专业英语-地史古生物学
中国地质大学(北京)古生物与地史学简答题复习
古生物与地史学复习一、填图二、问答1、化石的形成和保存应具备什么样的保存条件?生物本身;数量多;具有硬体外部环境:迅速埋藏,免受机械破坏;迅速冷冻;还原环境;沉积物的粒度细2、如何区分原地埋藏与异地埋藏的化石?原地埋藏(autochthonomous burial):化石保存相对较完整,不具分选性和定向性,生活于相同环境中的生物常伴生在一起。
异地埋藏(heterochthonous burial):化石不同程度破碎,分选较好,不同生活环境、不同地质时期的生物混杂,且具有一定的定向性。
3、“虫筳”的演化趋势及阶段性?演化趋势大小:小—大形态:短轴—等轴—长轴旋壁:单层—三层—四层或具蜂巢层—具副隔壁隔壁:平直—褶皱旋脊:大—小演化的阶段性4试比较四射珊瑚与横板珊瑚?5、简述古代珊瑚的生态环境?类似现代礁相泻湖的珊瑚,最大水深小于50米,温度16~28度,水体清澈、动荡、富氧,阳光充沛、泥质少。
6画出菊石缝合线的类型并表明其繁盛时期?7、头足类的演化趋势?壳形:直-平选;壳饰:简单-复杂;隔壁颈:后伸-前伸;缝合线:鹦鹉螺式-无棱菊石式-棱菊石式-齿菊石式-菊石式8、举例说明性双形现象?由于性别的差异,同一物种不同性别的个体具有不同的形态的现象。
如介形虫雄性个体:长、矮;雌性个体:短、高,后部膨大,具有卵囊9、介形虫的演化趋势?1)、铰合构造从一元型到四元型2)、闭肌痕数目由多到少,其分布由不规则到规则3)、边缘毛管带由窄变宽,边缘毛管由少变多,由简单到分叉10、比较腕足类与双壳类的壳体的形态、结构差异?双壳类腕足动物壳形分左、右壳,两壳大小相等,形态相似,每瓣壳前后不对称分背、腹壳,两壳大小不等,形态不同,但每瓣壳左右对称铰合构造发育发育壳子开合机制闭壳肌、韧带闭壳肌、开壳肌壳饰生长纹放射脊、生长纹、中褶、中槽11对比树形笔石与正笔石的形态结构差异12、简述叠层石的形成环境和条件生长于潮间带蓝藻藻丛的生长发育有一定数量的沉积颗粒提供给藻类吸附水底的底流不太强烈,水底物质的位置相对稳定生长速度大于剥蚀速度在生长过程中叠层石能被迅速加固13、简述植物演化的阶段性(1)菌类、藻类阶段:太古代——志留纪,单细胞或多细胞组成,无根、茎、叶的分化,不具维管束(2)裸蕨植物阶段:志留纪末期——中泥盆世,加里东运动使海洋面积缩小,陆地变大,植物开始登陆,开始出现了茎、叶的分化,出现维管束,但生殖过程离不开水。
古生物地史学概论复习资料
古生物地史学概论复习资料一、古生物学1.化石的定义;化石的保存类型(1)化石的定义:化石是指保存在岩层中地质历史时期的生物遗体和遗迹。
它必须具有诸如形状、结构、纹饰和有机化学成分等生物特征,必须是保存在地史时期形成的岩层中。
(地史时期指全新世以前,即1万年或1.2万年)(2)化石的保存类型:根据化石的保存特点,大体上可以将化石分为4大类,即实体化石、模铸化石、遗迹化石和化学化石。
○1实体化石:古生物遗体本身几乎全部或部分(特别是硬体)保存下来的化石。
变化实体:由生物硬体部分经不同程度的石化作用形成;未变实体:在特别适宜的情况下,其硬体与软体可以比较完整的保存而无显著的变化。
○2模铸化石:指生物遗体在岩层中的印模和铸型。
根据其与围岩的关系,可分为4类:a.印痕化石:即生物尸体陷落在细粒碎屑或化学沉积物中留下生物软体的印痕。
b.印模化石:即生物硬体(如贝壳)在围岩表面上的印模,包括外模和内模。
c.核化石:即由生物体结构形成的空间或生物硬体溶解后形成的空间,被沉积物充填固结后,形成与原生物体大小和形态类似的实体,包括外核和内核两种。
d.铸型化石:是当贝壳埋在沉积物中已经形成了外模和内核后,壳质全部溶解,并被后来的矿质充填所形成的化石。
○3遗迹化石:指保存在岩层中古代生物生活活动留下的痕迹和遗物。
(分为痕迹化石和遗物化石)○4化学化石:地史时期生物有机质软体部分虽然遭受破坏未能保存为化石,但分解后的有机成分,如蛋白质、脂肪酸、氨基酸等仍可残留在岩层中。
2.生物的生活方式;海洋生物环境分区(1)(海洋)生物的生活方式:○1底栖生物:指生活在水层底部,经常离不开基底的生物。
底栖生物如果生活在基底表面以上则称为表生生物(a.营海底爬行或跳跃生活——底栖活动型;b.营海底固着生活——底栖固着生物),生活在基底表面以下的生物称为内生生物(a.营潜穴;b.营钻孔)。
○2游泳生物:体流线型、两侧对称,运动、捕食和感觉器官较发达。
古生物学专业英语词汇
古生物学专业英语词汇摘要:古生物学是一门研究地球历史上生命的科学,它涉及到许多专业术语,这些术语对于古生物学的学习和研究是非常重要的。
本文根据不同的分类标准,整理了一些常用的古生物学专业英语词汇,并用表格的形式展示了它们的中文和英文对照。
1. 古生物学的分支古生物学是一门广泛的科学,它可以根据不同的研究对象、方法、目的等进行细分。
下表列出了一些常见的古生物学的分支及其英文名称。
中文英文古植物学paleobotany古动物学paleozoology微体古生物学micropaleontology古人类学paleoanthropology古遗传学paleogenetics古生态学paleoecology古气候学paleoclimatology古地理学paleogeography古生物地理学paleobiogeography古生化学paleobiochemistry古生物形态学paleobiomorphology古生物统计学paleobiostatistics2. 古生物学的研究对象古生物学的研究对象是地球历史上存在过的各种生命形式,它们通常通过化石或其他遗迹来保存和展示。
下表列出了一些常见的古生物学的研究对象及其英文名称。
中文英文化石fossil微化石microfossil无机化石inorganic fossil有机化石organic fossil原始化石primitive fossil进化化石evolutionary fossil指示化石index fossil活化石living fossil化石记录fossil record化石群落fossil community化石组合fossil assemblage化石遗迹trace fossil化石印迹impression fossil化石模式mold fossil化石腔填充物cast fossil3. 古生物学的方法和技术古生物学的方法和技术是指用于收集、分析、解释古生物数据的各种手段和工具。
古生物学的发展趋势及研究热点
古生物学的发展趋势及研究热点古生物学(Palaeontology)是研究地质历史时期的生物界及其发展的科学,旨在探索生命起源、发展及其与环境的协同演化,确定地层的顺序、时代,了解地壳发展的历史,推断地史时期水陆分布、气候变迁和沉积矿产形成与分布的规律。
研究范围包括各地史时期地层中保存的生物遗体、遗迹及一切与生命活动有关的地质记录。
具体研究内容分2个方面:①生物学方面,研究生物体的形态、结构、构造、分类、个体发育和系统发生、生物演变对环境的适应,乃至生物的生理和生物化学等;②地质学方面,研究古生物的地质时间含义、古生物的兴衰与迁移、古生物地理、古生物与能源和矿产资源等。
从古生物学发展历史看,目前主要朝着2个方向发展:描述古生物学方向,主要研究古生物化石的形态特征、分类位置及其时代分布和生态特征;理论古生物学方向,主要研究古生物的起源、进化方式、进化速率和进化机制等。
中国是拥有地质历史时期最为完整的地层和古生物记录的地区之一,沉积类型多样,化石资源丰富,具有独一无二的自然条件优势。
中国是当今国际古生物学研究最关键和最具潜力的地区,世界上许多重要古生物学的理论探究和全球重大地学问题的解决,都有赖于中国古生物资料的发现和研究。
1)元古代生物演化。
地球早期生命的研究在中国具有很好的发展前景,中国华北地台具有跨越古太古代和早、中元古代连续沉积岩层,在探讨真核生物的起源及其环境背景、真核生物的早期辐射方面具有很好的潜力。
中国扬子地台和新疆等地广泛发育了新元古代至早寒武世末变质的沉积岩石并保存了丰富的化石资源,一些特殊埋藏的化石生物群,如瓮安生物群、庙河生物群、蓝田植物群和高家山动物群等,是地球上真核生物多细胞化和早期适应辐射的见证。
珍稀化石是人类认识地球上生物进化最直观的证据,因此,应重视挖掘和研究生物进化关键环节的化石类群,应用Micro-CT、TEM、软X-ray、GC-IRMS等物理学方法进行化石分析,利用地球化学方法评估环境因素的影响,以深入探索真核生物起源、多细胞生物的起源和辐射、早期生态系统的演化、生物和环境的协调演化等。
地质学专业英语P
paleoautochthon 古原地岩
paleobathymetric map 古等深线图
paleobiocenose 古生物群落
paleobiocenosis 古生物群落
paleobiochemistry 古生物化学
paleobiogeographic province 古生物地理区
pair production 偶生成
paired fins 偶
paired metamorphic belt 双变质带
pairing of electrons 生成电子对
paisanite 钠闪微岗岩
palaeobiology 古生物学
palaeontology 古生物学
palaeosedimentology 古沉积学
paracoquimbite 紫铁矾
paracrosis 脱色
paradoxite 肉红长石
paraendokinetic crystallization 副内动结晶
paraffine base crude oil 石蜡基油
paragenesis 共生
parageosyncline 副地槽
palmate leaf 掌状叶
palmate nerve 掌状脉
palmate vein 掌状脉
palmierite 硫钾钠铅矿
palpon 触管
paludal 沼泽的
paludification 沼泽化
palygorskite ynology 孢粉学
paleontological facies 古生物相
兰州大学古生物地史学习题
兰州大学《古生物地史学》习题1.古生物学(Palaeontology)的概念及研究内容?2.什么叫化石(fossil)?研究化石的意义是什么?3.什么叫标准化石?4.指相化石的概念?5.标准化石和指相化石有什么重要意义?6.化学(分子)化石?7.外模与外核、内模与内核、内核与外核有何关系、?如何区别?8.化石是如何形成的?9..印模化石与印痕化石如何区别?10.试述化石的保存类型?11.什么叫实体化石、遗迹化石?12.概述“化石记录不完备性”的原因?13.如何区分原地埋藏和异地埋藏?14.异地埋藏的化石群能说明当时生物的生活环境吗?为什么?15.物种16.试述海洋生物的生活方式?17.适应辐射与适应趋同18.古生物钟19.自然选择20.群落21.集群绝灭与背景绝灭22.古生物学在地质学中的应用?23.形态功能分析的原理是什么?24.如何理解生命的起源?25.蜒的地史分布及主要分类?26.蜒壳的基本形态及构造?27.如何鉴定蜓科化石?28.蜓的轴切面、中切面和弦切面如何区分?29.蜓的轴切面上能见到那些构造?30.蜓的中切面上主要观察什么?31.图示蜒构造特征?32.珊瑚纲的主要分类、生活习性?33.鉴定珊瑚动物化石的方法有哪些?34.四射珊瑚有哪四种构造组合带型?每种类型包括哪些构造?35.图示四射珊瑚构造特征?36.四射珊瑚的隔壁是怎样发生的?37.四射珊瑚的演化趋向?38.在什么情况下横切面上见不到横板,而在什么情况下横切面又可以见到横板呢?39.比较四射珊瑚与横板珊瑚的不同点?40.隔壁与泡沫板那种构造先生长?41.横板珊瑚的演化趋向?42.图示横板珊瑚构造特征?43.双壳纲有哪些基本构造?44.双壳纲的齿系类型及其特征?45.如何区分主齿与侧齿?46.如何确定双壳纲的前后?47.双壳纲的生态、演化及地史分布特征?48.图示双壳纲构造特征?49.头足纲有哪些基本构造?50.头足纲的地史分布特征?51.头足纲缝合线类型及其特征?52.头足纲体管类型及其特征?53.头足纲生态类型与形态功能分析?54.鹦鹉螺类体管划分的依据是什么?有哪几个类型?55.鹦鹉螺亚纲下分哪几个超目?56.图示鹦鹉螺类构造特征?57.菊石亚纲旋壳分为哪几种类型?58.菊石亚纲逢合线分为哪几种类型?59.菊石缝合线的演变对确定地层时代有何作用?60.图示菊石亚纲构造特征?61.三叶虫的基本构造有哪些?62.三叶虫头甲的构造特征有哪些?63.试述三叶虫的腹面构造?64.三叶虫的个体发育阶段?65.三叶虫的面线类型及其特征?66.三叶虫根据头甲与尾甲的大小关系,可以分为几种尾甲类型?67..三叶虫的地史分布特征?68.试述三叶虫的生态特征?69.什么叫关节半环??70.固定颊眼区是指头甲的那一部分?71.三叶虫划分属的主要依据是什么?72.图示三叶虫构造特征?73.腕足类具有哪些基本构造?74.腕足类的腹壳和背壳如何区别?75.怎样鉴定腕足类化石?76.根据螺顶指向及初带,腕螺可以分为几种类型?77.腕棒、腕环、腕螺如何区别?78.腕足动物的铰齿在哪一个壳瓣上?79.什么叫匙形台?80.腕足动物的生态特征?81.腕足动物的地史分布?82.比较腕足动物与软体动物双壳纲在壳体上的不同点?83.图示腕足动构造特征?84.笔石可保存为化石的部分,主要为?85.判断笔石枝生长方向是向上还是向下的依据是什么?86.正笔石的十种胞管类型及其特征?87.正笔石枝生长方向有几种形式?88.笔石的发育方式?89.笔石的生态及地史分布特征?90.树形笔石有几种胞管?91.图示笔石胎管构造?92.图示笔石构造特征?93.动物界的主要发展阶?94.鱼形超纲划分为几个纲?95.鱼形动物的一般特征?96.鱼鳞的类型及其特征97.鱼的尾鳍的类型及其特征98.鱼形动物的生态及地史分布特征?99.四足超纲划分为几个纲?100.两栖纲的一般特征及进化意义?101.爬行纲的进化特征?102.爬行动物的分类及地史分布?103.试述脊椎动物演化的重大事件?104.鸟纲的一般特点及分类?105.哺乳动物的起源与分类?106.试述哺乳动物臼齿类型与习性的关系107.从猿到人的发展演化经历哪些演化阶段?108.始祖鸟与中华龙鸟109.恐龙包括爬行动物什么亚纲的哪两个目?110.怎样认识鱼类和哺乳类化石?111.劳动在人类发展中有何重要作用?112.植物界演化阶段?113.高等植物与低等植物的主要区别特征?114.被子植物、裸子植物与蕨类植物的主要区别特征?115.被子植物的分类?116.裸子植物的分类?117.蕨类植物的分类?118.图示小羽片的形态类型?119.图示磷木的叶座?120.什么叫做间小羽片和间羽片?121.叶脉的基本类型?122.叶的基部、和顶端各有几种类型?123.怎样判断鳞木叶座的上、下方位?124.有节类茎干及叶部化石的鉴定要点是什么?125.蕨形叶有哪些主要构造?126.蕨形叶有哪些脉序类型?127.蕨形叶有哪些小羽片形态?128.似银杏和现代银杏有哪些区别?129.中生代地层中最常见哪一属松柏类化石?130.苏铁植物有哪几种裂片着生方式?131.图示石松类的主要特征?132.图示楔叶类的主要特征?133.图示有节类的主要特征?134.图示真蕨类的主要特征?135.图示种子蕨类的主要特征?136.图示苏铁类的主要特征?137.图示银杏类的主要特征?138.图示松柏类的主要特征?139.地史学(Historical geology)的概念及其研究内容?140.简述地史学的发展阶段及各阶段的主要贡献?141.地层(stratum)、地层划分与地层对比?142.板块与板块构造?143.界线层型(Boundary stratotype)与单位层型(Unit stratotype)?144.海底扩张(Sea floor spreading)、转换断层?145.B式俯冲与A式俯冲?146.蛇绿岩套(ophiolite suite)、混杂堆积(melange)?147.沉积组合?148.何为相、相变、相分析?149.地台与地盾(shie1d)?地台主要应用是什么?150.地槽(geosyncline)、冒地槽(miogeosyncline)、优地槽(eugeosycline)151.裸露动物群与小壳动物群152.化石层序律(Law of fossil Succession )、地层层序律153.相对比定律154.复理石(flysch)沉积(建造)155.海侵超覆与海退退覆?156.沉积旋回与构造旋回(构造岩浆旋回)?157.构造旋回的划分及命名?158.生物相(分异)?159.笔石(页岩)相、壳相、混合相、礁相?160.简述生物门类及其生态组合的环境意义?161.整合接触(Conformity)、平行不整合(Parallel unconformity)、角度不整合(Angular unconformity)?162.组合带(Assemblage zone)、延限带(Range zone)、顶峰带、共存延限带?163.进行地层划分时,哪些是反映沉积阶段性的主要标志?164.“组”和“统”有什么区别?165.年代地层单位与岩石地层单位有何本质区别?166.地质年代单位和年代地层单位各代表什么概念?167.层理,层面构造,各反映何种水动力条件?出现在哪些环境中?168.紫红色泥岩,具食盐假晶,产三叶虫,属何种环境?169.岩相分析的主要依据有哪些?170.如何区分滨海相砂岩及河流相砂岩?171.如何区分滨海相与滨湖相?172.何为蛇曲河的二元结构?173.何为鲍马序列?174.地层中采到植物化石时,能否确定气候潮湿?为什么?175.层序地层学及其意义是什么176.构造旋回及构造阶段的地质意义?177.威尔士旋回的阶段划分及现实实例?178.沉积盆地补偿、非补偿、过补偿沉积特征?179.沉积环境的主要判别标志?180.太古宙生物遗迹主要包括几种类型?181.前寒武纪生物界发展特征?182.寒武纪生物界发展特征?183.奥陶纪生物界发展特征?184.奥陶纪的生物相及其特征?185.志留纪生物界发展特征?186.泥盆纪生物界发展特征?187.石炭纪生物界发展特征?188.二叠纪生物界发展特征?189.石炭纪—二叠纪世界植物地理分区、代表化石及演变?190.三叠纪生物界发展特征?191.侏罗纪生物界发展特征?192.白垩纪生物界发展特征?193.试述俯冲及大陆边缘类型?194.试述生物地层单位与年代地层单位的相互关系?195.试述生物地层单位的概念和分类级别?196.试述生物地层单位与岩石地层单位的相互关系?197.简述早古生代生物界的特征?198.简述晚古生代生物界的特征?199.简述中生代生物界的特征?200.新生代生物界的特征?。
