1)交点P 所表示的实际意义是:经过2.5 h 后,小东与小明在距离B 地7.5 km 处相遇.(2)设y 1=kx +b ,又∵y 1经过点P (2.5,7.5),(4,0), ∴⎩⎨⎧2.5k +b =7.5,4k +b =0,解得⎩⎨⎧b =20,k =-5,∴y 1=-5x +20, 当x =0时,y 1=20.故A ,B 两地之间的距离为20 km.23.(8分)如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.(1)求点B 的坐标.(2)若△ABC 的面积为4,求直线l 2的关系式.解:(1)在Rt △AOB 中,OA 2+OB 2=AB 2,∴22+OB 2=(13)2. ∴OB =3.∴点B 的坐标是(0,3).(2)∵S △ABC =12BC ·OA ,∴12BC ×2=4.∴BC =4.∴C (0,-1).设l 2:y =kx +b .把A (2,0),C (0,-1)代入,得⎩⎨⎧2k +b =0,b =-1,∴⎩⎨⎧k =12,b =-1.∴直线l 2的关系式是y =12x -1.24.(10分)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的数量为y 甲(棵),乙班植树的数量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (小时).y 甲、y 乙关于x 的部分函数图像如图所示.(1)当0≤x ≤6时,分别求y 甲、y 乙与x 之间的函数关系式;(2)如果甲、乙两班均保持前6个小时的工作效率,那么当x =8时,甲、乙两班植树的总数量能否超过260棵?(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x =8时,两班植树的总数量相差20棵,求乙班增加人数后平均每小时植树多少棵?解:(1)设y 甲=k 1x ,把(6,120)代入y 甲=k 1x , 解得k 1=20,∴y 甲=20x . 当x =3时,y 甲=y 乙=60.设y 乙=k 2x +b ,把(0,30),(3,60)代入y 乙=k 2x +b , 得⎩⎨⎧ b =30,3k 2+b =60.解得⎩⎨⎧k 2=10,b =30.∴y 乙=10x +30.(2)当x =8时,y 甲=8×20=160,y 乙=8×10+30=110. ∵160+110=270>260,∴当x =8时,甲、乙两班植树的总数量能超过260棵. (3)设乙班增加人数后平均每小时植树a 棵.当乙班比甲班多植树20棵时,有6×10+30+2a -20×8=20. 解得a =45.当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a )=20. 解得a =25.∴乙班增加人数后平均每小时植树45棵或25棵.25.(12分)(2017·衡阳)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (小时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y (元)与骑行时间x (小时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算?解:(1)当0≤x <0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b , ⎩⎨⎧0.5k +b =0,1×k +b =0.5,计算得出⎩⎨⎧k =1,b =-0.5.即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5, 由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =⎩⎨⎧0≤x <0.5,x -0.5x ≥0.5.(2)设会员卡支付对应的函数关系式为y =ax , 则0.75=a ×1,得a =0.75,即会员卡支付对应的函数关系式为:y =0.75x , 令0.75x =x -0.5,得x =2,由图像可以知道,当x >2时,会员卡支付便宜. 答:当0<x <2时,李老师选择手机支付比较合算, 当x =2时,李老师选择两种支付一样, 当x >2时,李老师选择会员卡支付比较合算.。
第14章 一次函数综合复习测试(三)及答案
第十五章 一次函数综合复习测试题号 一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、相信你的选择(每小题3分,共24分) 1、函数2y x =+中自变量x 的取值范围是 ( ) A 、2-≥x B 、1≠x C 、2->x D 、2-≥x 且1≠x 2、不能表示y 是x 函数的图像的是 ( )A .B .C .D .3、一次函数34y x =-的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、如图1,直线l 1和l 2的交点坐标为( )A 、(3,-1)B 、(1,3)C 、(-1,3)D 、(-3,-1)图3 5、一次函数y =kx +b (k ,b 是常数,k ≠0)的图像如图2所示,则不等式kx +b >0的解集是( ) A 、x >-2 B 、x >0 C 、x <-2 D 、x <0 6.二元一次方程的图像如图3所示,则这个二元一次方程为( )A 、33=-y x ;B 、33=+y x ;C 、13=-y x ;D 、13=+y x7、一次函数y=kx+b 的图像经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A 、y=-2x+3 B 、y=-3x+2 C 、y=3x-2 D 、y=12x-3 8、在直角坐标系中,若直线y=2x-4与直线y= -3x+b 相交于x 轴上,则直线y= -3x+b 不经图1l1l23-1y o x图2 2-2x o y y =kx +b过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限二、画龙点睛(每小题3分,共24分) 1、某市地面气温是10ºC ,如果每升高1km,气温下降3ºC ,则气温y(ºC )与高度h(km)之间的函数关系式为 。
