全国卷数学试卷及参考答案
全国统一高考数学练习卷及含答案 (5)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120B.168C.204D.2162.不等式|x+log2x|<|x|+|log2x|的解集为()A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知α、β以及α+β均为锐角,x=sin(α+β),y=sinα+sinβ,z=cosα+cos β,那么x、y、z 的大小关系是()A.x<y<z B.y<x<z C.x<z<y D.y<z<x4.过曲线xy=a2(a≠0)上任意一点处的切线与两坐标轴构成的三角形的面积是()A.a2B.C.2a2D.不确定5.若展开式的第3项为144,则的值是()A.2B.1C.D.06.正四面体的内切球和外接球的半径分别为r 和R,则r:R 为()A.1:2B.1:3C.1:4D.1:97.已知椭圆的中心在原点,离心率且它的一个焦点与抛物线y2=4x 的焦点重合,则此椭圆的方程为()A.B.C.D.22a 9)21(0x -)1211(lim 20---→x x x x 2113422=+y x 16822=+y x 1222=+y x 1422=+y x8.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量单价(元/kg)22.4 2.83.2 3.64供给量(1000kg)506070758090表2市场需求量单价(元/kg)43.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间()A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内9.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为()A.41B.21C.2D.410.若曲线x x x f -=4)(在点P 处的切线平行于直线3x-y=0,则点P 的坐标为()A.(1,3)B.(-1,3)C.(1,0)D.(-1,0)11.已知函数)(x f y =是R 上的偶函数,且在(-∞,]0上是减函数,若)2()(f a f ≥,则实数a 的取值范围是()A.a≤2B.a≤-2或a≥2C.a≥-2D.-2≤a≤212.如图,E、F 分别是三棱锥P-ABC 的棱AP、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为()A.60°B.45°C.0°D.120°二、填空题(共4小题,每小题5分;共计20分)1.“面积相等的三角形全等”的否命题是______命题(填“真”或者“假”)2.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为_____3.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为_____万.(结果精确到0.01)4.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有____个,若把这些数按从小到大的顺序排列,则第100个数为______.三、大题:(满分70分)1.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2.已知a,b,c 为正数,且满足abc=1.证明:(1)222111a b c a b c ++≤++;(2)333()()()24a b b c c a +++≥++.3.如图,长方体ABCD–A1B1C1D1的底面ABCD 是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.4.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.5.已知直线l 的极坐标方程为,圆C 的参数方程为为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.6.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.参考答案:一、选择题:1-5题答案:BAACC6-10题答案:BACAC11-12题答案:BA二、填空题:1、真2、33、0.994、126,24789三、大题:1.解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 113α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.2.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++.所以222111a b c a b c ++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.3.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D-xyz,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE =- ,1(0,0,2)CC = .设平面EBC 的法向量为n=(x,y,x),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n=(0,1,1)--.设平面1ECC 的法向量为m=(x,y,z),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩ m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m=(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.4.解:(1)X=2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–04)=05.(2)X=4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 5.参考答案:(1)由,得,∴y ,即.圆的方程为x2+y2=100.(2)圆心(0,0)到直线的距离d ,y=10,∴弦长l .6.参考答案:(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD 为矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P 是DF 的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE 与CP 所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADF的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.。
2023年全国统一高考数学试卷(北京卷)含答案
2023年普通高等学校招生全国统一考试(北京卷)数学本试卷满分150分.考试时间120分钟.一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{20},{10}M x x N x x ∣∣,则M N ()A.{21}x x ∣B.{21}x x ∣C.{2}xx ∣ D.{1}xx ∣2.在复平面内,复数z 对应的点的坐标是( ,则z 的共轭复数z ()A.1B.1C.1D.13.已知向量a b,满足(2,3),(2,1)a b a b rrrr,则22||||a b rr()A.2B.1C.0D.14.下列函数中,在区间(0,) 上单调递增的是()A.()ln f x x B.1()2xf xC.1()f x xD.|1|()3x f x 5.512x x的展开式中x 的系数为().A.80B.40C.40D.806.已知抛物线2:8C y x 的焦点为F ,点M 在C 上.若M 到直线3x 的距离为5,则||MF ()A.7B.6C.5D.47.在ABC V 中,()(sin sin )(sin sin )a c A C b A B ,则C ()A.π6B.π3C.2π3 D.5π68.若0xy ,则“0x y ”是“2y xx y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为()A.102mB.112mC.117mD.125m10.已知数列 n a 满足 31166(1,2,3,)4n n a a n,则()A.当13a 时, n a 为递减数列,且存在常数0M ≤,使得n a M 恒成立B.当15a 时, n a 为递增数列,且存在常数6M ,使得n a M 恒成立C.当17a 时, n a 为递减数列,且存在常数6M ,使得n a M 恒成立D.当19a 时, n a 为递增数列,且存在常数0M ,使得n a M 恒成立二、填空题:本题共5小题,每小题5分,共25分.11.已知函数2()4log xf x x ,则12f____________.12.已知双曲线C 的焦点为(2,0) 和(2,0),离心率为,则C 的方程为____________.13.已知命题:p 若, 为第一象限角,且 ,则tan tan .能说明p 为假命题的一组, 的值为 __________, _________.14.我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列 n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ,则7a ___________;数列 n a 所有项的和为____________.15.设0a,函数2,,(),1,.x x a f x a x a x a ,给出下列四个结论:①()f x 在区间(1,)a 上单调递减;②当1a 时,()f x 存在最大值;③设 111222,,,M x f x xa N x f x x a ,则||1MN ;④设 333444,,,P x f x xa Q x f x x a .若||PQ 存在最小值,则a 的取值范围是10,2.其中所有正确结论的序号是____________.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.如图,在三棱锥 P ABC 中,PA 平面ABC ,1PA AB BC PC,.(1)求证:BC 平面PAB ;(2)求二面角A PC B 的大小.17.设函数π()sin cos cos sin 0,||2f x x x.(1)若(0)2f,求 的值.(2)已知()f x 在区间π2π,33上单调递增,2π13f,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求, 的值.条件①:π3f;条件②:π13f;条件③:()f x 在区间ππ,23上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天-++0---++0+0--+-+00+第21天到第40天0++0---++0+0+---+0-+用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)19.已知椭圆2222:1(0)x y E a b a b 的离心率为3,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC .(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .20.设函数3()e ax b f x x x ,曲线()y f x 在点(1,(1))f 处的切线方程为1y x .(1)求,a b 的值;(2)设函数()()g x f x ,求()g x 的单调区间;(3)求()f x 的极值点个数.21.已知数列 ,n n a b 的项数均为m (2)m ,且,{1,2,,},n n a b m L ,n n a b 的前n 项和分别为,n n A B ,并规定000A B .对于 0,1,2,,k m L ,定义max ,{0,1,2,,}k i k r i B A i m L ∣,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ,求0123,,,r r r r 的值;(2)若11a b ,且112,1,2,,1,j j j r r r j m L ,求n r ;(3)证明:存在 ,,,0,1,2,,p q s t m L ,满足,,p q s t 使得t p sq A B A B .参考答案【1题答案】A 【2题答案】D 【3题答案】B 【4题答案】C 【5题答案】D 【6题答案】D 【7题答案】B 【8题答案】C 【9题答案】C 【10题答案】B 【11题答案】1【12题答案】22122x y 【13题答案】9π4π3【14题答案】48384【15题答案】②③【16题答案】(1)证明略(2)π3【17题答案】(1)π3.(2)条件①不能使函数()f x 存在;条件②或条件③可解得1 ,π6.【18题答案】(1)0.4(2)0.168(3)不变【19题答案】(1)22194x y (2)证明略【20题答案】(1)1,1a b(2)略(3)3个【21题答案】(1)00r ,11r ,22r ,33r (2),n r n n N (3)证明略。
