八年级数学培优平行四边形

合集下载

八年级数学培优平行四边形

八年级数学培优平行四边形

20第讲平行四边形考点?方法?破译. ⒈理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明. ⒉理解三角形中位线定理并会应用.⒊了解平行四边形是中心对称图形经典?考题?赏析的延长作直线EF分别交DA中:如图在 ABCD,过对角线BD的中点O【例1】已知□N、F.、DC、BC的延长线于点E、M、线AB≌△,请加以证明;⑴观察图形并找出一对全等三角形:△⑵在⑴中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?【变式题组】01.如图,在 ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,□使BE =BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点上,点H在E、C两点之间,连接AE、AF.⑴求证:△ABE≌△FDA;⑵当AE⊥AF时,求∠EBH的度数.02.如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在□BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.是平行四边形.求证:四边形GEHF、CD上,以.点E在边AC,延长BC至D,使CD=BC中,03.如图,在△ABCAB=AC.,连接BG、DE作CG∥AB交EF于点GCE为邻边作CDFE.过点C□有怎样的数量关系?请说明理由;⑴∠ACB与∠DCG.⑵求证:△BCG≌△DCE⊥,BFBE的周长为20,⊥AD【例2】如图,ABCD□.ABCD则的面积为BECD,=2,BF=3.□变式题组】【的长.2.求EC,AE=3,DF=°,.如图,01ABCD中,BE⊥ADBF⊥CD,∠EBF=60□60°=2,∠MBN=BM的中点,N是DC的中点,=1,BN是ABCD02.在中,MAD□求BC的长.03.平行四边形ABCD中,AD=a,CD=b,过点B分别作AD边上的高H和CD边上的高H,ba.ABCD的面积AC=20厘米,求平行四边形已知H≥a, H≥b,对角线ba】【例3(1,0),A(0,1)B(-1,0),C如图:在平面直角坐标系中,有.三点三点构成平行四边形,请写出所B、C⑴若点D与A、有符合条件的点D的坐标;,求直线BD的解析式.⑵选择⑴中符合条件的一点D变式题组】【3x l,直线Bl交于x轴上同一点+3与01.如图,直线l:yy轴交于点A=-,与直线2122轴对称.与点A关于x交y轴于点C,且点C⑴求直线l的解析式;2⑵设D(0,-1),平行于y轴的直线x=t分别交直线l和l于点E、F.是否存在t21的值,使得以A、D、E、F为顶点的四边形是平行四边形,若存在,求出t 的值;若不存在,请说明理由.1x=上是y轴上一动点,在直线y,),B(30),P102.如图,在直角坐标系中,A(,02是否存在点Q,使A、B、P、Q为顶点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明理由.k的图象都经过点(1,1)1和反比例函数y.=x03.若一次函数y=2-2x⑴求反比例函数的解析式;⑵已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标;⑶利用⑵的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.【例4】如图1.在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE =HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N,判断?OMN的形状,请直接写出结论.问题二:如图3,在?ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断?AGD的形状并证明.【解法指导】出现中点,联想到三角形中位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转移.】变式题组【.01.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是 AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关DA EPF B C R02.如图,在△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=22,则MD的长为().A.3B.4C.5D.6【例5】如图1,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM 与BN相交于点P,求证:∠BPM=45°.【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件集中,从而构造全等三角形解决问题.【变式题组】AB=AC,延长边AB到点D,延长CA到点E,连接DE,ABC如图,01.在等腰△中,若AD=BC =CE=DE,求∠BAC的度数.演练巩固反馈提高□ ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC01.如图,边于点E,则BE等于()A.2cm B.4cmcmD.8C.6cm□ABCD中,AC,BD为对角线,BC02.如图,=6,BC边上的高为4,则阴影部分的面积为().24.12 DB.6 CA.3的延长线于点并延长,交ABBC边的中点,连接DE03.如图,在四边形ABCD中,E为是平行四边形,你认为四个条件中可选择添加一个条件,使四边形ABCD=BF,F,AB)的是(.CDE∠F=∠=∠C D..=BC B.CD=BF C∠AAAD□于ADBD交相交于点O,OE⊥ABCD中,AB≠AD,AC,BD2004.如图,在周长为cm的)的周长为(E,则△ABE点 .10cm.8cm D.4Acm B.6cm C得颜色的花,.某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫605那么下列说法错误的是,GH∥AD∥EF∥DC,BC∥如果有AB紫花,橙花种植面积一定相等B.A.红花,绿花种植面积一定相等蓝花,黄花种植面积一定相等D.C.红花,蓝花种植面积一定相等CF?BE=DCl,下面四个结论中?AB=; ⊥ , ∥.如图,06l lBE∥CFBA⊥lDC2112□□S④S?=S),其中正确的有(=S DCFADEBCFEABCD△△个 .1 .2 .3 .4A个B 个C个D07.已知四边形ABCD,有以下四个条件:?AB∥CD?AB=CD?BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种08.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=0BC,∠PEF=18,则∠PFE的度数为________向上翻折,ABEBE为折痕,将△中,点E在边AD中,以09..如图,平行四边形ABCD的长,则FC228,△FCB的周长为点A恰好落在CD上的F点,若△FDE的周长为_________ 为2.5BC向右平移将△ABC沿直线,AB=3,AC=4,°如图,在10.Rt△ABC中,∠BAC=90____ 则下列结论中成立的是,AE,DE相交于点G,连接AD,个单位得到△DEFAC与CGEAGD≌△ABED 四边形是平行四边;?△?平分∠ACEADADE为等腰三角形④?△□. AE边上一点,且AB=如图是ABCD中,EBC.11EADABC≌△求证(1).:△的度数.,求∠AED25,若(2).AE平分∠DAB∠EAC=°□ABCD内一点E满足ED⊥AD于D,且∠EBC=∠如图,12.EDC,∠ECB=45°,找出图中一相等的线段,并加以证明.条与EB顺时针旋转绕点D是AB边上的点,将线段DB是等边三角形,13.已知,如图,△ABCD. AE连接DC,于点DE,延长ED交ACF,60°得到线段DFCADE≌△⑴求证:△AHE的度数.求∠,BC 于点H连接AH,交GDBDCEHE⑵过点作∥交于点,。

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。

人教版八年级(下册)数学期末复习培优练习:《平行四边形》(五)

人教版八年级(下册)数学期末复习培优练习:《平行四边形》(五)

期末复习培优练习:《平行四边形》(五)1.已知,四边形ABCD是菱形,(1)若AB=5,则菱形ABCD的周长=;(2)如图①,AC、BD是对角线,则AC与BD的位置关系是.(3)如图②,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点G、F分别在CD、BC上,MG与NF相交于点E.求证:四边形AMEN是菱形.2.如图,在平行四边形ABCD中,点O是AB的中点,且OC=OD.(1)求证:平行四边形ABCD是矩形;(2)若AD=3,∠COD=60°,求矩形ABCD的面积.3.如图,AC是正方形ABCD的对角线,E、F分别为BC、CD边上的点,CE=CF,连接AE、AF.(1)求证:AE=AF;(2)连接EF,试证明:EF⊥AC.4.如图,平行四边形ABCD中,对角线AC,BD交于O,EO⊥AC,(1)若△ABE的周长为12cm,求平行四边形ABCD的周长;(2)若∠ABC=72°,AE平分∠BAC,试求∠DAC的度数.5.如图,在平行四边形ABCD中,点G在CD上,点H在AB上,且DG=BH,点E.F在AC 上,且AE=CF.连接GF,FH,HE,EG.(1)求证:△CFG≌△AEH;(2)若AG=GC,则四边形EHFG是什么特殊四边形?请说明理由.6.如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD边上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE.(2)若DE=BC,求证:四边形BECF是正方形.7.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥DC,CE∥DA.(1)求证:四边形ADCE是菱形;(2)连接DE,若AC=2,BC=2,求证:△ADE是等边三角形.8.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证:BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.9.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.(1)求∠AEG的度数;(2)求证:四边形BEGF是平行四边形.10.如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC分别于P、F点,连PC(1)若点E为BC的中点,求证:F点为DC的中点;(2)若点E为BC的中点,PE=6,PC=,求PF的长.参考答案1.解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形ABCD的周长=20;故答案为:20;(2)∵四边形ABCD是菱形,AC、BD是对角线,∴AC⊥BD,∴AC与BD的位置关系是垂直,故答案为:垂直;(3)证明:∵MG∥AD,NF∥AB,∴四边形AMEN是平行四边形,∵四边形ABCD是菱形,∴AB=AD,∵BM=DN,∴AB﹣BM=AD﹣DN,∴AM=AN,∴四边形AMEN是菱形.2.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠A+∠B=180°,∵点O是AB的中点,∴OA=OB,在△AOD和△BOC中,,∴△AOD≌△BOC(SSS),∴∠A=∠B=90°,∴平行四边形ABCD是矩形;(2)解:由(1)得:△AOD≌△BOC,∴∠AOD=∠BOC,∵∠COD=60°,∴∠AOD=∠BOC=60°,∵∠A=90°,∴∠ADO=30°,∴OA=AD=,∴AB=2OA=2,∴矩形ABCD的面积=AB×AD=2×3=6.3.证明:(1)在正方形ABCD中,则∠ACE=∠ACF=45°,在△AEC和△AFC中,∴△AEC≌△AFC(SAS),∴AE=AF;(2)∵CE=CF,∠ACE=∠ACF,∴EF⊥AC.4.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,∵EO⊥AC,又∴EO垂直平分AC,∴AE=EC,=AB+BE+AE=AB+BC=12cm∴C△ABE∴C=2(AB+BC)=2×12=24cm;四边形ABCD(2)∵AE=EC,∴∠EAC=∠ECA,又∵∠ABC=72°,AE平分∠BAC,∴∠BAE=∠EAC=∠ECA=,又∵AD∥BC,∴∠DAC=∠ECA=36°.5.证明:(1)∵在平行四边形ABCD中,AB∥CD,AB=CD,∴∠GCF=∠HAE,∵DG=BH,∴GC=AH,在△CFG与△AEH中,,∴△CFG≌△AEH(SAS);(2)∵△CFG≌△AEH,∴GF=EH,∠AEH=∠GFC,∴∠FEH=∠EFG,∴GF∥EH,∴四边形EGFH是平行四边形,∵AG=GC,∴∠GAE=∠GCF,在△GAE与△GCF中,∴△GAE≌△GCF(SAS),∴EG=GF,∴平行四边形EGFH是菱形.6.(1)证明:∵AD是BC边上的中线,AB=AC,∴BD=CD,∵BF∥EC,∴∠DBF=∠DCE,∵∠BDF=∠CDE,∴△BDF≌△CDE(ASA);(2)证明:∵△BDF≌△CDE,∴BF=CE,DE=DF,∵BF∥CE,∴四边形BECF是平行四边形,∵AB=AC,AD是中线,∴四边形BECF是菱形,∵DE=BC,DE=DF=EF,∴EF=BC,∴四边形BECF是正方形.7.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:∵在Rt△ABC中,∠ACB=90°,AC=2,BC=2,∴tan∠CAB==,∴∠CAB=30°,∵四边形ADCE是菱形,∴∠EAD=2∠CAB=60°,AE=AD,∴△ADE是等边三角形.8.解:(1)∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS),∴BE=DE.(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)如图所示,过C作CG⊥ON于G,过D作DH⊥CG于H,则∠CGB=∠AOB=90°,四边形DFGH是矩形,又∵∠ABC=90°,∴∠ABO+∠BAO=90°=∠ABO+∠CBG,∴∠BAO=∠CBG,又∵AB=BC,∴△ABO≌△BCG(AAS),∴BG=AO==12,CG=BO=5,同理可得△CDH≌△BCG,∴DH=CG=5,CH=BG=12,∴HG=5+12=17,∴DF=HG=12,GF=DH=5,∴BF=BG﹣GF=12﹣5=7,∴△BEF的周长=BF+EF+BE=BF+EF+DE=BF+DF=7+17=24,故答案为:24.9.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴∠AEG的度数为90°;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.10.证明:(1)∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠C=90°,∵AF⊥DE,∴∠APD=∠DPF=90°,∴∠ADP+∠DAF=90°,∠ADP+∠EDC=90°,∴∠DAF=∠EDC,在△ADF和△DCE中,,∴△ADF≌△DCE(AAS),∴DF=CE,∵EC=BC,BC=DC,∴DF=DC,∴F点为DC的中点;(2)延长PE到N,使得EN=PF,连接CN,∵∠AFD=∠DEC,∴∠CEN=∠CFP,又∵E,F分别是BC,DC的中点,∴CE=CF,∵在△CEN和△CFP中,∴△CEN≌△CFP(SAS),∴CN=CP,∠ECN=∠PCF,∵∠PCF+∠BCP=90°,∴∠ECN+∠BCP=∠NCP=90°,∴△NCP是等腰直角三角形,∴PN=PE+NE=PE+PF=,∴PF=﹣PE=8﹣6=2.。

