大跨度建筑结构
大跨度建筑结构选型
吉林大学珠海学院
ZHUHAI COLLEGE JILIN UNIVERSITY
3.1.4网格结构及其建筑造型 网格结构是由很多杆件从两个方向或几个方向按一定的规律布置,通过节 点连接而成的一种网状空间杆系结构。
1)受力特点、优缺点和适用范围 受力特点: 杆件主要承受轴向力。
优点:1.整体性强、稳定性好、空间刚度大,有利于抗震; 2.节省材料,结构高度小; 3.可以有效地利用空间; 4.有利于工厂生产,且便于制作,安装也较方便; 5.形式多样;
ZHUHAI COLLEGE JILIN UNIVERSITY
吉林大学珠海学院
ZHUHAI COLLEGE JILIN UNIVERSITY
3.1.2刚架结构及其建筑造型 刚架结构是指梁和柱刚性连接的一种门形结构形式。 1)受力特点、优缺点和适用范围 受力特点:梁和柱之间刚性连接,在竖向荷载作用下柱对梁有约束作用, 在水平荷载作用下,梁对柱也有约束作用 。 优点:造型轻巧,富于变化,节省材料,受力合理,下部的空间较大。 适用范围:体育馆、礼堂、食堂、菜场等大空间建筑。 2)刚架结构的形式 按结构组成和构造方式的不同,分为无铰刚架、两铰刚架、三铰刚架。
吉林大学珠海学院
ZHUHAI COLLEGE JILIN UNIVERSITY
3.1.3桁架结构及其建筑造型 2)桁架结构形式 拱形桁架可用钢或钢筋混凝土制作,外形呈抛物线,矢高与跨度之比一般 为1/8~1/6,常用跨度为18~36m。 无斜腹杆桁架,常用跨度为15~30m。 跨度大于36m,宜用钢桁架,小于36m,可用钢筋混凝土桁架。
拱结构水平推力处理方式分为三种: 1.由拉杆承受拱推力
吉林大学珠海学院
3.1.1拱结构及其建筑造型 4)拱结构的建筑造型 拱结构水平推力处理方式分为三种: 2.由框架结构承受拱推力
大跨度建筑的结构设计
大跨度建筑的结构设计大跨度建筑是指建筑物中跨度大于等于40米的建筑。
与传统建筑相比,大跨度建筑在空间布局和结构设计上都有较大的挑战。
本文探讨大跨度建筑的结构设计及其应用。
一、大跨度建筑的结构设计1.梁式结构梁式结构是大跨度建筑的常用结构类型之一,它利用梁的强度和刚度来支撑跨度较长的建筑。
在大跨度梁的设计中,需要考虑到梁的截面形状、材料、刚度、强度等因素。
例如,著名的伦敦眼观景轮采用了梁式结构,利用了高强度钢材料制成的滑轮和悬挂钢缆来支撑整个建筑。
这种梁式结构设计的优点是能够在不占用内部空间的情况下提供支撑力,从而实现大跨度建筑的空间设计。
2.网壳结构网壳结构是一种常用的大跨度建筑结构设计形式。
它由大量的杆和节点组成,呈现出类似于异形网格的形态,可抵御外部弯曲和剪切力。
例如,位于中国上海的东方明珠塔就是一种典型的网壳结构。
它由大量的三角形钢管起拱形成多穹顶状网架结构,利用了结构杆件三角形组合的适用性和钢管双向剪力优良的特性,为整个建筑提供了强大的支撑力和刚度。
同时,网壳结构还具有优美的空间美学效果,为城市天际线带来了新的视觉风格。
3.悬链结构悬链结构利用悬挂钢缆和大跨度建筑物体的自重,形成了一种类似于悬链的结构设计形式。
它的一大特点是结构杆件能够分担大量吊杆的拉力,从而达到支撑建筑物的目的。
例如,著名的法国埃菲尔铁塔就是一种典型的悬链结构。
它由大量的悬挂钢缆和大型铁框架组成,同时利用了钻孔和铆焊技术,既满足了结构的承载要求,又保留了珍贵历史建筑成果。
这种悬链结构不仅增强了建筑物的稳定性,而且还成为法国文化遗产的标志性代表。
二、大跨度建筑的应用大跨度建筑由于具有空间利用效率高、运行费用低、视觉效果好等优点,在如今的城市化建设中得到了广泛的应用。
以下是几个典型的大跨度建筑案例:1.北京国家大剧院北京国家大剧院采用了地下水泵吸引地下水上泵供水的自然冷却系统,设有近3000个座位。
其建筑外观类似于人类强壮且柔韧的结构,运用了大量的悬挂钢缆和网壳结构,同时建筑内部空间充分利用,成为北京城市文化建筑的瑰宝。
大跨度建筑屋盖结构课件
•大跨度建筑屋盖结构
•22
•大跨度建筑屋盖结构
•23
2.从外形分:水平横梁式、折线横梁式
•大跨度建筑屋盖结构
•24
3.从跨数分:
•大跨度建筑屋盖结构
•25
构造
纵向柱距:6米 横向跨度:3米的倍数,如24米、27米 h/L:h减小将使推力增大, 三铰刚架: h>L 两铰刚架: L稍大于h
•66
第四节 拱结构的建筑实例
湖南一散装盐库
•大跨度建筑屋盖结构
•67
•大跨度建筑屋盖结构
•68
•大跨度建筑屋盖结构
•69
风雨操场
•大跨度建筑屋盖结构
•70
室内采光效果
•大跨度建筑屋盖结构
•71
农贸市场
•大跨度建筑屋盖结构
•72
飞机库
•大跨度建筑屋盖结构
•73
第五章 网架结构
第一节 网架结构的特点、优点与适用范 围
•大跨度建筑屋盖结构
•63
第三节 拱结构的形式与主要尺寸
拱结构的形式
