一元二次方程培优提高题.doc

合集下载

(完整版)一元二次方程综合培优(难度大-含参考答案)

(完整版)一元二次方程综合培优(难度大-含参考答案)

一元二次方程拓展提高题1、已知0200052=--x x,则()()211223-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________120044007222=++-a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a.4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a .5、已知x x y -+=62,则y 的最大值为 .6、已知0=++c b a ,2=abc ,0φc ,则( )A 、0πabB 、2-≤+b aC 、3-≤+b aD 、4-≤+b a 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a .10、若方程02=-+q px x 的二根为1x ,2x ,且11φx ,03φ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定11、已知α是方程0412=-+x x 的一个根,则ααα--331的值为 .12、若132=-x x ,则=+--+200872129234x x x x ( )A 、2011B 、2010C 、2009D 、2008 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( )A 、14B 、15C 、16D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( )A 、1B 、1.5C 、2D 、2.5 16、方程9733322=-+-+x x x x 的全体实数根之积为( )A 、60B 、60-C 、10D 、10-17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )A 、1B 、2C 、21 D 、23 18、已知是α、β方程012=-+x x 的两个实根,则_______34=-βα. 19、若关于x 的方程xax x x x x a 1122++-=-只有一解,求a 的值。

一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)

⼀元⼆次⽅程专题能⼒培优(含答案)第2章⼀元⼆次⽅程 2.1 ⼀元⼆次⽅程专题⼀利⽤⼀元⼆次⽅程的定义确定字母的取值1.已知2(3)1m x -+=是关于x 的⼀元⼆次⽅程,则m 的取值范围是()A.m ≠3B.m ≥3C.m ≥-2D. m ≥-2且m ≠32. 已知关于x 的⽅程21(1)(2)10mm x m x +++--=,问:(1)m 取何值时,它是⼀元⼆次⽅程并写出这个⽅程;(2)m 取何值时,它是⼀元⼀次⽅程?专题⼆利⽤⼀元⼆次⽅程的项的概念求字母的取值3.关于x 的⼀元⼆次⽅程(m-1)x 2+5x+m 2-1=0的常数项为0,求m 的值.4.若⼀元⼆次⽅程2(24)(36)80a x a x a -+++-=没有⼀次项,则a 的值为 .专题三利⽤⼀元⼆次⽅程的解的概念求字母、代数式5.已知关于x 的⽅程x 2+bx+a=0的⼀个根是-a (a≠0),则a-b 值为() A.-1 B.0 C.1 D.26.若⼀元⼆次⽅程ax 2+bx+c=0中,a -b+c=0,则此⽅程必有⼀个根为 .7.已知实数a 是⼀元⼆次⽅程x 2-2013x+1=0的解,求代数式22120122013a a a +--的值.知识要点:1.只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次),等号两边都是整式的⽅程,叫做⼀元⼆次⽅程.2.⼀元⼆次⽅程的⼀般形式是ax 2+bx+c=0(a ≠0),其中ax 2温馨提⽰:1.⼀元⼆次⽅程概念中⼀定要注意⼆次项系数不为0的条件.2.⼀元⼆次⽅程的根是两个⽽不再是⼀个.⽅法技巧:1.ax k+bx+c=0是⼀元⼀次⽅程的情况有两种,需要分类讨论.2.利⽤⼀元⼆次⽅程的解求字母或者代数式的值时常常⽤到整体思想,需要同学们认真领会. 答案:1. D 解析:3020mm-≠+≥,解得m≥-2且m≠32.解:(1)当212,10mm+=+≠时,它是⼀元⼆次⽅程.解得:m=1.当m=1时,原⽅程可化为2x2-x-1=0;(2)当20,10m+=或者当m+1+(m-2)≠0且m2+1=1时,它是⼀元⼀次⽅程.解得:m=-1,m=0.故当m=-1或0时,为⼀元⼀次⽅程.3.解:由题意,得:210,10.mm-=-≠解得:m=-1.4.a=-2 解析:由题意得360,240.aa+=-≠解得a=-2.5. A 解析:∵关于x的⽅程x2+bx+a=0的⼀个根是-a(a≠0),∴a2-ab+a=0.∴a(a-b+1)=0.∵a≠0,∴1-b+a=0.∴a-b=-1.6.x=-1 解析:⽐较两个式⼦会发现:(1)等号右边相同;(2)等号左边最后⼀项相同;(3)第⼀个式⼦x2对应了第⼆个式⼦中的1,第⼀个式⼦中的x对应了第⼆个式⼦中的-1.故==-.解得x=-1.7.解:∵实数a是⼀元⼆次⽅程x2-2013x+1=0的解,∴a2-2013a+1=0. ∴a2+1=2013a,a2-2013a=-1.∴2.2 ⼀元⼆次⽅程的解法专题⼀利⽤配⽅法求字母的取值或者求代数式的极值1.若⽅程25x2-(k-1)x+1=0的左边可以写成⼀个完全平⽅式;则k的值为()A.-9或11 B.-7或8 C.-8或9 C.-8或92.如果代数式x2+6x+m2是⼀个完全平⽅式,则m= .3.⽤配⽅法证明:⽆论x为何实数,代数式-2x2+4x-5的值恒⼩于零.专题⼆利⽤△判定⼀元⼆次⽅程根的情况或者判定字母的取值范围4.已知a,b,c分别是三⾓形的三边,则⽅程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有⼀个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的⽅程kx2+3x+2=0有实数根,则k的取值范围是()6.定义:如果⼀元⼆次⽅程ax2+bx+c=0(a≠0)满⾜a+b+c=0,那么我们称这个⽅程为“凤凰”⽅程.已知ax2+bx+c=0(a≠0)是“凤凰”⽅程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c专题三解绝对值⽅程和⾼次⽅程7.若⽅程(x2+y2-5)2=64,则x2+y2= .8.阅读题例,解答下题:例:解⽅程x2-|x-1|-1=0.解:(1)当x-1≥0,即x≥1时,x2-(x-1)-1=0,∴x2-x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x-1<0,即x<1时,x2+(x-1)-1=0,∴x2+x-2=0.解得x1=1(不合题设,舍去),x2=-2.综上所述,原⽅程的解是x=1或x=-2.10.请先阅读例题的解答过程,然后再解答:代数第三册在解⽅程3x (x+2)=5(x+2)时,先将⽅程变形为3x (x+2)-5(x+2)=0,这个⽅程左边可以分解成两个⼀次因式的积,所以⽅程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中⾄少有⼀个等于0;反过来,如果两个因式有⼀个等于0,它们的积等于0.因此,解⽅程(x+2)(3x-5)=0,就相当于解⽅程 x+2=0或3x-5=0,得到原⽅程的解为x 1=-2,x 2=53.根据上⾯解⼀元⼆次⽅程的过程,王⼒推测:a ﹒b >0,则有 0,0a b >??>?或者0,0.a b请判断王⼒的推测是否正确?若正确,请你求出不等式51023x x ->-的解集,如果不正确,请说明理由.专题五利⽤根与系数的关系求字母的取值范围及求代数式的值11. 设x 1、x 2是⼀元⼆次⽅程x 2+4x -3=0的两个根,2x 1(x 22+5x 2﹣3)+a =2,则a = . 12.(2012·怀化)已知x 1、x 2是⼀元⼆次⽅程()0262=++-a ax x a 的两个实数根,⑴是否存在实数a ,使-x 1+x 1x 2=4+x 2成⽴?若存在,求出a 的值;若不存在,请你说明理由;⑵求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.13.(1)教材中我们学习了:若关于x 的⼀元⼆次⽅程ax 2+bx+c=0的两根为x 1、x 2,x 1+x 2=-b a ,x 1·x 2=ca .根据这⼀性质,我们可以求出已知⽅程关于x 1、x 2的代数式的值.例如:已知x 1、x 2为⽅程x 2-2x-1=0的两根,则:(1)x 1+x 2=____,x 1·x 2=____,那么x 12+x 22=( x 1+x 2)2-2 x 1·x 2=__ __.请你完成以上的填空..........(2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值.解:由210n n +-=可知0n ≠.∴21110n n +-=.∴211是⽅程210x x --=的两根.∴11m n +=.∴1mn n+=1.(3)根据阅读材料所提供的的⽅法及(1)的⽅法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n+的值.知识要点:1.解⼀元⼆次⽅程的基本思想——降次,解⼀元⼆次⽅程的常⽤⽅法:直接开平⽅法、配⽅法、公式法、因式分解法.2.⼀元⼆次⽅程的根的判别式△=b-4ac 与⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的根的关系:当△>0时,⼀元⼆次⽅程有两个不相等的实数解;当△=0时,⼀元⼆次⽅程有两个相等的实数解;△<0时,⼀元⼆次⽅程没有实数解.3.⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2与系数a 、b 、c 之间存在着如下关系: x 1+x 2=﹣,x 1?x 2=.温馨提⽰: 1.x 2+6x+m 2是⼀个完全平⽅式,易误以为m=3.2.若⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2有双层含义:(1)ax 12+bx 1+c=0,ax 22+bx 2+c=0;(2)x 1+x 2=﹣,x 1?x 2=.⽅法技巧:1.求⼆次三项式ax 2+bx+c 极值的基本步骤:(1)将ax 2+bx+c 化为a (x+h )2+k ;(2)当a>0,k>0时,a (x+h )2+k ≥k ;当a<0,k<0时,a (x+h )2+k ≤k.2.若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).3.解绝对值⽅程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式⼦与0的⼤⼩关系.4.解⾼次⽅程的基本思想是将⾼次⽅程将次转化为关于某个式⼦的⼀元⼆次⽅程求解.5.利⽤根与系数求解时,常常⽤到整体思想.答案: 1.A 解析:根据题意知,-(k-1)=±2×5×1,∴k-1=±10,即k-1=10或k-1=-10,得k=11或k=-9.2. ±3 解析:据题意得,m 2=9,∴m=±3.3.证明:-2x 2+4x -5=-2(x 2-2x )-5=-2(x 2-2x+1)-5+2=-2(x -1)2∴⽆论x 为何实数,代数式-2x 2+4x-5的值恒⼩于零.4.A 解析:△=(2c )2﹣4(a +b )(a +b )=4(a +b +c )(c ﹣a ﹣b ).根据三⾓形三边关系,得c ﹣a ﹣b <0,a +b +c >0.∴△<0.∴该⽅程没有实数根.5.A 解析:当kx 2+3x+1=0为⼀元⼀次⽅程⽅程时,必有实数根,此时k=0;当kx 2+3x+1=0为⼀元⼆次⽅程且有实数根时,如果有实数根,则203420k k ≠?-??≥?.解得98k ≤且k ≠0.综上所述98k ≤.6.A 解析:∵⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴△=b 2-4ac=0,⼜a +b +c =0,即b =-a -c ,代⼊b 2-4ac =0得(-a -c )2-4ac =0,化简得(a-c )2=0,所以a =c .7.13 解析:由题意得x 2+y 2-5=±8.解得x 2+y 2=13或者x 2+y 2=-3(舍去).8.解:①当x+2≥0,即x≥-2时,x 2+2(x+2)-4=0,∴x 2+2x=0.解得x 1=0,x 2=-2;②当x+2<0,即x <-2时,x 2-2(x+2)-4=0,∴x 2-2x -8=0. 解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原⽅程的解是x=0或x=-2. 9.4 1-,﹣3;41,3.发现的⼀般结论为:若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).11.8 解析:∵x 1x 2=-3,x 22+4x 2-3=0,∴2x 1(x 22+5x 2-3)+a =2转化为2x 1(x 22+4x 2-3+ x 2)+a =2. ∴2x 1x 2+a =2.∴2×(-3)+a =2.解得a =8.12.解:(1)根据题意,得△=(2a )2-4×a (a -6)=24a ≥0.∴a ≥0.⼜∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-62-a a ,x 1x 2=6-a a. 由-x 1+x 1x 2=4+x 2 得x 1+x 2 +4=x 1x 2.∴-62-a a +4 =6-a a,解得a =24.经检验a =24是⽅程-62-a a +4 =6-a a的解.(2)原式=x 1+x 2 +x 1x 2 +1=-62-a a +6-a a +1=a-66为负整数,∴6-a 为-1或-2,-3,-6.解得a =7或8,9,12.13.解:(1)2,-1, 6.(3)由n 2+3n-2=0可知n ≠0,∴1+3n -2n 2=0.∴2n 2- 3n -1=0.⼜2m 2-3m-1=0,且mn ≠1,即m ≠1n .∴m 、1n是⽅程2x 2-3x-1=0的两根.∴m+1n = 32,m ·1n =-12,∴m 2+ 1n 2=(m+ 1n )2-2m ·1n =( 32)2-2·(-12)= 134.2.3 ⼀元⼆次⽅程的应⽤专题⼀、利⽤⼀元⼆次⽅程解决⾯积问题 1.在⾼度为2.8m 的⼀⾯墙上,准备开凿⼀个矩形窗户.现⽤9.5m 长的铝合⾦条制成如图所⽰的窗框.问:窗户的宽和⾼各是多少时,其透光⾯积为3m 2(铝合⾦条的宽度忽略不计).条所占⾯积为原矩形图案⾯积的三分之⼀,应如何设计每个彩条的宽度?3. 数学的学习贵在举⼀反三,触类旁通.仔细观察图形,认真思考,解决下⾯的问题:(1)在长为a m,宽为b m的⼀块草坪上修了⼀条1m宽的笔直⼩路(如图(1)),则余下草m;坪的⾯积可表⽰为2(2)现为了增加美感,设计师把这条⼩路改为宽恒为1m的弯曲⼩路(如图(2)),则此时m;余下草坪的⾯积为2(3)聪明的鲁鲁结合上⾯的问题编写了⼀道应⽤题,你能解决吗?相信⾃⼰哦!(如图(3)),在长为50m,宽为30m的⼀块草坪上修了⼀条宽为xm的笔直⼩路和⼀条长恒m.求⼩路的宽x.为xm的弯曲⼩路(如图3),此时余下草坪的⾯积为14212专题⼆、利⽤⼀元⼆次⽅程解决变化率问题4.据报道,我省农作物秸杆的资源巨⼤,但合理利⽤量⼗分有限,2012年的利⽤率只有30%,⼤部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利⽤量的增长率相同,要使2014年的利⽤率提⾼到60%,求每年的增长率.(取2≈1.41)5.某种电脑病毒传播⾮常快,如果⼀台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你⽤学过的知识分析,每轮感染中平均⼀台电脑会感染⼏台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6.(2012·⼴元)某中⼼城市有⼀楼盘,开发商准备以每平⽅⽶7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平⽅⽶5670 元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引⼒.请问房产销售经理的⽅案对购房者是否更优惠?为什么?专题三、利⽤⼀元⼆次⽅程解决市场经济问题7.(2012·济宁)⼀学校为了绿化校园环境,向某园林公司购买了⼀批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司⽀付树苗款8800元.请问该校共购买了多少棵树苗?8.(2012·南京)某汽车销售公司6⽉份销售某⼚家的汽车,在⼀定范围内,每部汽车的售价与销售量有如下关系:若当⽉仅售出1部汽车,则该部汽车的进价为27万元,每多售出1 部,所有售出的汽车的进价均降低0.1万元/部;⽉底⼚家根据销售量⼀次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当⽉售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当⽉盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四、利⽤⼀元⼆次⽅程解决⽣活中的其他问题9. (1)经过凸n边形(n>3)其中⼀个顶点......的对⾓线有条.(2)⼀个凸多边形共有14条对⾓线,它是⼏边形?10.如图每个正⽅形是由边长为1的⼩正⽅形组成.(1)观察图形,请填与下列表格:正⽅形边长 1 3 5 7 … n (奇数)红⾊⼩正⽅形个数 … 正⽅形边长 2 4 6 8 … n (偶数)红⾊⼩正⽅形个数…(2)在边长为n (n≥1)的正⽅形中,设红⾊⼩正⽅形的个数为P 1,⽩⾊⼩正⽅形的个数为P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.知识要点:列⽅程解决实际问题的常见类型:⾯积问题,增长率问题、经济问题、疾病传播问题、⽣活中的其他问题. 温馨提⽰:1.若设每次的平均增长(或降低)率为x ,增长(或降低)前的数量为a ,则第⼀次增长(或降低)后的数量为a(1±x),第⼆次增长(或降低)后的数量为a(1±x)2.2.⾯积(体积)问题属于⼏何图形的应⽤题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据⾯积(体积)公式列出⼀元⼆次⽅程.3.列⽅程解决实际问题时,⽅程的解必须使实际问题有意义,因此要注意检验结果的合理性. ⽅法技巧:1. 变化率问题中常⽤a (1±x )n=b ,其中a 是起始量,b 是终⽌量,n 是变出次数,x 是变化率.变化率问题⽤直接开平⽅法求解简单.2.解决⾯积问题常常⽤到平移的⽅法,利⽤平移前后图形⾯积不变建⽴等量关系.答案:1.解:设⾼为x ⽶,则宽为9.50.523x --⽶.由题意,得9.50.5233xx --?=. 解得121.5,3x x == (舍去,⾼度为2.8m 的⼀⾯墙上). 当x=1.5时,宽9.50.529.50.53233x ----==.答:⾼为1.5⽶,宽为2⽶.2.解:设横、竖彩条的宽度分别为2xcm 、3xcm ,由题意,得(20-6x )(30-4x )=(1-13)×20×30.整理,得6x 2-65x +50=0.。