八年级数学培优讲义(下册)

八年级数学培优讲义(下册)

第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,24BG,则△CEF的周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练三、平行四边形 (一)知识梳理: (二)方法归纳: (三)范例精讲:1.如图,△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,S △ABC =4cm 2,求阴影部分的面积.2.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A. B.C.D.3.如图,在□ABCD 中,过对角线BD 上一点P ,作EF∥BC,HG∥AB,若四边形AEPH 和四边形CFPG 的面积分别为S 1和S 2,则S 1与S 2的大小关系为( ) A.S 1>S 2B. S 1=S 2C.S 1<S 2D.不能确定4.如图,一个平行四边形被分成面积为S1,S2,S3,S4的四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,14S S 与23S S 的大小关系为( )A.1423S S S S >B.1423S S S S <C.1423S S S S =D.不能确定5.在□ABCD 中,点A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别AB 和CD 的五等分点,点B 1,B 2,和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 面积为( )A.2B.3/5C.5/3D.156.如图,在△ABC 中,AB=AC .M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM .若AB=13cm ,BC=10cm ,DE=5cm ,则图中阴影部分的面积是_____________.7.如图,四边形ABCD是一块某地示意图,EFG是流经这块菜地的水渠,水渠东边的地属张家承包,西边的地属李家承包,现村委会在田园规划中需将流经菜地的水渠取直,并要保持张、李两家的承包土地面积不变,请你设计一个挖渠的方案,就在给出的图形上画出设计示意图,并说明理由.8.已知等边△ABC的边长为a,P为△ABC内任意一点,且PD∥AB,PE∥BC,PF∥AC. 则,PD+PE+PF的值是一个定值吗?如果是,求出这个定值.9.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点. 求证:四边形EGFH是平行四边形.10.如图,以△ABC的三条边为边向BC的同侧作等边△ABP、等边△ACQ,等边△BCR.求证:四边形PAQR是平行四边形.11.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G. (1)探索AG与GD的数量关系,并证明你的结论.(2)求△DFG与四边形AEFG的面积比.12.如图,四边形ABCD中,对角线AC、BD相交于点O,AC=BD,M、N分别是AB、CD 的中点,MN分别交BD、AC于E、F. 求证:△OEF是等腰三角形.13.如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)求证:FG=12(AB+BC+AC).(2)如图(2),BD、CE分别是△ABC的内角平分线,探索线段FG与△ABC三边的数量关系?并证明你的结论.(3)如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.探索线段FG 与△ABC三边的数量关系?并证明你的结论.(四)思维训练:1.如图,小红作出了边长为1的第1个正三角形△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2、B 2、C 2,作出了第二个正三角形△A 2B 2C 2,算出第2个正△A 2B 2C 2的面积,用同样的方法作出了第3个正△A 3B 3C 3,算出第3个正△A 3B 3C 3的面积,依此方法作下去,由此可得第n 次作出的正△A n B n C n 的面积是 _________ .2.如图,四边形ABCD 中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,得到四边形A 2B 2C 2D 2,…,依此类推,得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为 ______ .3.如图所示,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交直线MN于E、F.求证:∠DEN=∠F.5.如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.6.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN 分别交AB,AC于P,Q.求证:AP=AQ.7.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.8.如图所示,M、N分别为平行四边形ABCD边BC、CD上的点,且MN∥BD,则△AND的面积△ABM的面积有什么关系?说明理由.9.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕A点顺时针旋转60°到△ABF的位置(如图2),连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.10.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△AB C”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).11.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)12.平行四边形ABCD中,AB=2 cm,BC=12 cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2 cm,点Q在边AD上,由点D向点A运动,速度为每秒1 cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为y cm2,用含t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是□ABCD面积的四分之三?13.在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.14.已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段CD与AF+BE之间所满足等量关系;(2)如图2,若AE=AD,你在(1)中得到的结论是否仍然成立,若成立,对你的结论加以证明,若不成立,请说明理由;15.已知:如图,在梯形ABCD中,AD∥BC,AD=24 cm,BC=30cm,点P自点A向D以1 cm/s的速度运动,到D点即停止.点Q自点C向B以2 cm/s 的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?16.如图a、b,在□ABCD中,∠BAD,∠ABC的平分线AF,BG分别与线段CD两侧的延长线(或线段CD)相交于点F,G,AF与BG相交于点E.(1)在图a中,求证:AF⊥BG,DF=CG;(2)在图b中,仍有(1)中的AF⊥BG,DF=CG成立.请解答下面问题:①若AB=10,AD=6,BG=4,求FG和AF的长;②是否能给□ABCD的边和角各添加一个条件,使得点E恰好落在CD边上且△ABE为等腰三角形?若能,请写出所给条件;若不能,请说明理由.17.小刘遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小刘是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小刘同学的思路回答:(1)图2中AH的长等于_________.(2)如果AC=a,EF=b,则AH的长等于_________.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由..。

第18章平行四边形(解答题培优)2022—2023学年人教版数学八年级下册

第18章平行四边形(解答题培优)2022—2023学年人教版数学八年级下册

人教版八年级下册数学:平行四边形(解答题培优)姓名:得分:日期:1、如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,并且DE⊥AB,若AB=4,求:(1)∠ABC的度数;(2)对角线AC的长;(3)菱形ABCD的面积.2、如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=40∘,求∠A的度数;(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.3、如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度F(0∘<F<90∘),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△FFF≌△FFF;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.4、如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.5、如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,求图中阴影部分的面积.6、一位同学拿了两块45∘的三角尺△FFF、△FFF做了一个探究活动:将△FFF的直角顶点M放在△FFF的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△FFF,则重叠部分的面积为 ______ ,周长为 ______ ;(2)将图1中的△FFF绕顶点M逆时针旋转45∘,得到图2,此时重叠部分的面积为 ______ ,周长为 ______ ;(3)如果将△FFF绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.7、如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求:①BO的长;②菱形AFCE的面积.8、如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:AC=BE;(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.9、如图,已知矩形ABCD的两条对角线相交于O,∠FFF=30∘,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.10、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,FF=√2,求EB的长.FF,E是AC的中点,11、如图,FF//FF,且FF=12(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△FFF添加什么条件,为什么?12、如图,在△FFF中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)的条件下,要是四边形ADCF为正方形,在△FFF中应添加什么条件,请直接把补充条件写在横线上______ (不需说明理由).13、如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.14、已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.15、如图,在△FFF中,∠FFF=90∘,FF⊥FF,FF平分∠BAC交CD于F,EG⊥AB于G,求证:四边形CEGF是菱形.16、如图,△FFF中,点O是边AC上一个动点,过O作直线FF//FF,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△FFF满足什么条件时,四边形AECF是正方形?17、已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.。

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。

培优班初二数学——平行四边形的性质和判定精品教案

培优班初二数学——平行四边形的性质和判定精品教案

机场西分校 白云区机场路又一居正门一楼86326306 精信教育个性化教案学生姓名备课时间 1月 10 日 年级科目 初二 教师姓名 陈波 课时 2 课时授课时间 3月 22 日课题 平行四边形的性质和判定教学 目标1.1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质4、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.重点难点 考点 1平行四边形对角线互相平分的性质,以及性质的应用.2综合运用平行四边形的性质进行有关的论证和计算.3平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学基本内容、知识大纲【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。

【梳理知识】1、 理解平行四边形的基本性质2、 熟练地进行平行四边形的判定和证明3、熟练地进行平行四边形的在实际问题中的应用【达标测试】平行四边形的判定,证明,与应用【家庭作业】平行四边形的巩固与复习家长 意见家长签名BDA CA CDB O【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。

【梳理知识】平行四边形的性质和判定1,基本概念1,平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(, 2,平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.二、平行四边形的判定定理(一)平行四边形的判定定理:两组对边分别相等的四边形是平行四边形符号表示: ∵AB =CD ,AD =BC∴四边形ABCD 是平行四边形 对角线互相平分的四边形是平行四边形符号表示:∵OA =OC ,OB =OD∴四边形ABCD 是平行四边形 让学生自己证明:两组对角分别相等的四边形是平行四边形例1 已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形.若将E 、F 移动到OA 、OC 的延长线上,其余条件不变,结论还成立吗?ABDOCA BDOC例2:已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC 。