2024年高考数学试卷(文)(全国甲卷)(含答案)
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+Î,则A B =I ( )A. {}1,2,3,4B. {}1,2,3 C. {}3,4 D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B Ç=.故选:A2. 设z =,则z z ×=( )A. -iB. 1C. -1D. 2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --³ìï--£íï+-£î,则5z x y =-最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --³ìï--£íï+-£î,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=ìí+-=î,解得321x y ì=ïíï=î,即3,12A æöç÷èø,则min 375122z =-´=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( )A. 2- B.73C. 1D.29【答案】D 【解析】的【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ´=+=Û+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==Þ=,则371229a a a +==.故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6. 已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x =¢+,所以()03f ¢=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236´´=故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef æöæö=-+->-+-=-->->ç÷ç÷èøèø,故可排除D.故选:B.9. 已知cos cos sin a a a =-πtan 4a æö+=ç÷èø( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin aa -a弦化切求得tan a ,再根据两角和的正切公式即可求解.【详解】因为cos cos sin aa a=-,所以11tan =-a ,tan 1Þa =,所以tan 1tan 11tan 4a +p æö==a +ç÷-aèø,故选:B .原10题略10. 设a b 、是两个平面,m n 、是两条直线,且m a b =I .下列四个命题:①若//m n ,则//n a 或//n b ②若m n ^,则,n n a b^^③若//n a ,且//n b ,则//m n ④若n 与a 和b 所成的角相等,则m n^其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n Ìa ,因为//m n ,m b Ì,则//n b ,当n b Ì,因为//m n ,m a Ì,则//n a ,当n 既不在a 也不在b 内,因为//m n ,,m m a b ÌÌ,则//n a 且//n b ,故①正确;对②,若m n ^,则n 与,a b 不一定垂直,故②错误;对③,过直线n 分别作两平面与,a b 分别相交于直线s 和直线t ,因为//n a ,过直线n 的平面与平面a 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s Ë平面b ,t Ì平面b ,则//s 平面b ,因为s Ì平面a ,m a b =I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n a b Ç=与a 和b 所成的角相等,如果//,//a b n n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac p==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x æö==-ç÷èø,当[]0,πx Î时,ππ2π,333x éù-Î-êúëû,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a Þ=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案:64.为14. 曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-¢,令()()00g x x ¢=>得1x =,当()0,1x Î时,()0g x ¢<,()g x 单调递减,当()1,x ¥Î+时,()0g x ¢>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a Î-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 通项公式.【答案】(1)153n n a -æö=ç÷èø的(2)353232næö-ç÷èø【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-³即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=´-=-,故11a =,故153n n a -æö=ç÷èø.【小问2详解】由等比数列求和公式得5113353523213n nn S éùæö´-êúç÷èøêúæöëû==-ç÷èø-.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD,进而得证;(2)作FO AD ^,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因BM Ë平面CDE ,CD Ì平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ^交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ^,3OF ==,因为222OB OF BF +=,所以OB OF ^,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=×=×=△,222cos 2FA AB FBFAB FAB FA AB+-Ð===Ð=×11sin 222FAB S FA AB FAB =××Ð==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==××==△解得d =M 到ABF .为17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+¥,11()ax f x a x x¢-=-=当0a £时,1()0ax f x x -¢=<,故()f x 在(0,)+¥上单调递减;当0a >时,1,x a ¥æöÎ+ç÷èø时,()0f x ¢>,()f x 单调递增,当10,x a æöÎç÷èø时,()0f x ¢<,()f x 单调递减.综上所述,当0a £时,()f x 在(0,)+¥上单调递减;0a >时,()f x 在1,a ¥æö+ç÷èø上单调递增,在10,a æöç÷èø上单调递减.【小问2详解】2a £,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-³-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -¢=-+,再令()()h x g x ¢=,则121()e x h x x-¢=-,显然()h x ¢在(1,)+¥上递增,则0()(1)e 10h x h ¢¢>=-=,即()()g x h x =¢在(1,)+¥上递增,故0()(1)e 210g x g ¢¢>=-+=,即()g x 在(1,)+¥上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M æöç÷èø在C 上,且MF x ^轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ^轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ^x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ^轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ì+=í=-î可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k-+==++,而5,02N æöç÷èø,故直线225:522y BN y x x æö=-ç÷èø-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ´-+-=+=--()()()12224253425k x x k x x -´-+-=-()222212122264123225825834342525k k x x x x k k k k x x -´-´+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ^轴.(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意D 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1r r q =+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=ìí=+î(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据cos xr r q ìï=í=ïî可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1r r q =+,将cos xr r q ìï=í=ïîcos 1r r q =+,1x =+,两边平方后可得曲线直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1故直线的参数方程可设为x y ì=ïïíïïî,s ÎR .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s\=-=2==,解得34a =.法2:联立221y x a y x =+ìí=+î,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,的设()()1122,,,A x y B x y ,2121222,1x x a x x a \+=-=-,则AB ==2=,解得34a =20. 实数,ab 满足3a b +³.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-³.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +³+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=³,当a b =时等号成立,则22222()a b a b +³+,因为3a b +³,所以22222()a b a b a b +³+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-³-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+³+-+=++-³´=。
2024新高考I卷数学详细解析(含选填)
2024年普通高等学校招生全国统一考试(新课标I卷)数学参考答案与解析1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准注意事项:考证号条形码粘贴在答题卡上的指定位置。