九年级上册:第21章《一元二次方程》期末培优测验试卷(含答案)

九年级上册:第21章《一元二次方程》期末培优测验试卷(含答案)

人教版初中九年级上册:第21章《一元二次方程》期末培优测验一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0D.ax2+bx+c=02.已知x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1+x2的值是()A.6B.﹣6C.5D.﹣53.若关于x的方程x2+mx﹣6=0有一个根为2.则另一个根为()A.﹣2B.2C.4D.﹣34.已知关于x的一元二次方程x2+2x﹣(m﹣3)=0有实数根,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤25.组织一次篮球联赛,每两队之间都赛一场,计划安排15场比赛,应邀请()个球队参加比赛.A.5B.6C.7D.96.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛.设参赛球队的支数为x,则根据题意所列的方程是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28×2D.x(x﹣1)=28×27.在宽为20m,长为32m的矩形田地修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小矩形田地,作为良种试验田,要使每小块试验田的面积为135m2,设道路的宽为x米,则可列方程为()A.(32﹣x)(20﹣x)=135B.4(32﹣x)(20﹣x)=135C.D.(32﹣x)(20﹣x)﹣x2=1358.关于方程85(x﹣2)2=95的两根,则下列叙述正确的是()A.一根小于1,另一根大于3B.一根小于﹣2,另一根大于2C.两根都小于0D.两根都大于29.为宣传“”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2﹣2x)(1﹣2x)=2×1D.(2+2x)(1+2x)=2×1×90% 10.若一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,则一次函数y=abx+a+b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共7小题)11.若关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,则a的值为.12.定义新运算:m,n是实数,m*n=m(2n﹣1),若m,n是方程2x2﹣x+k=0(k<0)的两根,则m*m﹣n*n=.13.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.14.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为.15.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为.16.一元二次方程(x+1)(x+3)=9的一般形式是,二次项系数为,常数项为17.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是.三.解答题(共7小题)18.解方程:(1)x2+4x﹣5=0.(2)x2﹣3x+1=0.19.已知关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根.(1)求m的取值范围;(2)试判断关于x的方程(m+5)x2﹣2(m+1)x+m=0的根的情况.20.某电脑销售商试销某一品牌电脑1月份的月销售额为400000,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.求1月份到3月份销售额的月平均增长率.21.列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若=﹣1,则m的值为多少?23.如图,矩形ABCD中,AB=6cm,BC=8cm,点P从点A沿边AB以1cm/s的速度向点B移动,同时点Q从点B沿边BC以2cm/s的速度向点C移动,当P、Q两点中有一个点到终点时,则另一个点也停止运动.当△DPQ的面积比△PBQ的面积大19.5cm2时,求点P运动的时间.24.已知关于x的方程x2﹣2mx+m2﹣4m﹣1=0(1)若这个方程有实数根,求m的取值范围;(2)若此方程有一个根是1,请求出m的值.参考答案一.选择题(共10小题)1.【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.【解答】解:∵x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,∴x1+x2=6,故选:A.3.【解答】解:设方程的另一个根为α,根据根与系数的关系,2α=﹣6,∴α=﹣3.故选:D.4.【解答】解:根据题意得:△=22+4(m﹣3)=4+4m﹣12=4m﹣8≥0,解得:m≥2,故选:C.5.【解答】解:设应邀请x个球队参加比赛,根据题意得:x(x﹣1)=15,解得:x1=6,x2=﹣5(不合题意,舍去).故选:B.6.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得:=28,即:x(x﹣1)=28×2,故选:D.7.【解答】解:设道路的宽为x米,则每块小矩形田地的长为(32﹣x)m,宽为(20﹣x)m,根据题意得:(32﹣x)×(20﹣x)=135,即(32﹣x)(20﹣x)=135.故选:C.8.【解答】解:(x﹣2)2=,x﹣2=±,所以x1=2﹣,x2=2+,而1<<2,所以x1<1,x2>3.故选:A.9.【解答】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.10.【解答】解:∵一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,∴a+b=4,ab=3,∴一次函数的解析式为y=3x+4.∵3>0,4>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限.故选:D.二.填空题(共7小题)11.【解答】解:∵关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,∴|a|=2,a+2≠0,解得,a=2.故答案为:2.12.【解答】解:∵m,n是方程2x2﹣x+k=0(k<0)的两根,∴2m2﹣m+k=0,2n2﹣n+k=0,即2m2﹣m=﹣k,2n2﹣n=﹣k,则m*m﹣n*n=m(2m﹣1)﹣n(2n﹣1)=2m2﹣m﹣(2n2﹣n)=﹣k﹣(﹣k)=﹣k+k=0,故答案为:0.13.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.14.【解答】解:∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=30,整理得x2﹣40x+400=0.故答案是:x2﹣40x+400=0.15.【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,因为3+3=6,所以等腰三角形的两腰为6、6,底边长为3,所以三角形周长=6+6+3=15.故答案为:15.16.【解答】解:由(x+1)(x+3)=9,得x2+4x+3﹣9=0,即x2+4x﹣6=0.其中二次项系数是1,一次项系数是4,常数项是﹣6.故答案是:x2+4x﹣6=0;1;﹣6.17.【解答】解:∵1,﹣3是已知方程x2+2x﹣3=0的解,由于另一个方程(2x+3)2+2(2x+3)﹣3=0与已知方程的形式完全相同∴2x+3=1或2x+3=﹣3解得x1=﹣1,x2=﹣3.故答案为:x1=﹣1,x2=﹣3.三.解答题(共7小题)18.【解答】解:(1)因式分解得,(x﹣1)(x+5)=0,x﹣1=0,x+5=0,∴x1=1,x2=﹣5;(2)a=1,b=﹣3,c=1,∴△=b2﹣4ac=9﹣4=5>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.19.【解答】解:(1)∵关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根,∴△=[﹣2(m+2)]2﹣4×1×(m2+5)=16m﹣4<0,解得:m;(2)∵m<,∴m+5≠0,∴原方程是一元二次方程,△=[﹣2(m+1)]2﹣4(m+5)m=4﹣12m,∵m<,∴4﹣12m>0,∴原方程有两个不相等的实数根.20.【解答】解:设1月份到3月份销售额的月平均增长率为x,根据题意得:400000(1+x)2=576000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:1月份到3月份销售额的月平均增长率为20%.21.【解答】解:(1)设每个月增长的利润率为x,根据题意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.22.【解答】解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵=﹣1,∴=﹣1,∴=﹣1,m2﹣2m﹣3=0(m﹣3)(m+1)=0m1=﹣1,m1=3,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为3.23.【解答】解:设当△DPQ的面积比△PBQ的面积大19.5cm2时,点P运动了x秒.根据题意得:×8×x+×2x(6﹣x)+×6(8﹣2x)+[×2x(6﹣x)+19.5]=6×8,化简得:2x2﹣10x+=0,解得:x1=,x2=.∵当x2=时,8﹣2x=﹣1<0,∴x2=舍去.答:当△DPQ的面积比△PBQ的面积大19.52时,点P经过了秒.24.【解答】解:(1)根据题意知△=(﹣2m)2﹣4(m2﹣4m﹣1)≥0,解得:m≥﹣;(2)将x=1代入方程得1﹣2m+m2﹣4m﹣1=0,整理,得:m2﹣6m=0,解得:m1=0,m2=6,∵m≥﹣,∴m=0和m=6均符合题意,故m=0或m=6.。

一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。

解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。

给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。

解方程3a+6=0,得到a=-2.因此,这是一元一次方程。

根据题意,方程x+bx+a=0的一个根是-a(a≠0)。

由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。

《一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)

《一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)

