电厂和变电站等电位网和接地网
等电位接地网
变电站等电位接地网的搭建和应用提要:本文对等电位接地网这一新概念,从术语定义区别于有电位差的接地网的概念注释入手,到等电位接地网的搭建实施,以及有关实际应用中仍采用不相适宜的做法存在的问题做了切合实际的介绍,并与传统的分功能单点接地方式进行了对比,说明了两者之间在适用对象、实施方法、作用原理及具体操做法上的不同。
另外,还根据本人在现场实施改进取得的实际效果也做了简要介绍,以加深对等电位接地网的认识和理解。
关键词:等电位接地网搭接地接地极0.前言电网保护及自动化控制系统已基本上实现了由工频模拟量测量装置向数字化微机型设备转化,而用于该设备的抗干扰措施并没有伴随着设备的转型而作相应的改进;原适用于工频测量装置的抗干扰措施,已不适应于今天对高频信号敏感的数字式微机装置抗干扰的需要。
因而,由电磁干扰导致的设备损坏和装置不正确动作问题,在人们认识或不认识中存在,并影响着电网的安全可靠的运行。
对此,国家电网公司调度通信中心依照国家电网公司颁发的《国家电网公司十八项电网重大反事故措施》(试行)文件精神,于2005年末颁发了“继电保护专业重点实施要求”(以下简称《重点要求》)。
其第6章:“二次回路抗干扰”中提出,要求在变电站搭建有别于原有的地下隐蔽接地设施的等电位接地网,构成一个适应于微电子设备抗干扰需要的基础设施。
然而,在人们的传统观念中,在有地电流注入接地网时会产生地电位差,为避免地电位差产生干扰,习惯于将安全地、工作地及零电位参考地分别汇集,然后经引线至一点接地的星形接地方式。
由于受这种旧有接地观念的支配,对等电位接地网这一电磁兼容新技术缺乏理解和认识,即使国家电网公司提出了敷设等电位接地网的要求,也难以做到正确实施。
在近期的某个变电站建设工程中,出现不同厂家的屏柜采用不同的接地方式,有的柜体与接地铜排直接连通;有的接地铜排与柜体用绝缘子隔离,即将屏柜接地(安全地)与电路接地(工作地)分开接地,此做法不符合搭建等电位接地网的要求。
电器装置的保护接地、等电位联结、接地装置
水电工程Һ㊀电器装置的保护接地㊁等电位联结㊁接地装置梅㊀磊摘㊀要:电力系统㊁装置或设备应按规定接地ꎮ接地按功能可分为系统接地㊁保护接地㊁雷电保护接地和防静电接地ꎮ发电厂和变电站内ꎬ不同用途和不同额定电压的电气装置或设备ꎬ除另有规定外应使用一个总的接地网ꎮ关键词:保护接地ꎻ等电位联结ꎻ接地装置一㊁引言建筑物内通常有多种接地ꎬ如果用于不同目的的多个接地系统分开独立接地ꎬ不但受场地的限制难以实施ꎬ而且不同的地电位会带来安全隐患ꎬ不同系统接地导体间的耦合ꎬ也会引起相互干扰ꎮ二㊁接地作用(一)防止电击人体阻抗和所处环境的状况有极大的关系ꎬ环境越潮湿ꎬ人体的阻抗越低ꎬ也越容易遭受电击ꎮ接地是防止电击的一种有效的方法ꎬ电气设备金属外壳通过接地装置接地后ꎬ使电气设备的电位接近地电位ꎮ(二)保证电力系统的正常运行电力系统的工作接地ꎬ一般在变电所中性点进行接地ꎮ工作接地的目的是使电网的中性点与地之间的电位接近于零ꎮ三㊁保护接地范围故障保护措施采用自动切断电源时ꎬ外露可导电部分应接PE导体ꎮ外露可导电部分是 设备上能触及的可导电部分ꎬ它在正常情况下不带电ꎬ但在基本绝缘损坏时带电 ꎮ(一)下列部分可以不采用故障保护(间接接触防护)措施ꎬ即可不接地:1)附设在建筑物上ꎬ且位于伸臂范围之外的架空线绝缘子的金属支架ꎮ2)架空线钢筋混凝土电杆内触及不到的钢筋ꎮ(二)采用下列防护措施时ꎬ外露可导电部分不应接地:1)电气分隔ꎻ2)特低电压SELVꎻ3)非导电场所ꎻ4)不接地的局部等电位联结ꎮ四㊁等电位联结的作用和分类建筑物的低压电气装置应采用等电位联结以降低建筑物内电击电压和不同金属物体间的电位差ꎻ避免自建筑物外经电气线路和金属管道引入的故障电压的危害ꎻ减少保护电器动作不可靠带来的危险和有利于避免外界电磁场引起的干扰ꎬ改善装置的电磁兼容性ꎮ(一)总等电位联结在等电位联结中ꎬ将保护接地导体㊁总接地导体和总接地端子㊁建筑物内的金属管道和可利用的金属物金属结构等可导电部分联结在一起ꎬ称为总等电位联结ꎮ每个建筑物内的接地导体㊁总接地端子和下列可导电部分应实施保护等电位联结:进入建筑物的供应设施的金属管道ꎬ例如燃气管㊁水管等ꎻ在正常使用时可触及的装置外部可导电结构㊁集中供热和空调系统的金属部分ꎻ便于利用的钢筋混凝土结构中的钢筋ꎻ进线配电箱的PE母排ꎮ(二)辅助等电位联结辅助等电位联结则是设备范围内有可能出现危险电位差的可同时接触的电气设备之间或电气设备与外界可导电部分之间直接用导体作联结ꎮ(三)局部等电位联结局部等电位联结是在建筑物内的局部范围内按总等电位联结的要求再做一次等电位联结ꎮ下列情况需作局部等电位联结:配电箱或用电设备距总等电位联结端子较远ꎬ发生接地故障时ꎬPE导体此段上接触电压超过50Vꎻ由TN系统同一配电箱供电给固定式㊁手持式㊁移动式电气设备ꎬ而固定式设备保护电器切断电源时间不能满足手持式㊁移动式设备防电击要求时ꎻ为满足浴室㊁游泳池㊁医院手术室等场所对防电击的特殊要求时ꎻ为避免爆炸场所因电位差产生电火花时ꎻ为满足防雷和信息系统抗干扰要求时ꎻ(四)等电位联结线的安装金属管道上的阀门㊁仪表等装置需加跨接线连成电气通路ꎮ煤气管入户处应插入一绝缘段(如在法兰盘间插入绝缘板)并在此绝缘段两端跨接火花放电间隙ꎬ由煤