连杆受力分析
04 曲柄连杆机构的 受力分析
图4-1 活塞组合 1—活塞 2—活塞销 3—挡圈 4—气环 5—油环 4 曲柄连杆机构的受力分析4.1 曲柄连杆机构的组成摩托车发动机的曲柄连杆机构由活塞、活塞环、活塞销、连杆、大小头轴承、曲轴等组成。
4.1.1 活塞组合活塞组合由活塞、活塞环、活塞销、活塞销挡圈等组成,见图4-1。
它的功能是:1)承受气缸中可燃混合气燃烧产生的压力,并将作用力通过活塞销传给连杆,带动曲轴旋转。
2)活塞顶部与气缸盖组成燃烧室。
3)通过安装在其上的活塞环,保证气缸的密封性。
4.1.1.1 四行程发动机活塞四行程发动机活塞的顶面呈平面形,且对应于进、排气门之处加工有凹坑,以避免在运动中与进、排气门相干涉,在顶面有“IN ”标记表示进气侧,保证活塞安装时的方向。
在活塞槽部通常设有两道气环、一道油环。
在油环槽周围,设置有许多回油小孔,安装油环后,能刮去缸壁上多余的润滑油(见图4-2)。
有些活塞在油环槽下再加工一个较浅的环形槽,其上也加工回油小孔。
四行程发动机活塞所有环槽上都无需有定位销孔,原因是四行程发动机的气缸上无气口,活塞环运动时不会产生干涉现象。
为适应活塞在高温、高压、高速条件下工作,活塞通常多采用质量轻、导热性好的高铝合金来制造。
有些活塞表面还进行镀锡处理,以提高其磨合性。
4.1.1.2 活塞环 四行程活塞裙部较短,并无需做有缺口,因四行程发动机的进、排气道没有气缸盖上。
但有时为避免与曲轴相撞,并为增加裙部弹性及减小活塞质量,在受力不图4-2 四行程汽油机的活塞1—气门坑 2—回油孔 3—裙部缺口大的沿销孔方向两侧,从底部各开一个浅而长的圆弧形缺口。
活塞环的功能是:1)密封气缸与活塞间的间隙,防止漏气。
2)刮去气缸壁上多余的机油。
3)把活塞的热量传递给气缸体散发。
活塞环应具有良好的密封性,在高温、高压、和高速的工况下,具有良好的弹度、弹性和耐磨性;此外,并应有良好的磨合性与加工性。
为适应这些要求,活塞环的材料多选用合金铸铁。
第九章-曲柄连杆机构动力学分析
Pj m j a m j R 2 cos m j R 2 cos2 PjI PjII
(2)、旋转惯性力Fr=mrRω2 2、沿气缸中心线的总作用力F 总作用力F是缸内气体作用力Fg与往复惯性力的代数和 F=Fg+Fj 气体作用力 D 2 Fg p g - p? g 4
1、活塞位移x:
x ( L R) ( L cos R cos )
2 2
R(1 cos ) L(1 1 sin )
(精确式)
R x R(1 cos ) (1 cos 2 ) x I x II (近似式) 4
近似式与精确式相比误差很小,如当λ =1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
பைடு நூலகம்
(精确式)
1 2 L sin 1 1 3 cos2 (近似式) 2
2
在α =90º 或270º 时达到极值:
Le
2 (1 2 )1 / 2
(精确式)
1 (近似式) 2 摆动角速度和角加速度精确式中分母均近似等于 1 ,因此两者均 随α 近似按简谐规律变化。
L L 1 m j m p m 1 m p m l L 作旋转运动的不平衡质量mr,包括曲柄换算质量mk和连杆换算
L1 mr mk m 2 mk1 2mk 2 mL R L
到大头中心的质量m2,集中作用于曲柄销中心,即
三、曲柄连杆机构作用力和力矩 1、惯性力 、 (1)旋转惯性力 (1)、 往复惯性力
2、活塞速度:
sin( ) v R cos
连杆受力及其特征
1.连杆受力及其特征:1.)四冲程内燃机连杆在整个工作循环中时而受压,时而受拉,二冲程内燃机的连杆则几乎是一直受压;2.)连杆的摆动使杆身产生惯性力矩并使连杆受弯;3.)主副连杆机构中的副连杆的作用力产生附加弯矩2.设计连杆时注意:1.)应从疲劳强度的角度来考虑连杆的强度设计,几乎所有连杆因强度问题而出现的事故均系耐疲劳强度下不足所致;2.)应保证连杆有足够的刚度,特别应避免连杆大、小端孔的变形过大,以保证轴瓦与衬套能可靠工作,同时应力求减小给连杆螺栓增加附加弯曲应力;3.)保证连杆大、小端轴瓦和衬套可靠工作、足够的耐磨性和抗疲劳性,以适应柴油机不断提高功率和降低维护保养费用,延长检修期的需要。