2021-2022学年北师大版九年级数学上册《2.5一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)1.已知关于x的方程2mx2﹣(5m﹣1)x+3m﹣1=0.(1)求证:无论m为任意实数,方程总有实数根.(2)如果这个方程的根的判别式的值等于1,求m的值.2.关于x的一元二次方程x2﹣2x+3m﹣2=0有实数根.(1)求m的取值范围;(2)若m为正整数,求出此时方程的根.3.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,求m的取值范围.4.已知关于x的一元二次方程x2﹣3x+a﹣1=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数时,求此时方程的解.5.已知y1=x2﹣2x+3.y2=x+m.(1)若m=1,当x取何值时y1=y2?(2)若y1=2y2,当m为何范围时,存在两个不同的x值?6.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.7.已知关于x的一元二次方程x2+(2k﹣1)x+k2﹣3=0有实数根.(ⅰ)求实数k的取值范围;(ⅱ)当k=2时,方程的根为x1,x2,求代数式(x12+2x1﹣1)(x22+4x2+3)的值.8.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c,恰好是这个方程的两个实数根,求△ABC的周长.(3)若方程的两个实数根之差等于3,求k的值.9.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.10.关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足(x1﹣1)(x2﹣1)=6,求k的值.11.已知关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)设两个实数根是x1和x2,且x1+x2﹣2x1x2=2,则k的值为.12.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.关于x的一元二次方程x2﹣4x+k﹣3=0的两个实数根是x1、x2.(1)已知k=2,求x1+x2+x1x2.(2)若x1=3x2,试求k值.15.已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.16.已知m为实数,关于x的方程为mx2+(m﹣2)x﹣1=0.(1)求证:不论m为何实数,方程总有实数根.(2)若方程有两实根x1,x2,当x1x2﹣2x1﹣2x2=3时,求m的值.17.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0(1)若该方程有两个实数根,求k的最大整数值.(2)若该方程的两个实数根为x1,x2,是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.18.关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1、x2是方程的两根,且+=1,求m的值.19.若x1,x2与是方程x2+x﹣3=0的两个实数根,求x13﹣4x22+22的值.20.已知关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)若方程的两个根为x1,x2,且=0,求k的值.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.参考答案1.解:(1)①当m=0时,该方程是关于x的一元一次方程,符合题意;②关于x的一元二次方程2mx2﹣(5m﹣1)x+3m﹣1=0.∵△=(5m﹣1)2﹣8m(3m﹣1)=(m﹣1)2≥0,∴无论m为任何实数,方程总有实根.(2)由题意得,△=(m﹣1)2=1,解得m1=0,m2=2,而m≠0,∴m=2.2.解:(1)∵方程有实数根,∴(﹣2)2﹣4×1×(3m﹣2)≥0,∴m≤1;(2)∵m为正整数,∴m=1,∴方程为:x2﹣2x+1=0,∴x1=x2=1.3.解:∵关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16≥0,∴m≥2.4.解:(1)∵关于x的一元二次方程x2﹣3x+a﹣1=0有实数根,∴△=(﹣3)2﹣4(a﹣1)=﹣4a+13≥0,解得:a≤,即a的取值范围是a≤;(2)∵a的取值范围是a≤,∴整数a的最大值是3,把a=3代入方程x2﹣3x+a﹣1=0得:x2﹣3x+2=0,解得:x1=1,x2=2.5.解:(1)当m=1时,根据题意,得x2﹣2x+3=x+1,整理,得(x﹣1)(x﹣2)=0.所以x﹣1=0或x﹣2=0.解得x1=1,x2=2;(2)根据题意,得x2﹣2x+3=2x+2m,整理,得x2﹣4x+3﹣2m=0,所以△=(﹣4)2﹣4×1×(3﹣2m)>0.解得m>﹣.所以当m>﹣时,存在两个不同的x值.6.解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.7.解:(i)∵方程有实数根,∴△=(2k﹣1)2﹣4(k2﹣3)≥0,解得:k≤;(ii)当k=2时,方程化为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵x1,x2是方程的解,∴x12+3x1+1=0,x22+3x2+1=0,∴x12+3x1=﹣1,x22+3x2=﹣1,∴原式=(﹣1﹣x1﹣1)(﹣1+x2+3)=﹣(x1+2)(x2+2)=﹣[x1x2+2(x1+x2)+4]=﹣(1﹣6+4)=1.8.解:(1)△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取何值,(2k﹣3)2≥0,故这个方程总有两个实数根;(2)由求根公式得x=,∴x1=2k﹣1,x2=2.∵另两边长b、c,恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a,b为腰时,则a=b=4,即2k﹣1=4,计算得出k=,此时三角形周长为4+4+2=10;当b,c为腰时,b=c=2,此时b+c=a,构不成三角形,故此种情况不存在.综上所述,△ABC周长为10.(3)∵方程的两个实数根之差等于3,∴,解得:k=0或3.9.解:(1)△=(2m+4)2﹣4(m2+4m)=16,16>0,∴此方程总有两个不相等的实数根.(2)①﹣4x1x2=(x1+x2)2﹣6x1x2,∵x1+x2==2m+4,x1x2=m2+4m,∴(x1+x2)2﹣6x1x2=(2m+4)2﹣6(m2+4m)=﹣2m2﹣8m+16=﹣2(m+2)2+24,∴当m=﹣2时﹣4x1x2的最大值为24.②把x=6代入原方程可得m2﹣8m+12=0,解得m=2或m=6,当m=2时,原方程化简为x2﹣8x+12=0,解得x=2或x=6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m=6时,原方程化简为x2﹣16x+60,解得x=6或x=10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.10.解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=[2(k﹣1)]2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.∴k的取值范围为:k≤1.(2)由根与系数关系得:x1+x2=﹣2(k﹣1),x1x2=k2﹣1,所以(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=k2﹣1+2(k﹣1)+1=6.解得k=2(舍去)或k=﹣4.故k的值是﹣4.11.解:(1)∵一元二次方程x2+2x+k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣1)>0,解得k<2,即k的取值范围是k<2;(2)∵一元二次方程x2+2x+k﹣1=0的两个实数根是x1和x2,∴x1+x2=﹣2,x1x2=k﹣1,∵x1+x2﹣2x1x2=2,∴﹣2﹣2(k﹣1)=2,∴k=﹣1,故答案为:﹣1.12.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.13.解:(1)由题意得:△≥0且m﹣2≠0,∴(2m+1)2﹣4m(m﹣2)≥0解得m≥﹣且m≠2(2)由题意得有两种情况:①当x1=x2,则△=0,所以m=﹣,x1=x2=﹣×=.②当x1=﹣x2时,则x1+x2=0.,所以m=﹣,因为m≥﹣且m≠2,所以此时方程无解.综上所述,m=﹣,x1=x2=.14.解:(1)∵方程x2﹣4x+k﹣3=0的两个实数根是x1、x2,k=2,∴x1+x2=4,x1x2=k﹣3=﹣1,∴x1+x2+x1x2=4﹣1=3.(2)∵x1+x2=4,x1=3x2,∴x1=3,x2=1,∴k=x1x2+3=6.15.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.16.(1)证明:当m=0时,已经方程为﹣2x﹣1=0,有实数根;当m≠0时,已经方程是一元二次方程,△=(m﹣2)2﹣4m×(﹣1)=m2+4>0,该方程有两个不等实根;综上,不论m为何实数,方程总有实数根;(2)由根与系数的关系可得,,,∵x1x2﹣2x1﹣2x2=3,∴x1x2﹣2(x1+x2)=3,∴,解得m=﹣5,经检验,m=﹣5是原分式方程的解,即m的值是﹣5.17.解:(1)由题意得:此方程的根的判别式△=[﹣(2k+1)]2﹣4(k2+2k)≥0,整理得:﹣4k+1≥0,解得,则k的最大整数值是0;(2)存在,由根与系数的关系得:x1+x2=2k+1,x1x2=k2+2k,∵=,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得:k2﹣2k﹣15=0,解得k=﹣3或k=5,由(1)可知,,则k=﹣3.18.解:(1)根据题意,知(2m﹣3)2﹣4m2>0,解得m<;(2)由题意知x1+x2=﹣(2m﹣3)=3﹣2m,x1•x2=m2,由+=1,即=1可得=1,解得:m=1(舍去)或m=﹣3,所以m的值是﹣3.19.解:∵x1是方程x2+x﹣3=0的实数根,∴x12+x1﹣3=0,∴x12=﹣x1+3,x1=﹣x12+3,∴x13=﹣x12+3x1,∴x13﹣4x22+22=﹣x12+3x1﹣4x22+22=﹣4x12+9﹣4x22+22=﹣4(x1+x2)2+8x1•x2+31,∵x1、x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,∴原式=﹣4×(﹣1)2+8×(﹣3)+31=3.20.(1)证明:①当k=1时,该方程有一个实数根,符合题意.②当k≠1时,∵△=(2k)2﹣4(k﹣1)×2=4(k﹣1)2+4>0,∴当k≠1时,方程总有实数根.综上所述,无论k取任何值,方程总有实数根.(2)∵x1、x2是方程的两个根,∴x1+x2=,x1•x2=,∴=+x1x2=+=0.解得k=2或k=﹣1.经检验,k=2或k=﹣1都符合题意.所以k=2或k=﹣1.21.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.。

(完整版)一元二次方程培优提高例题

(完整版)一元二次方程培优提高例题

考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0"; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程.★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m+x n—2x 2=0是一元二次方程,则下列不可能的是( )A 。

m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 .例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。