考试结束后,请将本试卷和答题卡一并上交。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A B=A.{−1,0}B.{2,3}C.{−3,−1,0}D.{−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513,而1<513<2,因此A B={−1,0}.故答案为A.2.若zz−1=1+i,则z=A.−1−iB.−1+iC.1−iD.1+i【答案】C.【解析】两边同时减1得:1z−1=i,进而z=1+1i=1−i.故答案为C.3.已知向量a=(0,1),b=(2,x).若b⊥(b−4a),则x=A.−2B.−1C.1D.2【答案】D.【解析】即b⋅(b−4a)=0.代入得4+x(x−4)=0,即x=2.故答案为D.4.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=A.−3mB.−m 3C.m 3D.3m【答案】A.【解析】通分sin αsin β=2cos αcos β.积化和差12(cos (α−β)−cos (α+β))=2⋅12(cos (α−β)+cos (α+β)).即cos (α−β)=−3cos (α+β)=−3m .故选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为√3,则圆锥的体积为A.2√3π B.3√3πC.6√3πD.9√3π【答案】B.【解析】设二者底面半径为r ,由侧面积相等有πr √r 2+3=2πr ⋅√3,解得r =3.故V =13⋅πr 2⋅√3=√33π×9=3√3π.故答案为B.6.已知函数为f(x)=⎧{⎨{⎩−x 2−2ax −a,x <0e x +ln (x +1),x ⩾0在R 上单调递增,则a 的取值范围是A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)【答案】B.【解析】x ⩾0时,f ′(x)=e x +11+x>0,故f(x)在[0,+∞)上单调递增.而y =−x 2−2zx−a 的对称轴为直线x =−a ,故由f(x)在(−∞,0)上单调递增可知−a ⩾0⇒a ⩽0.在x =0时应有−x 2−2ax −a ⩽e x +ln (x +1),解得a ⩾−1,故−1⩽a ⩽0.故答案为B.7.当x ∈[0,2π]时,曲线y =sin x 与y =2sin (3x −π6)的交点个数为A.3B.4C.6D.8【答案】C.【解析】五点作图法画图易得应有6个交点.故答案为C.8.已知函数f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时f(x)=x ,则下列结论中一定正确的是A.f(10)>100 B.f(20)>1000 C.f(10)<1000 D.f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)>143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩收入的样本均值为x =2.1,样本方差s 2=0.01.已知该种植区以往的亩收入x 服从正态分布M(1.8,0.12),假设推动出口后的亩收入Y 服从正态分布N(x,s 2),则(若随机变量Z 服从正态分布N(μ,σ2),则P (Z <μ+σ)≈0.8413)A.P (X >2)>0.2 B.P (X >2)<0.5 C.P (Y >2)>0.5 D.P (Y >2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P (X >2)<P (X >1.9)=1−P (X <1.9)=1−0.8413<0.2,A 错误;P (X >2)<P (X >1.8)=0.5,B 正确;P (Y >2)>P (Y >2.1)=0.5,C 正确;P (Y >2)=P (Y <2.2)=0.8413>0.8,D 错误.故答案为BC.10.设函数f(x)=(x −1)2(x −4),则A.x =3是f(x)的极小值点B.当0<x <1时,f(x)<f(x 2)C.当1<x <2时,−4<f(2x −1)<0D.当−1<x <0时,f(2−x)>f(x)【答案】ACD.【解析】计算知f ′(x)=3(x −1)(x −3).故x ∈(1,3)时f(x)单调减,其余部分单调增.由此知x =3为f(x)极小值点,A 正确;由上知x ∈(0,1)时f(x)单调增,又此时x >x 2,故f(x)>f(x 2),B 错误;此时2x −1∈(1,3),故f(2x −1)∈(f(3),f(1))=(−4,0),C 正确;由f(2−x)=(x −1)2(−x −2),故f(2−x)−f(x)=2(1−x)3>0,D 正确.故答案为ACD.11.造型∝可以看作图中的曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于−2;到点F (2,0)的距离与到定直线x =a(a <0)的距离之积为4,则A.a =−2B.点(2√2,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点(x 0,y 0)在C 上时,y 0⩽4x 0+2【答案】ABD.【解析】由原点O 在曲线C 上且|OF |=2知O 到直线x =a 距离为2,由a <0知a =−2,A 正确;由x >−2知C 上点满足(x +2)√(x −2)2+y 2=4,代(2√2,0)知B 正确;解出y 2=16(x +2)2−(x −2)2,将左边设为f(x),则f ′(2)=−0.5<0.又有f(2)=1,故存x0∈(0,1)使f(x0)>1.此时y>1且在第一象限,C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D正确.故答案为ABD.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线C∶x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为▴..【答案】3 2 .【解析】根据对称性|F2A|=|AB|2=5,则2a=|F1A|−|F2A|=8,得到a=4.另外根据勾股定理2c=|F1F2|=12,得到c=6,所以离心率e=ca=32.13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=▴..【答案】ln2.【解析】设曲线分别为y1,y2,那么y′1=e x+1,得到切线方程y−1=2x,根据y′2=1x+1得到切点横坐标为−12,代入y2得到a=ln2.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为▴..【答案】1 2 .【解析】.由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8),为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7}.首先注意到8是最大的,故甲不可能得四分.若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况;若甲得两分,则讨论在何处得分:若在b,c处,则同样c=7,b=5,进而a=1,d=3,共一种;若在a,c处,则必有c=7,a≠1,b≠5,在b=1时有全部两种,在d=1时仅一种,共三种;若在a,b处,则b∈{5,7},a≠1,c≠7.当a=5时,由上述限制,c=1时有两种,d=1时仅一种;当a=7时,a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种.故共有1+3+8=12种,又总数为4!=24,故所求为1−1224=12.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C=√2cos B,a2+b2−c2=√2ab.(1)求B;(2)若△ABC的面积为3+√3,求c.【解析】(1)根据余弦定理a 2+b 2−c 2=2ab cos C =√2ab ,那么cos C =√22,又因为C ∈(0,π),得到C =π4,此时cos B =12,得到B =π3.(2)根据正弦定理b =c sin B sin C =√62c ,并且sin A =sin (B+C)=sin B cos C +cos B sin C =√6+√24,那么S =12bc sin A =3+√3,解得c =2√2.16.(15分)已知A(0,3)和P (3,32)为椭圆C ∶x 2a 2+y 2b2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【解析】(1)直接代入后解方程,得到a 2=12,b 2=9,c 2=3,所以e 2=14,离心率e =12.(2)设B(x 0,y 0),则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AB =(x 0−3,y 0−32),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AP =(3,−32).得到9=S=12∣−32(x 0−3)−3(y 0−32)∣,或者x 0+2y 0=−6,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3),对应的直线方程y =12x 或者y =32x −3.17.(15分)如图,四棱锥P −ANCD 中,P A⊥底面ABCD ,P A =AC =2,BC =1,AB =√3.(1)若AD⊥AB ,证明:AD平面P BC ;(2)若AD⊥DC ,且二面角A −CP −D 的正弦值为√427,求AD .【解析】(1)由P A⊥面ABCD 知P A⊥AD ,又AD⊥P B ,故AD⊥面P AB .故AD⊥AB ,又由勾股定理知AB⊥BC ,故AD//BC ,进而AD//面P BC .(2)由P A⊥面ABCD .P A⊥AC ,P C =2√2,设AD =t ,则P D =√4+t 2,CD =√4−t 2,由勾股定理知P D⊥CD .则S △P CD =12√16−t 4,S △ACD =12t √4−t 2,设A到P CD距离为ℎ.由等体积,S△P CD ⋅ℎ=S△ACD⋅P A.代入解出ℎ=2t√4+t2.考虑A向CP作垂线AM,二面角设为θ则ℎ=AM sinθ=2√217.由此解出t=√3.18.(17分)已知函数f(x)=lnx2−x+ax+b(x−1)3.(1)若b=0,且f′(x)⩾0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>−2当且仅当1<x<2,求b的取值范围.【解析】函数定义域(0,2).(1)当b=0时,f′(x)=1x+12−x+a=2x(2−x)+a⩾0恒成立.令x=1得a⩾−2.当a=−2时,f′(x)=2(x−1)2x(2−x)⩾0,从而a的最小值为−2.(2)f(x)+f(2−x)=lnx2−x+ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1),且定义域也关于1对称,因此y=f(x)是关于(1,a)的中心对称图形.(3)先证明a=−2.由题意,a=f(1)⩽−2.假设a<−2,由f(2e|b|+11+e|b|+1)> |b|+1−|b|=1,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0,矛盾.故a=−2.此时,f′(x)=(x−1)2x(2−x)[3bx(2−x)+2].当b⩾−23,f′(x)⩾(x−1)2x(2−x)(2−4x+2x2)⩾0,且不恒为0,故f(x)在(0,2)递增.f(x)>−2=f(1)当且仅当1<x<2,此时结论成立.当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0,且f′(x)<0,当x∈(x0,1),因此f(x)在(x,1)递减,从而f(x0)>f(1)=−2,而x0∉(1,2)此时结论不成立.综上,b的取值范围是[−23,+∞).19.(17分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为0的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1)写出所有的(i,j),1⩽i⩽j⩽6,使数列a1,a2,⋯a6是(i,j)−可分数列;(2)当m⩾3时,证明:数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j),记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为Pm ,证明Pm>18.【解析】记{a n }的公差为d .(1)从a 1,a 2,⋯,a 6中去掉两项后剩下4项,恰构成等差数列,公差必为d ,否则原数列至少有7项.因此剩下的数列只可能为a 1,a 2,a 3,a 4,a 2,a 3,a 4,a 5,a 3,a 4,a 5,a 6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2).(2)考虑分组(a 1,a 4,a 7,a 10),(a 3,a 6,a 9,a 12),(a 5,a 8,a 11,a 14),(a 4k−1,a 4k ,a 4k+1,a 4k+2)(4⩽k ⩽m),(当m =3时只需考虑前三组即可)即知结论成立.