古生物学总论复习
第一章绪论古生物学Paleontology定义:研究地史时期生物界面貌和发展历史对象:化石——地史时期生物的遗体及其活动痕迹。
(研究对象为地质历史时期形成的地层中的生物遗体和遗迹,以及和生物活动有关的各种物质记录)第二章化石及古生物分类系统一、化石的定义二、化石的形成条件三、化石的保存类型四、化石的研究方法五、化石的分类与命名一、化石的定义化石fossil:保存在岩层中地质历史时期的生物遗体、生物活动痕迹及生物成因的残留有机物分子假化石pseudofossil二、化石的形成条件古生物→死亡→埋藏→石化→发掘1、生物本身的条件2、生物死后的环境条件3、埋藏条件4、时间条件5、成岩石化条件1、生物本身的条件生物硬体:矿化硬体:矿化程度矿化组分比较稳定的是方解石、硅质化合物、磷酸钙等不太稳定的是霰石、含镁方解石有机质硬体:如几丁质薄膜、角质层、木质物等生物软体2、生物死后的环境条件,即生物死后所处的外界环境条件物理条件:如高能水动力条件下生物尸体易被破坏化学条件:如水体pH值小于7.8时,CaCO3易于溶解;氧化环境中有机质易腐烂生物条件:如食腐生物和细菌常破坏生物尸体3、埋藏条件与埋藏的沉积特性质有关:圈闭较好的沉积物易于保存,如化学沉积物、生物成因的沉积物;一些特殊的沉积物还能保存生物软体部分,如松脂、沥青湖、冰川冻土等;具孔隙的沉积物中的古生物尸体易被破坏4、时间条件埋藏前的暴露时间:及时埋藏有利于形成化石;埋藏后不被再挖掘出来石化作用时间:经过地质历史时间的成岩石化作用;短暂、近期内的生物埋藏不成为化石5、成岩石化条件埋藏的尸体与周围的沉积物一起,在漫长的地史成岩过程中,逐步石化,形成岩石的一个部分沉积物固结成岩过程中的压实作用和结晶作用都会影响化石的石化作用和化石的保存6、石化作用petrifaction定义:埋藏在沉积物中的生物体,在成岩作用中经过物理化学作用的改造而成为化石的过程1)矿质充填作用生物硬体组织中的一些空隙,经过石化作用被一些矿物质沉淀充填,使得生物硬体变得致密和坚硬充填作用可发生在生物硬体结构中,如贝壳的微孔、脊椎动物的骨髓;也可以发生在生物硬体结构之间,如有孔虫的房室、珊瑚的隔壁之间2)置换作用在石化作用过程中,原来生物体组分被溶解,外来矿物质充填,如硅化、钙化、白云化、黄铁矿化等如果溶解速度等于充填速度,原生物体的微细结构可以保存下来如果溶解速度大于充填速度,则原来的微细结构难以再现3)碳化作用石化作用过程中,生物遗体中不稳定的成分分解和升馏挥发,仅留下较稳定的碳质薄膜保存为化石通常是几丁质的生物体发生此石化作用,其几丁质成分(C15H26N2O10)为主的植物叶化石、笔石枝等经碳化作用,H,N,O挥发,留下碳质薄膜化石2)置换作用——硅化作用:硅化木3)碳化作用——碳质薄膜:笔石化石记录的不完备性:现今我们能够在地层中观察到的化石仅是各地史时期生存过的生物群中极小的一部分现生生物:已记录170多万种,估计有500-1000多万种古生物:已记录13万多种,大量未知三、化石的保存类型根据化石的保存特点,可分为4类:1实体化石2模铸化石3遗迹化石4 化学化石1、实体化石body fossil:全部生物遗体或部分生物遗体的化石2、模铸化石mode and cast fossil:保存在岩层中生物体的印模和铸型(复铸物)根据化石与围岩的关系分成4类:(1)印痕化石(2)印模化石(3)核化石(4)铸型化石(1)印痕化石impression fossil:生物软体在围岩上留下的印痕(2)印模化石mold fossil:生物硬体在围岩表面上的印模。
地质专业英语词汇自己整合的解析
地质专业英语词汇自己整合的解析地质专业词汇英语翻译(A-D)a horizon a 层位a lineation a 线理a twin a 双晶aa lava 块熔岩aalenian stage 阿林阶abandon 废弃abandoned mine 废弃的矿山abandoned well 废孔abatis 通风隔墙abdomen 腹部abdominal appendage 腹肢abdominal cavity 腹腔abdominal fin 腹abductor 外展肌abductor muscle 外展肌abernathyite 水砷钾铀矿aberration 象差abichite 光线矿abiogenesis 自然发生abiogeny 自然发生abiotic factor 非生物因素ablation 剥蚀ablation breccia 剥蚀角砾岩ablation moraine 消融碛ablation skin 熔蚀皮ablation till 消融碛ablykite 阿布石abnormal 异常的abnormal interference color异常干涉色abnormal metamorphism 异常变质作用abolition 废除abrade 剥蚀abrasion 海蚀abrasion platform 磨蚀台地abrasion surface 浪蚀面abrasion terrace 磨蚀阶地abrasionn test 磨耗试验abrasive 磨料;海蚀的abrazite 多水高岭土absarokite 正边玄武岩absite 钍钛铀矿absolute age 绝对年龄absolute black body 绝对黑体absolute chronology 绝对年代学absolute dating 绝对年代测定absolute geopotential 绝对重力势absolute porosity 绝对孔隙率absolute pressure 绝对压力absolute structure 绝对构造absorbed water 吸附水absorbent 吸收剂absorber 吸收器absorbing well 吸水井absorption 吸收absorption axis 吸收轴absorption border 融蚀缘absorption curve 吸收曲线absorption edge 吸收端absorption factor 吸收率absorption spectrum 吸收光谱absorptive capacity 吸收率absorptivity 吸收性abukumalite 铋磷灰石abundance 丰度abundance of elements 元素丰度abundance of isotopes 同位素丰度abundance ratio of isotopes 同位素相对丰度abysmal deposits 深海沉积物abyss 深海abyssal 深海的abyssal benthic zone 深渊底栖带abyssal deposits 深海沉积物abyssal facies 深海相abyssal hills province 深海丘陵区abyssal injection 深成贯入abyssal rock 深成岩abyssal sediments 深海沉积物acadialite 红菱沸石acadian stage 阿卡德阶acalycine 无花萼的acalycinous 无花萼的acanthite 螺状硫银矿acanthoid 刺状的acaulescent 无茎的acaulous 无茎的acaustobiolite 非燃性生物岩accelerated development 上升发育acceleration 促进accelerometer 加速度计accessory 副的accessory ejecta 早成同源抛出物accessory minerals 副矿物accidental ejecta 异源抛出物accidental inclusion 外源包体accidental species 偶见种accidental xenolith 外源包体acclivity 上坡accompanying mineral 伴生矿物accordance of summit levels 山峰高度一致accordant junction 交合汇流accordion fold 棱角褶皱accretion 附加体accretion gley 结核潜育层accretion theory 吸积理论accretionary lapilli 团积火山砾accumulate 堆积accumulated temperature 积温accumulation 堆积accumulation horizon 聚积层accumulation moraine 堆积冰碛accumulation terrace 堆积阶地accumulation theory of volcano 火山堆积说accumulation till 堆积冰碛accumulative phase 堆积相accuracy 准确度acephalous 无头的acephalous larva 无头幼虫acerous 针状的acetate 醋酸盐acetic acid 醋酸acf diagram acf 图解achavalite 硒铁矿achiardite 坏晶石achirite 透视石achlamydeous 无花被的achlusite 钠滑石achondrite 无球粒陨石achroite 无色电气石achromaite 浅闪石achromatic body 消色物体achromatic lens 消色差透镜achromatism 消色差achromatize 消色acicular 针状的aciculiform 针状的acid base equilibrium 酸碱平衡acid earth 酸性白土acid humus 酸性腐殖质acid mine drainage 酸性矿水排水acid plagioclase 酸性斜长石acid rock 酸性岩acid soil 酸性土acid solution 酸性溶液acid spring 酸性泉acid treatment of oil payzone 油层酸处理acid treatment of well 井的酸处理acidic lava 酸性熔岩acidification 酸化acidimetry 酸量滴定法acidite 酸性岩acidity 酸度acidizing of well 井的酸处理acidophilous plants 适酸植物acidotrophic lake 酸性营养湖acidulation 酸化acline twin 翻底双晶acmite 锥辉石acotyledon 无子叶植物acotyledonous 无子叶的acoustic basement 声波基底acoustic foundation 声波基底acoustic logging 声波测井acquired character 获得形质acre foot 英亩英尺acrobatholithic 露岩基的acrochordite 球砷锰矿acrospore 顶生孢子actinides 锕系元素actinium 锕actinolite 阳起石actinolite asbestos 阳起石石棉actinolite schist 阳起片岩actinolitic greenschist facies 阳起绿色片岩相actinometer 日射表actinometry 光化测定actinomorphic 辐射对称的actinomorphous 辐射对称的actinomyces 放线菌类actinostele 星状中柱actinouranium 锕铀actinula 辐射幼虫activated adsorption 活化吸附activated carbon 活性炭activated clay 活化粘土activated complex 活化络合物activated water 活化水activation 活化activation analysis 活化分析activation cross section 活化截面activation energy 活化能activation logging 活化测井activation method 活化法activation of platform 地台活化activator 活化剂active fault 活断层active folding 活褶曲作用active glacier 活动冰川active humus 活性腐殖质active hydrogen 活性氢active plate 移动板块active remote sensing 织式遥感active tectonic pattern 活动构造型式active volcano 活火山active water 侵蚀性水activity 活度activity coefficient 活度系数activization 活化作用activization platform block 活化台块actual reserves 实在储藏量actual volume 实际容积actualily 真实actualism 现实论actuopalaeontology 现实古生物学acute 急尖的acute bisectrix 锐角等分线acutifoliate 尖叶的adamant 硬石adamantine 坚硬的adamantine lustre 金刚光泽adamantine spar 刚玉adamellite 石英二长岩adamine 水砷锌矿adamite 水砷锌矿adamsite 暗绿云母adaptability 适应性adaptation 适应adaptive radiation 适应辐射adcumulate 累积岩addition 添加additional phase 加成相adductor 收肌adductor muscle scar 收肌筋痕adelite 砷钙镁石adelogenic 显衡隐晶质的adelpholite 铌铁锰矿adenoid 腺样的adergneiss 脉状片麻岩1adhering 粘附性的;附着adhesion 粘附adhesive disk 吸盘adhesiveness 胶糟性adiabat 绝热线adiabatic cooling 绝热冷却adiabatic curve 绝热线adiabatic equilibrium 绝热平衡adiabatic heating 绝热增温adiabatic lapse rate 绝热温度梯度adiabatic process 绝热过程adiabatic state 绝热状态adiabatic temperature gradient 绝热温度梯度adiagnostic 隐微晶质的adigeite 镁蛇纹石adinole 钠长英板岩adipocerite 伟晶腊石adipocire 伟晶腊石adipose cell 脂细胞adit 平峒adjacent rock 围岩adjacent sea 边缘海adjoining rock 围岩adjustment 蝶admimistration 管理admission 收气adobe 灰质粘土adoral 口侧的adsorbent 吸附剂adsorbing material 吸附剂adsorption 吸附adsorption indicator 吸附指示剂adsorptive capacity 吸附能力adular 冰长石adularia 冰长石adult 成体advance 前进adventitious plants 外来植物adventive crater 寄生火口adventive volcano 寄生火山aecidiospore 锈孢子aeciospore 锈孢子aegirine 霓石aegirine augite 霓辉石aegirite 霓石aenigmatite 三斜闪石aeolian clastics 风成碎屑岩aeolian deposit 风积aeolian landform 风成地形aeolian soil 风积土aeration 充气aeration tissue 通气组织aeration zone 饱气带aerenchyma 通气组织aerial method of geology 航空地质甸方法aerial photography 航空摄影学aerial ropeway 架空死aerial survey 航空测量aerial triangulation 航空三角测量aerify 使呈气态aerobe 需气生物aerocartograph 航空测图仪aerogenous rock 风成岩aerogeography 航空地理学aerogeology 航空地质学aerolite 石陨石aerolith 石陨石aeromagnetic survey 航空磁测aerophotogeological map 航空摄影地质图aerophotogrammetry 航空摄影测量学aerophotography 航空摄影学aerophotography of geology 地质专业航空摄影aeroplankton 大气浮游生物aeroradioactive survey 航空放射性测量aerosiderite 铁陨石aerosiderolite 铁石陨石aerosite 深红银矿aerugite 块砷镍矿aeschynite 易解石affiliation 亲缘关系affine deformation 均匀变形affinity 亲和力afflux 汇入after deep 后渊aftereffect 后效aftershock 余震afwillite 桂硅钙石agalite 纤滑石agalmatolite 寿山石agamogony 无配子生殖agate 玛瑙age 龄期age determination 时代鉴定age of cycads 苏铁植物时代age spectra 年龄谱ageing