人教版九年级上册数学试题:第二十一章《一元二次方程》培优练习题

人教版九年级上册数学试题:第二十一章《一元二次方程》培优练习题

第二十一章《一元二次方程》培优练习题一.选择题1.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A.1,4,3 B.0,﹣4,﹣3 C.1,﹣4,3 D.1,﹣4,﹣3 2.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9 B.4.5 C.3 D.﹣34.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个5.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14 B.15 C.16 D.256.关于方程x2﹣6x﹣15=0的根,下列说法正确的是()A.两实数根的和为﹣6 B.两实数根的积为﹣15C.没有实数根D.有两个相等的实数根7.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110C.x(x+1)=110 D.x(x﹣1)=1108.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是09.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019 B.2020 C.2021 D.202210.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm11.若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1 B.1或﹣1 C.1 D.212.下列方程中,无实数根的是()A.x2+1=0 B.x2+x=0 C.x2+x﹣1=0 D.x2﹣x﹣1=0二.填空题13.若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+10的值为.14.已知关于x的一元二次方程2x2﹣kx﹣24=0的一个根为x=﹣3,则k的值是.15.关于x的一元二次方程kx2+(k+3)x+2=0的根的情况是.16.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为.17.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.18.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.三.解答题19.解方程:(1)x2﹣3x﹣4=0(2)2x2﹣2x+1=020.已知,关于x的方程x2+2(2﹣k)x+3﹣6k=0.(Ⅰ)若x=1是方程的一个根,求k的值及方程的另一根;(Ⅱ)若k为任意实数,判断此时方程的根情况.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?22.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.23.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.24.火锅是重庆人民非常喜爱的食物,某火锅店今年2月推出了线上服务,根据消费者的喜好在美团上推出A、B两种套餐外卖,其中A套餐建议用餐人数2到4人,售价160元,成本100元,B套餐建议用餐人数4到6人,售价300元,成本160元,平均每天A的销售量是B的3倍,A的销售额比B多900元.(1)求线上服务平均每天A套餐的销售数量;(2)4月,该火锅店在线上销售的同时开始线下试营业,套餐价格不变,每个套餐增加人工成本20元,线上两种套餐销量和2月份一样,线上线下平均每天总销售量之比为2:3,每天总获利3600元;五一期间为了回馈顾客,B套餐推出了优惠活动,线下在原售价的基础上降价2a,当天销量增加5a%,线上降价a%,销量不变;A套餐线上线下的价格和销量都不变,五一当天的总利润3700元,求a的值.参考答案一.选择题1.解:一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别为1,﹣4,﹣3.故选:D.2.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.3.解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故选:B.4.解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.5.解:设平均每天一人传染了x人,根据题意得:1+x+x(1+x)=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.6.解:∵a=1,b=﹣6,c=﹣15,∴△=b2﹣4ac=(﹣6)2﹣4×1×(﹣15)=96>0,∴该方程有两个不相等的实数根.设方程x2﹣6x﹣15=0的两根分别为m,n,则m+n=﹣=6,mn==﹣15.故选:B.7.解:设有x个队参赛,则x(x﹣1)=110.故选:D.8.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.9.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2020=1+2020=2021.故选:C.10.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.11.解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.12.解:A、方程x2+1=0,∵a=1,b=0,c=1,∴△=﹣4<0,则此方程无实数根,符合题意;B、x2+x=0,∵a=1,b=1,c=0,∴△=1>0,则此方程有两个不相等实数根,不符合题意;C、x2+x﹣1=0,∵a=1,b=1,c=﹣1,∴△=5>0,则此方程有两个不相等实数根,不符合题意;D、x2﹣x﹣1=0,∵a=1,b=﹣1,c=﹣1,∴△=5>0,则此方程有两个不相等实数根,不符合题意.故选:A.二.填空题(共6小题)13.解:∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴△=(﹣m)2﹣4m=0,∴2m2﹣8m+10=2(m2﹣4m)+10=0+10=10.故答案为:10.14.解:把x=﹣3代入方程2x2﹣kx﹣24=0,可得2×9+3k﹣24=0,即k=2,故答案为:2.15.解:△=(k+3)2﹣4×2k=(k﹣1)2+8,∵(k﹣1)2≥0,∴(k﹣1)2+8>0,即△>0,∴原方程有两个不相等的实数根.故答案为:有两个不相等的实数根.16.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1056.故答案为:x(x﹣1)=1056.17.解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.18.解:设道路的宽为x m,根据题意得:(10﹣x)(15﹣x)=126,解得:x1=1,x2=24(不合题意,舍去),则道路的宽应为1米;故答案为:1.三.解答题(共6小题)19.解:(1)∵x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,则x+1=0或x﹣4=0,解得:x1=4,x2=﹣1;(2)∵2x2﹣2x+1=0,∴(x﹣1)2=0,则x﹣1=0,解得:x1=x2=.20.解:(Ⅰ)设方程的另一个根为m,根据题意,得:,解得:,∴方程的另一个根为﹣3,k的值为1;(Ⅱ)△=4(2﹣k)2﹣4(3﹣6k)=4k2+8k+4=4(k2+2k+1)=4(k+1)2≥0,∴方程有两个实数根.21.(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x1=0.4=40%,x2=﹣2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克根据题意,得(20﹣12﹣y)(200+50y)=1750整理得,y2﹣4y+3=0,解得y1=1,y2=3∵要减少库存∴y1=1不合题意,舍去,∴y=3答:售价应降低3元.22.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.23.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.24.解:(1)设线上服务平均每天A套餐的销售数量为x份,则平均每天B套餐的销售数量为份,依题意,得:160x﹣300×=900,解得:x=15.答:线上服务平均每天A套餐的销售数量为15份.(2)由(1)可知:=5,x+=20.设线下平均每天A套餐的销售量为m份,则平均每天B套餐的销售量为(20×﹣m)份,依题意,得:(160﹣100)×15+(300﹣160)×5+(160﹣100﹣20)m+(300﹣160﹣20)(20×﹣m)=3600,解得:m=20,∴20×﹣m=10.又∵五一当天的总利润3700元,∴(160﹣100)×15+(160﹣100﹣20)×20+[300(1﹣a%)﹣160]×5+(300﹣2a ﹣160﹣20)×10(1+5a%)=3700,整理,得:a2﹣25a+100=0,解得:a1=5,a2=20.当a=5时,10(1+5a%)=12.5,∵12.5不为整数,∴不合题意,舍去;当a=20时,10(1+5a%)=20,合适.答:a的值为20.。

一元二次方程培优题

一元二次方程培优题

1、已知关于x 的一元二次方程()0122=+--k x k kx 有两个不相等的实根,求k 的取值范围2、关于x 的方程0122=--x k x 有实根,求k 的取值范围 3、已知关于x 的方程0342=+-x kx 有实根,则k 的非负整数值是 4、方程012=--x x 的两根为 5、解方程03222=-+a x a x6、 设c b a ,,是ABC ∆三边的长,且关于x 的方程()())0(0222>=--++n ax n n x c n x c 有两个相等的实数根,求证ABC ∆是直角三角形。

7、已知关于x 的方程()()011222=++---m x m x m ,当m 为何非负整数时, (1)方程只有一个实数根 (2)方程有两个相等的实根 (3)方程有两个不相等的实根8、 求证:k 为何实数,方程()()0112122=---+x k x k 一定有两个不相等的实根。

9、 已知n m ,为整数,关于x 的三个方程:()0372=++--n x m x 有两个不相等的实根; ()0642=++++n x m x 有两个相等的实根;()0142=++--n x m x 没有实根; 求n m ,的值。

10、若方程),(022是实数q p q px x =-+没有实根,(1)求证41<+q p ; (2)试写出上述命题的逆命题。

11、 关于x 的方程()()024*******=++++++b ab a x a x 有实根,求b a ,的值。

12、 设m 是有理数,问k 为何值时,方程04234422=+-++-k m m x mx x 的根是有理数。

13、 设0≠c ,关于x 的一元二次方程02=++bc ax x 和02=++ca bx x 有一个公共根,求证:这两个方程的其他二根为方程02=++ab cx x 的根。

14、若关于x 的两个方程02=++b ax x 和02=++a bx x 只有一个公共解,(1)求此公共解; (2)求非公共解之和。

《一元二次方程》培优竞赛

《一元二次方程》培优竞赛

《一元二次方程》培优【知识要点】:1、一元二次方程的解法 (1) 法;(2) 法;(3) 法;(4) 法2、一元二次方程的根的判别式一元二次方程ax 2+bx +c = 0(a ≠0)的根的判别式为△= ,当△>0时方程有两个不相等的实根x 1= 和x 2= ;当△=0时有两个相等的实根x 1=x 2= ; 当△<0时根据平方根的意义,负数没有平方根,所以一元二次方程ax 2+bx +c = 0没有实数解.3、一元二次方程的根与系数的关系若一元二次方程方程20 (0)ax bx c a ++=≠的两个根为 即x 1=,x 2那么:12x x += ,12x x = ,此结论称为”韦达定理”,其成立的前提是0∆≥.3.特别地, 以两个数根x 1和x 2为根的一元二次方程是x 2+( x 1+x 2 )x +x 1.x 2 = 0.【精选题型】:1、已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根 (3)方程有实数根; (4)方程无实数根.2 、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.3、已知关于x 的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足x 2=x 1+2,求m 的值及相应的x 1,x 2.4、已知关于x 的方程mx 2—(2m+1)x+2=0.(1)求证:无论m 取何实数时,原方程总有实数根;(2)若原方程有两个实数根x 1和x 2,当52221=+x x 时求m 的值(3)若原方程有两个实数根,能否存在一个根大于2,另一个根小于2 ?若存在,请求出m 的取值范围;若不存在,请说明理由.【拓展练习】:1.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2 B .2-C .12 D .922.若t 是一元二次方程20 ax bx c ++=的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定3.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )A . m <14 B 。

数学 一元二次方程的专项 培优练习题附详细答案

数学 一元二次方程的专项 培优练习题附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)2cm ;(2)85s 或245s ;(3)经过4秒或6秒△PBQ 的面积为 12cm 2.【解析】 试题分析:(1)作PE ⊥CD 于E ,表示出PQ 的长度,利用PE 2+EQ 2=PQ 2列出方程求解即可;(2)设x 秒后,点P 和点Q 的距离是10cm .在Rt △PEQ 中,根据勾股定理列出关于x 的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.3.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.4.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m ,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.5.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;(2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0. ∴∴另一根是2;(2)∵, ∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.8.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。

一元二次方程培优(含答案)

一元二次方程培优(含答案)

一元二次方程培优卷【思维入门】1.若关于x 的一元二次方程的两根为x 1=1,x 2=2,则这个方程是 ( )A .x 2+3x -2=0B .x 2-3x +2=0C .x 2-2x +3=0D .x 2+3x +2=02.用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为 ( )A.⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2B.⎝ ⎛⎭⎪⎫x +b 2a 2=4ac -b 24a 2C.⎝ ⎛⎭⎪⎫x -b 2a 2=b 2-4ac 4a 2D.⎝ ⎛⎭⎪⎫x -b 2a 2=4ac -b 24a 2 3.一元二次方程2x 2-3x +1=0的解为____.4.已知关于x 的一元二次方程2x 2-3kx +4=0的一个根是1,则k =____.5.一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =____.6. 先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1,其中x 为方程x 2+3x +2=0的根.【思维拓展】7.若关于x 的方程m (x +h )2+k =0(m ,h ,k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m (x +h -3)2+k =0的解为( ) A .x 1=-6,x 2=-1B .x 1=0,x 2=5C .x 1=-3,x 2=5D .x 1=-6,x 2=28.定义运算“★”:对于任意实数a ,b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5.若x ★2=6,则实数x 的值是____.9.关于x 的一元二次方程为(m -1)x 2-2mx +m +1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?10.某文献对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程m-1x-1-xx-1=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.【思维升华】11.若关于x的一元二次方程(m-2)x2+3x+m2-5m+6=0的常数项为0,则m的值是()A.2 B.3C.2或3 D.012.若n(n≠0)是关于x的方程x2+mx+3n=0的根,则m+n的值是____.13.已知n为正整数,且n4+2n3+6n2+12n+25为完全平方数,则n=____.14.若x2-||2x-1-4=0,则满足该方程的所有根之和为____.15.若x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,则a的值为______.一元二次方程的解法【思维入门】1.若关于x 的一元二次方程的两根为x 1=1,x 2=2,则这个方程是 ( B )A .x 2+3x -2=0B .x 2-3x +2=0C .x 2-2x +3=0D .x 2+3x +2=02.用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为 ( A )A.⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2 B.⎝ ⎛⎭⎪⎫x +b 2a 2=4ac -b 24a 2 C.⎝ ⎛⎭⎪⎫x -b 2a 2=b 2-4ac 4a 2 D.⎝ ⎛⎭⎪⎫x -b 2a 2=4ac -b 24a 2 3.一元二次方程2x 2-3x +1=0的解为__x 1=1,x 2=12__.4.已知关于x 的一元二次方程2x 2-3kx +4=0的一个根是1,则k =__2__.5.一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =__1__.【解析】 ∵一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,∴a +1≠0且a 2-1=0,∴a =1.6. 先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1,其中x 为方程x 2+3x +2=0的根. 解:原式=(x -1)÷⎝ ⎛⎭⎪⎫2-x -1x +1=(x -1)·x +1-x +1=-x -1. 由x 2+3x +2=0,得x 1=-1,x 2=-2.当x 1=-1时,原式无意义,所以x 1=-1舍去.当x 2=-2时,原式=1.【思维拓展】7.若关于x 的方程m (x +h )2+k =0(m ,h ,k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m (x +h -3)2+k =0的解为( B ) A .x 1=-6,x 2=-1 B .x 1=0,x 2=5C.x1=-3,x2=5 D.x1=-6,x2=28.定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是__-1或4__.9.关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?解:(1)根据题意得m≠1,Δ=(-2m)2-4(m-1)(m+1)=4,∴x1=2m+22()m-1=m+1m-1,x2=2m-22()m-1=1.(2)由(1)知x1=m+1m-1=1+2m-1,∵方程的两个根都是正整数,∴2m-1是正整数,∴m-1=1或2.∴m=2或3.10.某文献对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程m-1x-1-xx-1=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.解:(1)∵将分式方程m-1x-1-xx-1=0去分母化成整式方程得(m-1)-x=0,解得x=m-1.又∵关于x的方程无解,∴x=m-1是增根.∴m-1-1=0,解得m=2.∵方程x2+kx+6=0的一个根是m,即x=2.∴22+2k+6=0.解得k=-5.(2)x2-5x+6=0,解得x1=2,x2=3.【思维升华】11.若关于x的一元二次方程(m-2)x2+3x+m2-5m+6=0的常数项为0,则m的值是(B)A.2 B.3C.2或3 D.012.若n(n≠0)是关于x的方程x2+mx+3n=0的根,则m+n的值是__-3__.13.已知n为正整数,且n4+2n3+6n2+12n+25为完全平方数,则n=__8__.【解析】易知n=1,n=2均不符合题意,所以n≥3,此时一定有(n2+n+2)2=n4+2n3+5n2+4n+4<n4+2n3+6n2+12n+25,(n2+n+4)2=n4+2n3+9n2+8n+16≥n4+2n3+6n2+12n+25,而n4+2n3+6n2+12n+25为完全平方数,所以一定有n4+2n3+6n2+12n+25=(n2+n+3)2,整理得n2-6n-16=0,解得n=8(负根n=-2舍去).2x-1-4=0,则满足该方程的所有根之和为.14.若x2-||15.若x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,则a的值为__2__016或-1__.【解析】∵x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,∴将x=-1代入方程得a2-2 015a-2 016=0,因式分解得(a-2 016)(a+1)=0,可化为a-2 016=0或a+1=0,解得a1=2 016,a2=-1,则a的值为2 016或-1.。