3.平切口连杆大端:连杆大端盖的剖分面与连杆中心垂直。
杆身与大端盖之间用连杆螺栓联接。
平切口结构连杆大端的曲柄销尺寸范围为dp≤(0.65-0.72)D。
尽管这种大端结构及制造工艺均甚为简单,且仍广泛应用于高、中速内燃机中,但由于曲柄销径的增大受到限制,这种结构难以用于高参数的柴油机中。
4.斜切口连杆大端:当连杆的接合面宽度K相同时,斜切口式连杆大端可以按排较大的连杆轴颈,而仍能保持由气缸中抽出活塞连杆组的优点。
通常斜切口连杆大端许可安排下的连杆轴颈为dp≤0.85D.5.连杆大端盖:1.)梳齿形断面:结构轻,刚度较均匀,但加工困难、成本高,只能用于轻型高速柴油机;2.)双筋式:刚度亦较均匀,由于大端盖筋的方向与杆身上工字形断面肋片方向垂直而不便与连杆体用同一幅锻模制造;3.)T型断面:结构简单,易于锻造和机械加工,在中、高速柴油机中应有较多;4.)工字形断面:结构合理,适合于铸钢毛坯,多用于中低速柴油机6.连杆小端结构的优缺点:1.)锻造毛坯的连杆,表面有7-10度的拔模角,通常在模锻之后外表不再机械加工,广泛用于强载度不高,大批量生产的,尺寸不大的产品中;2.)自由锻毛坯经车削加工而成,小端呈球形,杆身多呈圆柱形,工艺简单,结构笨重,适用于小批量生产的中低速柴油机;3.)在于增加小端顶部中央截面的抗弯能力;4.)可以分别增加连杆小端及活塞销座的主要承压面,许多强载度较高的柴油机连杆采用;5.)二冲程高速柴油机的连杆小端,其特点在于衬套内表面有螺旋形布油槽,能向连杆小端轴承内表面供应较充分的润滑油。
连杆受力分析完整版
连杆受力分析
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
四连杆受力分析
不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力)来
确定个运动副中的反力和需加于该机构上的平衡力。
由于运动副反力
对机构来说是内力,必须将机构分解为若干个杆组,然后依次分析。
?平衡力(矩)——与作用于机构构件上的已知外力和
惯性力相平衡的未知外力(矩)相平衡的未知外力(矩)已
知生产阻力平衡力(矩)——求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)平衡力(矩)——求解机构所能克服的生产阻力一. 构件组的静定条件——该构件组所能列出的
独立的力平衡方程式的数目.。
四连杆受力分析word版本
四连杆受力分析不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力)来确定个运动副中的反力和需加于该机构上的平衡力。
由于运动副反力对机构来说是内力,必须将机构分解为若干个杆组,然后依次分析。
平衡力(矩)一一与作用于机构构件上的已知外力和惯性力相平衡的未知外力(矩)相平衡的未知外力(矩)已知生产阻力平衡力(矩)一一求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)平衡力(矩)一—求解机构所能克服的生产阻力一.构件组的静定条件——该构件组所能列出的独立的力平衡方程式的数目.§3-4不计摩擦时机构的受力分析根据机构所受已知外力(包括慣性力)来确定个运动副中的反力和需加于该机构上的平衡力乜由于运动副反力对机构来说足内力,必须将机构分解为若干个杆组,然后依次分析多沪宰術力r«j ——与作用于机已知外力A18K力相平飯的未知外力(更)已知生产阻力平衡力(矩)——求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)■平衡力(矩)——求解机构所能克服的生产阻力r 构件组的静定条件——孩脚件组所能则出的独P 的力平痢疗程式的數目.用等于构件塑中險有力曲未知嬰素的数目。