气公司实施ꎮ导体间的连接可根据实际情况采用焊接或螺栓连接ꎬ要求做到连接可靠ꎮ等电位联结线与PE线及接地线一样ꎬ在其端部应有黄绿相间的色标ꎮ五㊁接地装置的种类:自然接地体㊁人工接地极(一)交流电气装置的接地宜利用直接埋入地中或水中的自然接地体ꎬ如建筑物的钢筋混凝土基础中的钢筋ꎬ金属管道㊁电缆金属外皮㊁深井金属管壁等ꎮ当自然接地极不满足接地电阻要求时ꎬ应补设人工接地极ꎮ(二)对变电站的接地装置出利用自然接地体外ꎬ还应敷设人工接地极ꎮ但对于3~20kV变配电站ꎬ当采用建筑物基础做接地体且接地电阻有满足规定值时ꎬ可不另设人工接地极ꎮ(三)人工接地极:接地装置的人工接地极包括水平敷设的接地极和垂直敷设的接地极ꎬ水平接地极可采用圆钢㊁扁钢ꎻ垂直接地极可采用角钢㊁圆钢或钢管ꎻ也可采用金属板状接地极ꎮ一般优先采用水平敷设的接地极ꎮ接地极埋入地下深度一般不小于0.7mꎮ腐蚀较重的地区人工接地极应采用铜或铜覆钢材料ꎮ接地装置的接地导体最小截面积不应小于6mm2(铜)或(钢)50mm2ꎮ举例说明企业66kV架空线接地自然接地电阻不满足规范要求ꎬ需增设人工接地装置:该架空线路全程架设避雷线ꎬ直线杆塔采用无拉线的钢筋混凝土电杆ꎬ根据测量该线路所在地区土壤电阻率为100Ωm该电杆的自然接地工频接地电阻为R=0.2ˑ100=20Ωꎬ不满足最小接地电阻值10Ω要求ꎮ因此采用增加水平接地装置的设计方案降低接地电阻ꎬ接地极采用直径为10mm的镀锌圆钢ꎬ水平接地装置埋深为1米ꎬ间距为6米ꎬ如图1所示ꎮ该人工接地装置工频接地电阻计算长度L=4ˑ1+6=10米ꎬ经计算其电阻为17.85Ωꎬ总接地电阻为自然和人工接地电阻并联ꎬ阻值为20//17.85=9.43Ω满足要求ꎮ图1 某接地装置图六㊁结束语接地系统应采用接地导体少㊁系统简单经济㊁便于维护㊁可靠性高且低阻抗的系统ꎮ在一定条件下ꎬ变电站的保护接地和低压系统接地可以共用接地装置ꎮ参考文献:[1]佚名.工业与民用供配电设计手册(第四版)上㊁下册[J].供用电ꎬ2018ꎬ35(6):2.作者简介:梅磊ꎬ凌源钢铁集团设计研究有限公司ꎮ502。
发电厂接地系统主网及等电位网隐患排查
发电厂接地系统主网及等电位网隐患排查当发电厂等电位地网与主地网连接不可靠时,会产生电位差间接造成保护误动作,引起机组非停或事故扩大。
为避免发生类似事故,应开展全厂接地系统的隐患排查,排查内容及要求如下。
(一)一次设备、主接地网的检查及要求1、接地装置引下线的导通试验周期不应超过3年,应使用试验电流大于5A的仪器,测试中应注意测量其他局部地网与主地网之间的电气完整性。
2、应定期开展地网的接地阻抗测试,测试周期不应超过6年,评估接地阻抗是否合格,首先应符合GB/T50065-20114.2的有关规定,同时要根据实际情况,包括地形、地质、接地装置的大小和运行年限等,并结合当地情况和以往的运行经验综合判断。
3、应根据历次接地引下线的导通检测结果进行分析比较,以决定是否需要进行开挖检查、处理。
定期(时间间隔应不大于5年)通过开挖抽查等手段确定接地网的腐蚀情况,铜质材料接地体的接地网不必定期开挖检查。
若接地网接地阻抗或接触电压和跨步电压测量不符合设计要求,怀疑接地网被严重腐蚀时,应进行开挖检查。
如发现接地网腐蚀较为严重,应及时进行处理。
对于较难实施开挖抽查的地网,可采用地网腐蚀诊断技术及相应专家系统与开挖抽查相结合的方法,减少抽样开挖检查的盲目性。
4、对于已投运的接地装置,应每年根据发电厂、变电站短路容量的变化,校核接地装置(包括设备接地引下线)的热稳定容量,并结合短路容量变化情况和接地装置的腐蚀程度有针对性地对接地装置进行改造。
对于发电厂、变电站中的不接地、经消弧线圈接地、经低阻或高阻接地系统,必须按异点两相接地校核接地装置的热稳定容量。
5、变压器中性点应有两根与接地网主网格的不同边连接的接地引下线,重要设备及设备架构等宜有两根与主接地网不同干线连接的接地引下线,并且每根接地引下线均应符合热稳定校核的要求。
6、电气装置的下列金属部分,必须接地:(1)电气设备的金属底座、框架及外壳和传动装置;(2)携带式或移动式用电器具的金属底座和外壳;(3)箱式变电站的金属箱体;(4)互感器的二次绕组;(5)配电、控制、保护用的屏及操作台的金属底座;(6)电力电缆的金属护层、接头盒、终端头和金属保护管及二次电缆的屏蔽层;(7)电缆桥架、支架和井架;(8)变电站构、支架;(9)装有架空地线或电气设备的电力线路杆塔;(10)配电装置的金属遮拦。
等电位连接与接地的概念差异
等电位连接与接地的概念差异等电位连接与接地是两种保证电气安全的措施,我国过去强调的是接地,而国际电工委员会强调的是等电位连接,并在近几年被引入我国国家标准中:等电位连接是设备和装置可导电部分的电位基本相等的电气连接,接地是防止接触电压触电的一种技术措施。
其原理是利用接地装置足够小的接地电阻值,降低故障设备外露可导电部分的对地电压,使其不超过安全电压极限值,达到防上接触电压触电的目的。
电气设备采用接地保护时,要保证人身安全,接地电阻一般应在4欧以下。
考虑到土壤不同其电阻率不同,有时花费很大人力物力做接地装置,接地电阻却很难降下来,接地保护效果不好、所以从理论上说,接地只能降低人被伤害的程度,而不能真正保证人身安全。