of colloids 胶体熟化agent of erosion 侵蚀力agents of metamorphism 变质营力ageostrophic wind 非地转风agglomerate 集块岩agglomerate lava 集块熔岩agglomeratic 集块岩状的agglomeration 烧结agglutinate 粘合集块岩agglutination 胶着agglutinin 凝集素aggradation 加积aggradation terrace 堆积阶地aggradational plain 堆积平原aggregate 集合体aggregation 聚集aggressive water 侵进水agitation 搅拌agmatite 角砾混合岩agnatha 无颌类agnolite 红硅钙锰矿agnotozoic era 元古代agpaite 钠质火成岩agreement 协议agricolite 闪铋矿agricultural geology 农业地质学agricultural geomorphology 农业地貌学agroforestrial geology 农林地质学agrogeology 农业地质学agrohydrologg 农业水文学aguilarite 辉硒银矿aidyrlite 杂硅铝镍矿aikinite 针硫铋铅矿air borne radioactivity 大气放射性air chamber 气室air compressor 空气压缩机air damping 空气制动air drilling 空气钻进air drying 风干air elutriation 空气淘析air flush drilling 空气冲洗钻井air gun 空气枪air hammer 气锤air lift 气动提升机air permeability 透气性air pressure 空气压力air release valve 放气阀air sac 气囊air separating tank 空气分离罐air separator 气力分离器air shrinkage 空气收缩air vent 排气孔air volcano 气火山airborne electromagnetic method 航空电磁法airborne electromagnetics 航空电磁法airborne magnetic prospecting 航空磁法勘探airborne magnetometer 航空地磁仪airborne remote sensing 航空遥感airborne survey 航空甸airial camera 航空摄影机airview 空瞰图airy phase 艾氏相airy's spiral 艾氏螺旋akaustobiolite 非燃性生物岩akaustobiolith 非燃性生物岩akerite 英辉正长岩akermanite 镁黄长石akf diagram akf图解akinete 厚壁孢子akrochordite 球砷锰矿aksaite 阿氏硼镁石ala twin 轴双晶alabandine 硫锰矿alabandite 硫锰矿alabaster 雪花石膏alabastrite 雪花石膏alamosite 铅灰石alar 翼状的alary 翼状的alaskaite 铅泡铋矿alaskite 白岗岩alate 有翼的albedo 反照率albers' equal area projection 亚尔勃斯等积投影albertite 黑沥青albian 阿尔布阶albian stage 阿尔布阶albite 钠长石albite twin 钠长石双晶albitite 钠长石玢岩albitization 钠长石化albitophyre 钠长斑岩alboranite 紫苏变玄岩aleurolite 粉砂岩aleuropelitic 粉砂泥的aleutite 易辉安山岩alexandrite 翠绿宝石algae 藻类algae control 藻类控制algal ball 海藻饼algal biscuit 海藻饼algal coal 藻煤algal fungi 藻菌类algal limestone 藻灰岩algal reef 藻礁algal structure 藻结构alginite 藻类体algodonite 微晶砷铜矿algology 藻类学algonkian 阿尔冈纪algonkian system 阿尔冈系algovite 辉斜岩aliphatic compound 脂族化合物alizarin 二羟蒽醌alkali 碱alkali alumina metasomatism 碱氧化铝交代alkali basaet 碱性玄武岩alkali earth metal 碱土金属alkali feldspar 碱性长石alkali flat 碱覆盖坪alkali gabbro 碱性辉长岩alkali granti 碱性花岗岩alkali lime index 碱灰质指数alkali metal 碱金属alkali olivine basalt 碱性橄榄玄武岩alkali pyroxene 碱性辉石alkali rock series 碱性岩系alkali salt 碱盐alkali soil 碱土alkali syenit 碱性正长岩alkalic rock 硷性岩alkalic ultrabasic rock 碱超基性岩alkalify 碱化alkalimetry 碱量滴定法alkaline amphibolization 碱性角闪石化alkaline earth 碱土族alkaline earth metal 碱土金属alkaline metasomatism 碱性交代作用alkaline pyroxenization 碱性辉石化alkaline rock 硷性岩alkaline rocks 碱性岩类alkaline soil 碱性土alkaline solution 碱性溶液alkaline spring 碱泉alkalinity 碱度2alkalipicrite 碱性苦橄岩alkalitrophic lake 碱液营养湖alkalization 碱化作用alkalize 碱化alkaloid 生物碱alkanes 链烷烃allactite 砷水锰矿allagite 绿蔷薇辉石allalinite 浊变辉长岩allanite 褐帘石alleghanyite 粒硅锰矿allemontite 砷锑矿allite 铝铁土allivalite 橄榄钙长岩allobar 变压区allocation 分配allochemical metamorphism 异化变质allochetite 霞辉二长斑岩allochroite 粒榴石allochromatic colour 假色allochromatism 假色allochthone 移置岩体allochthonous 外来的allochthonous coal 异地生成煤allochthonous deposit 移积allochthonous fold 移置性褶曲allochthonous limestone 移置灰岩alloclastic breccia 火山碎屑角砾岩allogenic 他生的allogenic element 他生元素allogenic mineral 他生矿物allogenic succession 他生演替allomerism 异质同晶现象allometamorphism 他变作用allometry 异速生长allomigmatite 他混合岩allomorph 同质异形的allomorphism 同质异晶allomorphous 同质异形的allopalladium 硒钯矿allopatric polymorphism 同质多形allophane 水铝英石allophase metamorphism 他相变质alloskarn 外成夕卡岩allothigenic 他生的allothigenous 他生的allotriomorphic 他形的allotriomorphic granular texture 他形晶粒状结构allotriomorphic structure 他形构造allotriomorphic texture 他形结构allotrope 同素异形体allotropic modification 同素异形体allotropic transformation 同素异晶变化allotropism 同素异形allotropy 同素异形allotype 异模式标本alloy 合金alluvial 冲积的alluvial apron 山麓冲积扇alluvial channel 冲积河道alluvial cone 冲积锥alluvial deposit 冲积层alluvial fan 冲积扇alluvial fan deposit 冲积扇层alluvial ore deposit 冲积矿床alluvial placer 冲积砂矿床alluvial plain 冲积平原alluvial sand ripples 河成砂纹alluvial sand wave 河成沙波alluvial soil 冲积土alluvial terrace 冲积阶地alluvial veneer 冲积表层alluviation 冲积alluvion 冲积层alluvium 冲积层almandine 铁铝榴石almandite 铁铝榴石alnico 铝镍钴合金alnoite 黄长煌斑岩alp 高山alpha quartz 石英alpha ray spectrometer 能谱仪alphitite 岩粉土alpides 阿尔卑斯造山带alpine animals 高山动物alpine belt 高山带alpine orogeny 阿尔卑斯造山运动alpine type peridotite 阿尔卑斯式橄榄岩alpine type vein 阿尔卑斯型矿脉alpinotype orogeny 阿尔卑斯型造山作用alpinotype tectonics 阿尔卑斯型构造alsbachite 榴云细斑岩alstonite 碳碱钙钡矿altaite 碲铅矿altar 腋生的altazimuth 经纬仪alteration 蚀变alteration halo 蚀变晕alteration zone 蚀变晕altered aureole 蚀变晕altered mineral 蚀变矿物alternant 交替的alternate phyllotaxis 互生叶序alternately pinnate 互生羽状的alternating 交替alternating layers 互层alternation 互层alternation of beds 互层alternation of generations 世代交替alternative 可选择的altimeter 高度计altitude 高度altitudinal zonality 垂直分布带alum 茂alum shale 茂页岩alum slate 茂板岩alumian 无水矾石alumina 矾土aluminate 铝酸盐aluminite 矾石aluminum 铝alumochromite 铝铬铁矿alunite 茂石alunitization 茂石化alunogen 毛矾石alurgite 锰云母alveolar 蜂窝状alvite 铪锆石amagmatic 非岩浆活动的amalgam 汞齐amalgamation 混汞作用amarantite 红铁矾amazonite 天河石amazonitization 天河石化ambatoarinite 碳酸锶铈矿amber 钙铝榴石amberite 灰黄琥珀ambient 外界的ambiguity 多义性amblygonite 磷铝石ambrite 灰黄琥珀ambulacral foot 管足ambulacral system 步带系ambularcral zone 步带ameba 变形虫amendment 修正;校正americium 镅amesite 镁绿泥石ametaboly 无变态amethyst 紫水晶amherstite 反条正长闪长岩amianthus 石棉amino acid metabolism 氨基酸代谢aminobenzoic acid 氨基苯酸ammonioborite 水铵硼石ammonites 菊石类amorphous 非晶质的amorphous graphite 无定型石墨amorphous silica 无定形硅氧amosite 铁石棉amount 总计amount of evaporation 蒸发量amount of precipitation 降水量amount of throw 纵距ampangabeit 铌链铁铀矿ampelite 黄铁炭质页岩amphibia 两栖类amphibious plants 两栖植物amphibole 闪石amphibolite 闪岩amphibolite facies 角闪岩相amphibolization 闪石化作用amphigene 白榴石amphigenite 白榴熔岩amphiprotic 两性的ampholyte 两性电解质amphoteric 两性的amphoteric electrolyte 两性电解质amphoteric element 两性元素amphoteric ion 两性离子amphoteric oxide 两性氧化物amphoterite 无粒古橄陨石amplexicaul 抱茎的amplifier for photocurrents 光电僚大器amplitude 振幅amplitude correction 振幅校正amplitude spectrum 振幅谱amygdale 杏仁孔amygdaloid 杏仁岩amygdaloidal 杏仁状的amygdaloidal structure 杏仁状构造amygdule 杏仁孔anabatic wind 谷风anabolism 合成代谢anaboly 后加演化anaclinal 逆向的anadiagenesis 前进成岩作用anaerobe 厌气微生物anaerobic bacteria 嫌气细菌anaerobiosis 嫌气生活anagenesis 前进演化anal fin 臀鳍anal gland 肛腺analbite 单斜钠长石analcime 方沸石analcimite 方沸岩analcimolith 方沸岩analcite 方沸石analog 相似体analogous organ 同功瀑analogue 相似体analogy 类似analysis by sedimentation 沉积分析analytic standard 分析标准analytical balance 分析天平anamesite 中粒玄武岩anamigmatism 深溶混合岩化anamorphic zone 合成变质带anamorphism 合成变质anapaite 三斜磷钙铁矿anaseism 背震中anastomose 网结anastrophen 倒装法anatase 锐钛矿anatectic magma 深熔岩浆anatectite 深熔混合岩anatexis 深熔作用anauxite 富硅高岭石anchieutectic 近底共融的anchimetamorphism 近变质作用anchimonomineralic 近单矿物的anchor ice 底冰ancient channel 古河道ancient elephant 古大象ancient landform 古地形ancylite 菱锶铬矿andalusite 红柱石andersonite 水碳钠钙铀矿andesine 中长石andesite 安山岩3andesite line 安山岩线andorite 锑铅银矿andradite 钙铁榴石anemoclastics 风成碎屑岩anemophilous plant 风媒植物anemophily 风媒anemousite 三斜霞石angara flora 安加拉植物群angara shield 安加拉古陆angaraland 安加拉古陆angarides 安加拉古陆angiospermous 被子的angiosperms 被子植物angle of contact 接触角angle of draw 陷落角angle of incidence 入射角angle of inclination 倾斜角angle of internal friction 内摩擦角angle of reflection 反射角angle of refraction 折射角angle of repose 休止角angle of strike 走向角度angle of subsidence 陷落角anglesite 硫酸铅矿angrite 钛辉无球粒陨石angular 有角的angular discordance 斜交不整合angular unconformity 钭文不整合angularity 有角angustifoliate 狭叶的anhedral 他形的anhydration 脱水anhydride 无水物anhydrite 硬石膏anhydrite formation 硬石膏层anhysteretic remanent magnetiazation 非滞后剩余磁化animal charcoal 动物煤animal debris 动物残余animal theory 动物成因论animikie system 安尼迷基系animikite 铅银砷镍矿anisian 安尼阶anisodesmic structure 蛤稳变异构造anisometric 非等轴的anisophyllous 不等叶的anisotrophism 蛤异性anisotropic 非均质的anisotropic fabric 蛤异性组构anisotropy 蛤异性anisotropy of crystals 晶体蛤异性ankaramite 钭长辉石岩ankaratrite 橄霞玄武岩ankerite 铁白云石anna aannabergite 镍华annealing recrystallization 