豪丈首力毕衡方烈丸的it 貝=所有力召来知要盍的撤口 *2)移动副 ——(2个){-大*b ----- ?方向——垂直移动导路 柞用A ——?3)平面高副——(1个)「九 J* ?F ff :方匀一法线I 作用点——挟*k 点2•榔件t 运动聞中反力的未初里索"转动副——(2个)[X.4* ----- ?方甸——?杵用点——转动副中心A设某构件组共有H个构件.丹个低副.几个高副>一个构件可以列出s个独立的力平衡方程,用个构件共有佝个力平衡方程>一个平面低副引入2个力的未知数,的个低副共引入切彳个力的未知数>—个平面高副引入1个力的未知数.几个低副共引入几个力的未知数轲件《Li6奮龙秦件』| 3“匚2巧;耳而当构件组仅有低副时,则为* 3/f = 2P f结怡:空本杆组寿满足#岌条件二.用图解法作机构的动态静力分析步骤:1)对机构进行运动分析,求出个构件的。
第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)
11
曲柄连杆机构受力分析
2019/1/9
内燃机设计
12
曲柄连杆机构受力分析
2019/1/9
内燃机设计
13
一、气体作用力
• 作用在活塞顶上的气体力就是内燃机的示功 图,示功图可通过工作过程模拟计算(对新 设计内燃机)或试验方法(对现有内燃机) 确定。
Fg D ( pg p' ) / 4
* /(r ) sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2
a* a /(r 2 ) cos [cos2 (1 2 sin 2 ) (2 / 4) sin 2 2 ](1 2 sin 2 ) 3/ 2
sin sin
2019/1/9
内燃机设计
7
活塞运动规律
• 整理以上两式后得 x r[(1 1 / ) cos (1 2 sin 2 )1/ 2 / ]
r[sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2 ]
2019/1/9
内燃机设计
10
第二节 曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气
体作用力、运动质量惯性力、摩擦力、支承
反力和有效负荷等。一般受力分析时忽略摩
擦力使受力分析偏于安全。所以,在内燃机
曲柄连杆机构中,气体作用力、惯性力与支
承反力、有效负荷相平衡。
2019/1/9
内燃机设计
2019/1/9
内燃机设计
8
2、活塞运动规律简化表达式
• 对于一般内燃机 1 / 3 ,可把上列各式简化 成
x* 1 cos ( / 4)(1 cos2 )
连杆机构的动力学分析与优化设计
连杆机构的动力学分析与优化设计连杆机构是一种常见的机械传动装置,它由若干个连杆组成,通过铰链连接在一起。
连杆机构广泛应用于各个领域,如发动机、泵浦、机床等,对于实现复杂运动和力学传递起到重要的作用。
本文将对连杆机构的动力学分析与优化设计进行探讨。
一、连杆机构的动力学分析连杆机构的动力学分析是研究其运动规律和受力分布的过程。
在动力学分析中,我们可以通过构建连杆机构的运动学方程和受力方程来描述其运动和受力情况。
1. 运动学方程运动学方程描述了连杆机构中各个连杆的位置和速度之间的关系。
通过连杆机构的几何形状和运动特点,我们可以推导出各个连杆的位置和速度方程。
运动学方程的求解可以帮助我们了解连杆机构的运动规律和运动参数。
2. 受力方程受力方程描述了连杆机构中各个连杆受力的情况。
通过对各个铰链点的受力平衡条件的分析,我们可以得到连杆机构中各个连杆的受力方程。
受力方程的求解可以帮助我们了解连杆机构中各个连杆的力学特性,为优化设计提供基础。
二、连杆机构的优化设计连杆机构的优化设计旨在提高其性能和效率。
在连杆机构的优化设计中,我们可以从以下几个方面进行改进。
1. 结构优化连杆机构的结构优化包括选取合适的连杆尺寸和形状,以及确定连杆的连接方式。
通过对连杆机构结构的优化设计,可以减小其重量和体积,提高其刚度和强度,从而提高整个机构的性能。
2. 运动特性优化连杆机构的运动特性优化包括提高其运动平稳性和运动精度。
在优化设计过程中,可以通过调整连杆的长度比例和位置布局,以及选用合适的铰链点来改善连杆机构的运动特性。
运动特性优化可以使连杆机构实现更加精确和稳定的运动。
3. 动力优化连杆机构的动力优化包括提高其传动效率和降低能耗。