(3)一方面,任取两个i,j(i <j)共有C 24m+2种可能.另一方面,再考虑一种较为平凡的情况:i−1,j−i−1均可被4整除,此时,只要依次将剩下的4m 项按原顺序从头到尾排一列,每四个截取一段,得到m 组公差为d 的数列,则满足题意,故此时确实是(i,j)−可分的.接着计算此时的方法数.设i =4k+1(0⩽k ⩽m),对于每个k ,j 有(4m +2)−(4k +1)−14+1=m−k+1(种),因此方法数为m∑k=1(m −k +1)=(m +1)(m +2)2.当m =1,2,已经有(m +1)(m +2)2/C 24m+2>18.下面考虑m ⩾3.我们证明:当i −2,j −i +1被4整除,且j −i +1>4时,数列是(i,j)−可分的.首先我们将a 1,a 2,⋯,a i−2,及a j+2,a j+3,⋯,a 4m+2顺序排成一列,每4个排成一段,得到一些公差为d 的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j −i +1个数即可.为书写方便,我们记j −i =4t −1(t >1),并记b n =a n+i−2,即证b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组.引理:设j−1能被4整除.若b 1,b 2,⋯,b j+1是(2,j)−可分的,则b 1,b 2,⋯,b j+9是(2,j+8)−可分的.引理证明:将b 1,b 2,⋯,b j+1去掉b 2,b j 后的j −14组四元组再并上(b j ,b j+2,b j+4,b j+6),(b j+3,b j+5,b j+7,b j+9)即证.回原题.由(2),b 1,⋯,b 14是(2,13)−可分数列,且(b 1,b 3,b 5,b 7)和(b 4,b 6,b 8,b 10)知b 1,⋯,b 10是(2,9)−可分数列,因而结合引理知b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组,由此结论成立.计算此时的方法数.设i =4k+2(0⩽k ⩽m−1),则此时j 有(4m +2)−(4k +2)4−1=m −k −1种,因此方法数为m−1∑k=0(m −k −1)=m(m −1)2.因此我们有p m ⩾m(m −1)+(m +1)(m +2)2C 2m+1>18.。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2022年全国统一高考数学试卷和答案解析(新高考ⅱ)
2022年全国统一高考数学试卷和答案解析(新高考Ⅱ)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,1,2,4},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,2}B.{1,2}C.{1,4}D.{﹣1,4} 2.(5分)(2+2i)(1﹣2i)=()A.﹣2+4i B.﹣2﹣4i C.6+2i D.6﹣2i 3.(5分)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为=0.5,=k1,=k2,=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.94.(5分)已知向量=(3,4),=(1,0),=+t,若<,>=<,>,则t=()A.﹣6B.﹣5C.5D.65.(5分)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A.12种B.24种C.36种D.48种6.(5分)若sin(α+β)+cos(α+β)=2cos(α+)sinβ,则()A.tan(α﹣β)=1B.tan(α+β)=1C.tan(α﹣β)=﹣1D.tan(α+β)=﹣17.(5分)已知正三棱台的高为1,上、下底面边长分别为3和4,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π8.(5分)已知函数f(x)的定义域为R,且f(x+y)+f(x﹣y)=f(x)f(y),f(1)=1,则f(k)=()A.﹣3B.﹣2C.0D.1二、选择题:本题共4小题,每小题5分,共20分。
2023年全国新高考II卷数学真题试卷及答案
2023年新课标全国Ⅱ卷数学真题一、单选题1.在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ).A .2B .1C .23D .1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ( ).A .1-B .0C .12D .15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △面积是2F AB △面积的2倍,则m =( ).A .23B C .D .23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2eB .eC .1e -D .2e -7.已知α为锐角,cos α=sin 2α=( ).A B C D 8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ).A .120B .85C .85-D .120-二、多选题9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则( ).A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( ).A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则( ).A .0bc >B .0ab >C .280b ac +>D .0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A .采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C .采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D .当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题13.已知向量a ,b满足a b -= ,2a b a b +=- ,则b = ______.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.15.已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值______.16.已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =______.四、解答题17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .18.已知{}n a 为等差数列,6,2,n n n a n b a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.19.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[]95,105的最小值.20.如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠= ,E 为BC的中点.(1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.21.已知双曲线C 的中心为坐标原点,左焦点为()-(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.22.(1)证明:当01x <<时,sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.新高考二卷参考答案1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限答案:A解析:2(13i)(3i)3i 9i 3i 68i +-=-+-=+,所以该复数对应的点为(6,8),位于第一象限.2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( )(A )2 (B )1 (C )23(D )1-答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0,因为0A ∈,A B ⊆,所以0B ∈,故20a -=或220a -=,解得:2a =或1,注意0B ∈不能保证A B ⊆,故还需代回集合检验,若2a =,则{0,2}A =-,{1,0,2}B =,不满足A B ⊆,不合题意;若1a =,则{0,1}A =-,{1,1,0}B =-,满足A B ⊆. 故选B.3.(2023·新高考Ⅱ卷·3·★)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )(A )4515400200C C ⋅种 (B )2040400200C C ⋅种 (C )3030400200C C ⋅种 (D )4020400200C C ⋅种答案:D 解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x 人,则60400400200x =+,解得:40x =,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有4020400200C C ⋅种.4.(2023·新高考Ⅱ卷·4·★★)若21()()ln 21x f x x a x -=++为偶函数,则a =( )(A )1- (B )0 (C )12(D )1答案:B解法1:偶函数可抓住定义()()f x f x -=来建立方程求参,因为()f x 为偶函数,所以()()f x f x -=,即2121()ln ()ln 2121x x x a x a x x ----+=+-++ ①,而121212121ln ln ln(ln 21212121x x x x x x x x ---+--===--+-++,代入①得:2121()(ln )()ln 2121x x x a x a x x ---+-=+++,化简得:x a x a -=+,所以0a =.解法2:也可在定义域内取个特值快速求出答案,210(21)(21)021x x x x ->⇔+->+,所以12x <-或12x >,因为()f x 为偶函数,所以(1)(1)f f -=,故1(1)ln 3(1)ln 3a a -+=+ ①,而11ln ln 3ln 33-==-,代入①得:(1)ln 3(1)ln 3a a -+=-+,解得:0a =.5.(2023·新高考Ⅱ卷·5·★★★)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB ∆的面积是2F AB ∆面积的2倍,则m =( )(A )23 (B(C) (D )23-答案:C解析:如图,观察发现两个三角形有公共的底边AB ,故只需分析高的关系,作1F G AB ⊥于点G ,2F I AB ⊥于点I ,设AB 与x 轴交于点K ,由题意,121212212F AB F AB AB F GS S AB F I∆∆⋅==⋅,所以122F GF I =,由图可知12F KG F KI ∆∆∽,所以11222F K F G F K F I ==,故122F K F K =,又椭圆的半焦距c ==,所以122F F c ==,从而21213F K F F ==故11OK OF F K =-=,所以K ,代入y x m =+可得0m =+,解得:m =6.(2023·新高考Ⅱ卷·6·★★★)已知函数()e ln x f x a x =-在区间(1,2)单调递增,则a 的最小值为( )(A )2e (B )e (C )1e - (D )2e -答案:C解析:()f x 的解析式较复杂,不易直接分析单调性,故求导,由题意,1()e x f x a x'=-,因为()f x 在(1,2)上 ,所以()0f x '≥在(1,2)上恒成立,即1e 0x a x-≥ ①,观察发现参数a 容易全分离,故将其分离出来再看,不等式①等价于1ex a x ≥,令()e (12)x g x x x =<<,则()(1)e 0x g x x '=+>,所以()g x 在(1,2)上 ,又(1)e g =,2(2)2e g =,所以2()(e,2e )g x ∈,故21111(,)()e 2e ex g x x =∈,因为1e x a x ≥在(1,2)上恒成立,所以11e e a -≥=,故a 的最小值为1e -.7.(2023·新高考Ⅱ卷·7·★★)已知α为锐角,cos α=sin 2α=( )(A (B (C (D 答案:D解析:22cos 12sin sin 22ααα=-=⇒=,此式要开根号,不妨上下同乘以2,将分母化为24,所以2sin 2α==,故sin 2α=,又α为锐角,所以(0,)24απ∈,故sin 2α=8.