退火重结晶作用annelids 环节动物annerodite 铌钇铀矿annite 羟铁云母annivite 铋铜矿annual 年刊annual amount of precipitation 年降水量annual plant 一年生植物annual ring 年轮annular 环状的annulation 环annulus 体环anomalous electric field 异常电场anomalous extinction 异常消光anomalous interference color 异常干涉色anomalous lead 异常铅anomalous upheaval 异常隆起anomaly 异常anomite 褐云母anonymous 不具名的anorogenic period 非造山期anorogenic time 非造山期anorthite 钙长石anorthitite 钙长岩anorthoclase 歪长石anorthosite 斜长岩antagonism 对抗作用antarctic 南极antarctica 南极大陆antecedent 先行的antecedent precipitation index 前期降雨指标antecedent river 先成河antecedent valley 先成谷anteclise 台背斜antegenetic river 原生河antenna 触角antennule 第一触角anther 药antheridium 精子囊antholite 直闪石anthophyllite 直闪石anthozoa 珊烘类anthracite 无烟煤anthracite coal 无烟煤anthraconite 沥青灰岩anthraxolite 碳沥青anthraxylon 纯木煤anthropogenic factor 人为因素anthropogeography 人类地理学anthropoid 类人猿anthropoid apes ape 类人猿anthropology 人类学anthropophyte 人为植物anthropostratigraphy 人类地层学antibonding electron 反键电子anticathode 对阴极anticlinal 背钭的anticlinal axis 背斜轴anticlinal bend 背斜弯曲anticlinal dome 背斜隆起anticlinal fault 背斜断层anticlinal fold 背斜anticlinal limb 背斜翼anticlinal mountain 背斜脊anticlinal ridge 背斜脊anticlinal theory 背斜理论anticlinal trap 背斜圈闭anticlinal valley 背斜谷anticlinal zone 背斜带anticline 背斜anticlinorium 复背斜anticlise 台背斜anticlockwise 反时针方向的anticoincidence 反符合antidune 反沙丘antiferromagnetism 反铁磁性antifluorite structure 反萤石结构antiform 背斜型构造antiformal syncline 背斜型向斜antigorite 叶蛇纹石antimonite 辉锑矿antimony 锑antimony bloom 锑华antipathy 不相容antipertite 反纹长石antiseismic 抗震的antiseptic 防腐剂antistress mineral 反应力矿物antisymmetrization 反对称化antithetic fault 反向断层antlerite 块铜矾antofagastite 水氯铜矿anulus 体环apachite 闪辉响岩apatite 磷灰石aperiodicity 非周期性aperture 孔apex 背斜顶apex of shell 壳顶aphanic 显衡隐晶质的aphaniphyric 隐晶斑状aphanite 隐晶岩aphanitic texture 隐晶结构aphanitic variolitic texture 隐晶球颗结构aphotic zone 无光带aphrosiderite 铁华绿泥石aphthalose 钾芒硝aphthitalite 钾芒硝aphthonite 银铜矿aphyric 无斑隐晶质的apical disk 顶系apical system 顶系apjohnite 锰茂aplite 细晶岩aplitic 细晶状的aplitic facies 细晶岩相aplitic texture 细晶岩构造aplogranite 淡色花岗岩apoandesite 脱玻安山岩apobasalt 脱玻玄武岩apogee 远地点apogranite 变花岗岩apolar adsorption 非极性吸附apomagmatic 外岩浆的apomagmatic deposit 外岩浆矿床apophyllite 鱼眼石apophyse 岩枝apophysis 岩枝apospory 无孢生殖apparent 外观上的apparent density 视密度apparent dip 视倾斜apparent heave 视横断距apparent resistivity 视电阻率apparent resistivity curve 视电阻率曲线apparent resistivity map 视电阻率图apparent specific gravity 表观比重apparent velocity 视速度apperance of crystal 结晶外貌apple coal 软煤applied geochemistry 应用地球化学applied geology 应用地质学applied geomorphology 应用地形学applied geothermics 应用地热学applied geothermy 应用地热学applied palaeontology 应用古生物学applied seismology 应用地震学appraisement 评价apron reef 石中住裙礁aptian 阿普第阶aptian stage 阿普第阶aqua regia 王水aquamarine 海蓝宝石aquatic 水生的aquatic animals 水栖动物aqueduct 沟渠aqueous deposit 水成沉积aqueous rock 水成岩aqueous soil 水成土aqueous solution 水溶液aquiclude 隔水层aquifer 含水层aquifer loss 含水层损失aquifer storage 合水层储水aquifer test 含水层试验aquiferous 含水的aquifuge 不透水层aquitanian stage 阿启坦阶aquitard 弱含水层arachnidea 蛛形类araeoxene 钒铅锌矿aragonite 文石arakawaite 磷锌铜矿aramayoite 硫铋锑银矿arandisite 硅锡矿arborescent 被状arc of compression 褶皱弧arc of folding 压缩弧arch 背斜archaean era 太古代archaeocyte 原始细胞archaeogeology 考古地质学archaeopteris flora 古蔽属植物群archaeopteryx 始祖鸟属4archaeozoic 太古代的archaian 太古代的archbend 褶皱头部archean 太古代archean greenstone belt 太古代绿岩带arched structure 隆起构造archegone 颈卵器archegonium 颈卵器archeomagnetism 太古磁性archeophytic era 太古植物代archeozoic era 太古代archetype 原始型archipelagic apron 群岛沿边漫坡海底archipelago 群岛arcogenesis 地穹运动arcogeny 地穹运动arctic 北极圈arctic air mass 北极气团arctic front 北极锋arctic plants 北极植物arctic subregion 北极亚区arctoalpine 北极高山的arcuate 弓形的arcuate delta 弓形三角洲ardealite 磷石膏ardennite 锰硅铝矿area 分布区area of artesian flow 自廉区area of influence 影响区域areal eruption 区域喷溢arenaceous 砂屑的arenaceous rock 砂质岩arenaceous texture 砂质结构arenes 粗砂arenopelitic 砂泥质的arenose 粗砂质的arfvedsonite 钠钙闪石argentiferous 含银的argentite 辉银矿argentobismutite 硫银铋矿argentojarosite 辉银黄钾铁矾argentopyrite 含银黄铁矿argil 白粘土argillaceous 泥质的argillaceous limestone 泥质灰岩argillite 泥岩argillization 泥化argon 氩argyrodite 硫银锗矿arid basin 干燥盆地arid landform 干旱地形arid peneplain 干旱准平原arid zone 干旱带aridity coefficient 干燥系数aridity index 干燥指数ariegite 尖榴辉岩arithmetical averaging grade 算术平均品位arithmetical averaging thickness 算术平均厚度arizonite 红钛铁矿arkite 白榴霞斑岩arkose 长石石英岩arkosic sandstone 长石石英岩armangite 砷锰矿armored cone 熔壳火山锥armored fishes 甲胄鱼纲aromatic base crude oil 芳香基原油arrangement 配置arroyo 干谷arsenate 砷酸盐arsenic 砷arseniopleite 红砷铁矿arseniosiderite 钙砷铁矿arsenite 砷华arsenoclasite 水砷锰石arsenolite 砷华arsenomiargyrite 砷辉锑银矿arsenopyrite 毒砂arterite 层混合岩artesian aquifer 自廉层artesian basin 自廉盆地artesian ground water 自霖下水artesian pressure head 承压水位artesian spring 自联artesian water 自廉artesian well 自廉arthropoda 节肢动物artic front 北极峰articulation 关节artificial 人为的artificial classification 人为分类artificial crystal 人造晶体artificial diamond 人造金刚石artificial discharge 人工排泄artificial earth's satellite 人造地球卫星artificial earthquake 人为地震artificial ground water 人工地下水artificial hypocenter 人工震源artificial mineral 人造矿物artificial radio element 人工放射元素artificial radioactivity 人工放射性artificial recharge 人工补给artificial satellite 人造卫星artificial seismic source 人工震源artificial selection 人工淘汰artinite 纡维菱镁矿artinsk stage 阿丁斯克阶artinskian 阿丁斯克阶asbestos 石棉asbestus 石棉asbolane 钴土矿asbolite 钴土矿ascending development 上升发育ascension theory 上升说ascent curve 上升曲线aschaffite 云英钭煌岩ascharite 硼镁石aschistic 岩浆同质的aschistic dike 未分异岩脉aschistic dyke 未分异岩脉aschistite 未分异岩ascon type 单沟型ascospore 子囊孢子ascus 子囊aseismic 无震的asexual generation 无性世代asexual reproduction 无性生殖ash bed 火山灰层ash cloud 灰云ash cone 火山灰丘ash content of coal 煤灰分ash fall 降落灰ash flow 火山灰流ash free 无灰分的ash shower 降落灰ash structure 火山灰构造ashgillian stage 阿石极阶ashing 灰化asmanite 陨鳞石英asparagolite 黄绿磷灰石asparagus stone 黄绿磷灰石asperite 玻质英安岩asphalt 地沥青asphalt sealing trap 沥青塞圈闭asphaltenes 沥青质asphaltic base crude oil 沥青基原油asphaltic pyrobitumen 焦性沥青asphaltite 沥青岩asphaltum 地沥青aspite 盾状火山asporous 无孢子的assay 试金assay balance 试金天平assay map 采样平面图assaying 试料分析assessment well 估价井assimilate 同化assimilation 岩浆的同化作用associate 使联合associate species 伴生种associate structure 伴生构造associated mineral 伴生矿物associated ore 伴生矿association 联合association of elements 元素的共生组合assyntite 钛辉方钠正长岩assypite 钠橄辉长岩astable 不稳定的astatic 无定向的astatic magnetometer 无定向磁力仪astaticism 无定向性astatine 砹astatisation 无定向化asteroid 小行星asthenosphere 软力astian stage 阿斯蒂阶astite 红柱角页岩astrakhanite 白钠镁矾astroblem 古陨挥astrogeology 天体地质学astrophyllite 星叶石asymmetric 不对称的asymmetric carbon atom 不对称碳原子asymmetric dispersion 不对称色散asymmetric fold 不对称褶皱asymmetrical 不对称的asymmetrical anticline 不对称背斜asymmetrical crystal monochromator 不对称结晶单色仪asymmetrical ridge 不对称山脊asymmetry 非对称asynchronous 异步的atacamite 氯铜矿atatschite 线玻正斑岩atavism 返祖ataxic mineral deposit 不成层矿床ataxite 角砾斑杂岩ataxitic 角砾斑杂状的atectonic 非构造的atelestite 砷酸铋矿atlantic ocean 大误atlantic suite 大误岩套atlasspat 纤维石atmoclast 气碎岩atmoclastic rock 气碎岩atmoclastics 气碎岩atmogenic metamorphism 气生变质atmometer 蒸发表atmophile element 亲气元素atmosphere 大气圈atmospheric pressure 气压atmospheric rock 气成岩atmospheric weathering 大气风化atmospheric window 大气窗口atmospheric windows 大气窗口atoll 环礁atoll lake 环礁湖atoll texture 环礁结构atomic binding 原子键atomic bond 原子键atomic disintegration 原子衰变atomic energy level 原子能级atomic mass unit 原子质量单位atomic ratio 原子比atomic size 原子大小atomic spectrum 原子光谱atomic unit 原子单位atomic volume 原子体积atomistics 原子论atrio 火口原atrio lake 火口原湖atriopore 围鳃腔atrium 围鳃腔attenuation 衰减attenuation constant 衰减常数attenuation factor 衰减常数attraction 引力attribute 属性attrition 磨损attritus 碎集煤atypical 非典型的5aubrite 顽火辉石无球粒陨石auerlite 磷钍矿augelite 光彩石augen structure 眼状构造augengneiss 眼环片麻岩auger 螺旋钻auger drill 螺旋钻augite 辉石augitite 辉石岩aulacogene 古断槽aureole 接触圈aurichalcite 绿铜锌矿auriferous 含金的auriferous conglomerate 含金砾岩auripigment 雌黄aurora 极光auroral zone 极光地带australite 澳洲似黑曜岩authigene 自生的authigenesis 自生作用authigenic 自生的authigenic element 