在优化设计过程中,可以选用合适的传动形式和传动参数,以及减小传动过程中的能量损失来改善连杆机构的动力性能。
动力优化可以提高连杆机构的整体效率,并减少对能源的消耗。
三、连杆机构的应用领域连杆机构广泛应用于各个领域,如发动机、泵浦、机床等。
第一章 曲柄连杆机构的运动与受力分析
(1 − λ
⋅ω 2
2
⋅ sin 2 α )
3 2
(1-14) )
ε le = m
(1 − λ )
2
λ
1 2
• 第二节 作用于曲柄连杆机构中的力和力矩
1.2.1 气体作用力 作用于活塞顶上的气体作用力: 作用于活塞顶上的气体作用力: Pg = ( p g − p0 ) ⋅ Fh (式中,Fh是活塞投影面积) 式中, 是活塞投影面积)
活塞速度: 活塞速度: 可得: 可得: v = r ⋅ ω ⋅
二、活塞的速度
sin (α + β ) cos β
dt
)(精确式 (1-7)(精确式) )(精确式)
将式( )对时间求导, 将式(1-5)对时间求导,得:
λ (1-8)(近似式) )(近似式 )(近似式) v = r ⋅ ω ⋅ sin α + ⋅ sin 2α 2 2S S⋅n (1-9) ) 活塞平均速度: 活塞平均速度: C m = 60 = 30 n
图1-1 正置曲柄连杆机构简图
l+r
r
r 记: λ = l
则: x 因: 故: 而:
(1-1) )
1 = r ⋅ (1 − cos α ) + ⋅ (1 − cos β ) (1-2)(精确式) )(精确式 )(精确式) λ
l ⋅ sin β = r ⋅ sin α sin β = λ ⋅ sin α
dx dα 1 dβ v= = r ⋅ sin α ⋅ + ⋅ sin β ⋅ dt dt λ dt dβ cos α dα =λ⋅ ⋅ 将式(1-3)对时间求导,得: 将式( )对时间求导, (1-6) ) cos β dt dt dα 代入上式,且记曲轴角速度: 代入上式,且记曲轴角速度: =ω
ansys课程设计-连杆实例的受力分析
ANSYS课程设计连杆实例的受力分析一.问题描述厚度为0.5英寸的汽车连杆在小头孔周围90度处承受P=1000psi的表面载荷。
用有限元法分析了连杆的应力状态。
连杆材料性能:模量E=30×106psi,泊松比0.3。
因为连杆的结构是对称的,所以只能进行一半的分析。
采用自底向上的建模方法,采用20节点SOLID95单元进行划分。
二、具体操作流程1.定义工作文件名和工作标题。
2.生成两个圆环体。
⑴生成圆环:主菜单>预处理器>模型创建>面积圆>按尺寸,其中RAD1=1.4,RAD2=1,θ1 = 0,θ2 = 180,单击应用,输入θ1 = 45,然后单击确定。
⑵打开“面编号”控件,选择“区域编号”作为“打开”,然后单击“确定”。
3.生成两个矩形。
⑴生成矩形:主菜单>预处理器>模型创建>面积矩形>按尺寸,输入X1=-0.3,X2=0.3,Y1=1.2,Y2=1.8,点击应用,然后分别输入X1=-1.8,X2=-1.2,Y1=0,y2 = 0。
⑵平移工作平面:工具菜单>工作平面>偏移WP to > XYZ位置,在ANSYS输入窗口的charm输入行中输入6.5,按Enter键确认,然后单击确定。
⑶将工作平面坐标系转换为活动坐标系:工具菜单>工作平面>将活动坐标系更改为>工作平面。
4.生成圆环体并执行布尔运算。
⑴⑵进行面对面折叠操作,结果如图。
5.生成连杆体。
⑴激活直角坐标系:工具菜单>工作平面>将活动坐标系更改为>全局笛卡尔坐标系。
⑵定义四个新的关键点:主菜单>预处理器>创建>关键点”在Active CS中,在对话框中输入X=2.5,Y=0.5,点击应用;;X=3.25,Y=0.4,点击应用;;X=4,Y=0.33,点击应用;;X=4.75,Y=0.28,点击确定。
⑶激活全局坐标系:工具菜单>工作平面>将活动坐标系更改为>全局圆柱坐标系。
01曲柄连杆机构的运动和受力分析(1)
(1)
赵雨东
清华大学汽车工程系
汽车工程系车辆工程专业课程设置
必修课
汽车概论 汽车构造I(汽车发动机) 汽车构造II(汽车底盘、
车身) 汽车发动机原理 汽车理论 汽车发动机设计 汽车底盘设计 汽车车身设计
选修课