【3套】人教版九年级数学上第21章一元二次方程单元培优试题(含答案)

【3套】人教版九年级数学上第21章一元二次方程单元培优试题(含答案)

人教版九年级数学上第21章一元二次方程单元培优试题(含答案)一.选择题1.一元二次方程(x -5)2=x -5的解是( )A .x =5B .x =6C .x =0D .x 1=5,x 2=62.已知3是关于x 的方程x 2-2a+1=0的一个解,则2a 的值是( ) (A)11 (B)12 (C)13 (D)143.若关于x 的一元二次方程(x+1)(x ﹣3)=m 有两个不相等的实数根,则m 的最小整数值为( )A .﹣4B .﹣3C .﹣2D .34.用配方法解方程0142=++x x ,配方后的方程是( )A . ()322=+xB . ()322=-xC. ()522=-xD . ()522=+x5.若|x 2-4x+4|与互为相反数,则x+y 的值为( ) (A)3 (B)4 (C)6 (D)96.已知关于x 的方程kx 2+(2k+1)x+(k ﹣1)=0有实数根,则k 的取值范围为( )A .k ≥﹣B .k >﹣C .k ≥﹣且k ≠0D .k <﹣7.将一块正方形铁皮的四角各剪去一个边长为3 cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm 3,则原铁皮的边长为( ) A .10 cm B .13 cmC .14 cmD .16 cm8.下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x=a;②方程2x(x-1)-x+1=0的解是x=1; ③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19.其中答案完全正确的题目个数是( ) (A)0 (B)1 (C)2 (D)3二.填空题9.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率 .10.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为________________.11设m,n 分别为一元二次方程x 2+2x-2 020=0的两个实数根,则m 2+3m+n= . 12.已知实数s ,t 满足s+t 2=1,则代数式﹣s 2+t 2+5s ﹣1的最大值等于 .13.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.14.如果(a 2+b 2+1)(a 2+b 2-1)=63,那么a 2+b 2的值为 . 三.解答题15.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率; (2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值. 16.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.17. 阅读下面的例题:解方程:x 2-|x|-2=0.18. 某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月成本不超过1万元的情况下,使得月销售利润达到8 000元,销售单价应定为多少?答案一.选择题 1. D 2. C. 3. B . 4. D 5. A. 6. A . 7. D 8. A.二.填空题 9. 20%.10. 2x 2-3x -5=0 11 2 018 12. 3. 13. 18 14. 8三.解答题 15. 解:(1)设每次下降的百分率为a ,根据题意,得: 50(1﹣a )2=32,解得:a=1.8(不合题意,舍去)或a=0.2. 答:每次下降的百分率为20%;(2)设一次下降的百分率为b ,根据题意,得: 50(1﹣b )﹣2.5≥40, 解得 b ≤0.15.答:一次下降的百分率的最大值为15%.16. ∵a 是方程x 2-2013x+1=0的一个根,∴a 2-2013a+1=0, ∴a 2=2013a-1,∴原式=2013a-1-2012a+1120132013+-a=a+ a 1-1= a a 12+-1=aa 112013+--1=2013-1=2012. 17.解:(1)当x ≥0时,原方程化为x 2-x-2=0,解得x 1=2,x 2=-1(不合题意,舍去).(2)当x<0时,原方程化为x 2+x-2=0,解得x 1=1(不合题意,舍去),x 2=-2, 所以原方程的根是x 1=2,x 2=-2.请参照例题解方程x2-|x-3|-3=0.解:(1)当x≥3时,原方程化为x2-(x-3)-3=0,即x2-x=0,解得x1=0(不合题意,舍去),x2=1(不合题意,舍去).(2)当x<3时,原方程化为x2+x-3-3=0,即x2+x-6=0,解得x1=-3,x2=2.所以原方程的根是x1=-3,x2=2.18.解:设每件需涨价x元,则销售价为(50+x)元.月销售利润为y元.则y=(50+x-40)×(500-10x),令y=8 000,解得x1=10,x2=30.当x1=10时,销售价为60元,月销售量为400千克,则成本价为40×400=16 000(元),超过了10 000元,不合题意,舍去;当x2=30时,销售价为80元,月销售量为200千克,则成本价为40×200=8 000(元),低于10 000元,符合题意.答:销售单价应定为80元.人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C. D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C. D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。

第二章 一元二次方程 综合题型归类 培优练习(含详解)

第二章  一元二次方程  综合题型归类 培优练习(含详解)