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形

2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形 【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A . (1)求A 点坐标;(2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .2.如图,直线l 1:y =2x +2与x 轴交于点A ,与y 轴交于点C ;直线l 2:y =kx +b 与x 轴交于点B (3,0),与直线l 1交于点D ,且点D 的纵坐标为4.(1)不等式kx +b >2x +2的解集是 ;(2)求直线l 2的解析式及△CDE 的面积;(3)点P 在坐标平面内,若以A 、B 、D 、P 为顶点的四边形是平行四边形,求符合条件的所有点P 的坐标. 3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标.6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为______;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系xOy中,直线y=52x+b交x轴负半轴于点A,交y轴正半轴于点B(0,5),点C在x轴正半轴上,OC=4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.8.如图1,平面直角坐标系中,一次函数132y x=+的图象分别交x轴、y轴于点A,B,一次函数y x b=-+的图象经过点B,并与x轴交于点C,点P是直线AB上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________; (2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由.9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l 2的解析式和m 的值;(2)点P 在直线l 1上,当S △PBC =6时,求点P 坐标;(3)点P 是直线l 1上一动点,点Q 是直线l 3上一动点,当以P 、Q 、B 、C 为顶点的四边形是平行四边形时,求Q 点坐标.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标.13.如图,在平面直角坐标系中,过点(4,0)A -和(0,2)B 的直线与直线32y x =+相交于点C ,直线32y x =+与x轴相交于点D,点E在线段AB上,连接DE,CDE的面积为158.(1)求直线AB的解析式;(2)求点E的坐标;(3)点M是直线CD上的动点,点N在y轴上,是否存在点M、N,使得以点B、E、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.答案与解析【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标; (2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .【答案】(1)证明见解析;(2)作图见解析,点D 坐标为(0,4)或(4,2)或(-4,-4). 【分析】(1)根据勾股定理求出BC AB AC 、、,再根据勾股定理逆定理即可求证;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,再根据平行四边形的性质即可求得D 点的坐标.【解答】解:(1)由勾股定理可得:22215BC =+=、22(22)35AB =++=、222425AC =+=, 又∵222(5)(25)5+=,即222AC BC AB +=, ∴ABC 为直角三角形,90ACB ∠=︒, ∴AC ⊥BC ;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,如下图:①以AC BC 、为邻边时, 则//AC BD 、AC BD =又∵A 点坐标为(2,3),C 点坐标为(0,﹣1), C 点向右平移了2个单位,向上平移了4个单位,∴点D 可以由点B 右平移了2个单位,向上平移了4个单位得到, 又∵B 点坐标为(﹣2,0) 得到点D 坐标为(0,4); ②以AB BC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) B 点向右平移了4个单位,向上平移了3个单位∴点D 可以由点C 右平移了4个单位,向上平移了3个单位 又∵C 点坐标为(0,﹣1) 得到点D 坐标为 (4,2); ③以AB AC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) A 点向左平移了4个单位,向下平移了3个单位∴点D 可以由点C 左平移了4个单位,向下平移了3个单位 又∵C 点坐标为(0,﹣1)得到点D坐标为(-4,-4).综上所述,点D坐标为(0,4)或(4,2)或(-4,-4).【点评】此题主要考查了勾股定理以及逆定理的应用、平行四边形的性质,熟练掌握相关基本性质,利用平行四边形的性质求解点的坐标是解题的关键.2.如图,直线l1:y=2x+2与x轴交于点A,与y轴交于点C;直线l2:y=kx+b与x轴交于点B(3,0),与直线l1交于点D,且点D的纵坐标为4.(1)不等式kx+b>2x+2的解集是;(2)求直线l2的解析式及△CDE的面积;(3)点P在坐标平面内,若以A、B、D、P为顶点的四边形是平行四边形,求符合条件的所有点P的坐标.【答案】(1)x<1(2)2(3)P(-3,4)或(5,4)或(1,-4)【分析】(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;(2)将点B、D的坐标代入y=kx+b,再求出点E,点C的坐标,再由三角形面积公式即可求解;(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.(1)对于直线l1:y=2x+2,交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),从图象看,当x<1时,kx+b>2x+2,故答案为:x<1;(2)将点B (3,0)、D (1,4)代入y =kx +b 得:034k b k b +⎧⎨+⎩==, 解得:26k b -⎧⎨⎩==, 故直线l 2:y =-2x +6,当x =0时,y =6,(0,6)E对于直线l 1:y =2x +2,当x =0时,y =2,∴(0,2)C∴624EC =-=∴1141222CDE D S CE x ∆=⨯⨯=⨯⨯= (3)分别过点A 、B 作l 2、l 1的平行线交于点P ″,交过点D 作x 轴的平行线于点P 、P ′,对于直线l 1:y =2x +2,当y =0时,x =-1,∴(1,0)A -∵B (3,0)3(1)4AB =--=①当AB 是平行四边形的一条边时,此时符合条件的点为下图中点P 和P ′,则AB =4=P A =P ′D ,故点P 的坐标为(-3,4)或(5,4);②当AB 是平行四边形的对角线时,此时符合条件的点为图中点P ″,DA 平行且等于BP “,由平移可知,点P ″(1,-4);综上,点P (-3,4)或(5,4)或(1,-4).【点评】本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3)要注意分类求解,避免遗漏.3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由. 【答案】(1)6y x =-+(2)点P 的坐标为(0,6)或(12,-6)(3)存在,点C 的坐标为(6,-6)或(6,6)或(-6,18)【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,由点M 为线段OB 的中点可得出点M 的坐标,根据点A ,M 的坐标,利用待定系数法即可求出直线AM 的函数解析式;(2)分两种情况:①由点M 为线段OB 的中点.可得ABM AOM S S =△△,即可得出点P 于点M 重合,②根据ABP PBM ABM PBM AOM S S S S S =-=-,即可得答案;(3)存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,分三种情况:①以AM ,BC 为对角线;②以AB ,CM 为对角线;③以AC ,BM 为对角线,根据平移的性质求解即可.(1)解:当x =0时,y =-2x +12=12,∴点B 的坐标为(0,12),当y =0时,-2x +12=0,解得:x =6,∴点A 的坐标为(6,0).∵点M 为线段OB 的中点,∴点M 的坐标为(0,6).设直线AM 的函数解析式为y =kx +b (k ≠0),将A (6,0),M (0,6)代入y =kx +b ,得606k b b +=⎧⎨=⎩,解得:16k b =-⎧⎨=⎩ ∴直线AM 的函数解析式为y =-x +6;(2)解:①∵点M 为线段OB 的中点.∴ABM AOM S S =△△,∴点P 于点M 重合,∴点P 的坐标为(0,6);②如图,∵点A 的坐标为(6,0).点M 的坐标为(0,6).∴12AOM S =△×6×6=18, ∵ABP AOM S S =△△,∴18ABP PBM ABM PBM AOM S S S S S =-=-=,设点P 的坐标为:(x , -x +6),∴12×6x -18=18,解得x =12, ∴点P 的坐标为(12,-6);∴点P 的坐标为(0,6)或(12,-6);(3)解:分三种情况考虑(如图所示):存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,∵A (6,0),B (0,12),M (0,6),①以AM ,BC 为对角线,根据平移的性质,得点C (6,-6),②以AB ,CM 为对角线,根据平移的性质,得点C (6,6),③以AC ,BM 为对角线,根据平移的性质,得点C (-6,18),综上,点C 的坐标为(6,-6)或(6,6)或(-6,18).【点评】本题是一次函数综合题,考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及平行四边形的性质,解题的关键是注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由. D ,关于1l D 的坐标和点,进而求得DEF 的最小值为(3)求出点旋转后的对应点的坐标,从而求出情况,结合根据平行四边形的性质,求得点)5-代入y =设点D 的坐标为1,22x x ⎛⎫- ⎪⎝⎭, ∵DH y ∥轴,∴点(),1H x x +,∵10DH =,∴()112102x x ⎛⎫+--= ⎪⎝⎭,解得:14x =, ∴()14,5D ,()14,15H ,作点D 关于x 轴的对称点()14,5D '-,关于1l 的对称点D '',连接D D ''',D H ''交x 轴于E ,交1l 于F ,则()4,15D '',,10AHD D HF D H DH ''''∠=∠==,DEF 的周长最小,最小值为∶ '"D D ,∵直线1:1l y x =+由直线y x =沿y 轴向上平移1个单位得到的,且直线y x =为第一三象限的角平分线, ∴直线1:1l y x =+与坐标的夹角都为45︒,∴45AHD D HF ''∠=∠=︒,∴90D HD ''∠=︒,∵DH y ∥轴,∴点D ''的横坐标为14104-=,∴点D ''的坐标为()4,15,∴()()22144155105D D '''=-++=,∴DEF 的周长最小值为∶105;(3)如图,∵点()()4,0,0,2M N -,∴点M 和点N 旋转后的对应点()()0,4,2,0M N '',∴直线3l 的解析式为∶24y x =-+,当2x =-时,()2248y =-⨯-+=,∴()2,8P -,当PCMQ 时,∵()()24610,80513⎡⎤⎡⎤-+--=+--=⎣⎦⎣⎦,∴()10,13Q ,当CMPQ 时,∵()21012,853--=--=,∴()12,3Q -,当PCQM 时,∵()46202---=,5021822-+-=-, ∴210,2Q ⎛⎫- ⎪⎝⎭, 综上所述∶点()10,13Q 或()12,3Q -或210,2Q ⎛⎫- ⎪⎝⎭. 【点评】本题考查了用待定系数法求一次函数的解析式,平行四边形的分类,勾股定理等知识,解决问题的关键是作对称,确定点E ,F 的位置.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F 、G 为顶点的四边形为菱形,请求出m 的值并写出点G 的坐标. 【答案】(1)103EF = (2)点G 的坐标为()8,6-或()8,6或()8,6-(3)4m =,点G 的坐标为:()8,6-或73m =,点G 的坐标为328,3⎛⎫ ⎪⎝⎭或6m =,点G 的坐标为()8,6-【分析】(1)由矩形的性质得AD =BC =OC =10,CD =AB =OA =6,∠AOC =∠ECF =90°,由折叠性质得EF =DE ,AF =AD =10,则CE =6-EF ,由勾股定理求出BF =OF =8,则FC =OC -OF =2在Rt △ECF 中,由勾股定理得出方程,解方程即可;(2)分三种情况,当AB 为平行四边形的对角线时;当AF 为平行四边形的对角线时;当BF 为平行四边形的对角线时,分别去点G 的坐标即可;(3)分三种情况讨论,由菱形的性质得OA =AF =10,则矩形ABCD 平移距离m =OA -AB =4,即OB =4,设FG 交x 轴于H ,证出四边形OBFH 是矩形,得FH =OB =4,OH =BF =8,则HG =6,即可得出答案.(1)四边形ABCD 是矩形, 10AD BC OC ∴===,6CD AB OA ===,90AOC ECF ∠=∠=︒,由折叠性质得:EF DE =,10AF AD ==,6CE CD DE CD EF EF ∴=-=-=-,由勾股定理得:22100368BF OF AF OA ==-=-=,1082FC OC OF ∴=-=-=,在Rt ECF △中,由勾股定理得:222EF CE FC =+, 即:222(6)2EF EF =-+,解得:103EF =; (2)如图1所示:当AB 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6-;当AF 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6;当BF 为平行四边形的对角线时,6FG AB ==,FG AB ∥, ∴点G 的坐标为:()8,6-;综上所述,点G 的坐标为()8,6-或()8,6或()8,6-;(3)如图2,OA FG∥∴∠=FBO∴四边形∴=FH OB10∴=HG6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB 的长度为______;(2)求直线BD 所对应的函数表达式;(3)若点Q 在线段BD 上,在线段BC 上是否存在点P ,使以D ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由. 【答案】(1)20(2)直线BD 所对应的函数表达式为220y x =-(3)存在,满足条件的点P 的坐标是(10,12)【分析】(1)由矩形的性质可得出点B 的坐标及OA ,AB 的长,利用勾股定理可求出OB 的长;(2)设AD a =,则DE a =,8OD a =-,1064OE OB BE =-=-=,利用勾股定理可求出a 值,进而可得出点D 的坐标,再根据点B ,D 的坐标,利用待定系数法可求出直线BD 所对应的函数表达式; (3)过点E 作EF x ⊥轴于点F ,由90BED BAD ∠=∠=︒,可得出18090OED BED ∠=︒-∠=︒,利用面积法可求出EF 的长,在Rt ΔOEF 中,利用勾股定理可求出OF 的长,进而可得出点E 的坐标,根据PE BD ∥,求出直线PE 的解析式,根据点E 的纵坐标求出其横坐标即可.(1)解:由题意,得:点B 的坐标为(16,12),16OA =,12AB OC ==,2222161220OB OA AB ∴=+=+=,故答案为:20;(2)解:设AD a =,则DE a =,16OD a =-,20128OE OB BE =-=-=,222OD OE DE =+,即222(16)8a a -=+,6a ∴=,10OD ∴=,∴点D 的坐标为(10,0).设直线BD 所对应的函数表达式为(0)y kx b k =+≠,将(16,12)B ,(10,0)D 代入y kx b =+,得:1612100k b k b +=⎧⎨+=⎩, 解得:220k b =⎧⎨=-⎩, ∴直线BD 所对应的函数表达式为220y x =-;(3)解:存在,理由:过点E 作EF x ⊥轴于点F ,如图所示.90BED BAD ∠=∠=︒,18090OED BED ∴∠=︒-∠=︒1122ODE S OD EF OE DE ∆∴=⋅=⋅, 8624105OE DE EF OD ⋅⨯∴===, 在Rt ΔOEF 中,222224328()55OF OE EF =-=-=, ∴点E 的坐标为32(5,24)5, 由PE BD ∥,设直线PE 的解析式为:2y x b =+,把32(5E ,24)5代入得:2432255b =⨯+,解得:8b =-, ∴直线PE 的解析式为:28y x =-,令12y =,则1228x =-,解得:10x =,∴存在,点P 的坐标为(10,12).【点评】本题属于一次函数综合题,考查了矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是灵活运用性质解决问题.7.如图,在平面直角坐标系xOy 中,直线y =52x +b 交x 轴负半轴于点A ,交y 轴正半轴于点B (0,5),点C 在x 轴正半轴上,OC =4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【答案】(1)y=﹣54x+5(2)P(43,103)(3)D的坐标为(1,0)或(﹣11,0)或(7,0)【分析】(1)由点C在x轴正半轴上,OC=4,得C(4,0),用待定系数法即得直线BC的解析式;(2)过P作PH⊥AC于H,设P(n,﹣54n+5),PH=﹣54n+5,将B(0,5)代入y=52x+b可得y=52x+5,A(﹣2,0),根据△ABP的面积等于△AOB的面积,列方程计算即可;(3)由A(﹣2,0),P 410 33(,)代入得直线AP解析式为y=x+2,设E(p,p+2),D(q,0),又B(0,5),C(4,0),分3种情况:①若ED,BC为对角线,则ED,BC的中点重合,可得425p qp+=⎧⎨+=⎩,即可解得D(1,0);②若EB,DC为对角线,4250p qp=+⎧⎨++=⎩,D(﹣11,0);③若EC,DB为对角线,425p qp+=⎧⎨+=⎩,D(7,0).(1)∵点C在x轴正半轴上,OC=4,∴C(4,0),由B(0,5)设直线BC解析式为y=mx+5,将C(4,0)代入得:0=4m+5,解得m=﹣54,∴直线BC 的解析式为y =﹣54x +5; (2)过P 作PH ⊥AC 于H ,如图:设P (n ,﹣54n +5),则PH =﹣54n +5, 将B (0,5)代入y =52x +b 得: b =5,∴y =52x +5, 在y =52x +5中,令y =0得x =﹣2, ∴A (﹣2,0),∴AC =6,∴S △ABC =12AC •OB =12×6×5=15,S △APC =12AC •PH =12×6×(﹣54n +5)=﹣154n +15, ∵△ABP 的面积等于△AOB 的面积,∴15﹣(﹣154n +15)=12×2×5, 解得n =43, ∴P 41033(,);(3)存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形,理由如下:设直线AP 解析式为y =kx +t ,将A (﹣2,0),P 41033(,)代入得: 2041033k t k t -+=⎧⎪⎨+=⎪⎩, 解得12k t =⎧⎨=⎩,∴直线AP 解析式为y =x +2, 设E (p ,p +2),D (q ,0),又B (0,5),C (4,0),①若ED ,BC 为对角线,则ED ,BC 的中点重合,如图:∴425p q p +=⎧⎨+=⎩, 解得31p q =⎧⎨=⎩, ∴D (1,0);②若EB ,DC 为对角线,同理可得:4250p q p =+⎧⎨++=⎩, 解得711p q =-⎧⎨=-⎩, ∴D (﹣11,0);③若EC ,DB 为对角线,∴425p q p +=⎧⎨+=⎩, 解得37p q =⎧⎨=⎩, ∴D (7,0),综上所述,D 的坐标为(1,0)或(﹣11,0)或(7,0).【点评】本题考查一次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用等知识,解题的关键是利用平行四边形对角线互相平分列方程解决问题.8.如图1,平面直角坐标系中,一次函数132y x =+的图象分别交x 轴、y 轴于点A ,B ,一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,点P 是直线AB 上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________;(2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由. 【答案】(1)3y x =-+,(3,0);(2)P (2,4);(3)存在,点N 的坐标为(0,3)或(-12,-3).【分析】(1)求出x =0时,1332y x =+=可得点B 坐标,然后利用待定系数法求出直线BC 的表达式,令y =0,求出x 的值,即可得到点C 的坐标; (2)求出点A 坐标可得AC =9,设P (x ,132x +),根据ACP △的面积为18构建方程求出x 的值即可; (3)求出点Q 坐标,可得PQ =3,根据平行四边形的性质可得PQ MN ∥且PQ =MN =3,进而可得点N 的纵坐标为3或-3,然后代入直线BC 的解析式即可求出点N 的坐标.(1)解:在一次函数132y x =+中,当x =0时,y =3, ∴B (0,3),∵一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,∴3b =,∴直线BC 的表达式为3y x =-+,当y =0时,即03x =-+,解得:x =3,∴C (3,0),故答案为:3y x =-+,(3,0);(2)9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 【答案】(1)122y x =-+ (2)存在,D 点坐标为73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭【分析】(1)由待定系数法求直线的解析式即可;(2)设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m ,再分两种情况讨论:当AD 为平行四边形对角线时;当AE 为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:设直线2l 的解析式为y kx b =+,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C , 3240k b k b ⎧+=⎪∴⎨⎪+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩,直线2l 的解析式为122y x =-+; (2)解:存在,直线1l :112y x =+与x 轴交于点B , ()2,0B ∴-,设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m , 当AD 为平行四边形对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 2012213202222t t m -++⎧=⎪⎪∴⎨-++⎪+=⎪⎩,解得35t m =-⎧⎨=⎩, 73,2D ⎛⎫∴- ⎪⎝⎭; ③当AE 为平行四边形的对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 0122231202222t m t +-+⎧=⎪⎪∴⎨+-++⎪=⎪⎩,解得31t m =⎧⎨=-⎩, 13,2D ⎛⎫∴ ⎪⎝⎭; 综上所述:存在,73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭ . 【点评】本题是一次函数综合题,考查待定系数法求函数的解析式,一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l2的解析式和m的值;(2)点P在直线l1上,当S△PBC=6时,求点P坐标;(3)点P是直线l1上一动点,点Q是直线l3上一动点,当以P、Q、B、C为顶点的四边形是平行四边形时,求Q点坐标.【答案】(1)y=12-x+2;m=6;(2)P点坐标为(12-,214)或(72-,34);(3)Q点坐标为(283,4)或(203-,4)或(4,4)【分析】(1)由待定系数法求直线的解析式即可;(2)分点P在线段F A上和在线段DA上时,两种情况讨论,利用分割法和三角形面积公式列方程,再分别求P点坐标即可;(3)设P(t,32t+6),Q(m,4),再分三种情况讨论:①当PQ为平行四边形的对角线时;②当PB为平行四边形对角线时;③当PC为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:∵A(-2,3)在y=32x+m上,∴-3+m=3,∴m=6,∴y=32x+6,设直线l2的解析式为y=kx+b,∴4023k bk b+=⎧⎨-+=⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=12-x+2;(2)解:由(1)可得B(0,2),D(0,6),F(-4,0),∵C(4,0),∴S△DBC=12×4×4=8>6,S△FBC=12×8×2=8>6,∴点P一定在线段FD上,当点P在线段F A上时,连接PO,设点P的坐标为(a,32a+6),S△PBC=S△POB+S△COB-S△POC=12×2a+12×2×4-12×4×362a+=6,整理得362a+=-12a-1,即362a+=-12a-1或362a+=12a+1,解得:a=-72或a=-5(舍去),∴点P的坐标为(-72,34);当点P 在线段DA 上时,连接PO ,设点P 的坐标为(a ,32a +6),S △PBC = S △POC -S △POB -S △COB =12×4×362a +-12×2a -12×2×4=6,整理得362a +=5-12a , 即362a +=5-12a 或362a +=12a -5, 解得:a =-12或a =-11(舍去),∴点P 的坐标为(-12,214);综上所述:P 点坐标为(-12,214)或(-72,34);(3)解:由(1)可得B (0,2),D (0,6), ∴E (0,4),∴直线l 3的解析式为y =4, 设P (t ,32t +6),Q (m ,4),①当PQ 为平行四边形的对角线时, 436422t m t +=⎧⎪⎨++=⎪⎩,解得163283t m ⎧=-⎪⎪⎨⎪=⎪⎩, ∴Q (283,4); ②当PB 为平行四边形对角线时, 436242t m t =+⎧⎪⎨++=⎪⎩,解得83203t m ⎧=-⎪⎪⎨⎪=-⎪⎩,∴Q (-203,4); ③当PC 为平行四边形的对角线时,43662t mt +=⎧⎪⎨+=⎪⎩,解得04t m =⎧⎨=⎩, ∴Q (4,4);综上所述:Q 点坐标为(283,4)或(-203,4)或(4,4). 【点评】本题考查一次函数的图象及性质、平行四边形的性质、坐标与图形,熟练掌握一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标. 【答案】(1)()4,2B (2)132y x =-+(3)15,2⎛⎫⎪⎝⎭【分析】(1)根据AB OC ∥,可得点B 的横坐标为4,再代入134=-+y x ,即可求解;(2)过C 点作CN AB ⊥于N ,可得到DCM DMC ∠=∠,从而得到5CD MD ==,再求出3OC =,DN =3,从而得到532NM =-=,继而得到AM =1,可得到点()4,1M ,即可求解; (3)连接OD ,先求出D 点坐标为()4,6,可得直线OD 解析式为32y x =,设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q点坐标为3,2b b ⎛⎫⎪⎝⎭,然后根据平行四边形对角线互相平分,即可求解.(1)解:∵()4,0A ,AB OC ∥, ∴点B 的横坐标为4,把4x =代入134=-+y x 中,得2y =,∴()4,2B . (2)解:如图,过C 点作CN AB ⊥于N ,∵AB OC ∥, ∴OCM DMC ∠=∠,∵点O '为点O 关于直线l 的对称点, ∴DCM OCM ∠=∠, ∴DCM DMC ∠=∠, ∴5CD MD ==, ∵134=-+y x ,当0x =时,3y =, ∴点C (0,3), ∴3OC =, ∵4CN OA ==,∴2222543DN CD CN =-=-=, ∴532NM =-=,∴321AM AN NM =-=-=, ∴()4,1M ,设直线l 解析式y kx b =+把()0,3C ,()4,1M 代入得: 341b k b =⎧⎨+=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线l 的解析式为:132y x =-+.(3)解:如图,连接OD ,∵156AD AM MD =+=+=,AD OC ∥,A 点坐标为()4,0, ∴D 点坐标为()4,6,设OD 直线解析式为y kx =,将()4,6代入可得46k =,解得32k , ∴直线OD 解析式为32y x =, ∵点P 在直线l 上运动,点Q 在直线OD 上运动,∴设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q 点坐标为3,2b b ⎛⎫⎪⎝⎭,∵四边形PBCQ 是平行四边形, ∴平行四边形对角线互相平分, 4022312332222b a b a ++⎧=⎪⎪⎨+-++⎪=⎪⎩,解得51a b =⎧⎨=⎩, 当5a =时,111353222a -+=-⨯+=,∴P 点坐标为15,2⎛⎫⎪⎝⎭.【点评】本题主要考查了一次函数与四边形的综合题,熟练掌握一次函数的图象和性质,平行四边形的性质是解题的关键.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标. 【答案】(1)52m =, 直线2l 为1322y x =- (2)()1,0Q -或()7,0.Q(3)点D 的坐标为(5,1)或(1,-1).【分析】(1)根据待定系数法先求解1l 的解析式,再写出2l 的解析式为112y x m =+-,再利用待定系数法即可得到答案;(2)由2l 的解析式,令y =0,即可求得C 的坐标,设(),0,Q x 由4,CBQS = 可得1324,2x -⨯= 再解方程可得答案;(3)分两种情况,根据平行四边形的性质以及平移的规律即可求得D 的坐标. (1)解:设直线1l 的表达式为y =kx +b , ∵直线1l 经过点A (0,1)、B (2,2),∴122b k b =⎧⎨+=⎩,解得121k b ⎧=⎪⎨⎪=⎩, ∴直线1l 的表达式为112y x =+; 将直线1l 向下平移m 个单位得到直线2l ,则直线2l 为112y x m =+-,∵直线2l 经过点(-1,-2),∴()12112m -=⨯-+-,解得52m =,∴直线2l 为1322y x =-, (2)令y =0,则130,22x -= 解得x =3,∴点C 的坐标为(3,0);设(),0,Q x ∵4,CBQS =∴1324,2x -⨯= 解得:=1x -或7,x = ∴()1,0Q -或()7,0.Q (3)由题意可知AB CD ∥,如图,当A 、B 、C 、D 四点构成平行四边形1ABD C 时,1AB CD =,。