自生元素authigenic mineral 自生矿物authigenous 自生的auto injection 自注入autobreccia 同生角砾岩autobreccited lava 同生角砾岩熔岩autocatalysis 自动催化autochthone 原地岩体autochthonous 原地的autochthonous coal 原地生成煤autochthonous deposit 原地沉积autochthonous fold 原地褶皱autochthonous granite 原地花岗岩autochthonous limestone 原地灰岩autoclases 自碎autoclast 自碎岩autoclastic 自碎的autoclastic rock 自碎岩autoclave 压热器高压锅autocorrelation function 自相关函数autogenic succession 自发演替autogeny 自生autogeosyncline 自地槽autointrusion 自侵入autolith 同源包体autometamorphism 自变质作用autometasomatism 自交代作用automolite 铁锌晶石automorphic 自形的autopneumatolysis 自气化作用autoradiography 自动射线照相术autotrophism 自养autotrophy 自养autotype 自型autunite 钙铀云母auversian stage 奥伯斯阶auxiliary curve 辅助曲线auxiliary fault 副断层auxiliary joint 副节理auxiliary mineral 副矿物available relief 有效起伏available water 可利用的水avalanche 雪崩avalanche breccia 岩崩角砾岩aven 落水洞aventurine 砂金石average life 平均寿命avezacite 钛铁辉闪脉岩avicennite 褐铊矿aviolite 堇云角页岩avogadrite 氟硼钾石awaruite 铁镍矿axe stone 软玉axial 轴的axial angle 光轴角axial colour 轴色axial distribution analysis 轴向分布分析axial plane 轴面axial plane cleavage 轴面劈理axial plane folding 轴面褶皱axial plane foliation 轴面叶理构造axial plane schistosity 轴面片理axial ratio 轴率axial section 轴向剖面axial skeleton 轴骨axial trace 轴迹axillary 腋生的axillary bud 腋芽axinite 斧石axinitization 斧石化axiolite 椭球粒axiolith 椭球粒axiolitic 椭球粒状的axis 轴axis of rotation 旋转轴axis of rotatory reflection 回转反射轴axis of symmetry 对称轴axis plane 轴面azeotrope 共沸混合物azeotropy 共沸性azilian age 阿齐尔时代azimuth 方位角azimuthal equal area projection 等积方位投影azimuthal equidistant projection 等距方位投影azimuthal orthomorphic 正形方位投影azimuthal projection 方位投影azimuthal quantum number 方位角量子数azoic era 无生代azurite 蓝铜矿babel quartz 塔状石英babingtonite 铁灰石bacillite 杆雏晶束back 背back deep 次生优地槽back flow 逆流back radiation 逆辐射back reflection camera 逆反射照相机back swamp 河漫滩沼泽backfill 充填background value 背景值backland 腹地backpressure 回压backshore 后滨backwash 回流backwashing method 回哩backwater 回水bacteria 细菌bacterial analysis 细菌分析bacterielles fossil 细菌化石baculite 杆菊石bad land 恶劣地baddeleyite 斜锆石badenite 镍铋砷钴矿baectuite 白头岩bag of ore 矿袋bagrationite 铈黑帘石bahiaite 橄闪紫苏岩baikalite 易裂钙铁辉石bailer 簧头;捞砂筒bajocian 巴柔阶bakerite 纤硼钙石baking coal 粘结煤balance 平衡balance resources 表内储量balanced filter 衡均滤波器balas 玫红尖晶石ball clay 球土ball diorite 球状闪长岩ball granite 球状花岗岩ball ironstone 球状铁矿石ball mill 球磨机ball porphyry 球状斑岩ball structure 球状构造ball texture 球状结构ballas 工业用球面金刚石balling 球团balsam 香胶baltic shield 波罗的地盾banakite 粗绿岩banatite 正辉英闪长岩band 带;夹层banded 带状的banded agate 带状玛瑙banded clay 带状粘土banded coal 条带状煤banded gneiss 带状片麻岩banded hematite quartzite 带状赤铁矿石英岩banded iron ore deposit 条带状铁矿床banded lode 带状脉banded migmatite 带状混合岩banded ore 带状矿石banded structure 带状构造banded vein 带状矿脉banding 层状bandy 带状的bandylite 氯硼铜石bank 岸bank erosion 沙滩侵蚀。
古生物和地史学整合
1.古生物:泛指生活在距今一万年前的生物。
2.古生物学:研究全新世以前的生物界及其发展的科学。
3.化石:保存在沉积地层中各地质时期的生物遗体、遗迹以及古生物残留的有机组分。
4.石化作用:使古生物遗体改造成为化石的过程。
包括重结晶作用、充填作用、交代作用、升馏作用等。
重结晶作用:重结晶作用是指组成生物硬体的矿物,在地热和地层压力影响下,发生脱水、晶体变粗、晶格转化或离于析出而造成的一种石化作用。
充填作用:是指生物硬体内部的各种孔隙被地下水中的矿物质所充填的一种石化作用。
交代作用:是指生物的硬体或分被地下水溶失,随后又被外来矿物质所充填的一种石化作用,结果,原来硬体的成分发生了改变,但仍能保持硬体原来的结构和形态。
升馏作用:是指生物的有机质硬体,在地热作用下,使原来组分中的氢、氧、氮等元素发生转移消失,残留下炭质的一种石化作用。
5.化石保存类型:(1)实体化石:由古生物遗体本身所形成的化石。
(2)模铸化石:是生物遗体在岩层中留下的各种印痕和复铸物. 虽然并非实体本身,•但却能反映生物体的主要特征.按其与围岩的关系可分出下列几种:(1) 印痕化石:生物软体留下的痕迹。
(2) 印模化石:生物遗体坚硬部分的表面留在围岩上的印痕,分为外模和内模。
(3) 核化石:生物遗体内外模形成后,化石本身溶解,其他物质的再充填,分为内核和外核。
(4) 铸型化石:外模和内核形成后,化石本身溶解,其他物质的再充填。
(3)遗迹化石:指保留在岩层中的古生物生活活动的痕迹和遗物。
(4)化学化石:古代生物的遗体有的虽被破坏,未保存下来,但组成生物的有机成分经分解后形成的各种有机物如氨基酸、脂肪酸等仍可保留在岩层中,这种视之无形,但它具有一定的化学分子结构足以证明过去生物的存在的化石称为化学化石。
6.生物重演律:生物的发展史可分为两个相互密切联系的部分,即个体发育史和系统发生史,个体发育史是系统发生史简单而迅速的重演。
7.物种形成的因素:遗传变异、自然选择、隔离。
(完整版)自然地理学专业英语重点词汇
ecosite
natural resources
renewable resources
nonrenewable resources
hazard geography
natural hazard
03地貌学
地貌学
地貌
地貌年代学
地貌成因
地貌形成作用
气候地貌学
动力地貌学
地貌量计学
人工地貌
平原
低地
页状剥落
块状崩落
结壳作用
块状崩落
结壳作用
盐屑堆
盐屑锥
orthoeluvial weathered crust
clastic weathered crust
siallite-clay weathered crust
siallite-carbonate weathered crust
siallite-chloride-sulphate wea-thered crust
ubac, shady slope
Massenerhebungseffekt(德),
integrated physicogeographical
regionalization
nival belt
subnival belt
alpine
subalpine
mountains
荒漠
荒漠化
沙漠
岩漠
砾漠
泥漠
盐漠
戈壁
岩石圈
水圈
大气圈
土壤圈
生物圈
地圈
智能圈
技术圈
北半球
南半球
地球体
epigeosphere
geosystem
geographical sphere
古生物地层学复习资料
古生物学1:古生物学是研究地史时期中的生物及其开展的科学。
它所研究的范围不仅包括在地史时期中曾经生活过的各类生物,也包括各地质时代所保存的及生物有关的资料。
古生物学研究地史时期的生物,其具体对象是发现于各时代地层中的化石(fossil),保存在岩石中的远古时期〔—般指全新世,距今一万年以前〕生物的遗体、遗迹与死亡后分解的有机物分子。
化石:保存在岩层中地质历史时期的生物遗体、生物活动痕迹及生物成因的残留有机物分子。
标准化石:具有在地质历史中演化快、延续时间短、特征显著、数量多、分布广等特点的化石2. 如何区分原地埋藏的化石及异地埋藏的化石?答:原地埋藏的化石保存相对较完整,不具分选性与定向性,生活于一样环境中的生物常伴生在一起;而异地埋藏的化石会出现不同程度破碎,且分选较好,不同生活环境、不同地质时期的生物混杂,具有一定的定向性3. 石化作用过程可以有〔矿质充填作用〕、〔置换作用〕与〔碳化作用〕三种形式。
概述“化石记录不完备性〞的原因答:化石的形成与保存取决于生物类别、遗体堆积环境、埋藏条件、时间因素、成岩作用条件。
并非所有的生物都能形成化石。
古生物已记录13万多种,大量未知。
现今我们能够在地层中观察到的化石仅是各地史时期生存过的生物群中极小的一局部。
4.印模化石及印痕化石如何区别:。
印模化石:生物硬体在围岩外表上的印模。
〔包括:外模、内模、复合模。
〕外膜反映原来生物硬体外表形态及构造,内膜反映硬体内部的构造。
印痕化石:生物软体陷落在细粒的碎屑物或化学沉积物种,在沉积物中留下的印痕经过成岩作用以后,遗体消失,印痕保存下来。
反映生物主要特征。
5.适应辐射:指的是从一个祖先类群,在较短时间内迅速地产生许多新物种。
〔某一类群的趋异向着各个不同方向开展,适应多种生活环境。
规模大,较短时间内完成〕适应趋同:生物亲缘关系疏远的生物,由于适应相似的生活环境,而在形体上变得相似是指那些具有最适应环境条件的有利变异的个体有较大的生存与繁殖时机。
地史学及古生物试题[1]
1、中生代生物界以陆生裸子植物、爬行动物(尤其是恐龙类)和海生无脊椎动物菊石类的繁荣为特征,所以中生代也称为裸子植物时代、爬行动物时代(恐龙时代)、菊石时代2、白垩纪末出现地史上著名的生物集群绝灭事件,其中陆上的恐龙类、空中的飞龙类或海中的沧龙类(陆上的恐龙、海中的箭石、海中的菊石)全部灭绝。
3、联合大陆(Pangea)在__三叠纪晚期__时期进入分裂解体阶段。
4以类蜉游—东方叶肢介—狼鳍鱼为代表的生物组合代表了典型的湖泊相,称为_热河动物群__。
5、三叠纪,特别是早、中三叠世仍继承古生代以来的以秦岭海槽为界所显示的“南海北陆”特征,受中、晚三叠世期间_印支运动_影响,华南地区明显海退。
6、中国三叠纪的古地理具有鲜明特点,以秦岭-大别山为界,“南海北陆”的古地理格局十分注目,南部的海区,以_龙门山—康滇古陆为界___为界,东侧为华南稳定浅海,西侧为活动的多岛洋盆地。
7、华南浅海区三叠系以黔南贞丰剖面发育最好,该剖面下三叠统包括飞仙关组、永宁镇组组。
8、发生于中三叠世晚期华南大规模的海退,这就是地史上著名的_拉丁期大海_。
9、鄂尔多斯盆地三叠系发育良好,生物化石十分丰富,是中国北部陆相三叠纪的标准剖面,其下统刘家沟组,_和尚沟组___为紫红色砂泥质岩。
10、鄂尔多斯盆地三叠系发育良好,生物化石十分丰富,是中国北部陆相三叠纪的标准剖面,其中统由_二马营组、铜川组___组成。
11、鄂尔多斯盆地三叠系发育良好,生物化石十分丰富,是中国北部陆相三叠纪的标准剖面,其上统由_延长组___组成。
12、从全球来看,中生代古气候明显地分为三大阶段,即_早、中三叠世干旱广布时期—晚三叠世、中侏罗世潮湿时期—晚侏罗世、侏罗纪干旱时期_。
13、华南浅海区三叠系以黔南贞丰剖面发育最好,该剖面中三叠统包括关岭组、法郎组_组。
14、华南浅海区三叠系以黔南贞丰剖面发育最好,该剖面上三叠统包括_把南组、火把冲组和二桥组_组。
15、燕山运动为整个侏罗纪至白垩纪期间广泛发育于我国全境的重要构造运动,主要表现为褶皱断裂变动,岩浆喷发和侵入活动及部分地带的变质运动。
专业英语-地史古生物学
Historical geology examines the origin and evolution of Earth, including its continents, atmosphere, oceans, and life history. Historical geology is, however, more than just a recitation of past events. It is the study of a dynamic planet that has changed continuously during the past 4.6 billion years. In addition to determining what occurred in the past, geologists are also concerned with interpreting how and why past events happened.–––––“Historical Geology”, 2004, Reed Wicander & James Monroe① The Earth accreted from planetesimals and differentiated into a core and mantle, and at least some crust was also present.②Like the other terrestrial planets, the Earth was bombarded by comets and meteorites, and volcanic activities were ubiquitous.③Furthermore, a primitive atmosphere formed, although it was quite different from the oxygen-rich one we have today.①The oldest known organisms occur as fossil prokaryotes (anaerobic and autotrophic bacteria and cyanobacteria) from the 3.5-billion-year-old Warrawoona Group, western Australia.Other than the origin of life itself, the most significant biological event of the Archean was the development of photosynthesis. The oldest known undisputed stromatolites were found in 3.0-billion-year-old rocks in South Africa.②The Archean rock associations mainly consist of greenstone belts(绿岩带)and granite-gneiss complexes(花岗片麻杂岩). Actually, granite-gneiss complexes have rocks varying form granite to peridotite to various sedimentary rocks, all of which have been metamorphosed.③Some primitive cratons or continental nuclei (including North China nucleus ) formed and grew by continental accretion during this Eon. By the end of the Archean, perhaps 30% to 40% of the present volume of continental crust existed.