一元二次方程-综合题型归类 培优练习【综合题型一】一元二次方程➼➻解法【综合①】一元二次方程的解法➼➻解一元二次方程★✭分式方程★✭换元法1.(2008·浙江温州·中考真题)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①2310x x -+=;①2(1)3x -=;①230x x -=;①224x x -=.2.(2019·内蒙古呼和浩特·统考中考真题)用配方法求一元二次方程()()23616x x +-=的实数根.3.(2019·上海·中考真题)解分式方程:228122-=--x x x x.4.(2020·湖北荆州·统考中考真题)阅读下列问题与提示后,将解方程的过程补充完整,求出x 的值.问题:解方程2250x x ++=(提示:可以用换元法解方程),()0t t =≥,则有222x x t +=,原方程可化为:2450t t +-=,续解:2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=.6.(2020·四川广元·统考中考真题)先化简,再求值:2111a a a a a a--⎛⎫-+÷ ⎪+⎝⎭,其中a 是关于x 的方程2230x x --=的根.【综合题型二】解一元二次方程➼➻根的判别式★✭韦达定理★✭换元法【综合①】根的判别式➼➻求参数取值范围★✭证明7.(2017·北京·中考真题)已知关于x 的方程()23220x k x k -+++=(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k 的取值范围8.(2013·山东淄博·中考真题)关于x 的一元二次方程()2a 6x 8x 90--+=有实根.(1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;①求2232x 72x x 8x 11---+的值.9.(2016·北京·中考真题)关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.【综合②】根的判别式✭★韦达定理➼➻求参数取值范围★✭证明10.(2022·湖北十堰·统考中考真题)已知关于x 的一元二次方程22230x x m --=.(1) 求证:方程总有两个不相等的实数根;(2) 若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.11.(2021·湖北荆门·统考中考真题)已知关于x 的一元二次方程26210x x m -+-=有1x ,2x 两实数根.(1)若11x =,求2x 及m 的值;(2)是否存在实数m ,满足()()126115x x m --=-?若存在,求出求实数m 的值;若不存在,请说明理由.12.(2022·四川南充·中考真题)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1) 求实数k 的取值范围.(2) 设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.【综合题型三】一元二次方程的应用【综合①】一元二次方程的应用➼➻增长率问题★✭传播问题13.(2022·四川眉山·中考真题)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1) 求该市改造老旧小区投入资金的年平均增长率;(2) 2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加14.(2022·广西南宁·校联考一模)有两个人患了流感,经过两轮传染后共有242人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)若一个患流感的人打一个喷嚏喷出的病毒粒子(忽略触角近似于球体)达8000万个,且该流感病毒粒子的直径为160纳米.请完成下列填空及问题:①用科学记数法表示数据8000万个为__________个;①如图,若把8000万个病毒粒子最大纵切面圆面相切放在一条直线上,求这些病毒粒子纵切面的总直径是多少米?(参考数据:1纳米910-=米)15.(2017·广西桂林·中考真题)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1) 求该市这两年投入基础教育经费的年平均增长率;(2) 如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【综合②】一元二次方程的应用➼➻图形问题★✭营销问题16.(2010·湖北宜昌·中考真题)如图,有一块等腰梯形的草坪,草坪上底长48米,下底长108米,上下底相距40米,现要在草坪中修建一条横、纵向的“H”型甬道,甬道宽度相等,甬道面积是整个梯形面积的213.设甬道的宽为x米.(1)求梯形ABCD的周长;17.(2021·山东日照·统考中考真题)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?18.(2021·山东烟台·统考中考真题)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?19.(2012·山西·中考真题)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【挑战题型一】一元二次方程➼➻阅读材料问题★✭规律问题20.(2022·湖北黄石·统考中考真题)阅读材料,解答问题:材料1为了解方程()22213360x x -+=,如果我们把2x 看作一个整体,然后设2y x ,则原方程可化为213360y y -+=,经过运算,原方程的解为1,22x =±,3,43x =±.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由韦达定理可知1m n +=,1mn =-.根据上述材料,解决以下问题:(1) 直接应用:方程42560x x -+=的解为_______________________;(2) 间接应用:已知实数a ,b 满足:422710a a -+=,422710b b -+=且a b ,求44a b +的值; (3) 拓展应用:已知实数x ,y 满足:42117m m +=,27n n -=且0n >,求241n m+的值.21.(2022·四川凉山·统考中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a 材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:①一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,①m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求n mm n+的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求11s t-的值.22.(2018·贵州黔东南·统考中考真题)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.(2022·安徽合肥·校考二模)观察下列图形中小黑点个数与等式的关系,按照其图形与等式的规律,解答下列问题:=第1个等式:1221+=++=+=第2个等式:4682+=+=第3个等式:912183+=+=第4个等式:1620324(1)写出第5个等式:________.(2)写出你猜想的第n个等式:________(用含n的等式表示).(3)若第n组图形中左右两边各有210个小黑点,求n.24.(2018·江苏常州·中考真题)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”x=的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【挑战题型二】一元二次方程➼➻拓展问题★✭探究问题25.(2014·四川凉山·统考中考真题)实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现.2×[1+2+3+…+(n﹣2)+(n﹣1)+n]=[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1]把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+…+(n﹣2)+(n﹣1)+n=1n(n+1)2n(n+1)这就是说,三角点阵中前n项的点数的和是12下列用一元二次方程解决上述问题n(n+1)设三角点阵中前n行的点数的和为300,则有12整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.26.(2022·山东青岛·统考二模)实际问题:婚礼上有116名宾客,地面上水平放置了一个长方体蛋糕,要保证这116名宾客都能分得蛋糕(忽略大小,水平切割的方向只能与地面平行,垂直切割只能与地面垂直),小明说我10刀即可完成任务,你认为小明是怎样切这个蛋糕才能完成任务.问题探究:为解决这个问题我们从最简单的长方形分割开始研究.探究一:用一条直线分一个长方形,最多可以分成几部分?如图1所示,一条线来分多出1部分,最多分成1+1=2部分;探究二:用2条直线分一个长方形,最多可以分成几部分?如图2所示,第2条线与第一条线相交,多出2部分,最多分成1+1+2=4部分;探究三:用3条直线分一个长方形,最多可以分成几部分?如图3所示,第3条线与前2条线相交,多出3部分,最多分成1+1+2+3=7部分;探究四:用4条直线分一个长方形,最多可以分成几部分?如图4所示,第4条线与原来3条线相交,多出4部分,最多分1+1+2+3+4=11部分;(1)探究五:用5条直线分一个长方形,第5条线与原来4条线相交,多出部分,即最多分成部分;(2)探究六:用n条直线分一个长方形,最多可以分成部分;(用含n的代数式表示)(3)探究七:我们可以将开始提出的问题转化为切割长方体,借助以上探究长方形切割的结论如何将长方体切割成14块?我们只需要在探究三的基础上,先在长方体中竖直切割3刀最多分成7块,平行于地面切一刀,此时4刀可切成7×2=14块.探究八:如何用最少的切割次数,将一个长方体蛋糕切割成44块,请说明切割过程,无需画图;切割的方向只能与地面平行,垂直切割只能与地面垂直),小明说我10刀即可完成任务,你认为小明是怎样切这个蛋糕?请说明切割的过程,无需画图.27.(2020·山东青岛·中考真题)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.参考答案1.①x =①1x =①10x =,23x =;①1x = 【分析】①利用公式法求解即可.①利用直接开平方法求解即可.①利用因式分解法求解即可;①利用配方法求解即可;解:①2310x x -+=; ①a =1,b =-3,c =1, ①①=(-3)2-4×1×1=5>0,①x =即12x x ==; ①2(1)3x -=;①x -1=①1211x x == ①230x x -=; ①x (x -3)=0 ①x =0或x =3 ①10x =,23x =; ①224x x -= ①22141x x -+=+ ①()215x -=;①1x -=①1211x x ==2.1x 2x 【分析】首先把方程化为一般形式为2x 2-9x -34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 解:原方程化为一般形式为22x 9x 340﹣﹣=, 29x x 172﹣=, 298181x x 1721616-++=,29353x 416-()=,所以12x 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.x =-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.解:去分母得2x 2-8=x 2-2x , 移项、整理得x 2+2x -8=0, 解得:x 1=2,x 2=-4.经检验:x =2是增根,舍去;x =-4是原方程的根. ①原方程的根是x =-4.【点拨】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.4.11x =-21x =-.【分析】利用因式分解法解方程t 2+4t -5=0得到t 1=-5,t 2=11=,然后进行检验确定原方程的解.解:续解:()229t +=,23t ∴+=±,解得11t =,25t =-(不合题意,舍去),1t ∴=,221x x +=,2(1)2x ∴+=,1211x x ∴=-=-经检验都是方程的解.【点拨】本题考查了换元法解方程,涉及了无理方程及一元二次方程的解法.看懂提示是解决本题的关键.换元法的一般步骤:设元、换元、解元、还元.5.x (x +1);6【分析】先求出方程220x x --=的解,然后化简分式,最后选择合适的x 代入计算即可. 解:①220x x --= ①x =2或x =-1 ①2212(1)121x x x x x x +++-÷+++ =()221212()111x x x x x x +++÷+++-=()2222()11x x x x x ++÷++ =()()22112x x x x x ++⨯++=x (x +1)①x =-1分式无意义,①x =2当x =2时,x (x +1)=2×(2+1)=6.【点拨】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.6.a 2+2a+1;16【分析】首先将括号里面通分,进而因式分解各项,化简求出即可. 解:2111a a a a a a--⎛⎫-+÷ ⎪+⎝⎭ ()()1111a a a a a a a a ⎡⎤-+-=-⨯⎢⎥-⎣⎦ ()()()1111a a a a aa+-+=⨯-()21a =+=a 2+2a+1①a 是关于x 的方程2230x x --=的根, ①a 2-2a -3=0, ①a=3或a=-1, ①a 2+a≠0, ①a≠-1, ①a=3,①原式=9+6+1=16.【点拨】此题主要考查了分式的化简求值以及一元二次方程的解,正确化简分式是解题关键. 7.(1)证明见分析;(2)10k -<<【分析】(1)证出根的判别式240b ac ∆=-≥即可完成; (2)将k 视为数,求出方程的两个根,即可求出k 的取值范围. 解:(1)证明:1,(3),22a b k c k ==-+=+22224[(3)]41(22)21(1)0b ac k k k k k ∆=-=-+-⨯⨯+=-+=-≥①方程总有两个实数根(2)()23220x k x k -+++=①3(1)2k k x +±-=①121,2x k x =+= ①方程有一个小于1的正根①011k <+< ①10k -<<【点拨】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键. 8.(1)a 的最大整数值为7.(2)①12x 4x 4==①292-【分析】(1)根据一元二次方程的定义和根的判别式得到()644a 690∆=-⨯-⨯≥且a 60-≠,解得7a 79≤且a≠6,然后在此范围内找出最大的整数.(2)①把a 的值代入方程得到2x 8x 90-+=,然后利用求根公式法求解.①由于2x 8x 90-+=则2x 8x 9-=-,把2x 8x 9-=-整体代入所求的代数式,再变形得到()272x 8x 2-+,再利用整体思想计算即可.解:(1)根据题意() a 60{644a 690-≠∆=-⨯-⨯≥,解得 a 6{7a 79≠≤.①a 的最大整数值为7.(2)①当a=7时,原方程变形为2x 8x 90-+=, 6441928∆=-⨯⨯=,①x 4==①12x 4x 4== ①①2x 8x 90-+=,①2x 8x 9-=-. ①()()2222232x 732x 7777292x 2x 2x 16x 2x 8x 29x 8x 119112222---=-=-+=-+=⨯-+=--+-+【点拨】本题考查根据一元二次方程根的情况求参数,掌握①与根的情况之间的关系是关键.9.(1)m >-54;(2)x 1=0,x 2=-3.【分析】(1)由方程有两个不相等的实数根即可得出Δ>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m =1,将m =1代入原方程,利用因式分解法解方程即可得出结论. 解:(1)①关于x 的一元二次方程2x +(2m +1)x +2m ﹣1=0有两个不相等的实数根, ①Δ=()()2221411m m +-⨯⨯-=4m +5>0, 解得:m >54-;(2)m =1,此时原方程为2x +3x =0, 即x (x +3)=0, 解得:1x =0,2x =﹣3.【点拨】本题考查了一元二次方程的根的情况,解一元二次方程,解决此题的关键是正确的计算. 10.(1) 见分析(2) 1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值. 解:(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+, ①2120m ≥, ①241240m +≥>,∴该方程总有两个不相等的实数根;(2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-, ①25αβ+=, ①52αβ=-, ①522ββ-+=, 解得:3β=,1α=-, ①23133m -=-⨯=-,即1m =±.【点拨】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系. 11.(1)25x =,3m =;(2)存在,2m =【分析】(1)根据题意可得①>0,再代入相应数值解不等式即可,再利用根与系数的关系求解即可; (2)根据根与系数的关系可得关于m 的方程,整理后可即可解出m 的值. 解:(1)由题意:Δ=(−6)2−4×1×(2m −1)>0, ①m <5,将x 1=1代入原方程得:m =3, 又①x 1•x 2=2m −1=5, ①x 2=5,m =3;(2)设存在实数m ,满足()()126115x x m --=-,那么 有()1212615x x x x m -++=-⋅, 即6(21)615m m --+=-, 整理得:28120m m -+=, 解得2m =或6m =. 由(1)可知5m <, ①6m =舍去,从而2m =, 综上所述:存在2m =符合题意.【点拨】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.以及根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,12b x x a +=-,12cx x a=.12.(1) k 174≤;(2) k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. (1)解:①一元二次方程2320x x k ++-=有实数根. ①∆≥0,即32-4(k -2)≥0, 解得k 174≤(2)①方程的两个实数根分别为12,x x , ①12123,2x x x x k -+==-, ①()()12111x x ++=-, ①121211x x x x +++=-, ①2311k --+=-, 解得k =3.【点拨】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.13.(1) 20% (2) 18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.(1)解:设该市改造老旧小区投入资金的年平均增长率为x , 根据题意得:21000(1)1440x +=, 解这个方程得,10.2x =,2 2.2x =-, 经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%. (2)设该市在2022年可以改造y 个老旧小区, 由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ①y 为正整数,①最多可以改造18个小区. 答:该市在2022年最多可以改造18个老旧小区.【点拨】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.14.(1) 10个人(2) ①7810⨯;①12.8米【分析】(1)设每轮传染中平均一个人传染了x 个人,根据“有两个人患了流感,经过两轮传染后共有242人患了流感”建立方程,解方程即可得;(2)①根据科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)即可得;①利用160纳米乘以8000万即可得.(1)解:设每轮传染中平均一个人传染了x 个人, 由题意得:22(1)242x +=,解得1210,12==-x x (不符题意,舍去), 答:每轮传染中平均一个人传染了10个人. (2)解:①8000万34781010810=⨯⨯=⨯, 故答案为:7810⨯;①9729716010810 1.6101081012.8--⨯⨯⨯=⨯⨯⨯⨯=(米), 答:这些病毒粒子最大纵切面的总直径是12.8米.【点拨】本题考查了一元二次方程的应用、科学记数法、负整数指数幂与同底数幂乘法的应用,正确建立方程和熟练掌握科学记数法是解题关键.15.(1) 该市这两年投入基础教育经费的年平均增长率为20% (2) 2021年最多可购买电脑880台【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据2018年及2020年投入的基础教育经费金额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据年平均增长率求出2021年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,取其中的最大值即可.(1)解:设该市这两年投入基础教育经费的年平均增长率为x , 根据题意得:5000(1+x )2=7200, 解得:x 1=0.2=20%,x 2=−2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%;(2)解:2021年投入基础教育经费为7200×(1+20%)=8640(万元), 设购买电脑m 台,则购买实物投影仪(1500−m )台, 根据题意得:3500m +2000(1500−m )≤86400000×5%, 解得:m ≤880,答:2021年最多可购买电脑880台.【点拨】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2018年及2020年投入的基础教育经费金额,列出关于x 的一元二次方程;(2)根据总价=单价×数量,列出关于m 的一元一次不等式.16.(1)256米 (2)(128-2x )米 (3)4米解:(1)在等腰梯形ABCD 中, AD =EF =48,()121(10848)23050AE BC DF BC BE CF BC EF AB CD ⊥⊥==-=-=∴===,,,,∴梯形ABCD 的周长=AB +BC +CD +DA =50+108+50+48=256(米).···· 2分(2)甬道的总长:402482(1282)x x ⨯+-=-米.··············· 4分 (3)根据题意,得 21(1282)40(48108)132x x -=⨯⨯+.····················· 7分 整理,得x 2−64x +240=0, 解之得x 1=4,x 2=60.因6048>,不符合题意,舍去. 答:甬道的宽为4米.···························· 10分17.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解; (2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解. 解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(1,110)、(3,130)代入一次函数表达式得:1101303k bk b=+⎧⎨=+⎩,解得:10100k b =⎧⎨=⎩,故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=, 整理,得210240x x --=. 解得112x =,22x =-(舍去). 所以5543x -=.答:这种消毒液每桶实际售价43元.【点拨】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.18.(1)50元;(2)八折【分析】(1)设每件的售价定为x 元,根据利润不变,列出关于x 的一元二次方程,求解即可; (2)设该商品至少打m 折,根据销售价格不超过(1)中的售价列出一元一次不等式,解不等式即可. 解:(1)设每件的售价定为x 元, 则有:60(1020)(40)(6040)205xx -⨯+⨯-=-⨯,解得:125060x x ==,(舍),答:每件售价为50元;(2)设该商品至少打m 折, 根据题意得:62.55010m ⨯≤, 解得:8m ≤,答:至少打八折销售价格不超过50元.【点拨】本题主要考查一元二次方程的实际应用以及一元一次不等式的应用,找准等量关系列出方程是解决问题的关键.19.(1)4元或6元;(2)九折【分析】(1)设每千克核桃降价x 元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.解:(1)设每千克核桃应降价x 元根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.①要尽可能让利于顾客,①每千克核桃应降价6元此时,售价为:60﹣6=54(元),54100%=90%60⨯ 答:该店应按原售价的九折出售.【点拨】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.20.(1) 1x ,2x =3x 4x =(2)454(3) 15【分析】(1)利用换元法降次解决问题;(2)模仿例题解决问题即可;(3)令21m =a ,-n =b ,则2a +a -7=0,2b +b =0,再模仿例题解决问题. (1)解:令y =2x ,则有2y -5y +6=0,①(y -2)(y -3)=0,①1y =2,2y =3,①2x =2或3,①1x =2x =3x =4x =故答案为:1x =,2x =3x 4x =。

(完整版)一元二次方程复习培优

(完整版)一元二次方程复习培优

一元二次方程复习+培优一.概念定义:只含有一个未知数整式方程,并且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0〕的形式,这样的方程叫做一元二次方程。

注意:满足是一元二次方程的条件有:〔1〕必须是一个整式方程;〔2〕只含有一个未知数;〔3〕未知数的最高次数是2。

〔三个条件缺一不可〕例:假设〔m+1〕x m(m2)1+2mx-1=0是关于x的一元二次方程,那么m的值是________.练习:1、在4(x1)(x2)5,x2y21,5x2100,2x28x0,21222,3x 212x3x22x3x40,x3,a,(x3)(2x1)2x中,是x一元二次方程有_________个。

2、要使方程〔a-3〕x2+〔b+1〕x+c=0是关于x的一元二次方程,那么__________. A.a≠0B.a≠3C.a≠1且b≠-1D.a≠3且b≠-1且c≠03、关于的x的一元二次方程方程(a-1)x2+x+a2-1=0的一个根是0,那么a的值是___________.4、一元二次方程(x1)(x2)2(x21)的一般形式是;二次项系数是;一次项系数是;常数项是。

二.一元二次方程的解法一元二次方程的解法有:_____________________________________________________.例:用适当的方法解以下方程〔1〕x22x 2 0〔2〕3(x5)22(5 x)〔3〕(x2)(x 1) 10〔4〕(x2)2(6x)2〔5〕(2x3)23(2x 3) 4 0〔6〕x2(2a 1)x a2a0〔7〕3x 22(2)xb2a20ab练习:1..方程x29x180的两个根是等腰三角形的底和腰,那么这个三角形的周长为。