【学生卷】初中数学八年级数学下册第十八章《平行四边形》经典题(培优)(1)

【学生卷】初中数学八年级数学下册第十八章《平行四边形》经典题(培优)(1)

一、选择题1.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .242.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .43.下列命题为假命题的是( )A .直角三角形斜边上的中线等于斜边的一半.B .两边及其一边的对角对应相等的两个三角形全等.C .等边三角形一边上的高线与这边上的中线互相重合.D .到线段两端点距离相等的点在这条线段的垂直平分线上.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 5.如图,ABE 、BCF 、CDG 、DAH 是四个全等的直角三角形,其中,AE =5,AB =13,则EG 的长是( )A .2B .2C .7D .36.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AD ∥BC ,AB =CD C .OA =OC ,OB =OD D .AB =CD ,AD =BC7.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个8.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形9.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤ 10.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,EF ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .1211.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 12.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.513.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .414.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒15.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题16.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的图形就用了这种分割方法若5AE =,正方形ODCE 的边长为1,则BD 等于___________.18.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)19.菱形有一个内角为120︒,较长的对角线长为3,则它的面积为__________. 20.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,且BD CE =,连接,CD DE ,点,,M N P 分别是,,DE BC CD 的中点,34PMN ∠=,则MPN ∠的度数是_______.21.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 22.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.23.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.24.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.25.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.26.如图,在正方形ABCD 中,AB=6,E 是CD 上一点,BE 交AC 于点F ,连接DF .过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G .∠ABE 的平分线交AD 于点M ,当满足四边形AGDF 面积2BCE S =△时,线段AM 的长度是_______.三、解答题27.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.第二步:固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,请写出线段AM 与CN 始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.28.已知:如图,在ABCD 中,4,6,AC BD CA AB ==⊥,求ABCD 的周长和面积.29.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案30.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.。