汽车电子学 汽车电器 内燃机燃料供给 内燃机增压 … …
下止点
(1 − λ2 sin 2 ϕ ) −3/ 2 = 1 + 3λ2 sin 2 ϕ + 15λ4 sin 4 ϕ + 35λ6 sin 6 ϕ LL
2
8
16
β
l
φ
rω
曲柄连杆机构运动学
-正置曲柄连杆机构的活塞运动规律(5)
将泰勒展开式代入活塞运动规律表达式,并略去 含λ三次幂以上的各项( λ最大0.33 ),得
Fj
用两个集中质量组成的非自由质点系近
似等效单元曲柄连杆机构(活塞、连杆
和曲拐)
mj
往复运动质量-受缸筒约束,沿气缸中 心线往复运动
质量 往复惯性力
m j = mhz + mlA Fj = −mj j
Frp = mp ρ pω 2 = mpd rω 2 mpd = mp ρp / r
mp:平衡重质量 ρρ :平衡重质心旋转半径 mpd :平衡重当量质量
ρp mp
Frp
曲柄连杆机构中的力和力矩
—连杆的惯性力(1) FjlA
实际连杆
随活塞平动+绕活塞销摆动 连续体 不便于分析惯性力和惯性力矩
-曲柄连杆机构类型(3)
活塞销负偏置
活塞在上止点前后,受气缸壁之力的推力面会发生变化。 采用活塞销负偏置,在活塞运动到上止点之前,连杆中心线与气缸中心线平行,活塞
曲柄连杆机构受力分析概要
T 2 T1( 240 0 ) T 3 T1( 480 0 )
T 4 T1( 120 0 ) T 5 T1( 600 0 ) T 6 T1( 360 0 )
2024/10/13
内燃机设计
35
各主轴颈所受转矩
• 求某一主轴颈的转 矩,只要把从第一 拐起到该主轴颈前 一拐的各单缸转矩 叠加起来即可。即 遵循各缸转矩向后 传递的原则。
• ①所有当量质量之和等于连杆组总质量ml。 • ②所有当量质量构成的系统的公共质心与连杆组
的质心重合,并按此质心的运动规律运动。
• ③所有当量质量相对通过连杆组质心的轴线的转 动惯量之和,等于连杆组对同一轴线的转动惯量。
2024/10/13
内燃机设计
28
连杆质量换算
• 往往用小头、大头和质心处的三个质量m1、 m2、m3来代替连杆组。实际高速机计算表明, m3与m1、m2相比很小,所以一般简化为两 质量系统。由前两个条件得:
转换、气门干涉的校验及动力计算;
• (2)活塞速度用于评价气缸的磨损程度; • (3)活塞加速度用于计算往复惯性力。
2024/10/13
内燃机设计
18
本讲主要内容
曲柄连杆机构运动学
曲柄连杆机构受力分析
内燃机的转矩波动与飞轮设计
2024/10/13
内燃机设计
19
曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气 体作用力、运动质量惯性力、摩擦力、支承 反力和有效负荷等。一般受力分析时忽略摩 擦力使受力分析偏于安全。所以,在内燃机 曲柄连杆机构中,气体作用力、惯性力与支 承反力、有效负荷相平衡。
2024/10/13
内燃机设计
第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)
19
3、旋转惯性力
旋转惯性力:
Fr mr r 2
单位活塞面积旋转惯性力:
fr mrr 2 /(D2 / 4)
2019/11/25
内燃机设计
20
三、单缸转矩
• 可以将 Fg和 Fj 合成为F ,单缸转矩可计算为:
T Ftr Fr sin( ) / cos
2019/11/25
第二章 曲柄连杆机构受力分析
• 第一节 曲柄连杆机构运动学 • 第二节 曲柄连杆机构受力分析 • 第三节 内燃机的转矩波动与飞轮设计
2019/11/25
内燃机设计
1
第一节 曲柄连杆机构运动学
2019/11/25
内燃机设计
2
曲柄连杆机构运动学
2019/11/25
内燃机设计
3
曲柄连杆机构运动学
– 内燃机曲柄连杆机构的分类和特性参数
e
l
r e
(1)中心曲柄连杆机构 (2)偏心曲柄连杆机构
(3)关节曲柄连杆机构
2019/11/25
内燃机设计
5
2、特性参数
• 曲柄半径:r • 连杆长度:l
• 曲柄连杆比: r / l
• 偏心距:e
• 偏心率: e / r
l
r
2019/11/25
内燃机设计
6
二、中心曲柄连杆机构运动学