第14章一次函数单元综合测评(含答案)
第14章一次函数单元综合测评(含答案)第14章一次函数单元综合测评度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题3分,共30分) 01. 下列说法正确的是()A . 正比例函数是一次函数B . 一次函数是正比例函数C . 变量y x ,,y 是x 的函数,但x 不是y 的函数D . 正比例函数不是一次函数,一次函数也不是正比例函数02. 下列函数关系式:①x y -=;②;112+=x y ③12++=x x y ;④xy 1=.其中一次函数的个数是()A . 1个B . 2个C . 3个D . 4个 03. 一次函数y=-3x+6的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限 04. 已知函数y =mx +2x -2,使函数值y 随自变量x 的增大而增大,m 的取值范围是( )A .m ≥-2B .m>-2C .m ≤-2D .m<-205. 在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象,下列说法正确的是 ( )A . 通过点(-1,0)的是①和③B .交点在y 轴上的是②和④C .互相平行的是①和③D .关于x 轴平行的是②和③06. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是()A .y 1>y 2B .y 1>y 2 >0C .y 1<y 2D .y 1=y 207. 某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是()08. 小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是()09. 图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确说法共有() A . 1个 B . 2个 C . 3个 D . 4个 10. 已知A 、B 两地相距4千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章 一次函数单元综合测评
度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题3分,共30分) 01. 下列说法正确的是( )
A . 正比例函数是一次函数
B . 一次函数是正比例函数
C . 变量y x ,,y 是x 的函数,但x 不是y 的函数
D . 正比例函数不是一次函数,一次函数也不是正比例函数
02. 下列函数关系式:①x y -=;②;112+=x y ③12
++=x x y ;④x
y 1
=
.其中一次函数的个数是( )
A . 1个
B . 2个
C . 3个
D . 4个 03. 一次函数y=-3x+6的图象不经过( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限 04. 已知函数y =mx +2x -2,使函数值y 随自变量x 的增大而增大,m 的取值范围是( )
A .m ≥-2
B .m>-2
C .m ≤-2
D .m<-2
05. 在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的
图象,下列说法正确的是 ( )
A . 通过点(-1,0)的是①和③
B .交点在y 轴上的是②和④
C .互相平行的是 ①和③
D .关于x 轴平行的是②和③
06. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<
x 2,则y 1与y 2的大小关系是( )
A .y 1>y 2
B .y 1>y 2 >0
C .y 1<y 2
D .y 1=y 2
07. 某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )
08. 小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速
度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( )
09. 图象(折线ABCDE )描述了一汽车在某一直线上的行驶
过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出 下列说法:①汽车共行驶了120千米;②汽车在行驶途 中停留了0.5小时;③汽车在整个行驶过程中的平均速 度为
3
80
千米/时;④汽车自出发后3小时至4.5小时之 间行驶的速度在逐渐减少.其中正确说法共有( ) A . 1个 B . 2个 C . 3个 D . 4个 10. 已知A 、B 两地相距4千米。
上午8:00,甲从A 地出发步 行到B 的,8:20乙从B 地出发骑自行车到A 地,甲乙两人 离A 地的距离(千米)与甲所用的时间(分)之间的关系如 图所示。
由图中的信息可知,乙到达A 地的时间为
A 、8:30
B 、8:35
C 、8:40
D 、8:45
二、填空题(每小题3分,共30分)
11. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函
数关系式是 .
12. 若正比例函数y =(m -1)x
3
2-m ,y 随x 的增大而减小,则m 的值是__ _____.