(2023·新高考Ⅱ卷·8·★★★)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( )(A )120 (B )85 (C )85- (D )120-答案:C 解法1:观察发现2S ,4S ,6S ,8S 的下标都是2的整数倍,故可考虑片段和性质,先考虑q 是否为1-,若{}n a 的公比1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故2S ,42S S -,64S S -,86S S -成等比数列 ①,条件中有6221S S =,不妨由此设个未知数,设2S m =,则621S m =,所以425S S m -=--,64215S S m -=+,由①可得242262()()S S S S S -=-,所以2(5)(215)m m m --=+,解得:1m =-或54,若1m =-,则21S =-,424S S -=-,6416S S -=-,所以8664S S -=-,故8664216485S S m =-=-=-;到此结合选项已可确定选C ,另一种情况我也算一下,若54m =,则2504S =>,而2222412341212122()(1)(1)S a a a a a a a q a q a a q S q =+++=+++=++=+,所以4S 与2S 同号,故40S >,与题意不符;综上所述,m 只能取1-,此时885S =-.解法2:已知和要求的都只涉及前n 项和,故也可直接代公式翻译,先看公比是否为1,若{}n a 的公比1q =,则612162142S a S a =≠=,不合题意,所以1q ≠,故414(1)51a q S q-==--①,又6221S S =,所以6211(1)(1)2111a q a q q q --=⋅--,化简得:62121(1)q q -=- ②,又62322411()(1)(1)q q q q q -=-=-++,代入②可得:2242(1)(1)21(1)q q q q -++=- ③,两端有公因式可约,但需分析21q -是否可能为0,已经有1q ≠了,只需再看q 是否可能等于1-,若1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故式③可化为24121q q ++=,整理得:42200q q +-=,所以24q =或5-(舍去),故要求的8241118(1)[1()]255111a q a q a S q q q --===-⋅--- ④,只差11aq-了,该结构式①中也有,可由24q =整体计算它,将24q =代入①可得21(14)51a q-=--,所以1113a q =-,代入④得81255853S =-⨯=-.9.(2023·新高考Ⅱ卷·9·★★★)(多选)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,o120APB ∠=,2PA =,点C 在底面圆周上,且二面角P AC O --为o 45,则( )(A )该圆锥的体积为π(B )该圆锥的侧面积为(C )AC =(D )PAC ∆答案:AC解析:A 项,因为2PA =,o 120APB ∠=,所以o 60APO ∠=,cos 1OP AP APO =⋅∠=,sin OA AP APO =⋅∠=,从而圆锥的体积211133V Sh ππ==⨯⨯⨯=,故A 项正确;B 项,圆锥的侧面积2S rl ππ===,故B 项错误;C 项,要求AC 的长,条件中的二面角P AC O --还没用,观察发现PAC ∆和OAC ∆都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC 中点Q ,连接PQ ,OQ ,因为OA OC =,PA PC =,所以AC OQ ⊥,AC PQ ⊥,故PQO ∠即为二面角P AC O --的平面角,由题意,o 45PQO ∠=,所以1OQ OP ==,故AQ ==,所以2AC AQ ==,故C 项正确;D 项,PQ ==,所以11222PAC S AC PQ ∆=⋅=⨯=,故D 项错误.POCABQ10.(2023·新高考Ⅱ卷·10·★★★)(多选)设O 为坐标原点,直线1)y x =-过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( )(A )2p = (B )83MN = (C )以MN 为直径的圆与l 相切 (D )OMN ∆为等腰三角形答案:AC解析:A 项,在1)y x =-中令0y =可得1x =,由题意,抛物线的焦点为(1,0)F ,所以12p=,从而2p =,故A 项正确;B 项,此处可以由直线MN 的斜率求得MFO ∠,再代角版焦点弦公式22sin pMN α=求MN ,但观察发现后续选项可能需要用M ,N 的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设11(,)M x y ,22(,)N x y ,将1)y x =-代入24y x =消去y 整理得:231030x x -+=,解得:13x =或3,对应的y 分别为-所以图中(3,M -,1(3N ,从而121163233MN x x p =++=++=,故B 项错误;C 项,判断直线与圆的位置关系,只需将圆心到直线的距离d 和半径比较,12523x x MN +=⇒的中点Q 到准线:1l x =-的距离8132d MN ==,从而以MN 为直径的圆与准线l 相切,故C 项正确;D 项,M ,N 的坐标都有了,算出OM ,ON即可判断,OM ==ON ==,所以OM ,ON ,MN 均不相等,故D 项错误.11.(2023·新高考Ⅱ卷·11·★★★)(多选)若函数2()ln (0)b cf x a x a x x =++≠既有极大值也有极小值,则( )(A )0bc > (B ) 0ab > (C )280b ac +> (D )0ac <答案:BCD解析:由题意,223322()(0)a b c ax bx cf x x x x x x --'=--=>,函数()f x 既有极大值,又有极小值,所以()f x '在(0,)+∞上有2个变号零点,故方程220ax bx c --=在(0,)+∞上有两个不相等实根,所以212120()(()4(2)020)()b a c c x x a b x x a ⎧⎪∆=--->⎪⎪=->⎨⎪⎪+=>⎪⎩保证有两根保证两根同号保证两根只能同③正①②,由①可得280b ac +>,故C 项正确;由②可得0ca<,所以a ,c 异号,从而0ac <,故D 项正确;由③可得a ,b 同号,所以0ab >,故B 项正确;因为a ,c 异号,a ,b 同号,所以b ,c 异号,从而0bc <,故A 项错误.12.(2023·新高考Ⅱ卷·12·★★★★)(多选)在信道内传输0,1信号,信号的传输相互独立. 发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-. 考虑两种传输方案:单次传输和三次传输. 单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次. 收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).( )(A )采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--(B )采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-(C )采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-(D )当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD 解析:A 项,由题意,若采用单次传输方案,则发送1收到1的概率为1β-,发送0收到0的概率为1α-,所以依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)(1)(1)(1)βαβαβ---=--,故A 项正确;B 项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为2(1)(1)(1)βββββ--=-,故B 项正确;C 项,采用三次传输方案,由B 项的分析过程可知若发送1,则收到1的个数~(3,1)X B β-,而译码为1需收2个1,或3个1,所以译码为1的概率为22332333(2)(3)C (1)C (1)3(1)(1)P X P X ββββββ=+==-+-=-+-,故C 项错误;D 项,若采用单次传输方案,则发送0译码为0的概率为1α-;若采用三次传输方案,则发送0等同于发3个0,收到0的个数~(3,1)Y B α-,且译码为0的概率为22332333(2)(3)C (1)C (1)3(1)(1)P Y P Y αααααα=+==-+-=-+-,要比较上述两个概率的大小,可作差来看,2323(1)(1)(1)(1)[3(1)(1)1](1)(12)ααααααααααα-+---=--+--=--,因为00.5α<<,所以233(1)(1)(1)(1)(12)0ααααααα-+---=-->,从而233(1)(1)1αααα-+->-,故D 项正确.13.(2023·新高考Ⅱ卷·13·★★)已知向量a ,b满足-=a b ,2+=-a b a b ,则=b _____.解析:条件涉及两个模的等式,想到把它们平方来看,由题意,22223-=+-⋅=a b a b a b ①,又2+=-a b a b ,所以222+=-a b a b ,故2222244++⋅=+-⋅a b a b a b a b ,整理得:220-⋅=a a b ,代入①可得23=b ,即23=b,所以=b .14.(2023·新高考Ⅱ卷·14·★★)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为_____.答案:28解析:如图,四棱锥1111P A B C D -与P ABCD -相似,它们的体积之比等于边长之比的立方,故只需求四棱锥1111P A B C D -的体积,11113112111(4228P A B C D P ABCD V A B AB V --==⇒==,所以11118P ABCD P A B C D V V --=,故所求四棱台的体积11117P A B C D V V -=,由题意,1111212343P A B C D V -=⨯⨯=,所以7428V =⨯=.P 1D 1A 1B 1CD AB CO423【反思】相似图形的面积之比等于边长之比的平方,体积之比等于边长之比的立方.15.(2023·新高考Ⅱ卷·15·★★★)已知直线10x my -+=与⊙22:(1)4C x y -+=交于A ,B 两点,写出满足“ABC ∆的面积为85”的m 的一个值_____.答案:2(答案不唯一,也可填2-或12或12-)解析:如图,设圆心(1,0)C 到直线AB 的距离为(0)d d >,则12ABC S AB d ∆=⋅,注意到AB 也可用d 表示,故先由85ABC S ∆=求d ,再将d 用m 表示,建立关于m 的方程,又AB ==12ABC S d ∆=⨯=,由题意,85ABC S ∆=85=,结合0d >解得:d =又d ====,解得:2m =±或12±.16.(2023·新高考Ⅱ卷·16·★★★★)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若6AB π=,则()f π=_____.答案:解法1:6AB π=这个条件怎么翻译?可用12y =求A ,B 横坐标的通解,得到AB ,从而建立方程求ω,不妨设0ω>,令1sin()2x ωϕ+=可得26x k πωϕπ+=+或526k ππ+,其中k ∈Z ,由图知26A x k πωϕπ+=+,526B x k πωϕπ+=+,两式作差得:2()3B A x x πω-=,故23B A x x πω-=,又6B A AB x x π=-=,所以336ππω=,解得:4ω=,则()sin(4)f x x ϕ=+,再求ϕ,由图知23π是零点,可代入解析式,注意,23π是增区间上的零点,且sin y x =的增区间上的零点是2n π,故应按它来求ϕ的通解,所以82()3n n πϕπ+=∈Z ,从而823n πϕπ=-,故82()sin(42)sin(4)33f x x n x πππ=+-=-,所以222()sin(4sin(sin 333f πππππ=-=-=-=.解法2:若注意横向伸缩虽会改变图象在水平方向上的线段长度,但不改变长度比例,则可先分析sin y x =与12y =交点的情况,再按比例对应到本题的图中来,如图1,直线12y =与函数sin y x =在y 轴右侧的三个I ,J ,K 的横坐标分别为6π,56π,136π,所以52663IJ πππ=-=,1354663JK πππ=-=,:1:2IJ JK =,故在图2中:1:2AB BC =,因为6AB π=,所以3BC π=,故2AC AB BC π=+=,又由图2可知AC T =,所以2T π=,故24Tπω==,接下来同解法1.2图【反思】①对于函数sin()(0)y x ωϕω=+>,若只能用零点来求解析式,则需尽量确定零点是在增区间还是减区间. “上升零点”用2xn ωϕπ+=来求,“下降零点”用2x n ωϕππ+=+来求;②对图象进行横向伸缩时,水平方向的线段长度比例关系不变,当涉及水平线与图象交点的距离时,我们常抓住这一特征来求周期.17.