按力学结构分: 三铰拱、两铰 拱和无铰拱
按建筑外形分: 半圆拱和抛物 线拱
•大跨度建筑屋盖结构
•64
拱轴形式的选择:
合理的拱轴线,只有轴力,没有弯矩
和荷载有关
均布荷载:二次抛物线
y
4f l2
x(l x)
矢高f的影响:
•大跨度建筑屋盖结构
•37
第三章 桁架结构
第一节 桁架的结构特点与优缺点
•大跨度建筑屋盖结构
•38
受力特点
•大跨度建筑屋盖结构
•39
开封县温泉游泳馆
第三章大跨度建筑构造1
薄壳结构是用混凝土等刚性材料以各种曲面形式构成 的薄板结构。
受力特点:结构呈空间受力状态,主要承受曲面内的 轴向力,弯矩和扭矩很小,刚度和强度都非常好。结 构厚度仅为跨度的几百分之一。 优点: 结构自重轻、省材料、跨度大、外形多样。
缺点:多数薄壳结构建筑的形体较为复杂,多采用现 浇施工;费工、费时、费模板,结构计算较复杂,不 宜承受集中荷载。
三、大跨度建筑的主要结构类型
结构技术是影响建筑 空间形式及造型的重 要因素,在大跨度建 筑中尤其如此。
按建筑材料和建造方式分为 钢筋混凝土薄壳结构 网架结构 轻钢结构 管桁架结构 悬索结构
膜结构
索-膜结构 混合结构
§3.2大跨度建筑结构类型及其造型、技术特点
一、拱结构及其建筑造型 二、钢架结构及其建筑造型 三、桁架结构及其建筑造型 四、折板结构及其建筑造型
哥特建筑尖拱与骨架拱
弧三角拱
罗马万神庙室内
法国里昂机场高速铁路车站
代表钢 铁时代 的埃菲 尔铁塔
文艺复兴时期公共会堂帕拉迪奥
(二)拱的形式
三铰拱
两铰拱 无铰拱
三铰拱
两铰拱
无铰拱
(三)拱结构的建筑造型
取决于矢高和平衡拱推力的方式 矢高影响建筑的外部轮廓形象。 通常矢高为拱跨的1/7~1/5,最小不小于1/10。
适用范围:体育馆、影剧院、展览馆、食堂、菜场、 商场等公共建筑。
(二)桁架结构的形式
1.用材:木材、钢材、钢筋混凝土
2.形式:三角形、梯形、拱形、无斜腹杆式和三铰拱 式
(三)桁架结构的建筑造型
大跨度结构其结构体系有很多种
大跨度结构其结构体系有很多种,如网架结构、索结构、薄壳结构、充气结构、应力膜皮结构、混凝土拱形桁架等,常用于展览馆、体育馆、飞机机库等。
一.网架结构网架结构为大跨度结构最常见的结构形式,因其为空间结构,故一般称为空间网架。
其杆件多采用钢管或型钢,现场安装。
常见的为平面桁架、四角锥体和三角形锥体组成,其节点形式可分为焊接钢板节点和焊接空心球节点两种。
二.索结构索结构是将桥梁中的悬索“移植”到房屋建筑中,可以说是土木工程中结构形式互通互用的典型范例。
三.薄壳结构薄壳结构常用的形状为圆顶、筒壳、折板、双曲扁壳和双曲抛物面壳等。
圆形圆顶结构是轴对称结构,在轴对称荷载作用下,将只产生两种力:径向力和环向力。
径向力为沿经线方向的力,因其要平衡垂直向下荷载,所以必定为压力。
环向力为沿纬线方向的力。
圆形屋顶在垂直荷载作用下,上部的圆顶部分将受压收缩,其直径将变小,而下部近支承部分直径将增大,即上部将产生环向压力,而下部将产生环向拉力,中间将有一截面,为环向压力向环向拉力转变的交界线,该处的环向力为0,该截面称为“过渡缝”。
悉尼歌剧院格拉加尼亚修道院教堂上页下页四.混凝土拱形桁架混凝土拱形桁架在以前的工程中应用较多,但因其自重较大,施工复杂,现已很少采用。
目前最大跨度的拱形桁架为贝尔格莱德的机库,为预应力混凝土桁架结构,跨度为135.8m。
日本姬路市中心体育馆五.充气结构充气结构又称充气薄膜结构,是在玻璃丝增强塑料薄膜或尼龙布罩内部充气形成一定的形状,作为建筑空间的覆盖物。
对角跨长200m,由室内地面至顶高6.07m的东京穹顶,是不用柱子,只依靠室内外气压差来制成的膜屋盖结构,也是在日本最初用于多功能全天候的体育场,约30,000平方米超大椭圆形屋顶,采用悬索加强的充气膜结构。
其双向各配置14根共28根钢索,在其上张拉着涂有特富龙的玻璃纤维布。
请看充气膜的充气过程:六.应力膜皮结构应力膜皮结构一般是用钢质薄板做成很多块各种板片单元焊接而成的空间结构。
建筑结构 大跨度结构
一、刚架结构
单 层 刚 架 基 本 尺 度
第十一章 大跨度结构
二、桁架(屋架)结构
第十一章 大跨度结构
受力 特点
桁架(屋架)的受力以轴力为主,各杆是承受拉(压)力的二力杆
件,受力状态比梁合理,计算简单、施工方便、自重较轻、适应性强。 但结构高度大,侧向刚度小,为保证其侧向稳定而设置的支撑往往耗 费过多的材料,为了构造和制作的方便往往采取由最大内力控制的等 截面杆件而使材料未尽其用。
二、桁架(屋架)结构
桁 架 结 构 布 置 及 支 撑 体 系
第十一章 大跨度结构
二、桁架(屋架)结构
工 程 实 例
I 国 家 体 育 馆 鸟 巢
第十一章 大跨度结构
二、桁架(屋架)结构
第十一章 大跨度结构
工程实例-国家体育馆鸟巢
三、拱结构
第十一章 大跨度结构
受力 特点