实施等电位连接就可避免土壤电阻率的影响,对接地电阻的要求可以降低,并且应用范围更广。
等电位连接概念的范畴要比接地的范畴宽,一根220kV的输电线路对地有220kv的电位差.一只鸟站在一根导线上是安全的,因其两脚间是等电位,但若它跨接在两相导线上就会触电在防雷实践中通常所做的安全接地其实就是等电位连接,它以地电位作为基准电位。
由于它连接的范围大、线路距离长,减少故障接触电压的效果并不好。
采用等电位连接线将分散的金属部件连接起来可有效降低回路电阻,这样更安全。
可见,等电位连接电阻是指将诸导电物体用等电位连接导体连接而在其两端形成的过渡电阻;接地电阻是指接地电流经接地体注入大地时,在土壤中以电流场形式向远方扩散时所遇到的土壤电阻:等电位连接电阻与接地电阻的检测差异检测原理不同接地电阻的检测工作已经很成熟,可选用的设备也非常多,如接地电阻测量仪、钳型接地电阻表等设备。
在等电位联结的检测工作中,绝大多数地区的检测人员是用万用表或接地电阻测量仪进行检测,这是不合适的。
目前、我国已经有专用的低额等电位联结电阻测量仪生产和销售,在此将接地电阻测量仪、钳型表与等电位联结电阻测量仪的区别进行辨析。
简单地说由于三者的工作原理不同,使得应用范围不同,并且不能替换。
常规变电站二次等电位接地网敷设要求说明
常规变电站二次等电位网敷设要求说明一、十八项反措中二次等电位接地网敷设原则根据《国家电网公司十八项电网重大反事故措施(试行)》第15.7.3要求,变电站等电位接地网敷设原则如下:1.应采取有效措施防止空间磁场对二次电缆的干扰,宜根据开关厂和一次设备安装的实际情况,敷设与厂、站主接地网紧密连接的等电位接地网、等电位接地网应满足以下要求:图1:二次接地铜网平面布置图2.应在主控室、保护室、敷设二次电缆的沟道、开关场的就地端子箱及保护用结合滤波器等处,使用截面不小于100 mm2的裸铜排(缆)敷设与主接地网紧密连接的等电位接地网。
3.在主控室、保护室柜屏下层的电缆室(或电缆沟道)内,按柜屏布置的方向敷设100 mm2的专用铜排(缆),将该专用铜排(缆)首末端连接(目字结构),形成保护室内的等电位接地网。
保护室内的等电位接地网与厂、站主接地网只能存在唯一连接点,连接点位置宜选择电缆竖井处,为保证连接可靠,连接线必须用至少4根以上、截面不小于50mm2的铜缆(排)构成共点接地。
图2:主控室二次铜缆敷设图4.分散布置的保护就地站、通信室与集控室之间,应使用截面不少于100 mm2的铜缆(排)可靠连接,连接点应设在室内等电位接地网与厂、站主接地网连接处。
5.静态保护和控制装置的屏柜下部应设有截面不小于100mm2的接地铜排。
屏柜上装置的接地端子应用截面不小于4mm2的多股铜线和接地铜排相连。
接地铜排应用截面不小于50mm2的铜缆与保护室内的等电位接地网相连6.沿二次电缆的沟道敷设截面不少于100 mm2的铜排(缆),并在保护室(控制室)及开关场的就地端子箱处与主接地网紧密连接,保护室(控制室)的连接点宜设在室内等电位接地网与厂、站主接地网连接处。
图3:电缆沟铜缆示意图7.开关场的就地端子箱内应设置截面不少于100 mm2的裸铜排,并使用截面不少于100 mm2的铜缆与电缆沟道内的等电位接地网连接。
图4:开关场就地端子箱铜缆示意图8.保护装置之间、保护装置至开关场就地端子箱之间联系电缆以及高频收发信机的电缆屏蔽层应双端接地,并使用截面积不小于4mm2的多股铜质软导线可靠连接到等电位接地网的铜排上。
浅谈主接地网和等电位接地网对保护的影响
浅谈主接地网和等电位接地网对保护的影响摘要:随着科学技术的发展和不断的进步,我们的社会也逐步向着自动化和信息化迈进。
从目前社会的整体情况来看,电力系统工程的组成部分有很多,比如主接地网、等电位接地网以及继电保护控制系统。
主接地网和等电位接地网的电力保护问题是非常关键的。
针对目前建筑物等电位接地网施工较为混乱,各技术人员对等电位接地网敷设及连接的要求理解不一致的情况,本文对主接地网和等电位接地网的电源及接地问题进行了探讨,并对现有的问题制定了相应的处理措施,希望可以对我国的主接地网和等电位接地网建设提供一定的帮助与理论支持。
关键词:主接地网;等电位接地网;接地保护;影响1引言主接地网和等电位接地网的设计需要很多电源系统来共同组成,所以主接地网和等电位接地网保护系统的设计是需要很周密的计算才可以搭建完成。
在一个建筑的主接地网和等电位接地网网络中,保护的设计以及电力网络接地是非常重要的,也是必不可少的一个过程,其对于整个主接地网和等电位接地网保护系统的安全运行是极为关键的。
等电位接地网是遍布整个变电站二次系统的接地装置,可以在建筑物出现接地短路故障时保护系统不受系统不平衡电压的干扰,避免设备损坏和误动的发生。
主接地网和等电位接地网保护系统中接地保护技术的应用能够得到如今我国电力行业的普遍应用是有一定的科学依据的,可以实现更好的电力的调度,从而保证整个电力系统能够得到更好的性能发挥。
由此可以看出,主接地网和等电位接地网的保护以及接地是非常重要的,对于我国的主接地网和等电位接地网行业的发展有着很深远的影响意义。
2主接地网和等电位接地网保护系统目前很多的建筑都采用主接地网和等电位接地网电源保护系统来保证整栋建筑的供电,在这其中会涉及到很多的电力调配和变压器的配置问题。