④Archean mineral resources: Gold is the mineral most commonly associated with Archean rocks.Though 92% of the Earth’s Banded Iron Formations (BIFs, from 3.8 to 1.8 Ga in age) were deposited during the Proterozoic (2.5~2.0Ga), the Archean is the most important period for China’s iron ore deposits (especially in Anshan, Benxi, eastern Hebei, etc.).Archean sulfide deposits of zinc, copper, and nickel are well known in Australia, Zimbabwe, and Canada. About one-fourth of Earth’s chrome reserves are in Archean rocks, esp. in Zimbabwe.① The appearance of eukaryotic cells(真核细胞)about 2.1 billion years ago marks a milestone in biological evolution comparable to the development of complex metabolic mechanisms such as photosynthesis(光合作用)during the Archean.Multicellular organisms also appeared in the Proterozoic. The most remarkable Ediacaran fauna was originally discovered as impressions of soft-bodied animals in the Pound Quartzite in the Ediacara Hills, southern Australia. The Ediacara-type faunas were found from all continents except Antarctica ca. 620Ma ago. But the great majority of these organisms did not survive the beginning of the Cambrian Period.②Deducing form the Grenville Orogenic Belt, the Proterozoic supercontinent known as “Rodinia” assembled between 1.3 and 1.0 billion years ago, consisting of all or at least much of the present continents, and then began breaking up ca. 750 million years ago.③V ast glacial deposits were found from Early Proterozoic localities. Two worldwide glaciers are most acceptable during the Neoproterzoic, i.e., the Sturtian glaciation (730~700Ma) and the Marinoan glaciation (665~635Ma), resulting in the coeval hypothetical “Snowball Earth”.④With gradual increase of free oxygen, the Proterozoic atmosphere evolved from a chemically reducing one to an oxidizing one. Two widespread types of Proterozoic sedimentary rocks serve as the evidence, i.e., Banded Iron Formations (BIFs) and Continental Red Beds.⑤Proterozoic mineral resources: Most of the world’s iron ore comes from Paleoproterozoic(2.5~2.0Ga) banded iron formations. Substantial nickel, copper and PGE are mined from Proterozoic rocks especially in Sudbury of Canada. The Bushveld Complex of South Africa yields most significant platinum and chromite. Economically significant oil and gas have been discovered in Proterozoic rocks in China and Siberia. The most important phosphorite was deposited during the Ediacaran (Sinian) of Neoproterozoic, esp. in Yunnan and Guizhou.①There are six major continents (Gongdwana, Laurentia, China, Siberia, Baltica and Kazakhstania) existed at the beginning of the Paleozoic.②Animals with skeletons, the so-called Small Shelly Fossils (SSFs), appeared abruptly at the beginning of the Paleozoic Era and experienced a short period (less than 5 Ma) of rapid evolutionary diversification, i.e., the evolutionary “Big Bang” or the Cambrian Explosion represented by the Chengjiang Biota, the Burgess Shale Biota, and the Sirius Passet Biota.The Cambrian Period was a time of many evolutionary innovations during which almost all the major modern invertebrate phyla appeared and evolved. Remarkably, the earliest vertebrates, agnathous (jawless 无颌) fish, emerged from the Early Cambrian in South China, whereas the well-known jawless fish ostracoderms (甲胄鱼) were found in the Upper Cambrian.③The Ordovician Period witnessed striking changes in the marine community, resulting in a drastic increase in the diversity of invertebrates (无脊椎动物), esp. corals (珊瑚), trilobites (三叶虫), brachiopods (腕足类), cephalopods (头足类), and graptolites (笔石), followed by a mass extinction (集群绝灭) at the end of the Ordovician.Bryozoans (苔藓动物) and tabulate and rugose corals (横板珊瑚和皱襞珊瑚) rose in Ordovician and acted as major reef builders.④The earliest jawed fish (acanthodians 棘鱼) and first seedless vascular land plants (psilophytes 裸蕨类) appeared in the Early and Late Silurian respectively.⑤ The Lower Paleozoic rocks contain a variety of important mineral resources. The Early Cambrian is also an important time for the deposition of phosphorite (磷灰岩) in China. Industrial limestone and sandstone, strata-bound lead and zinc deposits, rock salt and rock gypsum etc. areyielded from rocks of this Era throughout the world.① Extensive glaciers covered vast areas of the southern continents, esp. Gondwana, during the Late Paleozoic. In contrast, the continents such as Laurasia, China etc. located at low paleolatitudes were tropics or subtropics. Movement and collision of the six major continents during the Paleozoic resulted in the formation of the supercontinent Pangaea (联合古大陆) at the end of the Paleozoic.② Some marine invertebrates, esp. graptolites and trilobites thriving during the Early Paleozoic greatly declined or became extinct, whereas fusulinids ( ), corals, brachiopods and ammonoids (菊石) flourished during the Late Paleozoic.③All major groups of fish were present in the Devonian seas. The earliest amphibians evolved from fish during the Late Devonian. Primitive reptiles evolved from amphibians by the Late Mississippian, which was critically attributed to the evolution of the amniotic egg (羊膜卵).④ By the end of the Devonian, forests with tree-sized plants had evolved. The Late Devonian also witnessed the evolution of flowerless seed-bearing plants (gymnosperms 裸子植物). Seedless vascular plants (lycophytes 石松and sphenophytes 节蕨) flourished during the Carboniferous Period, whereas the gymnosperms came to dominate the Permian landscapes.⑤ A mass extinction occurred near the end of the Devonian (Frasnian-Famennian Age, ca. 375 Ma), resulting in a worldwide near-total collapse of the massive reef communities.⑥The greatest recorded mass extinction in the Phanerozoic took place by the end of the Permian, causing the catastrophic extinction of roughly 50% of all marine invertebrate families and about 90% of all marine invertebrate species. Fusulinids, rugose and tabulate corals, trilobites, most brachiopods, and ammonoids did not survive the end of the Permian.⑦The Carboniferous and Permian are among the most important periods for coal accumulations. Significant strata-bound polymetallic mineral deposits are yielded from Devonian rocks. Bauxite, petroleum and natural gas are also recovered from the Late Paleozoic rocks.①The breakup of the supercontinent Pangaea began with rifting between Laurasia and Gondwana during the Triassic, which profoundly affected geologic & biologic events during the Mesozoic. The breakup also influenced global climatic and atmospheric circulation patterns.② A global rise in sea level during the Cretaceous resulted in worldwide transgressions onto the continents, which left about one-third of the present land area inundated by epeiric seas.③Drastic tectonic and magmatic activites took place in eastern China, which were triggered by westward subduction of paleo-Pacific plate during the Jurassic Period. In contrast, the western China was characterized by vast stable continental basins.During the Jurassic Period, drastic tectonic and magmatic activites took place in ancient eastern China, which were triggered by westward subduction of paleo-Pacific plate.In contrast, the western China was characterized by vast stable continental basins.④ The collision of the South China Block and the North China Block took place during the Triassic. Subsequently, several terrains and microplates moved northward and were accreted to the continental margin of the South China Block. Thus, the ancestral united continent of China eventually came into being.⑤ Marine invertebrates that survived the Paleozoic extinctions diversified and repopulated the Mesozoic seas. Ammonoids, belemnites (箭石类), and bivalves (双壳类) are most abundantthroughout the Mesozoic. Conodonts (牙形石), the enigmatic fossil invertebrates, went extinct by the end of the Triassic.