人教版八年级下册数学 第十八章 平行四边形 单元培优测试题

人教版八年级下册数学 第十八章  平行四边形  单元培优测试题

人教版八年级下册数学第十八章平行四边形单元培优测试题一.选择题(本大题共10小题,每小题3分,共30分)1.如图,▱ABCD的对角线AC、BD相交于点O,下列说法错误的是()A.AD∥BC B.∠ABC=∠ADC C.OA=OC D.∠ACD=2∠ABD2.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直3.如图,在矩形ABCD纸片中,E为AD上一点,将△CDE沿CE翻折至△CFE.若点F恰好落在AB 上,AF=3,BC=9,则AE=()A.9B.32C.23D.44.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90°时,它是矩形5.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,=()OH的长为3,则S菱形ABCDA.12B.24C.36D.486.如图,菱形ABCD的对角线AC.BD相交于点O,过点D作DH⊥AB于点H,连接CH,若AB=2,AC=23,则CH的长是()A.5B.3C.7D.47.如图,矩形AEFG 的顶点E、F 分别在菱形ABCD 的边AB 和对角线BD 上,连接EG、CF,若EG=5,则CF 的长为()A.4B.5C.5D.78.如图,在平面直角坐标系中,AD∥BC∥x 轴,AD=BC=7,且A(0,3),C(5,﹣1),则四边形ABCD 的面积为()A.14B.21C.28D.309.如图,正方形ABCD 和正方形DEFG 中,A,D,E 在同一条直线上,AD=2DE,M 为BC 的中点,延长FG 交AB 于点N,连接MN,CN,CF,连接FM 分别交CN,CD 于点P、Q,下列说法:①△FQG≌△MQC;②∠BCN=∠MFG;③S △CFQ :S 四边形BMPN =3:7;④FQ=2PQ,其中正确的结论有()A.4个B.3个C.2个D.1个10.如图,在正方形ABCD 中,E、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当0<x<42−2,△PEF 是等腰三角形时,下列关于P 点个数的说法中,P 点最多有()A.8个B.10个C.12个D.14个二.填空题(本大题共6小题,每小题3分,共18分)11.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于点E,若∠A=130°,则∠BEC=°.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是.13.如图,在▱ABCD两对角线A,BD相交于点O,且AC+BD=36,AB=11,则△COD的周长是.14.如图,在矩形ABCD中,AB=4,AD=6,点E是边BC的中点,连接AE,若将△ABE沿AE翻折,点B落在点F处,连接FC,则CF=.15.如图,正方形ABCD的边长为6,点P为BC边上一动点,以P为直角顶点,AP为直角边作等腰Rt△APE,M为边AE的中点,当点P从点B运动到点C,则点M运动的路径长为.16.如图,在矩形ABCD中,AB=6,AD=2,E、F分别是AB和DC上的两个动点,M为BC的中点,则DE+EF+FM的最小值是;若∠EFD=45°,则DE+EF+FM的最小值为.三.解答题(本大题共9小题,共72分)17.(6分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.18.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE 是平行四边形.19.(6分)如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)四边形BFDE是什么特殊四边形?请说明理由;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.20.(6分)如图,点O是△ABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.21.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,连接BE.(1)求证:四边形OCED是菱形;(2)若∠AOB=60°,AB=2,求BE的长.22.(10分)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值;若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动秒时,四边形BCMP的周长最小,其最小值为.23.(10分)如图1,以▱ABCD的邻边AB和BC为边向外作正方形ABFE和正方形BCHG,连接BD、FG,线段BD和FG之间存在怎样的数量关系和位置关系?(1)先将问题特殊化,如图2,当∠ADC=90°时,直接写出BD和FG之间的数量关系和位置关系.(2)再探究一般情况,当∠ADC≠90°时,证明(1)中的结论依然成立.(3)在(2)的条件下,连接EH,M为EH的中点,连接MF,试给出FM和BD的数量关系并证明.24.(10分)如图,点B(m,n)为平面直角坐标系内一点,且m,n满足n=m−6+6−m+6,过点B分别作BA⊥y轴于点A,BC⊥x轴于点C.(1)求证:四边形ABCO是正方形;(2)点E(0,b)为y轴上一点,点F(a,0)为x轴上一点.①如图1,若a=2,b=4,点G为线段BE上一点,且∠EGF=45°,求线段FG的长;②如图2,若a+b=6,直线AF与BE交于点H,连接CH,则CH的最小值为.25.(10分)菱形ABCD中,∠ABC=60°,△BEF为等边三角形,将△BEF绕点B顺时针旋转,M为线段DF的中点,连接AM、EM.(1)如图1,E为边AB上一点(点A、E不重合),则EM、AM的位置关系是,EM、AM的数量关系是;(2)将△BEF旋转至如图2所示位置,(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)若AB=23,EF=1,在旋转过程中,CM的最小值为,此时DF的长为.。

寒假八年级数学培优学案平行四边形和特殊的四边形

寒假八年级数学培优学案平行四边形和特殊的四边形

八年级数学培优学案(7)---四边形一、 平行四边形 平行四边形的性质:ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定:.例:已知:如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF 。

求证:(1)△ADF ≌△CBE ;(2)EB ∥DF 。

练习:1.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,E 、F 是直线AC 上的两点,并且AE=CF ,求证:四边形BFDE 是平行四边形。

2.如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,•则四边形EFGH 是平行四边形吗?为什么?ABDOCABDOC二、 矩形 3. 矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴.4矩形的判定:矩形的判定方法:(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形; (3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形. ⇒四边形ABCD 是矩形.例:.已知:如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明。

三、 菱形 5. 菱形的性质:因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( 6. 菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 例:将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到处,折痕为EF 。

(word版)八年级下期数学培优思维训练(特殊平行四边形)

(word版)八年级下期数学培优思维训练(特殊平行四边形)

八年级下期数学培优思维训练三、平行四边形〔特殊平行四边形〕〔一〕知识梳理:〔二〕方法归纳:〔三〕范例精讲:1.如图,在RTABC中,∠ACB=90°,AD平分∠CAB,CE⊥AB于E,交AD于G,DF⊥AB于F.求证:四边形CGFD是菱形.2.〔1〕如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.〔2〕如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.〔3〕过正方形ABCD的顶点B引对角线AC的平行线BE,在BE上取一点F,使AF=AC,假设作菱形CAFE.求证:AE及AF三等分∠BAC.1如图,E,F,分别是正方形ABCD的边AB、BC的中点,M为BC的延长线上一点,CH平分∠DCM 交AD延长线于H,FG⊥AF交CH于G.求证:〔1〕ABF≌ΔDAE,AF⊥DE;〔2〕AEF≌ΔFCG;〔3〕四边形EFGD是平行四边形.如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、△ACE、△BCF.〔1〕求证:四边形DAEF是平行四边形;〔2〕探究以下问题:〔只填满足的条件,不需证明〕①当△ABC满足条件时,四边形DAEF是矩形;②当△ABC满足条件时,四边形DAEF是菱形;③当△ABC满足条件时,四边形DAEF是正方形;④当△ABC满足条件时,以D、A、E、F为顶点的四边形不存在.2如图,E、F分别是正方形ABCD的边AB、BC上的点,且EF∥AC,在DA的延长线上取一点G,使AG=AD,EG与DF相交于点H.求证:AH=AD.6.假设以直角三角形ABC的边AB为边,在△ABC的外部作正方形ABDE,AF是BC边的高,延长FA至点G使AG=BC.求证:BG=CD.7.如图1,正方形ABCD中,M为AB的中点,E为AB延长线上一点,MN⊥DM,交∠CBE的平分线于点N.〔1〕DM与MN相等吗?试说明理由.〔2〕假设将条件“M为AB的中点〞改为“M为AB上任意一点〞,其它条件不变,如图2,那么DM与MN相等吗?为什么?38.如图,菱形ABCD的边长是2,BD=2,E、F分别是边AD,CD上的两个动点,且AE+CF=2.〔1〕求证:△BDE≌△BCF;〔2〕判断△BEF的形状,并说明理由.9.正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC〔或它们的延长线〕于点M,N.当∠MAN绕点A旋转到BM=DN时〔图1〕,易证BM+DN=MN.〔1〕当∠MAN绕点A旋转到BM≠DN时〔图2〕,线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明;〔2〕当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系,请直接写出你的猜想;〔3〕运用在〔1〕解答中所积累的经验,完成下题:如图4,在直角梯形ABCD中,AD∥BC〔BC>AD〕,∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.4正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.〔1〕当点P与点O重合时〔如图①〕,猜想AP与EF的数量及位置关系,并证明你的结论;〔2〕当点P在线段DB上〔不与点D、O、B重合〕时〔如图②〕,探究〔1〕中的结论是否成立?假设成立,写出证明过程;假设不成立,请说明理由;〔3〕当点P在DB的长延长线上时,请将图③补充完整,并判断〔1〕中的结论是否成立?假设成立,直接写出结论;假设不成立,请写出相应的结论.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.〔1〕如图1,当点P在线段AO上时,猜想PE与PD的数量关系和位置关系,并说明理由;〔2〕如图2,当点P在线段OC上时,〔1〕中的猜想还成立吗?请说明理由;〔3〕如图3,当点P在AC的延长线上时,请在图3中画出相应的图形〔尺规作图,保存作图痕迹,不写作法〕,并判断〔1〕中的猜想是否成立?假设成立,请直接写出结论;假设不成立,请说明理由.5如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD〔不含B点〕上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.〔1〕求证:△AMB≌△ENB;〔2〕①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;〔3〕当AM+BM+CM的最小值为时,求正方形的边长.13.以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.〔1〕如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状〔不要求证明〕;〔2〕如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α〔0°<α<90°〕,①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.6〔四〕思维训练:1.在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E,PF⊥BC于点F.求证:DE=DF.如图,矩形ABCD,延长CB到点E,使CE=CA,点F是AE的中点.求证:BF⊥DF.A DF3.E4.B C5.6.7.8.9.10.11.12.如图,在△AEC中,以∠AEC为锐角,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AH的中点是M.求证:△FMH是等腰直角三角形.74.〔1〕如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.〔2〕如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH 之间的数量关系,并说明理由.〔3〕在图①中,连接BD分别交AE,AF于点M,N,假设EG=4,GF=6,BM=3,求AG,MN的长.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.〔1〕如图1,当点P与点O重合时,OE与OF的数量关系为_________;〔2〕如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;〔3〕如图3,当点P在AC的延长线上时,OE与OF的数量关系为_________;位置关系为_________.8正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.〔1〕如图2,假设点P在线段AO上〔不与点A、O重合〕,PE⊥PB且PE交CD于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;〔2〕假设点P在线段OC上〔不与点O、C重合〕,PE⊥PB且PE交直线CD于点E.请完成图3并判断〔1〕中的结论①、②是否分别成立?假设不成立,写出相应的结论.〔所写结论均不必证明〕正方形ABCD.〔1〕如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;〔2〕如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论;〔3〕当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边〔或它们的延长线〕截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n 与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明.9操作例如:对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.从拼接的过程容易得到结论:①四边形BNED是正方形;②S正方形ABCD+S正方形EFGH=S正方形BNED.实践与探究:〔1〕对于边长分别为a,b〔a>b〕的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法〔类比图1,用数字表示对应的图形〕;〔2〕对于n〔n是大于2的自然数〕个任意的正方形,能否通过假设干次拼接,将其拼接成为一个正方形?请简要说明你的理由.10如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上〔CG>BC〕,取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:〔1〕如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来〔要求至少写3步〕;〔2〕在你经历说明〔1〕的过程后,可以从以下①、②、③中选取一个补充或更换条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°〔如图〕,其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后〔如图〕,其他条件不变.探究:线段MD、MF的关系,并加以证明.11操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.探究:设A、P两点间的距离为x.〔1〕点Q在CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论〔如图1〕;〔2〕点Q边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域〔如图2〕;〔3〕点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由〔如图3〕.〔图4、图5、图6的形状、大小相同,图4供操作、实验用,图5和图6备用〕.12。