为了能够可以满足如今社会对于电力的需求,主接地网和等电位接地网电源保护系统需要构建一个合理的数据库,将功能根据数据库的资源进行合理设计。
除此之外,该系统还拥有可以与外界设备进行互相联通的功能,从而获得了更加出色的扩展性,保证主接地网和等电位接地网保护的科学性和高效性。
电力系统接地与等电位浅谈
电力系统接地与等电位浅谈作者:赵胜颖来源:《科学与财富》2020年第28期摘要:随着大容量电站的不断投产和高电压线路逐渐增多,在电力系统中接地和等电位就显得愈发重要,只有不断完善电力系统的接地和等电位网,才能从本质上有效解决减少触电的几率,从而达到本质安全的目的。
关键词:接地;等电位;触电;安全引言:本文首先从接地与等电位的概念阐述,还强调了接地和等电位的区别,进而强调接地和等电位在整个电力系统中的作用,以及如何设置接地与等电位,可以有效降低触电的概率,保证设备与人员的安全。
1.概述:电力系统由于电磁干扰导致的设备损坏或者装置不正确动作时有发生,抗干扰问题越来越引起大家的重视,接地作为抗干扰的有效手段之一是十分重要的。
伴随着发电装机容量、发电量迅猛增长、电源结构不断调整和技术升级受到重视、电源容量的日益增长,随着我国电网不断扩容,对面板、机柜的接地和等电位的要求也越来越高。
2.概念、分类及作用:2.1等电位等电位是将裸露的导电部分与设备外部的电部分适当连,这意味着人们可以接触到的两个导体基本上是等电位的,从而避免触电的危险。
例如:在一个区域,如果一个地网是由导体等电位组成的,使它们成为等电位,它将成为等电位接地网,并且在网络中没有危险的电位差。
等电位联结是将建筑物内电气设备和其它设备的裸露金属和导电部分与人工或天然接地体和导体连接起来,以减小电位差,称为等电位连接。
等电位;连接包括总等电位连接、局部等电位连接和辅助等电位连接。
2.2接地電力系统和电气装置中性点、电气设备外露导电部分和装置外导电部分经由导体与大地连接,成为“接地”。
接地系统是将电气装置外露导电部分通过导电体与大地相连接的系统。
3.接地分类3.1接地的分类3.1.1功能性接地(1)工作接地。
根据系统运行需要的接地,如电流正常流过的中性点接地,这个接地系统通常有电流通过。
(2)逻辑接地。
等电位点或等电位面作为电子电路的参考电位,其结果只是逻辑接地,而不一定是接地零电位。
浅谈变电站二次设备等电位接地网的布设方案
浅谈变电站二次设备等电位接地网的布设方案摘要:针对当电力系统发生接地故障或遭遇雷击时,大电流会在主接地网内产生电压差,该电压差将对二次电缆产生干扰并影响二次设备的正常运行,布设二次设备等电位接地网能有效预防主接地网的不平衡电压引入到二次系统当中,进而引起二次设备损坏及误动情况的发生。
本文详细介绍了发电厂和变电站二次设备等电位接地网各组成部分的具体布设方法。
关键词:变电站;二次设备;等电位接地;地网敷设为了保证设备和人身的安全,必须尽量减少短路故障时地网的电位升,这要求最大程度的降低接地电阻值。
然而,与此对立的一个矛盾是随着电网的扩大系统单相短路电流也随着增大。
再加上近年新建的水电站和变电站都建在山上或其他土壤电阻率较高的地区。
因而接地阻值很难降低到标准要求的数值。
即使降低到标准要求值,也无法确保短路故障时二次回路不受干扰。
1二次等电位接地网的总体布置发电厂和变电站等电位接地网布设的位置应包括:中控室、继电保护室、机旁屏(含继电保护屏、自动控制屏、励磁屏、调速器电调屏、测量屏、故障录波屏等)、电流互感器(CT)和电压互感器(PT)端子箱、GIS汇控柜(开关站控制柜)。
其中,重点是继电保护所属屏柜,因其直接影响断路器出口操作回路。
等电位接地网采用截面积不小于100 mmz的专用铜排(缆),按屏柜方向布置。
屏柜内等电位接地网专用铜排至屏柜下的专用铜排(缆)采用截面不小于50 m耐的铜排(缆)可靠连接。
二次等电位网独立组网,但又与主接地网一点相连。
等电位接地网布设完毕后,必须与主接地网有一点连接。
若不与主接地网相连,等电位接地网接地电阻不能满足设计要求;若与主接地网多点相连,当主接地网电位不平衡时,不平衡电压也会被引入到等电位接地网中,从而对二次设备产生干扰。
2等电位接地网各部分的布设方式2.1二次屏柜内的接地方式二次屏柜内均应装设2根截面不小于100 mm2的接地铜排。
一根为主接地网铜排。
它直接与柜体焊接在一起,与电站主接地网相连。
等电位接地网
变电站等电位接地网的搭建和应用提要:本文对等电位接地网这一新概念,从术语定义区别于有电位差的接地网的概念注释入手,到等电位接地网的搭建实施,以及有关实际应用中仍采用不相适宜的做法存在的问题做了切合实际的介绍,并与传统的分功能单点接地方式进行了对比,说明了两者之间在适用对象、实施方法、作用原理及具体操做法上的不同。
另外,还根据本人在现场实施改进取得的实际效果也做了简要介绍,以加深对等电位接地网的认识和理解。
关键词:等电位接地网搭接地接地极0.前言电网保护及自动化控制系统已基本上实现了由工频模拟量测量装置向数字化微机型设备转化,而用于该设备的抗干扰措施并没有伴随着设备的转型而作相应的改进;原适用于工频测量装置的抗干扰措施,已不适应于今天对高频信号敏感的数字式微机装置抗干扰的需要。
因而,由电磁干扰导致的设备损坏和装置不正确动作问题,在人们认识或不认识中存在,并影响着电网的安全可靠的运行。