拱结构杆轴为凸向外荷载的曲线,在竖向荷载作用下产生推力并以
四、薄壳结构
第十一章 大跨度结构
薄壳结构主要形式及尺度
• 双曲扁壳
双曲扁壳矢高与底面短边之比应不大于1/5,但也不能太扁以避免向平板 转化。当双面扁壳双面曲率不等时,较大曲率与较小曲率之比,以及底面 长边与短边之比,均不宜超过2。双曲扁壳允许倾斜放置,但壳体底平面 的最大倾角不宜超过10°,其它尺度要求同球壳。
为使悬索结构具有足够的形状稳定性,应在悬索体系内建立适当的 预应力,使悬索绷紧。
类型
单层悬索加重屋面 预应力“悬挂薄壳” 预应力双层索系、 预应力索网
劲性悬索 横向加劲平行索系——索-梁(桁)体系、索-拱体系
七、悬索结构
第十一章 大跨度结构
悬索结构尺度
• 单层索系:承重索垂跨比1/20~1/10
大跨度建筑的结构类型及造型
薄壳结构形式
筒壳 圆顶壳 双曲扁壳 双曲抛物面壳
双曲扁壳与双曲抛物面壳
北京火车站——双曲扁壳
薄壳结构的建筑造型
建筑造型是以各种几何曲面图形 为基本,有圆筒形、圆球形、双 曲抛物面形。 不简单重复上述基本形式,而是 巧妙地运用交贯、切割、改变参 数等方法,重新组合再创造。造 型独特新颖,突出建筑个性。
巴黎国家工业与技术中心陈列馆
三束锥状双曲面薄壳交 汇于屋顶中心,立面呈 抛物线形,上下双层壳 板组成空腔壳体,平均 厚度18CM,仅为跨度的 1/144。
美 国 麻 省 理 工 学 院 礼 堂
埃罗· 沙里宁,1/8球面薄壳,平面为曲边三角 形,边梁向上卷起,传递荷载至三个支座,地 下埋设水平拉杆,平衡推力,铜板覆盖,玻璃 幕墙曲面外墙。
肯尼迪机场候机楼
四片双曲面钢砼薄壳合围成 屋顶,展翅飞翔的大鸟。采 光带分开四部分,边梁朝支 座逐渐加宽,适应增大的内 力。模型实验,艺术与结构 的完美结合,没有生硬的几 何图形痕迹。
空间网格结构
多根杆件
以一定规律 节点连接
平板网架 曲面网壳 空间结构形式
1、多向受力结构,整体性强,稳定, 刚度大; 2、杆件主要承受轴向拉、压力,符合 材料特性,节省; 3、结构高度小,有效利用空间; 4、杆件规格统一,易于生产。
建筑结构大跨度结构
建筑结构大跨度结构大跨度结构是指横跨较长的距离,一般大于50米的建筑结构。
大跨度结构在现代建筑中得到了广泛应用,不仅可以提供更大的空间,还能够提高建筑的整体美观性、功能性和可持续性。
本文将介绍大跨度结构的定义、分类、应用以及在设计中的考虑因素等内容。
一、大跨度结构的定义大跨度结构是指横跨较长的距离的建筑结构。
它们通常用于一些需要较大空间的场所,如会展中心、机场终端楼、体育馆等。
大跨度结构的建造需要考虑跨度、荷载、材料和施工等因素。
跨度越大,结构的自重越大,所需的材料和施工难度也越大。
因此,在设计大跨度结构时需要进行充分的工程计算和结构分析,以确保结构的稳定性和安全性。
二、大跨度结构的分类根据结构的形式和功能,大跨度结构可以分为以下几种类型:1.單元系統結構:单元系统结构是一种由标准化部件组成的结构体系,其主要特点是模块化。
这种结构适用于大型工业厂房、仓库等场所。
常见的单元系统结构包括钢桁架结构和桁架梁结构。
2.点支撑结构:点支撑结构是一种通过柱子或支撑点将荷载传递到地面的结构。
它适用于要求大空间的建筑,如机场终端楼、体育场馆等。
点支撑结构常见的形式有网壳结构和空间桁架结构。
3.地铁结构:地铁结构主要用于地铁车站和地下通道等场所,其特点是地下结构、强度高和防水性能好。
地铁结构主要由混凝土和钢材构成,以提供足够的强度和稳定性。
4.悬索桥结构:悬索桥结构主要由悬索和桥塔组成,适用于跨越较长距离的桥梁。
悬索桥结构具有较好的承载能力和抗震能力,广泛用于桥梁工程中。
三、大跨度结构的应用大跨度结构在现代建筑中得到了广泛应用,主要体现在以下几个方面:1.会展中心:会展中心是大跨度结构的代表之一,其特点是空间大、无柱和灵活布局。
通过合理的结构设计和使用大跨度结构,可以提供更大的展示面积和灵活的空间分配。
2.机场终端楼:机场终端楼一般需要提供较大的空间,以应对大量旅客的需求。
大跨度结构可以提供无柱的空间,不仅能够提供较大的空间容量,还能使旅客获得更好的使用体验。
建筑工程中大跨度建筑结构形式与设计研究
建筑工程中大跨度建筑结构形式与设计研究引言随着城市化进程的加速和人们对建筑空间需求的不断提升,大跨度建筑的设计和施工已经成为建筑工程中的重要课题。
大跨度建筑结构不仅能够创造出宽敞明亮的空间,还能够展现出现代城市建筑的新风貌。
对于大跨度建筑结构形式与设计的研究具有重要意义。
本文将从大跨度建筑的定义、形式和设计要点等方面展开讨论,以期对大跨度建筑结构形式与设计进行全面深入的探讨。
一、大跨度建筑的定义大跨度建筑是指建筑物内部空间跨度较大的建筑,它通常具有跨度大、体量大、结构重、空间宽敞等特点。
在工程学中,大跨度建筑的定义通常是指跨度超过30米的建筑物。