⑥Reptile diversification that began during the Mississippian continued throughout the Mesozoic Era.⑦ Dinosaurs evolved from Mesozoic reptiles by the Late Triassic and then soon colonized and dominated the Mesozoic landscapes. The first birds evolved from reptiles during the Jurassic. Mammals evolved from cynodonts (犬齿兽) by the end of the Triassic.⑧Gymnosperms continued to flourish during the Mesozoic. Land plant communities changed considerably when flowering plants (angiosperms 被子植物) evolved during the Cretaceous Period.⑨Dinosaurs, flying reptiles and marine reptiles, some important marine invertebrates (including ammonoids, rudists and most planktic foraminifera 有孔虫类) became extinct at the close of the Cretaceous. The most popular hypothetical explanation for the terminal Mesozoic extinction is a calamitous meteorite impact.⑩The Triassic, Jurassic and Cretaceous are also most important periods for coal accumulations known from America, Canada, China, Australia and Russia. Large concentrations of petroleum and natural gas formed in many areas of the world during the Mesozoic Era. The Cretaceous and Jurassic are the most significant periods for the accumulation of oil and gas in China.Substantial endogenic metallic mineral deposits of copper, iron, lead, zinc, Tungsten, tin, molybdenum, bismuth, etc. originated along the Circum Pacific Orogenic Belt during the Mesozoic (esp. the Jurassic and Cretaceous). Important accumulations of Gold, Uranium, and Diamond were also formed in the Mesozoic rocks.①The breakup of Pangaea that began during the Mesozoic continued, giving rise to the present distribution of land and sea.②Cenozoic orogenies were concentrated in two belts, one nearly encircling the Pacific Ocean basin (Circum-Pacific Orogenic Belt), whereas the other trending east-west through the Mediterranean basin and on through southeast Asia (Alpine-Himalayan Orogenic Belt).③ The India plate that drifted northeastward during the Cretaceous eventually collided with Asia ca. 40 million years ago, resulting in the Himalayan orogen as Roof of the World.④A widespread continental glaciation was present on the Northern Hemisphere continents during the Pleistocene.⑤Angiosperms continued to diversify and to dominate land plant communities during the Cenozoic Era (the Age of Angiosperms). The present-day invertebrates evolved.⑥ The Cenozoic is also referred to as the Age of Mammals. With the demise of dinosaurs and their relatives, mammals experienced a quick and remarkable diversification through the Cenozoic.⑦ The marine invertebrates that survived the Mesozoic extinctions diversified throughout the Cenozoic. Bivalves, gastropods, corals and foraminifera proliferated.⑧Tertiary-age coal deposits are also most abundant throughout the world. Huge quantitative of oil shale and evaporates were found in Tertiary rocks in many countries.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Historical geology examines the origin and evolution of Earth, including its continents, atmosphere, oceans, and life history. Historical geology is, however, more than just a recitation of past events. It is the study of a dynamic planet that has changed continuously during the past 4.6 billion years. In addition to determining what occurred in the past, geologists are also concerned with interpreting how and why past events happened.–––––“Historical Geology”, 2004, Reed Wicander & James Monroe① The Earth accreted from planetesimals and differentiated into a core and mantle, and at least some crust was also present.②Like the other terrestrial planets, the Earth was bombarded by comets and meteorites, and volcanic activities were ubiquitous.③Furthermore, a primitive atmosphere formed, although it was quite different from the oxygen-rich one we have today.①The oldest known organisms occur as fossil prokaryotes (anaerobic and autotrophic bacteria and cyanobacteria) from the 3.5-billion-year-old Warrawoona Group, western Australia.Other than the origin of life itself, the most significant biological event of the Archean was the development of photosynthesis. The oldest known undisputed stromatolites were found in 3.0-billion-year-old rocks in South Africa.②The Archean rock associations mainly consist of greenstone belts(绿岩带)and granite-gneiss complexes(花岗片麻杂岩). Actually, granite-gneiss complexes have rocks varying form granite to peridotite to various sedimentary rocks, all of which have been metamorphosed.③Some primitive cratons or continental nuclei (including North China nucleus ) formed and grew by continental accretion during this Eon. By the end of the Archean, perhaps 30% to 40% of the present volume of continental crust existed.④Archean mineral resources: Gold is the mineral most commonly associated with Archean rocks.Though 92% of the Earth’s Banded Iron Formations (BIFs, from 3.8 to 1.8 Ga in age) were deposited during the Proterozoic (2.5~2.0Ga), the Archean is the most important period for China’s iron ore deposits (especially in Anshan, Benxi, eastern Hebei, etc.).Archean sulfide deposits of zinc, copper, and nickel are well known in Australia, Zimbabwe, and Canada. About one-fourth of Earth’s chrome reserves are in Archean rocks, esp. in Zimbabwe.① The appearance of eukaryotic cells(真核细胞)about 2.1 billion years ago marks a milestone in biological evolution comparable to the development of complex metabolic mechanisms such as photosynthesis(光合作用)during the Archean.Multicellular organisms also appeared in the Proterozoic. The most remarkable Ediacaran fauna was originally discovered as impressions of soft-bodied animals in the Pound Quartzite in the Ediacara Hills, southern Australia. The Ediacara-type faunas were found from all continents except Antarctica ca. 620Ma ago. But the great majority of these organisms did not survive the beginning of the Cambrian Period.②Deducing form the Grenville Orogenic Belt, the Proterozoic supercontinent known as “Rodinia” assembled between 1.3 and 1.0 billion years ago, consisting of all or at least much of the present continents, and then began breaking up ca. 750 million years ago.③V ast glacial deposits were found from Early Proterozoic localities. Two worldwide glaciers are most acceptable during the Neoproterzoic, i.e., the Sturtian glaciation (730~700Ma) and the Marinoan glaciation (665~635Ma), resulting in the coeval hypothetical “Snowball Earth”.④With gradual increase of free oxygen, the Proterozoic atmosphere evolved from a chemically reducing one to an oxidizing one. Two widespread types of Proterozoic sedimentary rocks serve as the evidence, i.e., Banded Iron Formations (BIFs) and Continental Red Beds.⑤Proterozoic mineral resources: Most of the world’s iron ore comes from Paleoproterozoic(2.5~2.0Ga) banded iron formations. Substantial nickel, copper and PGE are mined from Proterozoic rocks especially in Sudbury of Canada. The Bushveld Complex of South Africa yields most significant platinum and chromite. Economically significant oil and gas have been discovered in Proterozoic rocks in China and Siberia. The most important phosphorite was deposited during the Ediacaran (Sinian) of Neoproterozoic, esp. in Yunnan and Guizhou.①There are six major continents (Gongdwana, Laurentia, China, Siberia, Baltica and Kazakhstania) existed at the beginning of the Paleozoic.