对此,国家电网公司调度通信中心依照国家电网公司颁发的《国家电网公司十八项电网重大反事故措施》(试行)文件精神,于2005年末颁发了“继电保护专业重点实施要求”(以下简称《重点要求》)。
其第6章:“二次回路抗干扰”中提出,要求在变电站搭建有别于原有的地下隐蔽接地设施的等电位接地网,构成一个适应于微电子设备抗干扰需要的基础设施。
然而,在人们的传统观念中,在有地电流注入接地网时会产生地电位差,为避免地电位差产生干扰,习惯于将安全地、工作地及零电位参考地分别汇集,然后经引线至一点接地的星形接地方式。
由于受这种旧有接地观念的支配,对等电位接地网这一电磁兼容新技术缺乏理解和认识,即使国家电网公司提出了敷设等电位接地网的要求,也难以做到正确实施。
在近期的某个变电站建设工程中,出现不同厂家的屏柜采用不同的接地方式,有的柜体与接地铜排直接连通;有的接地铜排与柜体用绝缘子隔离,即将屏柜接地(安全地)与电路接地(工作地)分开接地,此做法不符合搭建等电位接地网的要求。
变电站等电位接地网连接探讨
工业技术幸福生活指南 90 幸福生活指南 变电站等电位接地网连接探讨巫继方阜阳电力规划设计院有限公司 安徽 阜阳 236000摘 要:二次设备是电网安全运行的有力障,预制舱、二次室、开关室等是变电站中二次设备相对集中的区域,在这些地方安装二次等电位接地网对自动化设备进行保护,可以在变电站出现问题时保护二次系统的安全运行,有效避免电网安全事故的发生。
针对等电位接地网,由于历史及现实原因,相关规范对关键点的论述不够清晰,各专业人员对二次接地网规范的掌握程度也不尽相同,这就导致了二次等电位接地网现场连接混乱。
本文结合最新版反事故措施、国家相关规范、变电验收管理规定等相关文件要求,主要以110 kV、35 kV变电站为例,探讨了规程、规范对变电站等电位接地网要求的实际出发点及其与主接地网的连接方式,希望能对电力设计同行们具有参考意义。
关键字:二次等电位网;接地点;接地铜排;变电站的电磁环境比较复杂。
雷电侵入、系统短路等产生的冲击电流都不可避免的对接地网产生冲击。
站内一次设备的各项操作产生的电弧放电、电磁干扰等,都将对二次设备产生不可预知的影响。
无数的经验总结和理论分析都表明,安全可靠的等电位接地系统对二次设备的安全可靠运行起着至关重要的作用。
经过了数十年的积累,国内经验已相当丰富,而规程、规范就是这些经验的集大成者。
因此,设计过程中准确理解规程规范的出发点及重点要求就显得格外重要。
1二次等电位网的敷设要求 按照现有规范要求,110kV 及以上变电站二次室、开关室、预制舱等二次设备集中位置均应敷设二次等电位网。
等电位网应采用不小于100 的铜线或铜排,并与主接地网紧密相连。
2安装方式 2.1如图2.1-1所示,该图为按照国网A1-2方案设计的二次等电位网的施工示意图。
在实际的工程中,二次等电位网通常由敷设在二次电缆沟中的铜排首尾相连构成,铜排与电缆沟支架间由绝缘子隔开,使用四根不小于50 的铜缆与主接地网在电缆沟入口处一点连接。
变电站接地网设计概述
变电站接地网设计概述摘要:本文对变电站一次和二次接地网进行了描述,通过解读《国家电网公司十八项电网重大反事故措施》2018年修订版相关规定,对变电站接地网进行设计,确保接地系统的安全可靠性。
关键词:接地;变电站;二次接地网1、概述变电站根据接地功能不同分为一次接地网和二次等电位接地网,一次接地网主要以垂直接地极与水平接地极构成的人工接地网,将一次设备金属外壳、金属构架等可靠接地,以保证将故障电流或雷电流迅速释放入地,防止人身触电伤亡,保证电力系统正常运行,保护电气设备绝缘。
二次接地网是独立于一次接地网,主要是为了减少发生雷击、短路接地故障而产生的冲击电流进入一次接地网以及一次设备操作过电压时给二次系统带来的电磁干扰,避免继电保护装置误动作或遭受损坏。
以下是针对本次设计的35kV变电站接地系统改造设计的做法分析。
2、变电站接地网设计本次设计35kV变电站采用半户外布置,35kV配电室、6kV配电室及二次设备室、SVG室、接地变室布置于单独的平房内,35kV主变及构架户外布置,以下对变电站接地网进行论述:2.1、一次接地网设计在变电站站区内敷设以铜覆钢接地极和铜绞线接地线相结合的主接地网,将户外主变及金属构架等与主接地网可靠连接。
本次变电站35kV侧中性点采用不接地方式,6kV采用中性点经消弧线圈接地方式,消弧线圈容量为400kVA,额定电流为110A。
根据《交流电气装置的接地设计规范》公式4.2.1-2:R≤120/Ig,故接地电阻R≤120/1.25×110=0.87Ω,本站接地电阻取R≤0.5Ω。
变电站除变电站在水平接地网设置不大于10m间距的水平均压带,接地网外缘各角做成半径为5m的圆弧,并在接地网周围及交叉节点布置垂直接地极,以降低接地电阻。
为降低接触电势和跨步电压,在变电站主要进出大门口设一处与主接地网相连的帽檐式均压带。
站区内避雷针设独立三角形接地,保证与主接地网间距大于3m。
大型变电站防雷接地中接地网的重要性
大型变电站防雷接地中接地网的重要性白银川熊增荣摘要:防雷工程是建设中施工难度最大也是最重要的一个分项,由于环境的不同接地网的设计也存在较大差异。