大跨度建筑广泛应用于体育馆、会展中心、机场候机厅、火车站等需要大空间的场所,同时也包括大跨度桥梁等工程。
大跨度建筑的设计和施工需要克服许多技术难题,因此对于大跨度建筑结构形式与设计的研究显得尤为重要。
二、大跨度建筑的结构形式大跨度建筑的结构形式多种多样,根据不同的需求和场所,大跨度建筑可以采用不同的结构形式。
常见的大跨度建筑结构形式包括悬索桥、钢结构框架、网架结构、拱壳结构、索塔结构等。
每种结构形式都有其特点和适用范围,需要根据具体情况进行选择和设计。
悬索桥结构形式是一种常见的大跨度建筑结构形式,它通过悬索和桥面板相连来承担桥梁的荷载。
其特点是桥梁自重轻、刚度大、适用于大跨度、大荷载的情况。
钢结构框架是另一种常见的大跨度建筑结构形式,采用钢材制成的框架结构来支撑整个建筑物。
这种结构形式具有刚度大、强度高、施工速度快等特点,适用于大型厂房、体育馆等大跨度场所。
网架结构是一种以杆件和节点组成的空间刚架结构,它的特点是构件轻、刚度大、适用于大空间覆盖的建筑物。
拱壳结构是一种利用拱形的结构来分担荷载的结构形式,其特点是自重轻、抗弯承载能力强,适用于大跨度建筑场所。
三、大跨度建筑设计要点大跨度建筑的设计具有许多要点,需要充分考虑结构安全、建筑功能、美学效果等因素。
常见的大跨度结构形式
常见大跨度的结构形式我国规范:跨度60m以上为大跨度。
类型:多为公建,人流集中,规模大,占地面积大。
例如影剧院、体育场馆、展览馆、大会堂、航空港;工业建筑:飞机装配车间、飞机库等。
1、拱结构;拱是一种推力结构:在竖向荷载下产生水平推力;拱是一种无矩结构:通过合理拱轴可使杆件无弯矩;拱可充分利用材料抗压强度,断面小、跨度大。
是一种古老的方法适合脆性材料、石材、砖材、混凝土等关键是侧推力平衡问题2、钢架结构;1、材料强度高,自身重量轻;2、钢材韧性,塑性好,材质均匀,结构可靠性高;3、钢结构制造安装机械化程度高;4、钢结构密封性能好;5、钢结构耐热不耐火;6、钢结构耐腐蚀性差;7、低碳、节能、绿色环保,可重复利用。
3、桁架结构;受力特点是结构内力只有轴力,而没有弯矩和剪力。
这一受力特性反映了实际结构的主要因素,轴力称桁架的主内力。
4、网架结构;网架结构是高次超静定结构体系。
板型网架分析时,一般假定节点为铰接,将外荷载按静力等效原则作用在节点上,可按空间桁架位移法,即铰接杆系有限元法进行计算。
由多块条形平板组合而成的空间结构,是一种既能承重,又可围护,用料较省,刚度较大的薄壁结构,可用作车间、仓库、车站、商店、学校、住宅、亭廊、体育场看台等工业与民用建筑的屋盖。
此外,折板还可用作外墙、基础及挡土墙。
6、薄壳结构;壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
由柔性受拉索及其边缘构件所形成的承重结构。
索的材料可以采用钢丝束、钢丝绳、钢铰线、链条、圆钢,以及其他受拉性能良好的线材。
8、张拉膜结构;张拉整体结构是由一组连续的拉杆和连续的或不连续的压杆组合而成的自应力、自支撑的网状杆系结构,其中「不连续的压杆」的含义是压杆的端部互不接触,即一个节点上只连接一个压杆。
9、充气膜结构;充气膜结构是一种新型建筑结构,是轻型空间结构的一个重要分支,具有丰富多彩的造型,建筑特性、结构特性优越,主要分为张拉膜结构、骨架膜结构、充气膜结构、索桁架膜结构等。
大跨度建筑
膜结构是空间结构中最新发展起来的一种类型,它以性能优良的织物为材料,或是向膜内充气,由空气压力 支撑膜面,或是利用柔性钢索或刚性骨架将膜面绷紧,从而形成具有一定刚度并能覆盖大跨度结构体系。膜结构 既能承重又能起围护作用,与传统结构相比,其重量却大大减轻,仅为一般屋盖重量的1/10-1/30。
因为壳体结构属于高效能空间薄壁结构范畴,可以适应于力学要求的各种曲线形状,所以其承受弯曲及扭转 的能力远比平面结构系统大。另外,因结构受力均匀,因而可充分发挥材料的材耗,所以壳体结构体系非常适用 于大跨度的各类建筑。
由于钢的强度很高,很小的截面就能够承受很大的拉力,因而在本世纪初就开始用钢索来悬吊屋顶结构。悬 索在均匀荷载作用下必然下垂而呈悬链曲线的形式,索的两端不仅会产生垂直向下的压力,而且还会产生向内的 水平拉力。单向悬索结构为了支承悬索并保持平衡,必须在索的两端设置立柱和斜向拉索,以分别承受悬索所给 予的垂直压力和水平拉力。单向悬索的稳定性很差,特别是在风力的作用下,容易产生振动和失稳。
(2)悬挂膜结构-一般采用独立的桅杆或拱作为支承结构将钢索与膜材悬挂起来,然后利用钢索向膜面施加 张力将其绷紧,这样就形成了具有一定刚度的屋盖。