13. 如果正比例函数y =3x 和一次函数y =2x +k 的图象交点在第三象限,那么k 的取值范
围是_ ____.
14. 写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小;(2)图象经过点(1,-3).
15. 一次函数y =kx +b(k ≠0)的图象过点(1,-1),且与直线y =5-2x 平行,则此一次函
数的解析式为_______ .
16. 已知一次函数y =-3x +2,当— 1
3≤x ≤2时,函数值y 的取值范围是_ ______.
17. 已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 . 18. 若直线y =-x +a 和直线y =x +b 的交点坐标为(m ,8), 则a +b =_____ __.
19. 某龙舟队在1000米比赛项目中,路程y (米)与时 间x (分钟)之间的函数图象如图所示.根据图中提 供的信息,该龙舟队的比赛成绩是 分钟.
20. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费
2.4元,以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 三、解答题(每小题10分,共40分)
21. 画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式062>+x
的解;(3)若31≤≤-y ,求x 的取值范围.
22. 小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:
请根据图中给出的信息,解答下列问题:
(1)放入一个小球量桶中水面升高___________cm ;
(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量桶中至少放入几个小球时有水溢出?
23. 我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用
水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元水费,超过的部分每吨按b 元(b>a)收费.设一户居民月用水y 元,y 与x 之间的函数关系如图所示. (1)求a 的值,若某户居民上月用水8吨,应收水费多少元? (2)求b 的值,并写出当x 大于10时,y 与x 之间的函数关系; (3)已知居民甲上月比居民乙多用水4吨,两家共收水费46
49cm
30cm
36cm
3个球
有水溢出
y(元)
40
3530252015105
元,求他们上月分别用水多少吨?
24.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元)。
现有两种购买
方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元(总费用=广告赞助费+门票费);方案二:购买门票方式如图所示。
解答下列问题:
(1)方案一中,y与x的函数关系式为______;方案二中,当0≤x≤100时,y与x的函数关系式为______,当x>100时,y与x的函数关系式为______;
(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元。
求甲、乙两单位各购买门票多少张。
)
参考答案
1.A
2.B
3.C
4.B
5.C
6.A
7.B
8.D
9.A 10.C
11.1005.1+=x y 12.-2 13.0<k 14.答案不唯一,答对即可 15.12+-=x y 16.34≤≤-y 17.18 18.16 19.4.8分钟 20.6.50+-=x y 21. ①图略3-=x ;②3->x ; ③2
3
27-≤≤-
x 22.(1)2,(2)设y kx b =+,把()030,,()336,代入得:30336b k b =⎧⎨
+=⎩,.解得230k b =⎧⎨=⎩
,
. 即230y x =+,(3)由23049x +>,得9.5x >,即至少放入10个小球时有水溢出.
23. 解:(1)当10x ≤时,有y ax =.将10x =,15y =代入,得 1.5a =.用8吨水应收水费8 1.512⨯=(元).(2)当10x >时,(10)15y b x =-+.将20x =,35y =代入,得351015b =+.2b =.当10x >时,25y x =-.(3)1.510 1.5102446⨯+⨯+⨯<, 所以甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为x 吨,y 吨,则
4252546.y x y x =-⎧⎨-+-=⎩,解之,得1612.x y =⎧⎨
=⎩
,
故居民甲上月用水16吨,居民乙上月用水12吨. 24. 解:(1)y =60x +10000;当0≤x ≤100时,y =100x ;当x >100时,y =80x+2000; (2)100<x <400时,选方案二进行购买,x =400时,两种方案都可以x >400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a 张、b 张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:
b ≤100或b >100.①当b ≤100时,乙公司购买本次足球赛门票费为100b ,
700,601000010058000,
a b a b +=++=⎧⎨
⎩解得550,150,a b =⎧⎨=⎩不符合题意,舍去;②当b >100时,乙公司购买本次
足球赛门票费为80b +2000,700,601000080200058000,
a b a b +=⎧⎨
+++=⎩解得500,
200,a b =⎧⎨
=⎩
符合题意.故甲、乙
单位购买本次足球赛门票分别为500张、200张.
可以编辑的试卷(可以删除)。