系统的接地工程主要由接地体、连接线组成接地网络,其中影响接地效果的几个因素有土壤电阻率、接地体的选择.接地材料的防腐和合理的布划接地网络。
关键词:防雷工程接地网接地体接地网络引言接地网作为变电站交直流设备接地及防雷保护接地。
对系统的安全运行起着重要的作用。
由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。
随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。
因此,接地问题越来越受到重视。
变电站接地网因其在安全中的重要地位,一次性建设、维护困难等特点在工程建设中受到重视。
另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。
接地的概念《美国国家电气法规》NEC第100节对“接地”一词定义如下:电气回路或设备与大地,或与代替大地的导体之间的导电的连接,可以是有意的连接,也可以是无意的连接。
在配电回路或分支回路里,所有的回路和设备都通过导电连接来互相连通,从而减少它们之间的电位差,或将电位差限制到最小值。
在上述定义里,术语“地”是个关键。
接地的主要目的就是保证电气安全。
在电击防护和为接地故障电流提供返回电源通路方面接地是很重要的。
这两个问题都可将回路和地之间加以连接来解决。
通常将一接地棒打入地内就算与大地相连接了。
对于一个建筑物的配电系统,可在靠近电源进线处打一接地棒来接地。
将回路导线与地连接(Ground)或将设备接地(Grounding)可起到如下作用:(1) 提供设备与近处金属物体间的低阻抗连接,以减少人身电击危险;(2) 给接地故障电流提供返回电源的低阻抗通路,使熔断器或断路器得以动作;(3) 给雷电感应电流提供低阻抗的对地泄放通路;(4) 给静电电荷提供对地泄放通路,以防产生电火花或电弧。
地网简介接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。
变电站等电位接地网敷设原则
变电站等电位接地网敷设原则1敷设等电位电接地网原则1.1装有微机型继电保护及安全自动装置的110kV及以上变电站或发电厂均应敷设等电位接地网。
1.2应在主控室、保护室、敷设二次电缆的沟道、开关场的就地端子箱及保护用结合滤波器等处,使用截面不小于100mm2的裸铜排(缆)敷设与主接地网紧密连接的等电位接地网。
1.3分散布置的保护就地站、通信室与集控室之间,应使用截面不少于100mm2的、紧密与厂、站主接地网相连接的铜排(缆)将保护就地站与集控室的等电位接地网可靠连接。
1.4等电位接地网宜采用铜排方式。
1.5对主接地网采用铜地网的变电站,亦应按照上述原则敷设等电位接地网。
2等电位电网等电位接地网安装方式2.1控制室、保护室内等电位电网等电位接地网安装方式2.1.1原则要求2.1.1.1在主控室、保护室柜屏下层的电缆室、电缆沟内,按柜屏布置的方向敷设100mm2的专用铜排(缆),将该专用铜排(缆)首末端连接(目字结构),形成保护室内的等电位接地网。
2.1.1.2保护室内的等电位接地网必须用至少4根以上、截面不小于50mm2的铜排(缆)与厂、站的主接地网在电缆入口处一点连接,这四根铜排(铜缆)取自目字结构等电位接地网与主接地网靠近的位置。
2.1.1.3二次电缆沟道内敷设的接地铜排(缆)引入控制室、保护小室时,应电缆入口处二次电缆沟道内敷设的接地铜排(缆)通过截面不小于100mm2的铜排(缆)与主控室、保护室内等电位主接地网在电缆入口处一点就近联连通连接。
此接地点应与室内等电位接地网的接地点布置在一处。
2.1.1.4当主控室、保护室有多个电缆入口时,各二次电缆沟道内敷设的接地铜排(缆)应汇集到室内等电位接地网的接地点所处的电缆入口处,与主接地网在一点连通。
此接地点应与室内等电位接地网的接地点布置在一处。
2.1.2施工要求:2.1.2.1铜排与铜排的连接采用放热焊接。
2.1.2.2控制室、保护室内等电位接地网采用专用支架固定。
关于变电站等电位接地网连接方式的探讨
关于变电站等电位接地网连接方式的探讨作者:潘鹏来源:《中国新技术新产品》2018年第19期摘; 要:等电位接地网是遍布整个变电站二次系统的接地装置,可以在变电站出现接地短路故障时保护二次系统不受一次系统不平衡电压的干扰,避免二次设备损坏和误动的发生。
针对目前变电站等电位接地网施工较为混乱,各技术人员对等电位接地网敷设及连接的要求理解不一致的情况,本文结合施工及验收规范,国家电网公司反事故措施,标准工艺,变电验收管理规定等相关文件要求,探讨了变电站等电位接地网与屏柜、端子箱、汇控柜以及主接地网的连接方式,对相关专业技术人员指导变电站设计、施工、验收具有重要参考意义。
关键词:等电位接地网;主接地网;等电位屏蔽母线;接地母线中图分类号:TU856; ; ; ; ; 文献标志码:A0 引言《国家电网公司输变电工程标准工艺(三)工艺标准库》(2016年版)中规定屏柜(箱)内应分别设置接地母线和等电位屏蔽母线。
在日常施工中,施工人员往往对这两根母线的作用和连接设备混淆不清,导致各种错误的产生。
本文就等电位接地网、主接地网、屏柜(箱)内接地母线和等电位屏蔽母线,以及相关装置,电缆接地连接的方式进行探讨。