(2023··17·★★★)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆D 为BC 的中点,且1AD =.(1)若3ADC π∠=,求tan B ;(2)若228b c +=,求b ,c .解:(1)如图,因为3ADC π∠=,所以23ADB π∠=,(要求tan B ,可到ABD ∆中来分析,所给面积怎么用?可以用它求出ABD S ∆,从而得到BD )因为D 是BC 中点,所以2ABC ABD S S ∆∆=,又ABC S ∆=ABD S ∆=由图可知112sin 1sin 223ABD S AD BD ADB BD π∆=⋅⋅∠=⨯⨯⨯=,所以=2BD =,(此时ABD ∆已知两边及夹角,可先用余弦定理求第三边AB ,再用正弦定理求角B )在ABD ∆中,由余弦定理,2222212cos 12212()72AB AD BD AD BD ADB =+-⋅⋅∠=+-⨯⨯⨯-=,所以AB =由正弦定理,sin sin AB AD ADB B =∠,所以1sin sin AD ADB B AB ⋅∠===,由23ADB π∠=可知B为锐角,从而cos B ==,故sin tan cos B B B ==.(2)(已有关于bc 的一个方程,若再建立一个方程,就能求b 和c ,故把面积和中线都用b ,c 表示)由题意,1sin 2ABC S bc A ∆==,所以sin bc A =①,(中线AD 怎样用b ,c 表示?可用向量处理)因为D 为BC 中点,所以1()2AD AB AC =+,从而2AD AB AC =+ ,故22242AD AB AC AB AC =++⋅ ,所以222cos 4c b cb A ++=,将228b c +=代入上式化简得cos 2bc A =- ②,(我们希望找的是b ,c 的方程,故由①②消去A ,平方相加即可)由①②得222222sin cos 16b c A b c A +=,所以4bc = ③,由228b c +=可得2()28b c bc +-=,所以4b c +==,结合式③可得2b c ==.ADBC118.(2023·新高考Ⅱ卷·18·★★★★)已知{}n a 为等差数列,6,2,n n n a n b a n -⎧⎪=⎨⎪⎩为奇数为偶数,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.解:(1)(给出了两个条件,把它们用1a 和d 翻译出来,即可建立方程组求解1a 和d )由题意,414632S a d =+= ①,31231231111(6)2(6)62()26441216T b b b a a a a a d a d a d =++=-++-=-++++-=+-= ②,由①②解得:15a =,2d =,所以1(1)23n a a n d n =+-=+.(2)由(1)可得21()(523)422n n n a a n n S n n +++===+,(要证结论,还需求n T ,由于n b 按奇偶分段,故求n T 也应分奇偶讨论,先考虑n 为偶数的情形)当(5)n n >为偶数时,12n nT b b b =++⋅⋅⋅+12341(6)2(6)2(6)2n na a a a a a -=-++-++⋅⋅⋅+-+13124()62()2n n na a a a a a -=++⋅⋅⋅+-⨯+++⋅⋅⋅+ ③,因为131,,,n a a a -⋅⋅⋅和24,,,n a a a ⋅⋅⋅分别也构成等差数列,所以211131()(521)32242n n na a n n n n a a a --++++++⋅⋅⋅+===,2224()(723)52242n n na a n n n n a a a ++++++⋅⋅⋅+===,代入③化简得:222353732222n n n n n n nT n +++=-+⨯=,(要由此证n n T S >,可作差比较)所以2237(4)022n n n n n n T S n n 2+--=-+=>,故n n T S >;(对于n 为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当(5)n n >为奇数时,2113(1)7(1)2n n n n n T T b +++++=-=-2213(1)7(1)351022(25)22n n n n n a n +++++-=-+=,所以223510(4)2n n n n T S n n +--=-+2310(2)(5)022n n n n --+-==>,故n n T S >;综上所述,当5n >时,总有n n T S >.19.(2023·新高考Ⅱ卷·19·★★★)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该项指标的频率分布直方图:患病者未患病者利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性. 此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c . 假设数据在组内均匀分布. 以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+. 当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c 的频率为0.5%,可由此求c )由患病者的图可知,[95,100)这组的频率为50.0020.010.005⨯=>,所以c 在[95,100)内,且(95)0.0020.005c -⨯=,解得:97.5c =;(要求()q c ,再来看未患病者的图,()q c 是误诊率,也即未患病者判定为阳性(指标大于c )的概率)由未患病者的图可知指标大于97.5的概率为(10097.5)0.0150.0020.035-⨯+⨯=,所以() 3.5%q c =.(2)([95,105]包含两个分组,故应分类讨论)当95100c ≤<时,()(95)0.002p c c =-⨯,()(100)0.0150.002q c c =-⨯+⨯,所以()()()0.0080.82f c p c q c c =+=-+,故()0.0081000.820.02f c >-⨯+= ①;当100105c ≤≤时,()50.002(100)0.012p c c =⨯+-⨯,()(105)0.002q c c =-⨯,所以()()()0.010.98f c p c q c c =+=-,故()(100)0.011000.980.02f c f ≥=⨯-= ②;所以0.0080.82,95100()0.010.98,100105c c f c c c -+≤<⎧=⎨-≤≤⎩,且由①②可得min ()0.02f c =.20.(2023·新高考Ⅱ卷·20·★★★)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,o 60ADB ADC ∠=∠=,E 为BC 的中点.(1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.CDABEF解:(1)(BC 和DA 是异面直线,要证垂直,需找线面垂直,可用逆推法,假设BC DA ⊥,注意到条件中还有DB DC =,所以BC DE ⊥,二者结合可得到BC ⊥面ADE ,故可通过证此线面垂直来证BC DA ⊥)因为DA DB DC ==,o 60ADB ADC ∠=∠=,所以ADB ∆和ADC ∆是全等的正三角形,故AB AC =,又E 为BC 中点,所以BC AE ⊥,BC DE ⊥,因为AE ,DE ⊂平面ADE ,AE DE E = ,所以BC ⊥平面ADE ,又DA ⊂平面ADE ,所以BC DA ⊥.(2)(由图可猜想AE ⊥面BCD ,若能证出这一结果,就能建系处理,故先尝试证明)不妨设2DA DB DC ===,则2AB AC ==,因为BDCD ⊥,所以BC ==,故12DE CE BE BC ===,AE ==所以2224AE DE AD +==,故AE DE ⊥,所以EA ,EB ,ED 两两垂直,以E 为原点建立如图所示的空间直角坐标系,则A ,D ,B,所以(DA =,AB =,由EF DA = 可知四边形ADEF是平行四边形,所以FA ED == ,设平面DAB 和平面ABF 的法向量分别为111(,,)x y z =m ,222(,,)x y z =n,则111100DA AB ⎧⋅=+=⎪⎨⋅==⎪⎩m m ,令11x =,则1111y z =⎧⎨=⎩,所以(1,1,1)=m 是平面DAB 的一个法向量,22200AB FA ⎧⋅=-=⎪⎨⋅=⎪⎩ n n ,令21y =,则2201x z =⎧⎨=⎩,所以(0,1,1)=n 是平面ABF 的一个法向量,从而cos ,⋅<>===⋅m n m n m n 故二面角D AB F --=.21.(2023··21·★★★★)已知双曲线C 的中心为坐标原点,左焦点为(-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.解:(1)设双曲线方程为()222210,0x y a b a b-=>>,由焦点坐标可知c =则由ce a ==可得2a =,4b ==,双曲线方程为221416x y -=.(2)由(1)可得()()122,0,2,0A A -,设()()1122,,,M x y N x y ,显然直线的斜率不为0,所以设直线MN 的方程为4x my =-,且1122m -<<,与221416x y -=联立可得()224132480m y my --+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==--,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =--,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +--+++==--=--112221122483216222141414148483664141m mm y y m m m m m y y m m -⋅-⋅++---===-⨯----,由2123x x +=--可得=1x -,即1P x =-,据此可得点P 在定直线=1x -上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(2023·新高考Ⅱ卷·22·★★★★)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos ln(1)f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.解:(1)构建()()sin ,0,1F x x x x =-∈,则()1cos 0F x x '=->对()0,1x ∀∈恒成立,则()F x 在()0,1上单调递增,可得()()00F x F >=,所以()sin ,0,1x x x >∈;构建()()()22sin sin ,0,1G x x x x x x x x =--=-+∈,则()()21cos ,0,1G x x x x '=-+∈,构建()()(),0,1g x G x x '=∈,则()2sin 0g x x '=->对()0,1x ∀∈恒成立,则()g x 在()0,1上单调递增,可得()()00g x g >=,即()0G x '>对()0,1x ∀∈恒成立,则()G x 在()0,1上单调递增,可得()()00G x G >=,所以()2sin ,0,1x x x x >-∈;综上所述:sin x x x x 2-<<.(2)令210x ->,解得11x -<<,即函数()f x 的定义域为()1,1-,若0a =,则()()()2ln 1,1,1f x x x =--∈-,因为ln y u =-在定义域内单调递减,21y x =-在()1,0-上单调递增,在()0,1上单调递减,则()()2ln 1f x x =--在()1,0-上单调递减,在()0,1上单调递增,故0x =是()f x 的极小值点,不合题意,所以0a ≠.