E
2 1
(T
T
m)d
I0 2
(2 maxFra bibliotek
2 m
in
)
式中,E称为盈亏功。令:E E
E 1.2 105 Pe / n ,为一个工作循环的有效功。
稳定杆连接杆受力分析
稳定杆连接杆受力分析
稳定杆连接杆的受力分析可以采用静力学的方法进行求解。
一般来说,我们需要先确定各个部件的几何形状、材料及其所受的外力,然后利用平衡方程和杆件内力平衡条件求解出连接杆所受的力。
具体步骤如下:
1. 绘制连接杆的受力图,包括受力点和所受力的方向。
2. 利用静力平衡方程,根据受力图的几何形状和所受外力,建立平衡方程。
求解出连接杆所受的水平力和竖直力的大小。
3. 利用杆件内力平衡条件,确定连接杆所受的拉力或压力。
根据杆件的受力状态来确定拉力的方向或者压力的方向。
4. 最后,检查所得结果的合理性,如所得的内力是否满足杆件的强度要求,所有的受力方向是否符合静力平衡条件等。
总之,连接杆的受力分析需要综合考虑几何形状、材料特性以及受力条件等多种因素。
连杆受力分析
连杆受力分析实例1、问题描述如图4-2所示为汽车连杆的几何模型,连杆的厚度为0.5m,在小头孔的内侧90°范围内承受P=1000N的面载荷作用,利用有限元分析该连杆的受力状态。
由于连杆的架构和载荷均对称,因此在分析时只要采用一半进行分析。
采用由底向上的建模方式,有20节点的SOLID95单元划分网格并用PCG求解器求解。
3、操作步骤(1)定义工作文件名和工作标题①定义工作文件名:执行Utility Menu > File > Change Jobname命令在对话框【Change Jobname】中输入“c-rod”并选择【New log and error files】复选框,单击OK按钮。
②定义工作标题:Utility Menu > File > Change Title,在对话框【Change Title】中输入“The Stress calculating of c-rod”,单击OK按钮。
(2)定义单元类型及材料属性①设置单元类型:Main Menu > Preprocessor > ElementType >Add/Edit/Delete,在【Element Type】对话框中单击Add...按钮,在之后的【Labrary of Element Type】对话框中选择“Not Solved”和“Mesh Facet 200”选项,单击Ok按钮。
②设置单元选项:单击【Element Type】对话框中的Options...按钮,在【MESH200 element type option】设置“K1”为“QUAD 8-Node”,单击OK按钮。
单击Add...按钮,在【Labrary of Element Type】中选择“Structural Solid”和“Brick 20node95”选项,单击Ok按钮,单击Close按钮。
③设置材料属性:Main Menu > Preprocessor > Material Props > Material Models,在【Define Material Models Behavior】窗口中双击【Material Model > Available】列表中的“Structural﹨Linear﹨Elastic﹨Isotropic”选项,在弹出【Linear Isotropic Material Properties For Material Number 1】对话框中输入“EX=30e6,PRXY=0.3”,单击OK按钮,执行Material > Exit命令,完成材料属性的设置。
连杆静力学分析课件
通过形状优化技术,对连杆的几何形状进行优化,以降低应力集 中和提高结构效率。
基于静力学的连杆材料优化
材料选择
根据连杆的工作条件和性能要求,选择合适的材 料,如钢、铝合金、复合材料等。
材料性能优化
通过调整材料的组成和处理工艺,提高材料的力 学性能,如强度、韧性等。
多目标优化
综合考虑连杆的重量、成本、耐久性等多个目标 ,进行材料的多目标优化设计。
连杆静力学分析课件
• 连杆静力学概述 • 连杆的受力分析 • 连杆的刚度与强度分析 • 连杆静力学的优化设计 • 实验与案例分析 • 总结与展望