(3)骨架支撑膜结构-这是以钢骨架代替了空气膜结构中的空气作为膜的支撑结构,骨架可按建筑要求选用 拱、网壳之类的结构,然后在骨架上敷设膜材并绷紧,适用于平面为方形、圆形或矩形的建筑物。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集 中,其灵活性就越大。从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱 的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。
常见大跨度建筑的结构形式
常见大跨度建筑的结构形式结构类型:有拱、刚架以及桁架、折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。
拱是古代大跨度建筑的主要结构形式。
由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。
很明显,这会使建筑的平面空间组合受到约束。
拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。
古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。
拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。
刚架是由梁和柱组成的结构,各杆件主要受弯,刚架的结点主要是刚结点,也可以有部分铰结点或组合结点。
全部是钢材焊接的结构,一般用于超高层的办公大楼,或大型的会场和展厅。
桁架是一种由杆件彼此在两端用铰链连接而成的结构。
桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。
桁架的优点是杆件主要承受拉力或压力,可以充分发挥材料的作用,节约材料,减轻结构重量。
常用的有钢桁架、钢筋混凝土桁架、预应力混凝土桁架、木桁架、钢与木组合桁架、钢与混凝土组合桁架。
折叠折板屋顶结构一种由许多块钢筋混凝土板连接成波折形的整体薄壁折板屋顶结构。
这种折板也可作为垂直构件的墙体或其他承重构件使用。
折板屋顶结构组合形式有单坡和多坡,单跨和多跨,平行折板和复式折板等,能适应不同建筑平面的需要。
常用的截面形状有V形和梯形,板厚一般为5~10厘米,最薄的预制预应力板的厚度为3厘米。
跨度为6~40米,波折宽度一般不大于12米,现浇折板波折的倾角不大于30°;坡度大时须采用双面模板或喷射法施工。
大跨度建筑结构
悉尼超级穹顶体育馆
达 州 市 体 育 场 效 果 图
达州市体育场看台挑棚采用了在节点处相贯连接的圆钢 管空间桁架结构,拱顶为覆盖的膜结构。 管空间桁架结构,拱顶为覆盖的膜结构。 圆钢管空间桁架的主拱跨度为240m, 圆钢管空间桁架的主拱跨度为240m,与主拱垂直的次 拱最大跨度34m。 拱最大跨度34m。 主拱截面为菱形空间桁架,次拱为三角形空间桁架, 主拱截面为菱形空间桁架,次拱为三角形空间桁架,次 拱与主拱间均采用相贯连接。 拱与主拱间均采用相贯连接。
二、大跨度空间结构的分类
大跨空间结构的类型 和形式十分丰富多彩,习 惯上分为如下这些类型: 一、实体结构类--薄壳结 构,折板结构 二、网格结构类--网架结 构、网壳结构 三、张力结构—悬索结构、薄膜结构 四、其它新型大跨度空间结构-- 可展开折叠式结构、开合屋 盖、 张拉整体结构、 张弦结构、 整体张拉预应力拱架结构
日本名古屋,支承在看台框 架柱顶的屋盖直 径则有187.2m, 采用边长约10m 的钢管构成的三 向网格,每个节 点上都有六根杆 件相交,采用直 径为1.45m的加 肋圆环,钢管杆 件与圆环焊接,成 为能承受轴向力 与弯矩的刚性节 点
THE
END
悬挂在两个塔柱上 的两条中央悬索及 分列两侧的两片鞍 形索网是屋盖结构 的主要组成部分。 高耸的塔柱、下垂 的主悬索和流畅的 两片鞍形曲面组成 了雄伟别致的建筑 物
日本东京代代木体育馆 鞍形索网
悉尼超级穹顶体育馆是被作为
2000年奥林匹克运动会的多功能体育 馆进行设计的。 菲利普·考克斯与其合作者们把大 穹顶体育馆想象成一座庞大、水平且 半透明的建筑。建筑外形呈鼓状,由 24根钢柱支撑着的放射状网架结构形 成了遮盖赛场的轻型屋盖体系。为使 其尺度不至于过大,他们在两侧设置 了环抱体育场的轻质廊道,这就给这 个大尺度的表皮添上了一些人性化的 细部。但是要欣赏大穹顶还是需要一 定的角度和高度,所以他们在设计时 运用了一种类似桅杆的结构,就像是 一个花冠围绕在体育馆的周围。他们 以其纤细但不失强度的悬索和自由排 列的柱廊强调大穹顶的整体外观。支 撑柱廊的是树状的柱子,屋顶采用了 有拉索支撑的桁架结构,大尺度出挑 的屋檐为场馆提供了阴凉的空间。
大跨度建筑结构体系简述各种大跨度结构类型
大跨度建筑结构体系简述各种大跨度结构类型大跨度建筑结构体系是指横跨较大距离的建筑结构系统,以其独特的设计和建造方式,为人们提供了更广阔的室内空间和更舒适的居住环境。