当0a ≠时,令0b a =>因为()()()()()222cos ln 1cos ln 1cos ln 1f x ax x a x x bx x =--=--=--,且()()()()()22cos ln 1cos ln 1f x bx x bx x f x ⎡⎤-=----=--=⎣⎦,所以函数()f x 在定义域内为偶函数,由题意可得:()()22sin ,1,11xf x b bx x x =--∈'--,(i )当202b <≤时,取1min ,1m b ⎧⎫=⎨⎬⎩⎭,()0,x m ∈,则()0,1bx ∈,由(1)可得()()()2222222222sin 111x b x b x x f x b bx b x x x x +-'=-->--=---,且22220,20,10b x b x >-≥->,所以()()2222201x b x b f x x+-'>>-,即当()()0,0,1x m ∈⊆时,()0f x ¢>,则()f x 在()0,m 上单调递增,结合偶函数的对称性可知:()f x 在(),0m -上单调递减,所以0x =是()f x 的极小值点,不合题意;(ⅱ)当22b >时,取()10,0,1x b ⎛⎫∈⊆ ⎪⎝⎭,则()0,1bx ∈,由(1)可得()()()2233223222222sin 2111x x xf x b bx b bx b x b x b x b x b x x x'=--<---=-+++----,构建()33223212,0,h x b x b x b x b x b ⎛⎫=-+++-∈ ⎪⎝⎭,则()3223132,0,h x b x b x b x b ⎛⎫'=-++∈ ⎪⎝⎭,且()33100,0h b h b b b ⎛⎫''=>=-> ⎪⎝⎭,则()0h x '>对10,x b ⎛⎫∀∈ ⎪⎝⎭恒成立,可知()h x 在10,b ⎛⎫ ⎪⎝⎭上单调递增,且()21020,20h b h b ⎛⎫=-<=> ⎪⎝⎭,所以()h x 在10,b ⎛⎫ ⎪⎝⎭内存在唯一的零点10,n b ⎛⎫∈ ⎪⎝⎭,当()0,x n ∈时,则()0h x <,且20,10x x >->,则()()3322322201x f x b x b x b x b x '<-+++-<-,即当()()0,0,1x n ∈⊆时,()0f x '<,则()f x 在()0,n 上单调递减,结合偶函数的对称性可知:()f x 在(),0n -上单调递增,所以0x =是()f x 的极大值点,符合题意;综上所述:22b >,即22a >,解得a a <故a 的取值范围为(),-∞+∞.。
2023年高考数学试卷及答案(新课标全国Ⅱ卷)
2023年新课标全国Ⅱ卷数学真题一、单选题1.在复平面内,对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:,所以该复数对应的点为,位于第一象限.2.设集合,,若,则( ).A.2B.1C.D.答案:B解析:观察发现集合A中有元素0,故只需考虑B中的哪个元素是0。
因为,,所以,故或,解得:或1,注意不能保证,故还需代回集合检验,若,则,,不满足,不合题意;若,则,,满足. 故选B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A.种B.种C.种D.种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x人,则,解得:,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有种.4.若为偶函数,则( ).A .B.0C.D.1答案:B解法1:偶函数可抓住定义来建立方程求参,因为为偶函数,所以,即 ①,而,代入①得:,化简得:,所以.5.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).A.B.C.D.答案:C解析:如图,观察发现两个三角形有公共的底边AB,故只需分析高的关系,作于点G,于点I,设AB与x轴交于点K,由题意,,所以,由图可知,所以,故,又椭圆的半焦距,所以,从而,故,所以,代入可得,解得:.6.已知函数在区间上单调递增,则a的最小值为( ).A.B.e C.D.答案:C解析:的解析式较复杂,不易直接分析单调性,故求导,由题意,,因为在上,所以在上恒成立,即 ①,观察发现参数a容易全分离,故将其分离出来再看,不等式①等价于,令,则,所以在上,又,,所以,故,因为在上恒成立,所以,故a的最小值为.7.已知为锐角,,则( ).A.B.C.D.答案:D解析:,此式要开根号,不妨上下同乘以2,将分母化为,所以,故,又为锐角,所以,故.8.记为等比数列的前n项和,若,,则( ).A.120B.85C.D.答案:C解法1:观察发现,,,的下标都是2的整数倍,故可考虑片段和性质,先考虑q是否为,若的公比,则,与题意不符,所以,故,,,成等比数列 ①,条件中有,不妨由此设个未知数,设,则,所以,,由①可得,所以,解得:或,若,则,,,所以,故;到此结合选项已可确定选C,另一种情况我也算一下,若,则,而,所以与同号,故,与题意不符;综上所述,m只能取,此时.二、多选题9.已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).A.该圆锥的体积为B.该圆锥的侧面积为C.D.的面积为答案:AC解析:A项,因为,,所以,,,从而圆锥的体积,故A项正确;B项,圆锥的侧面积,故B项错误;C项,要求AC的长,条件中的二面角还没用,观察发现和都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC中点Q,连接PQ,OQ,因为,,所以,,故即为二面角的平面角,由题意,,所以,故,所以,故C项正确;D项,,所以,故D项错误.10.设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).A.B.C.以MN为直径的圆与l相切D.为等腰三角形答案:AC解析:A项,在中令可得,由题意,抛物线的焦点为,所以,从而,故A项正确;B项,此处可以由直线MN的斜率求得,再代角版焦点弦公式求,但观察发现后续选项可能需要用M,N的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设,,将代入消去y整理得:,解得:或3,对应的y分别为和,所以图中,,从而,故B项错误;C项,判断直线与圆的位置关系,只需将圆心到直线的距离d和半径比较,的中点Q到准线的距离,从而以MN为直径的圆与准线l相切,故C项正确;D项,M,N的坐标都有了,算出,即可判断,,,所以,,均不相等,故D项错误.11.若函数既有极大值也有极小值,则( ).A.B.C.D.答案:BCD解析:由题意,,函数既有极大值,又有极小值,所以在上有2个变号零点,故方程在上有两个不相等实根,所以,由①可得,故C项正确;由②可得,所以a,c异号,从而,故D项正确;由③可得a,b同号,所以,故B项正确;因为a,c异号,a,b同号,所以b,c异号,从而,故A项错误.12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD解析:A项,由题意,若采用单次传输方案,则发送1收到1的概率为,发送0收到0的概率为,所以依次发送1,0,1,则依次收到1,0,1的概率为,故A项正确;B项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为,故B项正确;C项,采用三次传输方案,由B项的分析过程可知若发送1,则收到1的个数,而译码为1需收2个1,或3个1,所以译码为1的概率为,故C项错误;D项,若采用单次传输方案,则发送0译码为0的概率为;若采用三次传输方案,则发送0等同于发3个0,收到0的个数,且译码为0的概率为,要比较上述两个概率的大小,可作差来看,,因为,所以,从而,故D项正确.三、填空题13.已知向量,满足,,则______.答案:解析:条件涉及两个模的等式,想到把它们平方来看,由题意, ①,又,所以,故,整理得:,代入①可得,即,所以.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.答案:28解析:如图,四棱锥与相似,它们的体积之比等于边长之比的立方,故只需求四棱锥的体积,,所以,故所求四棱台的体积,由题意,,所以.15.已知直线与交于A,B两点,写出满足“面积为”的m的一个值__ ____.答案:2(答案不唯一,也可填或或)解析:如图,设圆心到直线AB的距离为,则,注意到也可用d表示,故先由求d,再将d用m表示,建立关于m的方程,又,所以,由题意,,所以,结合解得:或,又,所以或,解得:或.16.已知函数,如图A,B是直线与曲线的两个交点,若,则______.答案:解法1:这个条件怎么翻译?可用求A,B横坐标的通解,得到,从而建立方程求,不妨设,令可得或,其中,由图知,,两式作差得:,故,又,所以,解得:,则,再求,由图知是零点,可代入解析式,注意,是增区间上的零点,且的增区间上的零点是,故应按它来求的通解,所以,从而,故,所以.四、解答题17.记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.解:(1)如图,因为,所以,(要求,可到中来分析,所给面积怎么用?可以用它求出,从而得到BD)因为D是BC中点,所以,又,所以,由图可知,所以,故,(此时已知两边及夹角,可先用余弦定理求第三边AB,再用正弦定理求角B)在中,由余弦定理,,所以,由正弦定理,,所以,由可知B为锐角,从而,故.(2)(已有关于bc的一个方程,若再建立一个方程,就能求b和c,故把面积和中线都用b,c表示)由题意,,所以 ①,(中线AD怎样用b,c表示?可用向量处理)因为D为BC中点,所以,从而,故,所以,将代入上式化简得②,(我们希望找的是b,c的方程,故由①②消去A,平方相加即可)由①②得,所以③,由可得,所以,结合式③可得.18.已知为等差数列,,记,分别为数列,的前n项和,,.(1)求的通项公式;(2)证明:当时,.解:(1)(给出了两个条件,把它们用和d翻译出来,即可建立方程组求解和d)由题意, ①,②,由①②解得:,,所以.(2)由(1)可得,(要证结论,还需求,由于按奇偶分段,故求也应分奇偶讨论,先考虑n为偶数的情形)当为偶数时,③,因为和分别也构成等差数列,所以,,代入③化简得:,(要由此证,可作差比较)所以,故;(对于n为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当为奇数时,,所以,故;综上所述,当时,总有.19.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率%时,求临界值c和误诊率;(2)设函数,当时,求的解析式,并求在区间的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c的频率为0.5%,可由此求c)由患病者的图可知,这组的频率为,所以c在内,且,解得:;(要求,再来看未患病者的图,是误诊率,也即未患病者判定为阳性(指标大于c)的概率)由未患病者的图可知指标大于97.5的概率为,所以.(2)(包含两个分组,故应分类讨论)当时,,,所以,故 ①;当时,,,所以,故②;所以,且由①②可得.20.如图,三棱锥中,,,,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.解:(1)(BC和DA是异面直线,要证垂直,需找线面垂直,可用逆推法,假设,注意到条件中还有,所以,二者结合可得到面ADE,故可通过证此线面垂直来证)因为,,所以和是全等的正三角形,故,又E为BC中点,所以,,因为AE,平面ADE,,所以平面ADE,又平面ADE,所以.(2)(由图可猜想面BCD,若能证出这一结果,就能建系处理,故先尝试证明)不妨设,则,因为,所以,故,,所以,故,所以EA,EB,ED两两垂直,以E为原点建立如图所示的空间直角坐标系,则,,,所以,,由可知四边形ADEF是平行四边形,所以,设平面DAB和平面ABF的法向量分别为,,则,令,则,所以是平面DAB的一个法向量,,令,则,所以是平面ABF的一个法向量,从而,故二面角的正弦值为.21.已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.解:(1)设双曲线方程为,由焦点坐标可知,则由可得,,双曲线方程为.(2)由(1)可得,设,显然直线的斜率不为0,所以设直线的方程为,且,与联立可得,且,则,直线的方程为,直线的方程为,联立直线与直线的方程可得:,由可得,即,据此可得点在定直线上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.解:(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.。
2021年普通高等学校招生全国统一考试全国Ⅰ卷数学试题及答案
三、填空题:
13.114. 15.116.①.5②.
四、解答题:
17.(1) ;(2) .
18.(1)由题可知, 的所有可能取值为 , , .
;
;
.
所以 的分布列为
(2)由(1)知, .
若小明先回答 问题,记 为小明的累计得分,则 的所有可能取值为 , , .
(1)证明: ;
(2)若 ,求 .
20.(12分)
如图,在三棱锥 中,平面 平面 , , 为 的中点.
(1)证明: ;
(2)若 是边长为1的等边三角形,点 在棱 上, ,且二面角 的大小为 ,求三棱锥 的体积.
21.(12分)
在平面直角坐标系 中,已知点 , ,点 满足 .记 的轨迹为 .
(1)求 的方程;
则 为二面角E-BC-D的平面角,
因为 , 为正三角形,所以 为直角三角形
因为 ,
从而EF=FM=
平面BCD,
所以
21.(1) ;(2) .