2.方程x22x30的解是_______________________3〔2021绵阳〕关于m的一元二次方程7nm2n2m20的一个根为2,那么n2n2=.4..一元二次方程ax2bxc0的一个根是1,且a,b满足等式ba22a1,求此一元二次方程。

一元二次方程达标训练卷(培优题)

一元二次方程达标训练卷(培优题)

一元二次方程达标训练卷(培优题)一.选择题(共6小题)1.若x2+xy+y=14,y2+xy+x=28,则x+y的值为()A.﹣7B.6C.﹣7或6D.﹣6或72.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019B.2020C.2021D.20223.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:如图,画Rt△ABC,使∠ACB=90°,BC=,AC=b,在斜边AB上截取BD=,则该方程的一个正根是()A.AC的长B.BC的长C.CD的长D.AD的长4.关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx=a一定有实数根()A.2022B.C.﹣2022D.﹣5.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.6.可以用如图所示的图形研究方程x2+ax=b2的解:在Rt△ABC中,∠C=90°,AC=,BC=b,以点A为圆心作弧交AB于点D,使AD=AC,则该方程的一个正根是()A.CD的长B.BD的长C.AC的长D.BC的长二.填空题(共7小题)7.若一元二次方程ax2=b(ab>0)的两个根是2m+1和m﹣4,则=.8.已知m为方程x2+3x﹣2022=0的根,那么m3+4m2﹣2019m﹣2023的值为.9.已知m是方程x2﹣3x﹣1=0的一个根,则m3﹣10m=.10.若方程x2﹣6x﹣k﹣1=0与x2﹣kx﹣7=0仅有一个公共的实数根,则k的值为.11.如果多项式9x2+mx+49是一个完全平方式,则常数m=.12.已知,则(a+b)•c=.13.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x1是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax1+b)2.其中正确的.A.只有①②④B.只有①②③C.①②③④D.只有①②三.解答题(共16小题)14.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连接CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连接CE.(1)求∠DCE的度数.(2)设BC=a,AC=b.①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根吗?说明理由.②若D为AE的中点,求的值.15.观察下面方程的解法x4﹣13x2+36=0解:原方程可化为(x2﹣4)(x2﹣9)=0∴(x+2)(x﹣2)(x+3)(x﹣3)=0∴x+2=0或x﹣2=0或x+3=0或x﹣3=0∴x1=2,x2=﹣2,x3=3,x4=﹣3你能否求出方程x2﹣3|x|+2=0的解?16.在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.老师:同学们,今天我们来探索如下方程的解法:(x2﹣x)2﹣(x2﹣x)+12=0学生甲:老师,这个方程先去括号,再合并同类项,行吗?老师:这样,原方程可整理为x4﹣2x3﹣7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?学生乙:老师,我发现x2﹣x是整体出现的,最好不要去括号!老师:很好,我们把x2﹣x看成一个整体,用y表示,即x2﹣x=y,那么原方程就变为y2+8y+12=0.全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2﹣x=6或x2﹣x=2.学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=﹣2,x3=2,x4=﹣1,嗬,有这么多根啊!老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.全体同学:OK,换元法真神奇!现在,请你用换元法解下列分式方程:.17.多项式4a2+1加上一个单项式后,正好成为一个完全平方式,那么所加上的单项式可能有哪些?请你写出所有可能的单项式.18.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.19.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.20.已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.21.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有81人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,在经过3天的传染后,这个地区一共将会有多少人患甲型流感?22.已知一元二次方程x2﹣2(m+2)x+2m2﹣1=0有两个根x1和x2,并且,求m 的值.23.已知非零实数a,b满足a2+ab+b2+a﹣b+1=0,求的值.24.方程x2﹣ax+4a=0仅有整数根,求a.25.实数a,b,c满足:=,求abc的值.26.设a+b+c+3=2(),求a2+b2+c2的值.27.若关于x的一元二次方程mx2+5(2m﹣3)x﹣150=0有两个不等负整数根,求整数m 的值.28.如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?29.农历虎年之际,某社区为了突出浓浓年味,计划购买A与B两种贴花共500张.已知A 贴花的售价是每张15元,B贴花的售价是每张30元,共花费9000元.(1)求计划购买多少张B贴花?(2)为了节省费用,社区工作人员最终在网上购买,A贴花每张售价减少了,B贴花每张售价也便宜了m元.现在在(1)的基础上购买B贴花的数量增加了m张,总数量不变,并且总费用比原计划减少了(2000+10m)元,求m的值.。