大跨度结构通常用于体育馆、展览中心、机场终端、会议中心等大型场所。
本文将简要介绍几种常见的大跨度结构类型。
1.钢结构钢结构是应用最广泛的大跨度结构类型之一,其特点是轻巧、强度高、施工方便,适用于跨度较大的建筑。
钢结构使用钢材作为主要构件,通过焊接、螺栓连接等方式进行安装。
钢结构的优点包括重量轻、可塑性好、耐腐蚀等,缺点则包括易受火灾影响、维护成本高等。
常见的钢结构类型包括钢桁架、钢索悬挂结构等。
2.混凝土结构混凝土结构是另一种常见的大跨度结构类型,其特点是稳定性好、防火性能优异。
混凝土结构使用混凝土作为主要构件,通过浇筑成型,或者采用预制件的方式进行安装。
混凝土结构的优点包括耐久性好、抗震性好、隔热性能好等,缺点则包括重量重、施工周期长等。
常见的混凝土结构类型包括空间壳体结构、空中梁板结构等。
3.张拉结构张拉结构是一种通过张拉钢索或者预应力混凝土来形成稳定结构的建筑。
张拉结构的特点是跨度大、自重轻、构件适应性强。
张拉结构通过预应力钢索或者混凝土进行张拉,使结构产生压应力,从而提高结构的稳定性和承载能力。
张拉结构的优点包括大跨度、轴向力分布均匀、形式多样,缺点则包括施工复杂、工期长等。
常见的张拉结构类型包括张拉拱结构、张拉平板结构等。
4.空间网壳结构空间网壳是一种由柱、梁、网架等构成的三维网格结构,其特点是刚性好、稳定性好。
空间网壳结构通过三维网格结构的组合,使得结构能够均匀分布荷载,提高承载能力。
空间网壳的优点包括大跨度、稳定性好、形式美观等,缺点则包括施工复杂、构件连接困难等。
常见的空间网壳结构类型包括球面网壳结构、大跨度格构结构等。
总之,大跨度建筑结构体系是一种为了满足大型场所空间需求的特殊结构设计和建造方式。
钢结构、混凝土结构、张拉结构和空间网壳结构都是常见的大跨度结构类型,每种类型都具有独特的优点和缺点,设计师在选择结构类型时需要根据具体情况进行考虑。
大跨度建筑屋盖结构
施工过程管理
总结词
施工过程管理是确保大跨度建筑屋盖 结构施工顺利进行的重要保障。
详细描述
建立完善的施工管理体系,明确各岗 位的职责和要求,加强施工现场的协 调与监控,确保施工进度、质量和安 全等目标的实现。
施工质量控制
总结词
施工质量控制是确保大跨度建筑屋盖结构施工质量符合设计要求的重要环节。
详细描述
大跨度建筑屋盖结构
• 引言 • 大跨度建筑屋盖结构类型 • 大跨度建筑屋盖结构设计 • 大跨度建筑屋盖结构施工 • 大跨度建筑屋盖结构应用案例 • 大跨度建筑屋盖结构发展趋势与挑战
01
引言
主题简介
01
大跨度建筑屋盖结构是指跨越较 大空间、采用特殊结构形式的建 筑屋盖,通常用于大型场馆、会 展中心、机场等公共建筑。
施工监控与健康监测
通过实时监测和数据分析,对施工过程进行精确控制,确保结构的 安全性和稳定性。
预制构件与装配式施工
采用预制构件和装配式施工方法,提高施工效率,减少现场作业量, 降低安全风险。
绿色建筑与可持续发展
节能设计
01
通过合理的建筑布局、采光和通风设计,降低建筑能耗,提高
能源利用效率。
可再生能源利用
建立完善的施工质量管理体系,加强材料质量检测、施工过程监控和验收管理,确保各道工序的施工 质量符合设计要求和规范标准。同时,加强质量问题的处理和预防措施,避免质量事故的发生。
05
大跨度建筑屋盖结构应用案例
体育场馆屋盖结构
体育场馆作为大型公共建筑,其屋盖结构需要满足大跨度、大荷载和高使用频率的要求。常见的体育场馆屋盖结构形式包括 悬索结构、网架结构和张弦梁结构等。这些结构形式能够提供较大的空间跨度和承载能力,同时保证结构的稳定性和安全性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨度建筑结构1单层刚架刚架是以横梁和柱以整体连接方式构成的一种门形结构。
1.1受力特点:梁柱合一的刚架仍是横向受弯为主的结构,但梁柱刚接的相互约束减少了梁跨中与柱内弯矩,内力虽然有轴力,但以弯矩为主,这是其承荷传力的基本特性。
刚架结构比屋架和柱组成的排架结构轻巧,可以节省钢材和水泥。
由于大多数刚架的横梁是向上倾斜的,不但受力合理,且结构下部的空间增大,对某些要求高大空间的建筑特别有利。
同时,倾斜的横梁使建筑屋顶形成折线形,建筑外轮廓富裕变化。
由于刚架结构受力合理,轻巧美观,能跨越较大的跨度,制作又很方便,因此应用非常广泛。
但刚架结构的刚度较差,不宜用于吊车起吊重量超过100KN的厂房等建筑。
1.2刚架结构的类型刚架按结构组成的构造方式不同,分为无铰刚架、两铰刚架、三铰刚架。
无铰刚架和两铰刚架是超静定结构,结构刚度较大,但当地基条件较差,发生不均匀沉降时,结构产生附加内力。
三铰刚架则属于静定结构,在地基产生不均匀沉降时,结构不会引起附加内力,但刚度不如前两种好。
一般来说,三铰刚架多用于跨度较小的建筑,前两者用于较大的建筑。