01
连杆静力学概述
连杆的定义及应用
定义
连杆是一种用于连接两个或多个 运动构件的机械零件,以实现构 件间的相对运动。
应用
连杆在各类机械传动装置和机构 中发挥着重要作用,如曲柄连杆 机构、摇杆机构等。
通常通过连杆的截面形状、尺寸 以及材料弹性模量来计算连杆的
刚度。
刚度影响因素
连杆的刚度受材料选择、截面形 状、连杆长度等因素的影响。
连杆的强度分析
强度定义
连杆强度是指连杆在受力时抵抗破坏的能力。
强度计算
连杆的强度计算通常考虑拉伸、压缩、弯曲和扭转等多种受力情况 ,需结合连杆的实际工况进行综合评估。
技术发展
随着计算机技术和数值模拟技术的不断发展,连杆机构的静力学分析方法将更加高效和精确,为工程设计提供更可靠 的理论支持。
应用前景
连杆机构作为一种基本的机械传动装置,在航空航天、汽车工程、机械制造等领域具有广泛的应用前景 。通过深入研究和不断创新,连杆机构的应用将更加广泛和高效。
THANKS
感谢观看
和数据采集系统。
连杆受力及其特征
1.连杆受力及其特征:1.)四冲程内燃机连杆在整个工作循环中时而受压,时而受拉,二冲程内燃机的连杆则几乎是一直受压;2.)连杆的摆动使杆身产生惯性力矩并使连杆受弯;3.)主副连杆机构中的副连杆的作用力产生附加弯矩2.设计连杆时注意:1.)应从疲劳强度的角度来考虑连杆的强度设计,几乎所有连杆因强度问题而出现的事故均系耐疲劳强度下不足所致;2.)应保证连杆有足够的刚度,特别应避免连杆大、小端孔的变形过大,以保证轴瓦与衬套能可靠工作,同时应力求减小给连杆螺栓增加附加弯曲应力;3.)保证连杆大、小端轴瓦和衬套可靠工作、足够的耐磨性和抗疲劳性,以适应柴油机不断提高功率和降低维护保养费用,延长检修期的需要。
3.平切口连杆大端:连杆大端盖的剖分面与连杆中心垂直。
杆身与大端盖之间用连杆螺栓联接。
平切口结构连杆大端的曲柄销尺寸范围为dp≤(0.65-0.72)D。
尽管这种大端结构及制造工艺均甚为简单,且仍广泛应用于高、中速内燃机中,但由于曲柄销径的增大受到限制,这种结构难以用于高参数的柴油机中。
4.斜切口连杆大端:当连杆的接合面宽度K相同时,斜切口式连杆大端可以按排较大的连杆轴颈,而仍能保持由气缸中抽出活塞连杆组的优点。
通常斜切口连杆大端许可安排下的连杆轴颈为dp≤0.85D.5.连杆大端盖:1.)梳齿形断面:结构轻,刚度较均匀,但加工困难、成本高,只能用于轻型高速柴油机;2.)双筋式:刚度亦较均匀,由于大端盖筋的方向与杆身上工字形断面肋片方向垂直而不便与连杆体用同一幅锻模制造;3.)T型断面:结构简单,易于锻造和机械加工,在中、高速柴油机中应有较多;4.)工字形断面:结构合理,适合于铸钢毛坯,多用于中低速柴油机6.连杆小端结构的优缺点:1.)锻造毛坯的连杆,表面有7-10度的拔模角,通常在模锻之后外表不再机械加工,广泛用于强载度不高,大批量生产的,尺寸不大的产品中;2.)自由锻毛坯经车削加工而成,小端呈球形,杆身多呈圆柱形,工艺简单,结构笨重,适用于小批量生产的中低速柴油机;3.)在于增加小端顶部中央截面的抗弯能力;4.)可以分别增加连杆小端及活塞销座的主要承压面,许多强载度较高的柴油机连杆采用;5.)二冲程高速柴油机的连杆小端,其特点在于衬套内表面有螺旋形布油槽,能向连杆小端轴承内表面供应较充分的润滑油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四连杆受力分析
不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力)来确定个运动副中的反力和需加于该机构上的平衡力。
由于运动副反力对机构来说是内力,必须将机构分解为若干个杆组,然后依次分析。
?平衡力(矩)——与作用于机构构件上的已知外力和惯性力相平衡的未知外力(矩)相平衡的未知外力(矩)已知生产阻力平衡力(矩)——求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)平衡力(矩)——求解机构所能克服的生产阻力一. 构件组的静定条件——该构件组所能列出的独立的力平衡方程式的数目.。