第14章 一次函数单元综合测评(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章 一次函数单元综合测评
度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题3分,共30分) 01. 下列说法正确的是( )
A . 正比例函数是一次函数
B . 一次函数是正比例函数
C . 变量y x ,,y 是x 的函数,但x 不是y 的函数
D . 正比例函数不是一次函数,一次函数也不是正比例函数
02. 下列函数关系式:①x y -=;②;112+=x y ③12
++=x x y ;④x
y 1
=
.其中一次函数的个数是( )
A . 1个
B . 2个
C . 3个
D . 4个 03. 一次函数y=-3x+6的图象不经过( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限 04. 已知函数y =mx +2x -2,使函数值y 随自变量x 的增大而增大,m 的取值范围是( )
A .m ≥-2
B .m>-2
C .m ≤-2
D .m<-2
05. 在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的
图象,下列说法正确的是 ( )
A . 通过点(-1,0)的是①和③
B .交点在y 轴上的是②和④
C .互相平行的是 ①和③
D .关于x 轴平行的是②和③
06. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<
x 2,则y 1与y 2的大小关系是( )
A .y 1>y 2
B .y 1>y 2 >0
C .y 1<y 2
D .y 1=y 2
07. 某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是( )
08. 小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速
度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( )
09. 图象(折线ABCDE )描述了一汽车在某一直线上的行驶
过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出 下列说法:①汽车共行驶了120千米;②汽车在行驶途 中停留了0.5小时;③汽车在整个行驶过程中的平均速 度为
3
80
千米/时;④汽车自出发后3小时至4.5小时之 间行驶的速度在逐渐减少.其中正确说法共有( ) A . 1个 B . 2个 C . 3个 D . 4个 10. 已知A 、B 两地相距4千米。上午8:00,甲从A 地出发步 行到B 的,8:20乙从B 地出发骑自行车到A 地,甲乙两人 离A 地的距离(千米)与甲所用的时间(分)之间的关系如 图所示。由图中的信息可知,乙到达A 地的时间为
A 、8:30
B 、8:35
C 、8:40
D 、8:45
二、填空题(每小题3分,共30分)
11. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函
数关系式是 .
12. 若正比例函数y =(m -1)x
3
2-m ,y 随x 的增大而减小,则m 的值是__ _____.
13. 如果正比例函数y =3x 和一次函数y =2x +k 的图象交点在第三象限,那么k 的取值范
围是_ ____.
14. 写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小;(2)图象经过点(1,-3).
15. 一次函数y =kx +b(k ≠0)的图象过点(1,-1),且与直线y =5-2x 平行,则此一次函
数的解析式为_______ .
16. 已知一次函数y =-3x +2,当— 1
3≤x ≤2时,函数值y 的取值范围是_ ______.
17. 已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 . 18. 若直线y =-x +a 和直线y =x +b 的交点坐标为(m ,8), 则a +b =_____ __.
19. 某龙舟队在1000米比赛项目中,路程y (米)与时 间x (分钟)之间的函数图象如图所示.根据图中提 供的信息,该龙舟队的比赛成绩是 分钟.
20. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费
2.4元,以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 三、解答题(每小题10分,共40分)
21. 画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式062>+x
的解;(3)若31≤≤-y ,求x 的取值范围.
22. 小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:
请根据图中给出的信息,解答下列问题:
(1)放入一个小球量桶中水面升高___________cm ;
(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值范围); (3)量桶中至少放入几个小球时有水溢出?
23. 我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用
水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元水费,超过的部分每吨按b 元(b>a)收费.设一户居民月用水y 元,y 与x 之间的函数关系如图所示. (1)求a 的值,若某户居民上月用水8吨,应收水费多少元? (2)求b 的值,并写出当x 大于10时,y 与x 之间的函数关系; (3)已知居民甲上月比居民乙多用水4吨,两家共收水费46
49cm
30cm
36cm
3个球
有水溢出
y(元)
40
3530252015105