22.(1)函数的定义域为 ,源自又 ,当 时, ,当 时, ,
故 的递增区间为 ,递减区间为 .
因为平面ABD 平面BCD ,平面ABD⊥平面BCD, 平面ABD,
因此AO⊥平面BCD,
因为 平面BCD,所以AO⊥CD
(2)作EF⊥BD于F,作FM⊥BC于M,连EM
因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD
所以EF⊥BD, EF⊥CD, ,因此EF⊥平面BCD,即EF⊥BC
因为FM⊥BC, ,所以BC⊥平面EFM,即BC⊥ME
2021年普通高等学校招生全国统一考试全国Ⅰ卷
数学
考试用时120分钟,满分150分.
全国统一高考数学练习卷及含答案 (1)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
2023年新高考全国Ⅱ卷数学试题(附答案解析)
绝密★启用前2023年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写。
在试题卷和答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题, 每小题5分, 共40分. 在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.在复平面内, 1+3i3-i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】1+3i3-i=6+8i,故对应的点在第一象限,选A。
2.设集合A={0,-a},B={1,a-2,2a-2}, 若A⊆B, 则a=()A.2B.1C.23D.-1【答案】B【解析】若a-2=0,则a=2,此时A=0,-2},B=1,0,2},不满足题意;若2a-2=0,则a =1,此时A={0,-1},B={1,-1,0},满足题意。
选B。
3.某学校为了解学生参加体育运动的情况, 用比例分配的分层随机抽样方法作抽样调查, 拟从初中部和高中部两层共抽取60名学生, 已知该校初中部和高中部分别有400名和200名学生, 则不同的抽样结果共有()A.C45400⋅C15200种 B.C20400⋅C40200种 C.C30400⋅C30200种 D.C40400⋅C20200种【答案】D【解析】根据按比例分配的分层抽样可知初中部抽40人,高中部抽20人,选D。
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:在答卷前,考生务必在答题卡上填写自己的姓名和准考证号。
回答选择题时,选出每小题的答案后,用铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
1.(5分) 设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A。
{2} B。
{2,3} C。
{3,4} D。
{2,3,4}2.(5分) 已知z=2-i,则|z-3i|=()A。
6-2i B。
4-2i C。
6+2i D。
4+2i3.(5分) 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2 B。
4 C。
4√2 D。
2√24.(5分) 下列区间中,函数f(x)=7sin(x)单调递增的区间是()A。
(0,π/2) B。
(π/2,π) C。
(π,3π/2) D。
(3π/2,2π)5.(5分) 已知F1,F2是椭圆C的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A。
13 B。
12 C。
9 D。
66.(5分) 若tanθ=-2,则cos2θ=()A。
-3/5 B。
-4/5 C。
-24/25 D。
-7/257.(5分) 若过点(a,b)可以作曲线y=ex的两条切线,则()XXX<a B。
ea<b C。
0<a<eb D。
0<b<ea8.(5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“两次取到的数字和为偶数”,乙表示事件“两次取到的数字都是奇数”,则P(甲∪乙)=()A。
2/3 B。
5/9 C。
7/9 D。
2024年新高考全国Ⅰ卷 数学试卷(含答案)
2024年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}355,3,1,0,2,3A x x B =-<<=--,则A B =()A.{}1,0-B.{}2,3 C.{}3,1,0-- D.{}1,0,2-2.若z1i 1z =+-,则z =()A.1i-- B.1i-+ C.1i- D.1i+3.已知向量()()0,1,2,x ==a b ,若()4⊥-b b a ,则x =()A.-2B.-1C.1D.24.已知()cos m αβ+=,tan tan 2αβ=,则()cos αβ-=()A.3m- B.3m -C.3m D.3m,则圆锥的体积为()A. B. C. D.6.已知函数()()22,0e ln 1,0x x ax a xf x x x ⎧---<⎪=⎨++≥⎪⎩在R 上单调递增,则a 的取值范围是()A.(],0-∞B.[]1,0-C.[]1,1-D.[)0,∞+7.当[]0,2x π∈时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数()f x 的定义域为R,()()()12f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是()A.()10100f > B.()201000f > C.()101000f < D.()2010000f <二、多项选择题:本大题共3个小题,每小题6分,满分18分。
每小题给出的备选答案中,有多个选项是符合题意的。
全部选对得6分,部分选对得3分,选错或不选得0分。
9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1X =,样本方差20.01S =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设失去出口后的亩收入Y 服从正态分布()2,N X S ,则()(若随机变量Z 服从正态分布()2,N μσ,则()0.8413P Z μσ<+≈)A.()20.2P X >> B.()0.5P X Z ><C.()0.5P Y Z >> D.()0.8P Y Z ><10.设函数()()()214f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()()2f x f x <C.当12x <<时,()4210f x -<-<D.当10x -<<时,()()2f x f x ->11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()2,0F 的距离与到定直线()0x a a =<的距离之积为4,则()A.2a =-B.点()在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本大题共3个小题,每小题5分,共15分。
2022年全国统一高考数学试卷和答案(文科)(乙卷)
2022年全国统一高考数学试卷和答案(文科)(乙卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)集合M={2,4,6,8,10},N={x|﹣1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}2.(5分)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=﹣1B.a=1,b=1C.a=﹣1,b =1D.a=﹣1,b=﹣13.(5分)已知向量=(2,1),=(﹣2,4),则|﹣|=()A.2B.3C.4D.54.(5分)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如图茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6 5.(5分)若x,y满足约束条件则z=2x﹣y的最大值是()A.﹣2B.4C.8D.126.(5分)设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2B.2C.3D.37.(5分)执行如图的程序框图,输出的n=()A.3B.4C.5D.68.(5分)如图是下列四个函数中的某个函数在区间[﹣3,3]的大致图像,则该函数是()A.y=B.y=C.y=D.y=9.(5分)在正方体ABCD﹣A1B1C1D1中,E,F分别为AB,BC的中点,则()A.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF∥平面A1AC D.平面B1EF∥平面A1C1D 10.(5分)已知等比数列{a n}的前3项和为168,a2﹣a5=42,则a6=()A.14B.12C.6D.311.(5分)函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A.﹣,B.﹣,C.﹣,+2D.﹣,+2 12.(5分)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
全国统一高考数学试卷(新课标ⅰ)(含解析版)
全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E 于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.全国统一高考数学试卷(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,﹣a m=1,所以公差d=a m+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=及+1b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,又由题意,b n﹣c n+1=,∴=a1﹣b n,+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt △DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.
1212i
i
+=-( ) A .4355i --
B .4355
i -+
C .3455
i --
D .3455
i -+
2.已知集合(){}
2
23A x y x
y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )
A .9
B .8
C .5
D .4
3.函数()2
x x
e e
f x x --=的图象大致是( )
4.已知向量a b ,
满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4 B .3 C .2 D .0
5.双曲线()22
22100x y a b a b
-=>,
>的离心力为3,则其渐近线方程为( ) A .2y x =± B .3y x =± C .2
2
y x =±
D .32
y x =±
6.在ABC △中,5cos
25C =,1BC =,5AC =,则AB =( ) A .42
B .30
C .29
D .25
7.为计算11111123499100
S =-
+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A .
112
B .
114
C .
115
D .
118
9.
()
A
B
C
D
10
)
A
B
C
D
11
)
A
B
C
D
12
)A
B
C
D
二、填空题,本题共4小题,每小题5分,共20分.
13
__________.
14
_________.
15.
16.
_________.
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题。
每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。
17.(12分)
(1
(2
18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,
,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,
,,)建立模型②:9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
19.(12分)
设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A B ,两点。
8AB =. (1)求l 的方程;
(2)求过点A B ,且与C 的准线相切的圆的方程.
20.(12分)
如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;
(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.
21.(12分)
已知函数()2
x f x e ax =-.
(1)若1a =,证明:当0x ≥时,()1f x ≥;
(2
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一部分计分。
22.【选修4-4:坐标系与参数方程】(10分)
.
(1
(2
23.【选修4-5:不等式选讲】(10分)
(1
(2
2018年普通高等学校招生全国统一考试
理科数学参考答案
一、选择题
二、填空题
13.
14. 9
16.设母线长为
三、填空题
17.解:(1
(2
18.解:(1)
(2)对于模型①,当年份为2016
对于模型②,当年份为2016比较而言,②的准确度高,误差较小,所以选择②
19.解:(1)∵F (1,0)
k=1,(2)设AB 的中点为N ,设圆心为M
(a,b ),所以圆的半径r=a+1
MN
20.证明:连接BO ,因为AB=BC ,则BO ⊥AC ,所以BO=2
又因为在△
PAC 中,PA=PC=4,所以PO ⊥AC
所以PO ⊥BO
(2)
x 轴,
y 轴,z 轴,
B (2,0,0),
C (0,2,0)A (0,-2,0)
P (
,设M (x,y,0),
设平面PAC的法向量为
,设平面MPA的法向量为
,
21解:(1)当
(3
①
②
22.(1)曲线C
直线L
(2)
23.(1
(2
综上:a。