1 变电站等电位接地网施工存在的问题1.1 屏柜内接地和等电位铜排设置问题部分屏柜未遵守国网要求,仅设置一根铜排,有些加装绝缘子(等电位屏蔽母线),有些未绝缘(接地母线)。
部分屏柜的屏柜门、框架、保护装置外壳以及交流电源的地线与等电位屏蔽母线相连。
个别工程甚至将屏柜(箱)接地母线和等电位屏蔽母线短接。
1.2 室内等电位接地网设置及连接个别工程将室内等电位接地网直接敷设在钢制盘柜支架和电缆支架上,未加装绝缘子。
在与屏柜内等电位屏蔽母线连接时,错误连接接地母线;连接线采用50mm2裸铜缆,造成裸铜缆引下时与屏柜柜体及基础槽钢接触并导通。
在与主接地网连接时,未采用4根50mm2铜缆共点接地,而错误采用两根100mm2铜缆或1根200mm2铜缆接地。
变电站接地网设计
浅谈变电站接地网设计摘要:随着电力系统建设规模的不断扩大,接地系统的设计也变得越来越复杂。
本文结合变电站接地设计的重要性及设计原则,阐述了变电站接地是电站安全稳定运行的很重要的前提和保证,直接关系到电站人员和电气设备的安全,简要介绍变电站接地网电气设计的基本步骤和应注意的一些问题。
关键词:变电站;接地网设计0、引言随着电力系统容量的不断增加,流经地网的入地短路电流也变得愈来愈大,接地不良引起的事故问题也经常会发生,为了保证人身和设备的安全,维护电力系统的可靠运行,变电站中电气设备和电气装置等都宜接地,而接地网的合格与否将直接影响到防雷的效果,因此在变电站的设计中也应该把接地部分的设计放在重要位置。
1 土壤电阻率由地质专业用物探法和电探法分别多次测量土壤电阻率的多处分布情况,土壤电阻率是随着季节的变化而变化不定的,设计中应根据在不同季节测量而取的季节系数,来求得其平均值;为了给接地网的设计选择正确接地材料,在测量土壤电阻率的过程中,应调查当地的土壤条件对普通钢、镀锌钢等金属材料的电解腐蚀情况,应使接地材料既耐腐蚀又具有适当的机械强度。
2 接地材料及截面的选择目前世界上普遍采用的接地材料是铜和钢两种;而在我国,接地网所用的材质主要为普通碳钢,因为钢的成本比铜低得多,且矿藏量也比铜多,而我们在实际工程中,选择导体材料时要考虑导体的热稳定性、在土壤中的腐蚀速度、导电性、材料成本等,并应注意因地制宜的对接地材料进行经济技术比较而选择最合适的材料。
导体截面的选择首先可根据热稳定性要求来确定导体的最小截面,然后根据实际测得地网导体埋于地下的腐蚀速度和对接地网运行寿命的要求,计算得到导体截面积;最后将两者进行比较,考虑一定的裕度,取较大者的截面积。
3 接地电阻变电站接地网主要是敷设以水平接地体为主,垂直接地体为辅,且边缘闭合的人工接地网,接地电阻可由下式计算:其中,rn-任意形状边缘闭合接地网的接地电阻(ω);re-等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(ω);s 接地网总面积(m );d 水平接地极的直径或等效直径(m);h 水平接地极的埋设深度(m);l0 接地网的外缘边线总长度(m);l 水平接地极的总长度(m);p土壤电阻率(ωm)。
变电站内各类接地及其接地网
二 次设备 电磁 干扰 的有 效措 施 。因此 ,在变 电站 内
敷 设既独 立又 与一 次系 统紧密 联系 的二 次系统 接地
网 ( 即等 电位接地 网)是十分 必要 的 。
2 . 1 等 电位接 地网 与主接地 网的 关系
关柜 室 、电缆 沟 内须敷 设专用 的、可 见的专用保 护 接地 网的新 观 点。
关键词:等电位接地 网;保 护接地网;抗干扰接地网;中性点接地
Ea r t h a n d Ea r t h . e l e c t r o de Ne t wo r k i n Su bs t a t i o n
技 术 与 应 用
变 电站 内各 类接地 及其接 地 网
卢建 华 曹效义 菅晓清
(内蒙 古 电力勘 测设 计院 有 限责 任公 司 ,呼和 浩特 0 1 0 0 2 0 )
摘 要 就 变 电站 内几 类接地及 其接 地 网 的功 能作用 做 了阐述 ,基 于每 种接 地 网的功用 论述 了 其相 应 的连 接方 法和 敷设 要求 , 同时阐述 了站 内各 种须接地 设 备应 与哪 层地 网连接 。列 出几 类接 地 网之 间的 区别 ,指 导设 计及施 工过 程 中不得 混淆或 互相 替代 。 同时提 出 了变 电站 内继保 室、开
r e q u i r e me n t a bo u t e a r t h i n g i s e x p o un d a c c o r d i ng i t ’ S f un c t i o n.A ne w v i e w i s p r e s e n t e d t h a t he t de ini f t e
国家电网公司电力安全工作规程(变电站和发电厂电气部分)精简