2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题

2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题

2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-2.如图,在△ABC 中,∠ACB =60°,∠CAB =45°,BC =4,点D 为AB 边上一个动点,连接CD ,以DA 、DC 为一组邻边作平行四边形ADCE ,则对角线DE 的最小值是( )A .2+6B .1+3C .4D .2+23第II 卷(非选择题)二、填空题(共0分)3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.5.如图,平行四边形ABCD 中,AB =2,AD =1,∠ADC =60°,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D 处,折痕交CD 边于点E .若点P 是直线l 上的一个动点,则PD '+PB 的最小值_______.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAB=,6AD=,60=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.9.如图,四边形ABCD中,∠B=∠D=90°,∠C=50°,在BC、CD边上分别找到点M、N,当△AMN 周长最小时,∠AMN+∠ANM的度数为______.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65三、解答题(共0分)13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.15.如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.答案与解析【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( ) A .2 B .232- C .3 D .43- 【答案】C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题. 【解答】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =43在Rt △ACN 中,∵AC =43,∠ACN =∠DAC =30°,∴AN =12AC =23∵AE =EH ,GF =FH ,∴EF =12AG ,∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为43,最小值为23,∴EF 的最大值为23,最小值为3,∴EF的最大值与最小值的差为:3故选C.【点评】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD=90°,属于中考选择题中的压轴题.2.如图,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,点D为AB边上一个动点,连接CD,以DA、DC为一组邻边作平行四边形ADCE,则对角线DE的最小值是()A.2+6B.1+3C.4 D.2+23【答案】ABC=2,AF=BF=3CF 【分析】设DE交AC于O,作BF⊥AC于F,由直角三角形的性质得出CF=12AC=1+3,DO=EO,当OD⊥AB =23,求出AC=CF+AF=2+23,由平行四边形性质得出AO=CO=12时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,即可得出结果.【解答】解:设DE交AC于O,作BF⊥AC于F,如图所示:则∠BFC=∠BF A=90°,∵∠ACB=60°,∠CAB=45°,∴∠CBF=30°,∠ABF=45°=∠CAB,BC=2,AF=BF=3CF=23,∴CF=12∴AC=CF+AF=2+23,∵四边形ADCE是平行四边形,AC=1+3,DO=EO,∴AO=CO=12∴当OD ⊥AB 时,DO 的值最小,即DE 的值最小,则△AOD 是等腰直角三角形,∴OD =22AO =622+, ∴DE =2OD =26+.故选:A .【点评】本题主要考查解直角三角形,平行四边形的性质,掌握平行四边形的性质和特殊角的三角函数值是解题的关键.3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 【答案】4+213【分析】根据题意,可知当DE ⊥AE 时,DE 取得最小值,然后根据题目中的数据,即可得到A D 、CD 的长,从而可以得到当DE 的值最小时,平行四边形ADCE 周长.【解答】解:当DE ⊥AE 时,DE 取得最小值,设此时CD =x ,∵四边形ADCE 是平行四边形,∴CD =AE ,AD =CE ,BC ∥AE ,∵∠B =90°,DE ⊥AE ,∴四边形BAED 是矩形,∴BD =AE ,∴BD =CD =x ,∵BC =BD +CD ,BC =4,∴BD =CD =2,∵AB =3,∠B =90°,∴AD =22222313BD AB +=+=,∴当DE 的值最小时,平行四边形ADCE 周长为:2+13+2+13=4+213,故答案为:4+213.【点评】本题考查平行四边形的性质、矩形的判定与性质、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.【答案】83【分析】根据平行四边形的性质得到EG ,FG ,根据垂线段最短得到EG ⊥CD 时取最小值,过点C 作CH ⊥AB 于点H ,求出CH 的长度,从而得到结果.【解答】解:∵四边形EDGC 是平行四边形,∴EF =FG ,∴当EF ⊥CD 时,EF 最小,此时EG 最小,过点C 作CH ⊥AB 于点H ,则CH =EF ,∵∠B =60°,∴∠BCH =30°,∵BC =8,∴BH =4,∴CH =2284-=43,∴EF 的最小值为43,∴EG 的最小值为83,故答案为:83.【点评】本题考查了平行四边形的性质,垂线段最短,直角三角形的性质,勾股定理,解题的关键是理解题意,找到EG最短时满足的条件.5.如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.【答案】7【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短.【解答】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值为7,故答案为:7.【点评】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAD=,60AB=,6=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG【答案】221【分析】如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.利用全等三角形的性质证明∠GNB=60°,点G的运动轨迹是射线NG,由“SAS”可证△EGN≌△BGN,可得GB=GE,推出GB+GC=GE+GC≥EC,求出EC即可解决问题.【解答】解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H,∵AE=2DE,∴AE=4,DE=2,∵点N是AB的中点,∴AN=NB=4,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°-60°-60°=60°,∴点G的运动轨迹是射线NG,∵BN=EN,∠BNG=∠ENG=60°,NG=NG∴△EGN≌△BGN(SAS),∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,DE=1,EH=3,∴DH=12在Rt△ECH中,EC=22221+=,EH CH∴GB+GC≥221,∴GB+GC的最小值为221,故答案为:221.【点评】本题考查旋转变换,轨迹,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.【答案】17132++【分析】在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,根据勾股定理得到AB,作点A关于直线x=1的对称点A',得到A'、E、D三点共线时,AD+DE最小值为A'E的长,根据勾股定理求出A'E,即可得解;【解答】解:如图,在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,∵B(0,4),A(﹣1,0),∴OB=4,OA=1,∴OE=3,AB=22+=,1417作点A关于直线x=1的对称点A',∴A'(3,0),AD=A'D,∴AD+DE=A'D+DE,即A'、E、D三点共线时,AD+DE最小值为A'E的长,在Rt△A'OE中,由勾股定理得A'E=22+=,3332∴C四边形ABCD最小值=AB+CD+BC+AD=AB+CD+A'E=17+1+32.故答案为:17132++.【点评】本题主要考查了轴对称最短路线问题、勾股定理、位置与坐标,准确分析作图计算是解题的关键.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.【答案】4【分析】根据题意在平行四边形PCQD中,设对角线PQ与DC相交于点O,可得O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH=4,则可得当PQ⊥AB 时,PQ的长最小,即为4.【解答】解:在平行四边形PCQD中,设对角线PQ与DC相交于点O,则O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD ∥BC ,∴∠ADC=∠DCH ,即∠ADP+∠PDC=∠DCQ+∠QCH ,∵PD ∥CQ ,∴∠PDC=∠DCQ ,∴∠ADP=∠QCH ,又∵PD=CQ ,在Rt △ADP 与Rt △HCQ 中,ADP QCH A QHCPD CQ ⎧⎪⎨⎪∠∠⎩∠∠=== ∴Rt △ADP ≌Rt △HCQ (AAS ),∴AD=HC ,∵AD=1,BC=3,∴BH=4,∴当PQ ⊥AB 时,PQ 的长最小,即为4.故答案为:4.【点评】本题考查梯形的中位线的性质,注意掌握梯形的中位线等于两底和的一半且平行于两底.9.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.【答案】100°【分析】根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC和CD 的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN 的周长最小值.∵∠B =∠D =90°,∠C =50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点评】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M ,N 的位置是解题关键.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.【答案】1322【分析】作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,由作图得AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,于是得到∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,根据等腰直角三角形的性质得到AP =DP =22AD ,求得AP =DP =5,根据三角形的中位线的性质得到OQ =12DP =52,BQ =12BP=12(AB−AP )=1,根据勾股定理求出AO =132,然后根据等腰直角三角形的性质即可得到结论. 【解答】解:作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,∴AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,∵∠DAB =45°,∴∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,∴AP =DP =22AD , ∵AD =BC =52,∴AP =DP =5,设OM ⊥AB 于Q ,则OQ ∥DP ,∵OD =OB ,∴OQ =12DP =52,BQ =12BP =12(AB−AP )=1, ∴AQ =6,∴AO =2222513622AQ OQ , ∴AM =AN =AO =132, ∴MN =2AM =1322, ∴△OEF 周长的最小值是1322. 故答案为:1322. 【点评】此题主要考查轴对称−−最短路线问题,平行四边形的性质,等腰直角三角形的性质,勾股定理以及三角形中位线定理等,正确的作出辅助线是解题的关键.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.【答案】13 4【分析】作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,可判断出AP+BN=A″N+BN≥A″B,即此时四边形ABNP的周长最小,求出A″B的表达式,得到与x轴的交点,即为点N,从而可得a值.【解答】解:如图,作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,则此时AP=A′P=A″N,则AP+BN=A″N+BN≥A″B,在四边形ABNP中,PN和AB均为定值,∴此时四边形ABNP的周长最小,设A″B的表达式为y=kx+b,则3361k bk b+=⎧⎨+=-⎩,解得:437kb⎧=-⎪⎨⎪=⎩,∴直线A″B的表达式为473y x=-+,令y=0,则214x=,即此时N(214,0),2124a+=,解得:a=134,故答案为:134. 【点评】本题考查了轴对称-最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65【答案】D【分析】根据勾股定理可求BC 的长,所以要使△PBC 的周长最小,即BP+PC 最短,利用对称性,作点C 关于AD 的对称点E ,即可得出最短路线,从而求解可.【解答】解:过点C 作CG ⊥AB ,由题意可知四边形DAGC 是矩形∴CG=AD=4,BG=AB-AG=AB-CD=2∴在Rt △BCG 中,222425BC =+=作点C 关于AD 的对称点E ,连接BE ,交AD 于点P',连接'CP此时'P BC 的周长为最小值,即''''BP CP BC BP EP BC BE BC ++=++=+过点E 作EF ⊥BA ,交BA 的延长线于点F由题意可知四边形EFAD 为矩形∴EF=AD=4,DE=CD=AF=3∴在Rt △EBF 中,224(35)45BE =++=∴此时'P BC 的周长为:65BE BC +=故选:D .【点评】本题考查勾股定理解直角三角形及应用对称的性质求最短路线,掌握相关性质定理正确添加辅助线进行推理计算是解题关键.13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值. 【答案】(1)证明见解析(2)3【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴DE BC ∥,∴四边形DBCE 为平行四边形,又∵BE DC ⊥,∴四边形DBCE 为菱形.(2)解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,∵DE BC ∥,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB ∠=, ∴3sin 232DH DB DBC =∠=⨯=, ∴PM PN +的最小值为3.【点评】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.【答案】(1)见解析;(2)作图见解析,7得到DAD E'是菱形,作DG BA⊥)将ABCD沿过点A的直线∠=EA,D//DE AD∴∠=DEA∴∠=,DAE EA∴∠'DAD∴四边形=AD ADAB=,2∴=AD AD∴'是菱形;BCED(2)四边形∴与D'D连接BD交CD AB//∴∠=DAGAD=,112AG ∴=,32DG =, 52BG ∴=, 227BD DG BG ∴=+=,PD PB ∴'+的最小值为7.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.。

八年级数学同步培优竞赛详附答案:第十五讲-平行四边形

八年级数学同步培优竞赛详附答案:第十五讲-平行四边形

名师第十五讲平行四边形平行四边形是一类特殊的四边形,它的特殊性体现在边、角、对角线上,矩形、菱形是特殊的平行四边形,矩形的特殊性体现在有一个角是直角,菱形的特殊性体现在邻边相等,所以,它们既有平行四边形的性质,又有各自特殊的性质.对角线是解决四边形问题的常用线段,对角线本身的特征又可以决定四边形的形状、大小,连对角线后,平行四边形就产生特殊三角形,因此解平行四边形相关问题时,既用到全等三角形法,特殊三角形性质,又要善于在乎行四边形的背景下探索问题,利用平行四边形丰富的性质为解题服务.熟悉以下基本图形、基本结论:例题求解【例1】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥A C于F,那么PE+PF的值为 .(全国初中数学联赛试题)思路点拨分别求出PE、PF困难,△AOD为等腰三角形,若联想“到等腰三角形底边上任一点到两腰距离的和等于腰上的高”这一性质,则问题迎刃而解.注特殊与一般是对立统一的,在一定条件下可以互相转化,相对于一般而言,特殊的事物往往更简单、更直观、更具体.因而人们常常通过特殊去认识一般;另一方面,一般概括了特殊,一般比特殊更为深刻地反映着事物的本质,所以人们也往往通过一般去了解特殊.一般与特殊,是知识之间联系的一种重要形式,知识常常在一般到特殊或特殊到一般的变化过程中,不斩地得到延伸与拓展.【例2】已知四边形ABCD,从下列条件中:(1)AB∠CD,(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种 B.9种 C.13种 D. 15种(山东省竞赛题)思路点拨根据平行四边形的判定方法及新的组合方式判定.【例3】】如图,在△ADC中,∠DAC=90°,AD⊥BC,DC、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.(湖北省荆州市中考题)思路点拨从角的角度证明困难,连结CF,在四边形AGFE的背景下思考问题,证明四边形AGFE 为特殊平行四边形,证题的关键是能分解出直角三角形中的基本图形.【例4】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.(全国初中数学联赛试题)思路点拨尽管图形复杂,但证明目标明确,只需证明△CPB≌△DPB,应从图中分离出特殊三角形、特殊四边形,充分运用它们的性质为证题服务.【例5】如图,在等腰三角形ABC中,延长边AB到点D,延长边CA到点E,连结DE,恰有AD=BC=CE=DE.求∠BAC的度数.(北京市竞赛题)思路点拨 题设条件给出的是线段的等量关系,要求的却是角的度数,相等的线段可得到全等三角形、特殊三角形,为此需通过构造平行四边形改变它们的位置.注 课本中平行四边形的判定定理是从边、角、对角线三个方面探讨的,一般情况是,从四边形边、角、对角线三类元素任意选取两类,任意组合就产生许多判定平行四边形的命题.其中有真命题与假命题,对于假命题,要善于并熟悉构造反例.构造反例是学习数学的一种重要技能,可以帮助我们理解概念.培养推理能力,数学史上就曾有许多著名的论断被一个巧妙的反例推翻的实例.若题设条件中有彼此平行的线段或造成平行的因素,则通过作平行线,构造平行四边形,这是解四边形问题的常用技巧,这是由于平行四边形能使角的位置更理想,送线段到恰当的地方,使线段比良性传递.学力训练1.如图,BD 是平行四边形ABCD 的对角线,点E 、F 在B D上,要使四边形A ECF 是平行 四边形,还需要增加的一个条件是 (填上你认为正确的一个即可,不必考 虑所有可能情形)(宁波市中考题)2.(1)如图,已知矩形ABC D中,对角线A C、BD 相交于O ,AE ⊥B D于E ,若∠DAE:∠B AE =3:1,则∠CAC = ; (河南省中考题)(2)矩形的一个角的平分线分矩形一边为lcm 和3cm 两部分,则这个矩形的面积为 cm 2. (武汉市中考题)3.如图,以△AB C的三边为边在B C的同一侧分别作三个等边三角形,即△ABD 、△B CE 、△ACF .(1)四边形ADEF 是 ;(2)当△ABC 满足条件 时,四边形A DEF 为矩形;(3)当△ABC 满足条件 时,四边形ADEF 不存在. (2000年贵州省中考题)4.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+3,则这两边之积为 . (2001年天津市选拔赛试题)5.四边形的四条边长分别是a 、b 、c 、d,其中a、c 为对边,且满足cd ab d c b a 222222+=+++,则这个四边形一定是()A.平行四边形B.两组对角分别相等的四边形C.对角线互相垂直的四边形 D.对角线相等的四边形6.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.98 B.196 C.280 D. 284(湖北省荆州市中考题)7.如图,菱形花坛ABCD的边长为6m,∠B=60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )A.123 m B.20m C. 22m D.24m(吉林省中考题)8.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.AD>BC B.AD<BCC.AD=BC D.AD与BC的大小关系不能确定(“希望杯”邀请赛试题)9.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADC.(1)求证:△ACD≌△CNBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论. (南通市中考题)10.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于C,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.(黑龙江省中考题)11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:CO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当△ABC满足什么条件时,四边形AECF是正方形?12.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有对四边形面积相等,它们是.(常州市中考题)13.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+3,∠ABC=60°,则菱形ABCD的面积为 .14.如图,矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,∠CAE=15°,则∠BOE= . 15.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为 . (山东省竞赛题)16.如图,平行四边形ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是( )A.60°B.65° C.70° D.75° (“希望杯”邀请赛试题)17.如图,正△AEF 的边长与菱形ABCD 的边长相等,点E、F分别在BC 、C D上,则∠B的度数是( ) A.70° B.75° C .80° D .95°(重庆市竞赛题)18.如图,正方形ABCD 外有一点P,P 在BC 外侧,并在平行线AB 与CD 之间,若PA=17,PB=2,PC =5,则PD =( )A.25B.19 C .32 D.17 (“五羊杯”竞赛题)19.如图,在平行四边形AB CD 中,B C=2AB,CZ⊥AB 于E ,F为AD 的中点,若∠AEF=54°,则∠B=( )A.54° B.60° C .66° D.72°(武汉市选拔赛试题)20.如图,在Rt △ABC 中,∠ABC=90°,∠C =60°,BC=2,D 是AC 的中点,以D作DE ⊥AC 与C B的延长线交于E,以AB 、BE 为邻边作长方形ABEF ,连结DF ,求DF 的长.21.如图,菱形的对角线AC 与B D交于点O ,延长BA 到E ,使AE=21A B,连结OE ,延长DE 交CA 的延长线于F.求证:OE=21DF . 22.阅读下面短文:如图1,△ABC 是直角三角形,∠C=90°,现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个便点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个:矩形ACB D和矩形AE FB (如图2).解答问题;(1)设图2中矩形ACBD和矩形AEFB的面积分别为Sl、S2,则S1 S2(填“>”,“=”或“<”); (2)如图3,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出个,利用图3把它画出来;(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,则符合要求的矩形可以画出个,利用图4把它画出来;(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?(陕西省中考题)23.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.(杭州市“求是杯”竞赛题)24.如图,在锐角△ABC中,AD、CZ分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连结PQ、DE.(1)求证;直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.(“希望杯”邀请赛试题)。