②Animals with skeletons, the so-called Small Shelly Fossils (SSFs), appeared abruptly at the beginning of the Paleozoic Era and experienced a short period (less than 5 Ma) of rapid evolutionary diversification, i.e., the evolutionary “Big Bang” or the Cambrian Explosion represented by the Chengjiang Biota, the Burgess Shale Biota, and the Sirius Passet Biota.The Cambrian Period was a time of many evolutionary innovations during which almost all the major modern invertebrate phyla appeared and evolved. Remarkably, the earliest vertebrates, agnathous (jawless 无颌) fish, emerged from the Early Cambrian in South China, whereas the well-known jawless fish ostracoderms (甲胄鱼) were found in the Upper Cambrian.③The Ordovician Period witnessed striking changes in the marine community, resulting in a drastic increase in the diversity of invertebrates (无脊椎动物), esp. corals (珊瑚), trilobites (三叶虫), brachiopods (腕足类), cephalopods (头足类), and graptolites (笔石), followed by a mass extinction (集群绝灭) at the end of the Ordovician.Bryozoans (苔藓动物) and tabulate and rugose corals (横板珊瑚和皱襞珊瑚) rose in Ordovician and acted as major reef builders.④The earliest jawed fish (acanthodians 棘鱼) and first seedless vascular land plants (psilophytes 裸蕨类) appeared in the Early and Late Silurian respectively.⑤ The Lower Paleozoic rocks contain a variety of important mineral resources. The Early Cambrian is also an important time for the deposition of phosphorite (磷灰岩) in China. Industrial limestone and sandstone, strata-bound lead and zinc deposits, rock salt and rock gypsum etc. areyielded from rocks of this Era throughout the world.① Extensive glaciers covered vast areas of the southern continents, esp. Gondwana, during the Late Paleozoic. In contrast, the continents such as Laurasia, China etc. located at low paleolatitudes were tropics or subtropics. Movement and collision of the six major continents during the Paleozoic resulted in the formation of the supercontinent Pangaea (联合古大陆) at the end of the Paleozoic.② Some marine invertebrates, esp. graptolites and trilobites thriving during the Early Paleozoic greatly declined or became extinct, whereas fusulinids ( ), corals, brachiopods and ammonoids (菊石) flourished during the Late Paleozoic.③All major groups of fish were present in the Devonian seas. The earliest amphibians evolved from fish during the Late Devonian. Primitive reptiles evolved from amphibians by the Late Mississippian, which was critically attributed to the evolution of the amniotic egg (羊膜卵).④ By the end of the Devonian, forests with tree-sized plants had evolved. The Late Devonian also witnessed the evolution of flowerless seed-bearing plants (gymnosperms 裸子植物). Seedless vascular plants (lycophytes 石松and sphenophytes 节蕨) flourished during the Carboniferous Period, whereas the gymnosperms came to dominate the Permian landscapes.⑤ A mass extinction occurred near the end of the Devonian (Frasnian-Famennian Age, ca. 375 Ma), resulting in a worldwide near-total collapse of the massive reef communities.⑥The greatest recorded mass extinction in the Phanerozoic took place by the end of the Permian, causing the catastrophic extinction of roughly 50% of all marine invertebrate families and about 90% of all marine invertebrate species. Fusulinids, rugose and tabulate corals, trilobites, most brachiopods, and ammonoids did not survive the end of the Permian.⑦The Carboniferous and Permian are among the most important periods for coal accumulations. Significant strata-bound polymetallic mineral deposits are yielded from Devonian rocks. Bauxite, petroleum and natural gas are also recovered from the Late Paleozoic rocks.①The breakup of the supercontinent Pangaea began with rifting between Laurasia and Gondwana during the Triassic, which profoundly affected geologic & biologic events during the Mesozoic. The breakup also influenced global climatic and atmospheric circulation patterns.② A global rise in sea level during the Cretaceous resulted in worldwide transgressions onto the continents, which left about one-third of the present land area inundated by epeiric seas.③Drastic tectonic and magmatic activites took place in eastern China, which were triggered by westward subduction of paleo-Pacific plate during the Jurassic Period. In contrast, the western China was characterized by vast stable continental basins.During the Jurassic Period, drastic tectonic and magmatic activites took place in ancient eastern China, which were triggered by westward subduction of paleo-Pacific plate.In contrast, the western China was characterized by vast stable continental basins.④ The collision of the South China Block and the North China Block took place during the Triassic. Subsequently, several terrains and microplates moved northward and were accreted to the continental margin of the South China Block. Thus, the ancestral united continent of China eventually came into being.⑤ Marine invertebrates that survived the Paleozoic extinctions diversified and repopulated the Mesozoic seas. Ammonoids, belemnites (箭石类), and bivalves (双壳类) are most abundantthroughout the Mesozoic. Conodonts (牙形石), the enigmatic fossil invertebrates, went extinct by the end of the Triassic.⑥Reptile diversification that began during the Mississippian continued throughout the Mesozoic Era.⑦ Dinosaurs evolved from Mesozoic reptiles by the Late Triassic and then soon colonized and dominated the Mesozoic landscapes. The first birds evolved from reptiles during the Jurassic. Mammals evolved from cynodonts (犬齿兽) by the end of the Triassic.⑧Gymnosperms continued to flourish during the Mesozoic. Land plant communities changed considerably when flowering plants (angiosperms 被子植物) evolved during the Cretaceous Period.⑨Dinosaurs, flying reptiles and marine reptiles, some important marine invertebrates (including ammonoids, rudists and most planktic foraminifera 有孔虫类) became extinct at the close of the Cretaceous. The most popular hypothetical explanation for the terminal Mesozoic extinction is a calamitous meteorite impact.⑩The Triassic, Jurassic and Cretaceous are also most important periods for coal accumulations known from America, Canada, China, Australia and Russia. Large concentrations of petroleum and natural gas formed in many areas of the world during the Mesozoic Era. The Cretaceous and Jurassic are the most significant periods for the accumulation of oil and gas in China.Substantial endogenic metallic mineral deposits of copper, iron, lead, zinc, Tungsten, tin, molybdenum, bismuth, etc. originated along the Circum Pacific Orogenic Belt during the Mesozoic (esp. the Jurassic and Cretaceous). Important accumulations of Gold, Uranium, and Diamond were also formed in the Mesozoic rocks.①The breakup of Pangaea that began during the Mesozoic continued, giving rise to the present distribution of land and sea.②Cenozoic orogenies were concentrated in two belts, one nearly encircling the Pacific Ocean basin (Circum-Pacific Orogenic Belt), whereas the other trending east-west through the Mediterranean basin and on through southeast Asia (Alpine-Himalayan Orogenic Belt).③ The India plate that drifted northeastward during the Cretaceous eventually collided with Asia ca. 40 million years ago, resulting in the Himalayan orogen as Roof of the World.④A widespread continental glaciation was present on the Northern Hemisphere continents during the Pleistocene.⑤Angiosperms continued to diversify and to dominate land plant communities during the Cenozoic Era (the Age of Angiosperms). The present-day invertebrates evolved.⑥ The Cenozoic is also referred to as the Age of Mammals. With the demise of dinosaurs and their relatives, mammals experienced a quick and remarkable diversification through the Cenozoic.⑦ The marine invertebrates that survived the Mesozoic extinctions diversified throughout the Cenozoic. Bivalves, gastropods, corals and foraminifera proliferated.⑧Tertiary-age coal deposits are also most abundant throughout the world. Huge quantitative of oil shale and evaporates were found in Tertiary rocks in many countries.。