刚架按材料不同分为胶合木刚架、钢刚架和混凝土刚架。
胶合木刚架是利用短薄板的板材拼接而成,不受原木尺寸及缺陷的限制,具有较好的防腐和耐燃的性能。
轻钢门式刚架适用范围:用于跨度为9一36m,柱距为6m,柱高为4.5一9m,不设吊车或设有起重量较轻吊车的单层工业厂房或公共建筑:设置桥式吊车时起重量不宜大于20t、设置悬挂吊车时起重量不宜大于3t。
钢筋混凝土刚架一般适用于跨度小于18m,高度小于10m的无吊车和吊车荷载小于100KN的建筑中,最大跨度可达30m。
钢筋混泥土刚架构件截面一般为矩形,以便于叠层预制。
为省掉不必要的混泥土可做成空心界面、工字形截面或空腹式。
刚架按建筑体形分有平顶、坡顶、拱、单跨与多跨。
1.3刚架结构的建筑造型刚架结构常用钢筋混泥土建造,为了节约材料和减轻结构的自重,通常将刚架做成断面形式,柱梁相交处弯矩最大,断面增大,较接点处弯矩为零,断面最斜或外直内斜。
刚架多采用预制装配,构件呈“Y”形和“厂”形,用这些构件可组成单跨、多跨、高低跨、悬挑跨等各种形式的建筑外形。
屋脊一般在跨度正中间,形成对称式刚架,也可偏于一边,构成不对称式刚架。
1.4刚架结构建筑实例杭州黄龙洞游泳馆。
它采用港及混凝土刚架结构,主跨为不对称刚架,屋脊靠左移,使跳水台处有足够的高度,主跨右侧带有一悬挑跨,用作休息和其他辅助房间。
2桁架结构桁架结构是由杆件组成的一种格构式体系。
2.1 桁架结构受力特点及优缺点杆件与杆件的连接假定为铰接,在外力作用下的杆件内力为轴向力,而梁的内力主要是弯矩,且分布不均匀,梁的断面大小常一最大弯矩处的断面尺寸为整个梁的断面大小,,因此梁的材料强度利用不够充分。
桁架内力分布均匀,材料强度能充分利用,减少材料耗量和结构自重,使结构跨度增大。
其计算简单、施工方便、自重较轻、适应性强。
2.2桁架结构形式及结构体系桁架按屋架外形分为三角形、梯形、拱形、无斜腹杆式和三铰拱式等各种形式。
按材料可分为木屋架、钢屋架、钢-木组合屋架、轻型钢屋架、钢筋混泥土屋架、预应力混凝土屋架等按受力特点及材料性能不同分为桥式屋架、无斜腹杆屋架、刚接桁架、平行弦屋架立体桁架等。
另外由平面桁架组成的桁架结构体系也在现在民用建筑中运用的越来越广泛。
这里主要用于住宅旅馆,所以仅仅做个简单的介绍。
交错桁架结构的基本组成是柱子、平面桁架和楼面板。
柱子布置在房屋的外围,中问无柱。
桁架的高度与层高相同,长度与房屋宽度相同。
桁架两端支承于外围柱子上,桁架在相邻柱列上为上、下层交错布置,楼面板一端搁置在桁架的上弦,另一端搁置在相邻桁架的下弦。
桁架或支撑均包在分户墙中。
交错桁架结构体系自问世以来,主要用于15 ~25 层的旅馆、汽车旅馆和住宅,直到1985 年交错桁架结构体系建筑才开始超过30 层。
1986 年,在美国新泽西州大西洋城建造了43 层的国际旅游饭店,从而把交错桁架结构体系应用到100m以上的高层建筑领域。
2.3桁架建筑结构的建筑造型桁架结构在大跨度建筑中多用于屋顶的承重结构,根据建筑的功能要求、材料供应和经济合理,可设计成单坡、双坡、单坡、多跨等不同的外形。
2.4桁架结构建筑实例北京体育馆(1955)采用三铰拱刚桁架结构。
可容纳6000,跨度56m。
桁架暴露于比赛大厅,桁架顶部设有天窗,以利于采光和通风。
重庆体育馆(1956)三层砖木结构,面积一万平方米,可容5000人(因年代久远今已基本停止使用)。
矩形平面,大部分座位席布置在球场两侧,视线良好,缩短了拱形钢桁架跨度。
桁架间距6m,槽钢檩条,木屋面板。
3拱结构拱结构是一种受力极为合理的形态作用结构形式。
与弯剪结构体系相比,拱结构具有跨度大、承载力高、截面薄、变形小的优点,因此应用在建筑中,节省了更多的建筑材料。
自古以来,拱承载着建筑与结构的双重角色。
3.1受力特点拱是杆轴线为曲线并且在竖向荷载下会产生水平反力的结构,这种水平反力又称为推力。
拱以支座的水平推力和截面内轴向压力的水平分力所构成的力矩平衡结构的整体性弯矩,且在弯矩最大处的跨中,这种平衡力矩也达到最大,从根本上避免了构件中产生较大弯矩的可能性。
同时,又以截面内轴向压力的竖向分力平衡了结构的整体剪力。
由于推力的存在,拱的弯矩要比跨度、荷载相同的梁的弯矩小得多,并且主要承受压力。
拱的优点为主要产生压力,是使构件摆脱弯曲变形的一种突破性发展,它为抗压性能好的材料提供了一种理想的结构形式。
3.2拱的结构类型拱根据其轴线的几何形态可划分为圆形、椭圆形、抛物线、悬链线等几种基本形式;以及变曲率曲线、三角形、梯形、多角形等其他的扩展形式。
据拱截面的平面内外的刚度差异,拱可分为实心拱与格构拱。
实心拱以其独特的曲线形式实现了弯矩向轴力的转化,截面形式主要有工字形、圆管、T 形、矩形、平板(筒拱或拱壳)以及组合形式。
其中,钢拱最常见的形式为工字型截面,通常可直接采用焊接工字钢或者圆钢管焊接而成,其平面外刚度较小,一般适用于较小跨度的钢拱屋架。