《常考题》初中八年级数学下册第十八章《平行四边形》测试(课后培优)

《常考题》初中八年级数学下册第十八章《平行四边形》测试(课后培优)

一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.3.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+A解析:A【分析】 要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b =-=-,故选:A .【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.4.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .4B解析:B【分析】 根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD , ∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()=,则平行四边形ABCD是矩形A.若AB AD=,则平行四边形ABCD是正方形B.若AB AD⊥,则平行四边形ABCD是矩形C.若AB BC⊥,则平行四边形ABCD是正方形CD.若AC BD解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.8.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是()A.60 B.30 C.20 D.16C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故选:C.【点睛】本题考查了平行四边形的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A .8B .83C .16D .163A解析:A【分析】 由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+D解析:D【分析】 只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.二、填空题11.215,2,则该三角形最长边上的中线长为____.【分析】利用勾股定理逆定理判断出此三角形是直角三角形再根据直角三角形斜边上的中线等于斜边的一半解答【详解】∵∴此三角形是直角三角形斜边为5∴该三角形最长边上的中线长为:5=故答案为:【点睛】本题考查解析:5 2【分析】利用勾股定理逆定理判断出此三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵()221222255+==,∴此三角形是直角三角形,斜边为5,∴该三角形最长边上的中线长为:12⨯5=52.故答案为:52.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理逆定理的应用,熟记性质并判断出此三角形是直角三角形是解题的关键.12.如图,△ABC中,∠ACB=90°,AC=BC=4,D是斜边AB上一动点,将线段CD绕点C逆时针旋转90°至CE,连接BE,DE,点O是DE 的中点,连接OB、OC,下列结论:①△ADC≌△BEC;②OB=OC;③DE>BC;④AO的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE,根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB =OC ;利用三角形三边关系可得DE BC ≥;根据OB =OC 可知点O 在BC 的垂直平分线上,找到点O 的起始位置及终点位置,即可求出OA 的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB =, 故④错误;故答案是:①②.【点睛】 本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线.13.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒ 221,213DH HE ∴==-=折叠,AG GE AF EF ∴== 在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.15.正三角形ABC 中,已知AB =6,D 是直线AC 上的动点,CE ⊥BD 于点E ,连接AE ,则AE 长的取值范围是_______________.≤AE≤【分析】取BC 中点O 利用勾股定理以及直角三角形的性质分别求得AO 和OE 再利用三角形三边关系即可求解【详解】解:取BC 中点O 连接OAOE ∵△ABC 正三角形且AB=6∴AO ⊥BCBO=OC=BC解析:333-≤AE ≤333+【分析】取BC 中点O ,利用勾股定理以及直角三角形的性质分别求得AO 和OE ,再利用三角形三边关系即可求解.【详解】解:取BC 中点O ,连接OA 、OE ,∵△ABC 正三角形,且AB=6,∴AO ⊥BC ,BO=OC=12BC=12AB=3, ∴22226333AB BO -=-=,在△OAE 中,OA-OE<AE< OA+OE ,当O 、A 、E 在同一直线上时,取等号,∴OA-OE ≤AE ≤OA+OE , ∴333-≤AE 333≤+,故答案为:333-≤AE 333≤+.【点睛】本题考查了等边三角形的性质,直角三角形的性质,三角形三边的关系,注意,直角三角形斜边上的中线等于斜边的一半.16.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,且BD CE =,连接,CD DE ,点,,M N P 分别是,,DE BC CD 的中点,34PMN ∠=,则MPN ∠的度数是_______.【分析】根据点MNP 分别是DEBCCD 的中点可以证明MP 是ΔDEC 的中位线NP 是ΔDBC 的中位线根据中位线定理可得到MP=NP 再根据等腰三角形的性质得到∠PMN=∠PNM 最后根据三角形的内角和定理可解析:112【分析】根据点 M ,N ,P 分别是 DE ,BC ,CD 的中点,可以证明MP 是ΔDEC 的中位线,NP 是ΔDBC 的中位线,根据中位线定理可得到MP=NP ,再根据等腰三角形的性质得到∠PMN=∠PNM ,最后根据三角形的内角和定理可以得到∠MPN .【详解】解:如图∵点 M ,N ,P 分别是 DE ,BC ,CD 的中点∴MP 是ΔDEC 的中位线,∴MP=12EC , NP 是ΔDBC 的中位线 ∴NP=12BD , 又∵BD=CE∴MP=NP ∴∠PMN=∠PNM=34∘∴∠MPN=180∘ -∠PMN-∠PNM=180∘-34∘-34∘=112∘ 故答案位:112°【点睛】 本题考查了三角形的中位线定理,等腰三角形的性质和判定,以及三角形的内角和定理,解题的关键是灵活运用三角形的中位线定理求线段的长度.17.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的解析:2020212【分析】由21ABC C AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C nC =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7,21ABC C AB BC AC ∴=++=,111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C n C =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2 【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键.18.如图,90MON ∠=︒,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当点B 在边ON 上移动时,点A 随之在边OM 上移动,2AB =,1BC =,运动过程中,点D 到点O 的最大距离为______.【分析】取AB 的中点E 则OE=1DE=利用三角形原理可确定最大值【详解】如图取AB 的中点E 连接OEDE ∵OE 是直角三角形ABO 斜边上的中线AB=2∴OE=1在直角三角形DAE 中根据勾股定理得DE== 21【分析】取AB 的中点E ,则OE=1,2.【详解】如图,取AB 的中点E ,连接OE ,DE ,∵OE 是直角三角形ABO 斜边上的中线,AB=2,∴OE=1,在直角三角形DAE 中,根据勾股定理,得DE=22DA AE +=2,∴当O ,D ,E 三点共线时,DO 最大,且最大值为2+1,故应该填21+.【点睛】本题考查了线段的最值,构造斜边上的中线,灵活运用三角形原理是解题的关键. 19.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D 作DF ⊥AC 于F 得到AB ∥DF 求得AF =CF 根据三角形中位线定理得到DF=AB =1根据等腰直角三角形的性质即可得到结论【详解】解:过D 作DF ⊥AC 于F ∴∠DFC =∠A =90°∴AB ∥DF2【分析】过D 作DF ⊥AC 于F ,得到AB ∥DF ,求得AF =CF ,根据三角形中位线定理得到DF =12AB =1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D 作DF ⊥AC 于F ,∴∠DFC =∠A =90°,∴AB ∥DF ,∵点D 是BC 边的中点,∴BD =DC ,∴AF =CF ,∴DF=1AB=1,2∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.20.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为______.【分析】根据旋转的可证明△BEF≌△CHE作FM⊥CD于M分别求出FMMH的长利用勾股定理即可求解【详解】∵将△BEF绕点E顺时针旋转得到△GEH点H落在CD边上∵BE=2AF=2BF=4∴GH=B解析:10【分析】根据旋转的可证明△BEF≌△CHE,作FM⊥CD于M,分别求出FM,MH的长,利用勾股定理即可求解.【详解】∵将△BEF绕点E顺时针旋转,得到△GEH,点H落在CD边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,22+=2425∴在Rt△HEC中,()22-=2542∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF≌△CHE作FM⊥CD于M,故四边形AFMD是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=22+=26210故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.三、解答题21.如图,已知,四边形ABCD是平行四边形,AE∥BD,交CD的延长线于点E,⊥交BC延长线于点F,求证:四边形ABFD是等腰梯形.EF BC解析:见解析.【分析】首先证明四边形ABDE是平行四边形,即可得AB=DE,等量代换可得CD=DE,根据直角三角形斜边中线的性质定理可得DF=CD=DE,进而可得AB=DF,再说明线段AB和DF不平行即可求证结论.【详解】∵四边形ABCD是平行四边形,=.∴AD∥BC,AB∥CD,AB CD∴AB∥DE;又∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB DE =.∴CD DE =.∵EF BC ⊥,∴DF =CD =DE .∴AB DF =.∵CD 、FD 交于点D ,∴线段AB 与线段FD 不平行.∴四边形ABFD 是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.22.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.23.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.24.已知:AB ⊥CD 于点O ,AB=AC=CD ,点I 是∠BAC ,∠ACD 的平分线的交点,连接IB ,ID(1)求证:IA ID =且IA ID ⊥;(2)填空:①∠AIC+∠BID=_________度;②S IBD ∆______S AIC ∆(填“﹥”“﹤”“=”)(3)将(2)小题中的第②结论加以证明.解析:(1)证明见解析;(2)①180;②=;(3)证明见解析.【分析】(1)由角平分线的性质,解得ACI DCI ∠=∠,继而证明△ACI ≌△DCI(SAS),再根据全等三角形的性质可得IA=ID ,AIC DIC ∠=∠,由角平分线性质结合三角形内角和定理可得11=()904522CAI ACI CAO ACO ∠+∠∠+∠=⨯︒=︒,故135AIC DIC ∠=∠=︒,继而可证90AID ∠=︒据此解题;(2)①根据题意,由三线合一的性质可证,45AI ID AIH =∠=︒、CI IB =、45BIG CIG ∠=∠=︒,最后再计算+AIC BID ∠∠的值即可;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG S S S ==,再结合12BDI DIBG S S =即可解题; (3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG SS S ==,再结合12BDI DIBG S S =即可解题. 【详解】证明:(1)由点I 是∠BAC ,∠ACD 的平分线的交点ACI DCI ∴∠=∠在△ACI 和△DCI 中CI CI ACI DCI CA CD =⎧⎪∠=∠⎨⎪=⎩∴ △ACI ≌△DCI(SAS)IA ID ∴=由点I 是∠BAC ,∠ACD 的平分线的交点 11=()904522CAI ACI CAO ACO ∴∠+∠∠+∠=⨯︒=︒ 18045135=AIC DIC ∴∠=︒-︒=︒∠36013513590AID ∴∠=︒-︒-︒=︒即IA ID ⊥;(2)①如图,延长CI 交AD 于点H ,延长AI 交BC 于点GAI ID ⊥90AID DIG ∴∠=∠=︒AC CD CI =,平分ACD ∠,,CH AD AH DH ∴⊥=,45AI ID AIH ∴=∠=︒45CIG ∴∠=︒AC AB AI =,平分BAC ∠,,AG BC CG BG ∴⊥=CI IB ∴=45BIG CIG ∴∠=∠=︒13545180AIC BID ∴∠+∠=︒+︒=︒故答案为:180︒,=;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=故答案为:=;(3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG SS S ∴== 12BDI DIBG SS = AIC BDI S S ∴=.【点睛】本题考查全等三角形的判定与性质、等腰三角形三线合一的性质、角平分线的性质等知识,是重要考点,作出正确的辅助线、掌握相关知识是解题关键.25.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积.解析:(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠, 又点M ,N 分别为OA 、OC 的中点,∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME ∥DN ,∴四边形DEMN 是平行四边形,∵BD=2AB ,BD=2BO ,∴AB=OB ,又∵M 是AO 的中点,∴BM ⊥AO ,∴∠EMN=90°,∴四边形DEMN 是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN 的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.如图,在ABCD 中,AE 平分BAD ∠交BD 于点E ,交BC 于点M ,CF 平分BCD ∠交BD 于点F .(1)若70ABC ∠=︒,求AMB ∠的度数;(2)求证:AE CF =.解析:(1)55°;(2)见解析【分析】(1)根据平行四边形的性质得到//AD BC ,根据平行线的性质得到180ABC BAD ∠+∠=︒,根据角平分线的定义得到1552DAM BAD ∠=∠=︒,于是得到结论;(2)根据平行四边形的性质得到AB CD =,BAD BCD ∠=∠,//AB CD ,求得ABE CDF ∠=∠,根据角平分线的定义及等量代换得到BAE DCF ∠=∠,根据全等三角形的性质即可得到AE CF =.【详解】(1)解:∵四边形ABCD 是平行四边形,∴//AD BC ,∴ 180ABC BAD ∠+∠=︒.∵70ABC ∠=︒,∴110BAD ∠=︒.∵AE 平分BAD ∠, ∴1552DAM BAD ∠=∠=︒. ∵//AD BC , ∴55AMB DAM ∠=∠=︒.(2)证明:∵四边形ABCD 是平行四边形,∴AB CD =,BAD BCD ∠=∠,//AB CD ,∴ ABE CDF ∠=∠.∵AE 平分BAD ∠,∴12BAE BAD ∠=∠. ∵CF 平分BCD ∠,∴12DCF BCD ∠=∠. ∵BAD BCD ∠=∠, ∴BAE DCF ∠=∠.又∵AB CD =,ABE CDF ∠=∠,∴ABE CDF △≌△,∴AE CF =.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.27.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线.(1)15ABE ∠=︒,40BAD ∠=︒,求 BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到BC 边的距离为多少.解析:(1)55︒;(2)4.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E 作BC 边的垂线即可得:E 到BC 边的距离为EF 的长,然后过A 作BC 边的垂线AG ,再根据三角形中位线定理求解即可.【详解】解:(1)BED ∠是ABE ∆的外角, 154055BED ABE BAD ;(2)过E 作BC 边的垂线,F 为垂足,则EF 为所求的E 到BC 边的距离,过A 作BC 边的垂线AG ,AD ∴为ABC ∆的中线,5BD =,22510BC BD ∴==⨯=,ABC ∆的面积为40, ∴1402BC AG ,即110402AG ,解得8AG =,∵AD 为ABC ∆的中线,∴11402022ABD ABC S S , 又∵BE 为ABD ∆的中线, ∴11201022EBD ABD S S , 则有:1151022BD EFEF 4EF ∴=.即E 到BC 边的距离为4.【点睛】本题考查了三角形外角的性质、三角形中位线的性质及三角形的面积公式,添加适当的辅助线是解题的关键.28.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.解析:(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】 解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE =∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-= ∴2214BC BO ==∴11214224722BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20第讲平行四边形考点?方法?破译.1•理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明.2.理解三角形中位线定理并会应用.
3•了解平行四边形是中心对称图形经典?考题?赏析的延长作直线EF分别交中:如图
在ABCD,过对角线BD的中点O【例1】已知口N、F・、DC、3C的延长线于点E、M、线AB 竺△,请加以证明;⑴观察图形并找出•对全等三角形:△
⑵在⑴中你所找出的•对全等三角形,其中•个三角形可由另•个三角形经过怎样的变换得到?
【变式题组】
01・如图,在ABCD中,ZBAD=32O・分别以3C、CD为边向外作△ BCE和厶DCF, 口使3E = BC, DF = DC, ZEBC=ZCDF,延长AB交边EC于点上,点H在E、C两点之间.连接至E、AF. (1)求证:
A ABE^A FDA;
⑵当AE丄AF时,求ZEBH的度
数.
02・如图,已知在ABCD中,Ex F是对角线BD上的两点,BE = DF,点G、H分别在口BA和DC的延长线上,且AG = CH,连接GE、EH、HF.
是平行四边形.求证:四边形GEHF
、CD 上,以•点E 在边AC,延长BC 至D,使CD = BC 中,03・如图,在厶ABCAB=AC ・,连 接BG 、DE 作CG 〃AB 交EF 于点GCE 为邻边作CDFE.过点C/7
有怎样的数量关系?请说明理由:(DZ ACB 与Z DCG ・⑵求证:A BCG ^A DCE
丄,BFBE 的周长为20,丄AD 【例2】如图,ABCD£7
60° =2, ZMBN = BM 的中点,N 是 DC 的中点,=1,BN 是 ABCD02.在中,MAD 口 求BC 的长.
ABCD 贝lj 的面积为 BECD, =2, BF = 3.£7
变式题组】【的长.2.求EC,AE = 3,DF=°八 如图,01ABCD 中,3E 丄ADBF 丄CD,
D
ZEBF = 60
03.平行四边形ABCD中,AD = a,CD = b,过点B分别作AD边上的高H和CD边上的高
ABCD的而积AC = 20厘米,求平行四边形已知H>a, H>b,对角线“
]【例3 (1,0),入(0,1) B (—1,0) ,C如图:在平面直角坐标系中,有.
三点三点构成平行四边形,请写出所B、C⑴若点D与A、有符合条件的点D的坐标:,求直线BD 的解析式.⑵选择⑴中符合条件的-点D
变式题组】【3xl,直线Bl交于況轴上同-点+ 3与01.如图,直线l:yy轴交于点入=一,
与直线2122轴对称.与点入关于x交y轴于点C,且点C ⑴求直线1的解析式:2⑵设D (0, -1 ),平行于y轴的直线次=t分别交宜线丄和].于点
E、F.是否存在t2】的值,使得以A、D、E、F为顶点的四边形是平行四边形,若存在,求出t 的值:若不存在,请说明理
由.
lx =上是y轴上•动点,在直线y, ), B(30), P102.如图,在直角坐标系中,A (, 02是否存在点Q,使3. P. Q为顶点的四边形为平行四边形?若存在,求岀对应的Q点的坐标;若不存在,请说明理由.
k的图象都经过点(1, 1) 1和反比例函数y・=>:03.若•次函数y = 2 — 2曲)求反比例函数的解析式:
⑵已知点离在第三象限,且同时在两个函数的图象上,求点入的坐标:
⑶利用⑵的结果,若点B的坐标为(2, 0),且以点入、。