《电业安全工作规程》(变电站和发电厂电气部分)国家电网公司目录1.总则2.高压设备工作的基本要求2.1一般安全要求2.2高压设备的巡视2.3倒闸操作2.4高压设备上工作3.保证安全的组织措施3.1在电气设备上工作,保证安全的组织措施3.2工作票制度3.3工作许可制度3.4工作监护制度3.5工作间断、转移和终结制度4.保证安全的技术措施4.1在电气设备上工作,保证安全的技术措施4.2停电4.3验电4.4 接地4.5悬挂标示牌和装设遮栏(围栏)5. 线路作业时变电站和发电厂的安全措施6.带电作业6.1一般规定6.2一般安全技术措施6.3等电位作业6.4带电断、接引线6.5带电短接设备6.6带电水冲洗6.7带电清扫机械作业6.8 感应电压防护6.9高架绝缘斗臂车作业6.10保护间隙6.11带电检测绝缘子6.12低压带电作业6.13带电作业工具的保管、使用和试验7. 发电机、同期调相机和高压电动机的检修、维护工作8. 在六氟化硫电气设备上的工作9.在停电的低压配电装置和低压导线上的工作10.二次系统上的工作11.电气试验11.1高压试验11.2使用携带型仪器的测量工作11.3 用钳形电流表的测量工作11.4 使用摇表测量绝缘的工作12.电力电缆工作12.1电力电缆工作的基本要求12.2电力电缆作业时的安全措施13.一般安全措施附录1 变电站(发电厂)倒闸操作票格式附录2 变电站(发电厂)第一种工作票格式附录3 电力电缆第一种工作票格式附录4 变电站(发电厂)第二种工作票格式附录5 电力电缆第二种工作票格式变电站(发电厂)工作任务单格式附录6 变电站(发电厂)带电作业工作票格式附录7 变电站(发电厂)事故应急抢修单格式附录8 二次工作安全措施票格式附录9 标示牌式样附录10 绝缘安全工器具试验项目、周期和要求附录11 带电作业高架绝缘斗臂车电气试验标准表附录12 登高工器具试验项目、周期和要求附录13 紧急救护法1) 室内高压设备的隔离室设有遮栏,遮栏的高度在1.7m以上,安装牢固并加锁者。
关于变电站等电位接地网连接方式的探讨
- 96 -工 程 技 术0 引言《国家电网公司输变电工程标准工艺(三)工艺标准库》(2016年版)中规定屏柜(箱)内应分别设置接地母线和等电位屏蔽母线。
在日常施工中,施工人员往往对这两根母线的作用和连接设备混淆不清,导致各种错误的产生。
本文就等电位接地网、主接地网、屏柜(箱)内接地母线和等电位屏蔽母线,以及相关装置,电缆接地连接的方式进行探讨。
1 变电站等电位接地网施工存在的问题1.1 屏柜内接地和等电位铜排设置问题部分屏柜未遵守国网要求,仅设置一根铜排,有些加装绝缘子(等电位屏蔽母线),有些未绝缘(接地母线)。
部分屏柜的屏柜门、框架、保护装置外壳以及交流电源的地线与等电位屏蔽母线相连。
个别工程甚至将屏柜(箱)接地母线和等电位屏蔽母线短接。
1.2 室内等电位接地网设置及连接个别工程将室内等电位接地网直接敷设在钢制盘柜支架和电缆支架上,未加装绝缘子。
在与屏柜内等电位屏蔽母线连接时,错误连接接地母线;连接线采用50mm 2裸铜缆,造成裸铜缆引下时与屏柜柜体及基础槽钢接触并导通。
在与主接地网连接时,未采用4根50mm 2铜缆共点接地,而错误采用两根100mm 2铜缆或1根200mm 2铜缆接地。
1.3 室外等电位网敷设及连接个别工程电缆沟内的等电位接地网铜缆在进入保护室内时未与主接地网连接,或直接连接至室内的等电位接地网,造成室内等电位接地网的多点接地。
在各户外端子箱、汇控柜处,除与箱柜内等电位屏蔽母线连接外,未与主接地网连接等。
1.4 控制电缆的电缆头接地线制作个别工程将控制电缆的屏蔽层与钢铠层短接后引出接地线,部分屏到屏的控制电缆屏蔽层仅一端接地,部分钢铠接地两端接地。
分开引出接地线,钢铠接地和屏蔽接地混接,造成接地母线和等电位屏蔽母线异常导通。
1.5 动力电缆的电缆头接地线制作个别工程将动力电缆的屏蔽层与钢铠层短接后引出接地线,部分动力电缆的屏蔽层接地线错误的与等电位接地网连接。
2 等电位接地网与相关设备的连接方式探讨2.1 等电位屏蔽母线是否应与屏体绝缘虽然在《继电保护及安全自动装置安装及验收规范》(GB/T50976—2014)(以下简称“国标50976”)第4.6.1条第1款和《关于印发《协调统一基建类和生产类标准差异条款(变电部分)》的通知》(办基建【2008】20号)第30条规定:屏柜内接地铜排可不与屏体绝缘。
变电站等电位的原理
变电站等电位的原理
变电站是电力系统中重要的组成部分,主要用于将高压电能变换为中压或低压电能,并将其输送到用户。
变电站等电位的原理是为了确保变电站内各设备及设施之间具有相同的电位,以维护人员安全和设备正常运行。
变电站等电位的原理主要包括以下几个方面:
1.接地系统:变电站内的设备及设施都会通过接地系统与大地相连接,形成接地网。
接地网的设计和布置应满足地电阻要求,并确保各个接地块之间接地电势相等,以维持等电位。
2.绝缘系统:变电站内的设备绝缘应符合相应规范要求。
合理的绝缘设计能够减少设备的漏电流,避免发生放电现象,从而保证设备安全运行和等电位。
3.金属设备互连:变电站内的金属设备(如金属框架、金属壳体等)应全部通过相应导体(如金属导条、接地导线等)互连,以保证设备具有相同的电位。
4.电压梯度控制:变电站内的电场分布应控制在合理范围内,避免发生高破坏电压。
合理的设备布局和导体的位置设计能够减少电场梯度,并保证设备之间的电位差不会太大,从而维持等电位。
综上所述,变电站等电位的原理包括接地系统的设计、绝缘系统的合理应用、金
属设备的互连和电压梯度的控制等,通过这些措施能够确保变电站内各设备及设施之间具有相同的电位,保障人员安全和设备正常运行。