格构拱则通过运用与应力形式一致的曲线的同时,运用格构的方式将内部应力转化为腹杆的轴力,实现了构件内部的应力集中传递,为木材、钢等高强度的材料提供了最高效的结构形式。
格构拱的截面形式多样,常见的有箱型或圆钢焊接成的三角形(正、倒)格构拱,梯形(正、倒)格构拱,矩形格构拱以及正方形格构拱等等。
格构拱本身具有较好的空间刚度,一般适用于较大跨度的拱形屋架,目前在大跨建筑以及桥梁中应用较多。
根据截面变化,拱又可分为等截面拱和变截面拱,其界面变化趋势的确定往往根据应力的变化以及造型的需要两方面来控制。
江西省体育馆(1990)的主承重落地拱在拱脚处分叉处理,丰富造型的同时,也解决了拱的稳定问题;沈阳奥体中心主体育场(2007)的两铰格构拱,则从中间向两端截面逐渐变小,最后收为一点。
3.3拱结构的建筑造型拱结构的造型主要取决于矢高的大小和平衡拱推力的方法。
拱的矢高对建筑外形轮廓形象影响最大。
矢高小的拱,外形起伏变化小,结构占用的空间小,但水平推力相反。
矢高大的则相反。
根据解决水平推力方式的不同外形也显然不同,通常有一下几种处理方式:(1)由拉杆承受拱推力。
(2)由框架结构承受拱推力的建筑造型(3)由基础承受拱推力的建筑造型。
3.4拱结构建筑实例南京奥体中心主体育场(2005)钢屋盖结构中的倾斜 45°的拱,跨度为360m ,斜拱的采用首先满足了建筑方案新奇的要求。
位于旧金山的摩斯康会议中心(1980)8对90m 跨度的钢筋覆盖一个面积为90mx240m 的无柱地下空间。
为了使屋顶以后可以承受0.9m 高填土的附加荷载,在各拱的一个端头9cm 的空隙然后用巨大的后张压力推拱顶,向内移动9cm 以消除空隙,样又迫使拱提升10cm 。
另外拱结构也运用于桥梁中。
4薄壳结构壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
4.1受力特点薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型奇特新颖且能适应各种平面的建筑,但较为费工和费模板。
其力学特点主要是三个方面:双向直接传力——强度大;极大空间刚度——空间大;屋面承重合一—19831995—板架合一。
4.2薄壳结构类型1.柱面薄壳:是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。
2.圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600,跨度可以很大。
支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。
3.双曲扁壳(微弯平板):一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高与底面短边边长之比不应超过1/5。
双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。
适用于覆盖跨度为20~50米的方形或矩形平面(其长短边之比不宜超过2)的建筑物。
4.双曲抛物面壳:一竖向抛物线(母线)沿另一凸向与之相反的抛物线(导线)平行移动所形成的曲面。
此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。
工程中常见的各种扭壳也为其中一种类型,因薄壳结构容易制作,稳定性好,容易适应建筑功能和造型需要,所以应用较为广泛。
4.3薄壳结构的建筑造型薄壳接哦股的建筑造型是以各种几何曲面图为基本特征,基本形式为圆筒形、圆球形、双曲面抛物型。
他与传统的梁、板。
架一类结构相比,在造型上独具特色,容易给人以新奇感,突出建筑物的个性。
4.4薄壳结构建筑实例世界最大的薄壳结构——法国巴黎国家工业与技术陈列大厅屋顶(1959)。
三角形平面:边长219m双层波形RC拱壳。
法国格勒诺布尔冰球馆(1968),该馆屋顶以四片筒形的外沿切割成尖形叶。
壳体相交的谷像劲肋一样增强了壳体强度,整个壳顶支承在四个柱墩上。
5折板结构折板结构是以一定倾斜角度整体组合相连的一种薄板体系。
5.1受力特点折板就是由这些斜板所组成的。
这些基本斜板可以假定为相互依靠的薄腹深梁纵向跨越在两个端点支座之间。
这些深梁的强度随着板的斜度及其投影高度而增加。
如果斜度太小,板作为整体就失去它的有效性。
在典型条件中,以简支梁来类推也足够准确,可以实验证明。
但是,折板端部的板或是不对称的折板就不能按简支梁考虑。
在这种情况下,邻接的基本板的两个边的变形趋势不同,但是这种对向的趋势被板脊和板谷的连续性所抵制。
典型空间结构的安全度比按平面弯曲设计的结构优越,这才真正发挥了作用。
3.横向加劲板的作用折板结构的工作原理可以分为下面三部分:(1)横向同多跨连续简支梁的弯矩图类似。