、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.
【例4】如图1.在四边形ABCD中上B = CD,E、F分别是BC、AD的中点,连接EB并延长,分别与3A. CD的延长线交于点M、N,则ZBME=ZCNE (不需证明)
(温馨捉示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE =HF,从而Z1 = Z2,再利用平行线性质,可证得Z BME =Z CNE.)
问题•:如图2,在四边形ADBC中,AB与CD相交于点O.AB = CD,E> F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N.判断?OMN的形状,请直接写出结论.
问题二:如图3,在?ABC中,AC>AB,D点在AC AB = CD,E> F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若ZEFC = 60°,连接GD刿断?AGD的形状并证明.
【解法指导】出现中点,联想到三角形中位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转
移.
】变式题组[.
01・如图,已知四边形ABCD中,R、P分别是BC. CD上的点,
E、F分别是AP、RP的中点,当点P在CD ±从C向D移动而点R不动时,那么下列结论成立的是
()
A,线段EF的长逐渐增大B、线段EF的长逐渐减小
C、线段EF的长不变
D、线段EF的长与点P的位置有关
D
A E
F B C R
02・如图,在△ABC中,M是BC的中点,玄D是ZA的平分线,3D丄AD于D,AB = 12,AC = 22, 则MD 的长为()・
A.3
B.4
C.5
D.6
【例5】如图L在△A3C中.ZC = 90。

,点M在BC ±,且BM = AC,点N在AC上,且AN = MC,AM 与3N相交于点P,求证:Z BPM =45°.
【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件
集中,从而构造全等三角形解决问题.
【变式题组】
AB = AC,延长边AB到点D,延长CA到点E,连接DE, ABC如图,01.在等腰△中,若AD = BC = CE = DE,求ZB AC 的度
数.
演练巩固反馈提高
□ ABCD 中,AD = 8cm, AB=6cm, DE 平分ZADC 交BC01・如图,边于点E,则3E 等于()A・ 2 cm E・ 4 cm
cmD・ 8c・ 6cm
口A3CD中,AC, ED为对角线,BC02.如图,=6, EC边上的高为4,则阴影部分的面积为()
・24
・ 12 DB. 6 CA. 3
的延长线于点并延长,交ABBC边的中点,连接DE03.如图,在四边形ABCD中,E为是平行四边形,你认为四个条件中可选择添加•个条件,使四边形ABCD = BF, F, AB )的是(・CDE
口于ADBD 交相交于点O, OE 丄ABCD 中,AB^AD, AC, BD2004・如图,在周长为om 的)的周 长为( E,则厶ABE 点 ・ 10cm ・ 8cm D. 4Acm B. 6cm C
得颜色的花,.某广场有•个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫605那么 下列说法错误的是,GH 〃AD 〃EF 〃DC,BC 〃如果有AB 紫花,橙花种植而积 淀相等 E ・d 红
花,绿花种植面积•定相等蓝花,黄花种植血•积•定相等 D ・C ・红花,蓝花种植面积•定相 等
CF?BE = DC1,下面四个结论中?AB=;丄 , 〃・如图,061 1BE//CFBA 丄 1 DC 2112
),其中正确的有( =SCCFADEBCFLA3C>q 个・1
・2
07・己知四边形ABCD,有以下四个条件:?A3〃CD ?AB = CD ?BC//AD ④BC = AD 从
这四个条件中任选两个,能使四边形ABCD 为平行四边形的选法种数有(
) A. 6种 B. 5种 C. 4种 D ・3种 08・如图,在四边形ABCD 中,P 是对角线BD 的中点,E, F 分别是A3, CD 的中点,AD = oBC,
ZPEF = 1 &则ZPFE 的度数为 ___________
向上翻折,ABEBE 为折痕,将△中,点E 在边AD 中,以09••如图,平行四边形A3CD 的长, 则FC228, A FCB 的周长为点A 恰好落在CD 上的F 点,若△FDE 的周长为 ___________________ 为 2. 5BC 向右平移将△ABC 沿直线,AB = 3, AC = 4, °如图,在10・RtZ\A3C 中,Z EAC = 90 _________ 则 下列结论中成立的是,AE, DE 相交于点G,连接AD,个单位得到A D EFAC 与 CGEAGD^AABED 四边形是平行四边: ?A?平分ZACEADADE 为等腰三角形 ④?△
□・AE 边上•点.且侶=如图是ABCD 中,EBC. 11
EADABC^A 求证(!■)・:△的度数•,求 ZAED25,若(2)・AE 平分 Z DAB Z EAC =
B ・ CD = BF
C Z AAAD
BC 第5題图
ZZ7ABCD 内•点 E 满足ED丄AD 于D,且ZEBC=Z$U图,12. EDC,ZECB = 45O,找出图中•
相等的线段,并加以证明•条与EB
顺时针旋转绕点D是AB边上的点,将线段DB是等边三角形,13・已知,如图.△入3CD. AE连接DC,于点DE,延长ED交ACF.605得到线段DFCADE^A⑴求证:△ AHE的度数.求Z,BC 于点H连接AH,交GDBDCEHE⑵过点作〃交于点,。

相关文档
最新文档