八年级数学(下册)一元二次方程培优组卷(含答案).doc

八年级数学(下册)一元二次方程培优组卷(含答案).doc

数学一元二次方程一.选择题(共1小题)1•满足(n2-n - 1)n+2=l的整数n有几个()A. 4个B. 3个C. 2个D. 1个二.填空题(共1小题)2. ______________________________________ 若(x2+y2)2 - 5 (x2+y2) - 6=0,则x2+y2= _______________________________________ .三.解答题(共27小题)3.已知x4 - 5X3+8X2 - 5x+1=0,求只+丄的值.4.解力程:#3x - 3+ - 19 - V2x+8 -05如果实数a’「°满足"5且ab+学+討那么牛的值是多少?6.满足(x・3)24- (y・3)乙6的所有实数对(x, y)屮,Z的最大值是多少?7.a, b为两个不相等且都不为零的数,同时有a2+pa+q=0, b'+pb+q=O,求丄+丄的值. a b28.先化简,再求值:(◎_ 冬)十Q :厉+1 _ 其中a是方程X-上二o的解. &+1 a2 - 1 29.己知Xi、X2是方程4x—(3m - 5) x - 6m2=0的两根,且匸|二手,求m的值.2 210.己知一元二次方程2x2 - 6x - 1=0的两实数根为xi、X2,不解方程,求代数式乜+乂的x2 X1 值.11.已知关于x的一元二次方程软2+"+丄二0(&工0)有两个相等的实数根,求2------- 严------------- 的值.(a - l)'+(b+l) (b-1)12.已知关于x的方程x'+2 (k - 3) x+k2=0有两个实数根xi、X2・(1)求k的収值范围;(2)若|xi+x2 ・ 9|=xiX2,求k 的值.13.若a, b, c 为Z\ABC 的三边,且关于x 的方程:4x2+4 (a2+b2+c2) x+3 (a2b2+b2c2+c2a2) =0有两个相等的实数根,试证AABC是等边三角形.14.解下列方程:(1) x'+x+l 2X2+X+2 19. x2+l x2+x+l 6(2)x2+llx - 8 x2+2x _ 8 x2 _ 13x ~ 8(3) (x+1) (x+2) (x+3) (x+4) =120;15.已知关于x的方程(n? - l)x2-3(3m- 1 )x+18=0有两个正整数根(m是正整数).AABC 的三边a、b、c 满足c二2“^, m2+a2m - 8a=0, m2+b2m - 8b=0.求:(1) m的值;(2) AABC的面积.16.如图,A、B、C、D为矩形的四个顶点,AB=16cm, AD=6cm,动点P、Q分别从点A、C 同时出发,点P以3cnVs的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动. (1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到儿秒时?点P和点Q的距离是1 Ocm.17.如图,四边形ACDE是证明勾股定理吋用到的一个图形,a, b, c是RtAABC和RtABED 边长,易知AE二佢c,这时我们把关于x的形如址2+逅cx+b二0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程'';(2)求证:关于x的“勾系一元二次方程'鮎/+应cx+b二0必有实数根;(3)若x=-l是“勾系一元二次方程鮎/+逅cx+ZO的一个根,且四边形ACDE的周长是6近,求AABC面积.18.等腰AABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以lcm/ 秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动吋I'可为t, APCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S APCQ=S°ABC?(3)作PE丄AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.19.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m (0<m<l)元.(1)零售单价下降m元后,该店平均每天可卖出—只粽子,利润为—元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获収的利润是420元并且卖出的粽子更多?20.己知关于x的一元二次方程x?+ (m+3)x+m+l=0.(1)求证:无论ni取何值,原方程总有两个不相等的实数根:(2)若X], X2是原方程的两根,且|xi - X2|=2-V2,求m的值,并求出此时方程的两根.21.已知:关于x的一元二次方程kx? - (4k+l) x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为",X2(其中xi<x2),设y=X2・X],判断y是否为变量k 的函数?如果是,请写出函数解析式;若不是,请说明理由.22.某水果经销商销售一种水果,如果每千克盈利1元,每月可售出5000千克.经市场调查发现,在进货价不变的情况下,若每千克涨价0.1元,月销售量将减少400千克.现该经销商要在批发这种高档水果中保证每月盈利5060元,同时又要价格尽可能的低,那么每千克应涨价多少元?23.先阅读,再填空解答:方程X? - 3x - 4=0 的扌艮是:X1= - 1, X2=4,贝U XI+X2=3,X J X2= - 4;方程3X2+10X+8=0 的根是:X]=-2, x =,则X]+X2=-丄2,xiX2=-^-.2 3 3 3(1)___________________________ 方程2X2+X - 3=0 的根是:X1= ______ , X2= ,则X1+X2= __________________________ , XjX2= _ ;(2)若xi,X2是关于x的一元二次方程ax2+bx+c=0 (a定0,且a, b, c为常数)的两个实数根,那么X1+X2,X1X2与系数a, b, C的关系是:X]+X2= _ , X[X2= ___ ;(3)如果X], X2是方程x2+x・3=0的两个根,根据(2)所得结论,求X12+X22的值.24.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售岀500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,口销售量将减少20千克.现该筒场要保证每天盈利6000元,同吋又要使顾客得到实惠,那么每千克应涨价多少元?25.小明将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入.若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率.26.已知:关于x 的方程(a2- 1)(^-)2-(2a+7)(^—)+ii=o有实根.x _ 1 x _ 1(1)求a取值范围;X 1 X9 Q(2)若原方程的两个实数根为XI,X2,且一J+—二吕,求a的值.X1 - 1 Xn ~ 1 1127.已知AABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程J-(2k+3) x+Q+3k+2=0的两个实数根,(1)求证:无论k为何值时,方程总有两个不相等的实数根;(2)k为何值时,AABC是以BC为斜边的直角三角形;(3)k为何值时,AABC是等腰三角形,并求AABC的周长.28.如图,有一长方形的地,该地块长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的血积为3200平方米,你能算出x的值吗?甲乙丙29.某种产品的年产量不超过1000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)Z间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛2016年12月15日小北的初中数学一元二次方程培优组卷参考答案与试题解析一.选择题(共1小题)1.(2012•浙江校级自主招生)满足(n2-n - 1)n'2= 1的整数n有儿个()A. 4个B. 3个C. 2个D. 1个【考点】一元二次方程的解;零指数:【专题】计算题.【分析】因为1的任何次幕为1, - 1的偶次幕为1,非0数的0次幕为1,所以应分三种情况讨论n的值.【解答】解:(l)i?-n-l=l,解得:n=2或n= - 1;⑵(n2-n-l=-l^ 解得:冋;[n+2为偶数(3)Jn2一解得:n=・2.(n+2二0故选:A.【点评】本题比较复杂,解答此题时要注意1的任何次幕为1,・1的偶次幕为1,非0数的0次幕为1,三种情况,不要漏解.二.填空题(共1小题)2.(2016*磴口县校级二模)若(x'+y?)2 - 5 (x2+y2) - 6=0,贝0 x2+y2= 6 .【考点】换元法解一元二次方程.【专题】换元法.【分析】设x 2+y2=t.则原方程转化为关于t的一元二次方程t2 - 5t - 6=0,即(t-6)(t+1) =0;然后解关于t的方程即可.【解答】解:设x2+y2=t (t$0).则t2 - 5t - 6=0,即(t - 6)(t+1) =0,解得,t=6或t=- 1 (不合题意,舍去);故x2+y2=6.故答案是:6.【点评】本题考查了换元法解一元二次方程.解答该题时,注意x2+y2=t中的t的取值范圉: t>0.三.解答题(共27小题)3.已知x° - 5x'+8x? - 5x十1=0,求的值.x【考点】一元二次方程的应用.【专题】计算题;整体思想.【分析】通过观察可看到方程中各项系数关于中间项对称,xHO,在方程两边同除以X?, 可得到一个以X』为整体的一元二次方程,可求解.【解答】解:设通过观察可看到方程中各项系数关于中间项对称,XH0,在方程两边同除以得(X2+47> - 5 (x+丄)+8=0__ 2 Y【点评】本题的关键是找到题目的特点各项系数关于中间项对称以及把x+丄看作一个整体X求解.4.解方程:- 3+ ”5x - 19 - V2x+8 -0【考点】无理方程.【专题】计算题.【分析】先把方程移项,然后两边平方化为一元二次方程,检验根后即可得出答案.【解答】解:移项得- 3 - - #5x - 19,两边平方后整理得:#(3x- 3)阪面=12,再两边平方后整理得X2+3X - 28=0,所以xi=4, X2= - 7.经检验知,X2=・7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程屮的根号)来解无理方程,往往会产生增根,应注意验根.【点评】本题考查了无理方程,属于基础题,关键是注意用乘方法(即将方程两边各自乘同次方来消去方程屮的根号)来解无理方程,往往会产生增根,应注意验根.5.如果实数a, b, c满足a=2b+V2,且ab+返『+丄二°,那么丛的值是多少?2 4 a【考点】根的判别式;非负数的性质:偶次方.【分析】将a=2b+伍代入丄二0中,利用配方法将等式变形为两个非负数的和为02 4 U的形式,利用几个非负数的和为0,这几个非负数都为0,即可得出答案.【解答】解:将a=2b"勺代入ab+勺3?+丄二°得:2 4ab+2/lc2+^= (2b+V2)b+返『+丄=[(V2b) ?+2(V2b) •丄+ (丄)2]+2/i€22 2 2=(V2b+—) 2+^-c2=0,2 2・:c=0, b=-—,2V2・••建0.a【点评】此题考查了配方法在等式变形屮的运用,非负数的性质,关键是通过配方求出c、b 的值.6.满足(X-3) 2+ (y-3) 2=6的所有实数对(x, y)中,乞的最大值是多少?X【考点】根的判别式.【专题】计算题;函数思想.【分析】设丫=1伏,根据直线丫=1©与圆(x - 3) 2+ (y-3) 2=6相切时k有最大值和最小值, 把尸kx代入(x-3) 2+ (y-3) 2=6,得到关于x的一元二次方程,令△=(),得到关于k 的一元二次方程,然后解方程,最大解为所求.【解答】解:设丫=1<乂,则直线y=kx与圆(x-3) 2+ (y-3) ?=6相切时k有最大值和最小值,把丫=1«代入(x - 3) 2+ (y-3) 2=6,得(l+k?) x2 - 6 (k+1) x+12=0,•••△=36 (k+1) — 4X12X (1+k2) =0,即k2 - 6k+l=0,解此方程得,k=3+2V2或3・2伍.所以艺=k的最大值是3+2迈.X【点评】本题考查了一元二次方程ax2+bx+c=0 (aHO, a, b, c为常数)根的判别式.当厶>0,方程有两个不相等的实数根;当△=(),方程有两个相等的实数根;当△<(),方程没有实数根.同时考查了运用△解决函数图象交点的个数问题和一元二次方程的解法.7.a, b为两个不相等且都不为零的数,同时有a2+pa+q=0, b2+pb+q=O,求丄』的值.a b【考点】根与系数的关系;一元二次方程的解.【专题】计算题.【分析】由一元二次方程的解的定义可以知道,a, b是方程x2+px+q=0的两个根,再由根与系数的关系,得到a+b和ab的值,代入代数式求出代数式的值.【解答】解:因为a, b同时满足a2+pa+q=0, b2+pb+q=O,所以a, b是方程x2+px+q=O的两个根.根据根与系数的关系有:a+b= - p, ab=q・ 1 4.1-a+b _ . p.•—‘—•a b ab q【点评】本题考查的是一元二次方程根与系数的关系,根据题意可以知道a, b是方程x2+px+q=0的两个根,由根与系数的关系,可以得到a+b和ab的值,代入代数式求出代数式的值.28.(2013・重庆模拟)先化简,再求值:(巳_冬)三◎ : 2計1 _声,其中a是方程已+1 a2 - 1,一“*二0的解・【考点】一元二次方程的解;分式的化简求值.【专题】计算题;压轴题.【分析】根据题意先解方程求出a 的值,然后把代数式化简,再把a 的值代入即可.【解答】解:Ta 是方程/-只-上二0的解, 2/.a 2 - a -上=0, 2解方程得:a 二丄兰堂, 2-a 2s+1 a 2 - 1f a(a+l) - 2a ). (a - 1) 2 2={ ------------------ } ----- --------- - a a+l (a+1) (a~ 1)a _ a . a-12 a+l a+l」G-1) x 』L ・a 2a+l a - 1=a - a 2,当 J 码,原式=]+皿(1 - *皿)=1+应1-底-1;2 2 2 2 2 2 当J" 时,原式上塑(1・1")-I,2 2 2 2 2 2・・・代数式的值为-上. 2【点评】此题主要考查了方程解的定义和分式的运算,此类题型的特点是,利用方程解的定 义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关 系整体代入所求代数式,即可求出代数式的值.9. (2010*山东模拟)己知xi 、X2是方程4x? - (3m- 5 ) x - 6m 2=0的两根,且| — |=—, 求m 的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】首先根据根与系数的关系可以得到两根Z和与两根Z积用m表示的形式,也可以根据两根之积得到X1X2W0,从而可以去掉已知等式的绝对值符号,然后结合根与系数的关系即可求出m的值.【解答】解:Ta=4, b=5 - 3m, c= - 6m2,・・・△= (5 - 3m) 2+4X4X6m2= (5 - 3m) 2+96m2,V5 - 3m=0与m=0不能同时成立.△= (5 - 3m) 2+96m2>0则:X1X2WO,又;即寻.x l__ 3• ■ -- ——x2 23 in 一5•n 9 -- —_ _ 3m 2严1七-一丁〜・一3・・口 -可七,_ 3 3in - 5-寿七+七二「一•4_ 3 __ 3m zT X2P X2-丁解得:mi=l, m2=5.【点评】此题主要考查了一元二次方程的根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.(2014・大庆校级模拟)已知一元二次方程2x2 - 6x - 1= 0的两实数根为xi、x2,不解方程,求代数式△+乂的值.x2 X1【考点】根与系数的关系.【专题】计算题;压轴题.【分析】首先将所求的代数式转化为含有X1+X2、X1・X2的形式,然后利用根与系数的关系求得X1+X2、X]・X2的值,最后将其代入所求的代数式并求值即可.【解答】解:由韦达定理得,Xl+X2=3・..(1分)X1 2- (2分)故(X 1 + X 9) ~ 2 x 1 w X 9=—! ------- ----------- - ---- ... (4 分)x /x 2 32-2X (-±)— ---------- - --------- ...(5 分)"T=-20. ... (6 分)【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一 种经常使用的解题方法.11. (2011-西城区一模)已知关于x 的一元二次方程8/+"+丄二0(8尹0)有两个相等的乙ab 2实数根,求 ------- 严 ------------- 的值.(a - l )'+(b+l ) (b-1)【考点】根的判别式;分式的化简求值.【专题】压轴题;判别式法.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=(),据此可求出b 2=2a 的值;ab 2然后将其代入化简后的 ------- 严 --------------,并求值即可.(a - l )'+(b+l ) (b-1)【解答】解:由题意,△二/ - 4&X 丄二护- 二0.(1分) 2b 2=2a. (2 分)・・・原式二——圧=—(3分)a 2 - 2a+l +b 2- 1 J 2 a 2 + b 2 - 2a9用2・・・原式=今-二2・(5分)a【点评】本题考查了根的判别式与分式的化简求值.本题利用一元二次方程ax 2+bx+c=0 (a HO, a, b, c 为常数)的根的判别式△=(),方程有两个相等的实数根.12. (2014・番禺区校级模拟)已知关于x 的方程x?+2 (k-3) x+k 2=O 有两个实数根 (1) 求k 的取值范围;_ _ 9a p 2a 2a a 2+2a - 2aa 2 .(4 分) Xi* X2・(2)若 |xi+x2 ・ 9|=X]X2,求k 的值.【考点】根的判别式;根与系数的关系.【专题】压轴题.【分析】(1)根据一元二次方程的根的判别式△=b2・4ac>0来求k的取值范围;(2)利用韦达定理求的关于k的一元二次方程|2k+3|=k2;然后根据(1)的k的取值范围, 需要对其分类讨论:①当2k+3M0,即■丄时,2k+3=k2,通过解方程求的k的值即可;2②当2k+3V0,即kC-丄时,-2k-3=l?,通过解方程求的k的值即可.2【解答】解:(1)根据题意,得△$(),即[2 (k-3) ]2-4k2^0,解得,kw22(2)根据韦达定理,得xi+x2= - 2 (k-3), xiX2=k2, ・••由|x】+X2 - 9|=X]X2,得| ・ 2 (k ・3) - 9|=k2,即|2k+3|=kS 以下分两种情况讨论:①当2k+3N0,即时,2k+3=k2,2即k2 - 2k - 3=0, 解得,ki= - 1, k2=3;又由(1)知,kw3,2②当2k+3<。

完整版)一元二次方程能力拔高题

完整版)一元二次方程能力拔高题

完整版)一元二次方程能力拔高题一元二次方程培优专题复考点一、概念一元二次方程是只含有一个未知数,并且未知数的最高次数是2的整式方程。

其中,一般表达式为ax²+bx+c=0(a≠0),难点在于理解“未知数的最高次数是2”,即该项系数不为0,未知数指数为2.若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是()A、3(x+1)=2(x+1)B、2x+11=2x²C、2x/x-2=-2/xD、x²+2x=x²+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程(m+2)x²=mx+1的一个根为x=1/2.针对练:1、方程8x=7的一次项系数是8,常数项是7.2、若方程(m-2)x²+22mx+1=0是关于x的一元二次方程,则m的值为-11/2.3、若方程(m-1)x+mn²/m·x=1是关于x的一元二次方程,则m的取值范围是m≠0且m≠1.4、若方程nx²+x-2x=0是一元二次方程,则下列不可能的是m=2,n=1.考点二、方程的解方程的解是指使方程两边相等的未知数的值。

应用上,可以利用根的概念求代数式的值。

典型例题:例1、已知2y+y²-3的值为2,则4y+2y²+1的值为3.例2、关于x的一元二次方程(a-2)x²+x+a-4=0的一个根为x=2,则a的值为5.例3、已知关于x的一元二次方程ax²+bx+c=0的系数满足a+c=b,则此方程必有一根为x=1.例4、已知a,b是方程x²-4x+m=0的两个根,b,c是方程y²-8y+5m=0的两个根,则m的值为10.针对练:1、已知方程x+kx-10=0的一根是2,则k为-5,另一根是-2.2、已知关于x的方程x+kx-2=0的一个解与方程x²+3x-10=0的两个解之和相等,则k的值为-2.3、已知m是方程x²-x-1=0的一个根,则代数式m²-m-1=0.4、已知a是方程x²-3x+1=0的根,则2a-6=0,a=3.5、方程(a-b)x+(b-c)x+c-a=0的一个根为x=1.22x+1=3x的解相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备 欢迎下载第一节求根公式【例题求解 】【例 1】满足 (n 2n 1)n 21的整数 n 有个.【例 2】设 x 1 、 x 2 是二次方程 x 2x 3 0 的两个根,那么 x 1 3 4x 2219 的值等于()A . 一 4B .8C . 6D . 0【例 3】 解关于 x 的方程 (a 1) x 2 2ax a 0 .【例 4】设方程 x 2 2 x14 0 ,求满足该方程的所有根之和.【练习题 】1. 已知 a 、 b 是实数,且 2a 6 b2 0 ,那么关于 x 的方程 (a2)x 2 b 2 x a 1 的根为.2. 已知 x23x2 0 ,那么代数式 (x 1)3x 2 1的值是.x 13. 若两个方程 x2ax b0 和 x 2 bx a 0 只有一个公共根,则 ()A . a bB . a b 0C . a b 1D . a b 1 4. 若 x 2 5x 1 0 ,则 2x 2 9 x 351 =.x 25. 已知 m 、 n 是有理数,方程 x 2mx n 0 有一个根是5 2 ,则 m n 的值为 .6. 已知 a 、 b 都是负实数,且1 1 1 b 0 ,那么 b的值是 ( )a b a aA . 5 1B .1 5C . 1 5D .1 522227. 已知 x 22x 2 0 ,求代数式 (x 1)2( x 3)( x 3)( x 3)( x 1) 的值.8. 已知 x198 3 ,求x 4 6x3 2x218 x23的值.x28x 159. 已知 m 、n 是一元二次方程x 22001 7 0 的两个根,求 ( m 22000m 6)(m22002n 8)x的值.10. 已知方程 x 23x1 0 的两根 、 也是方程 x4px 2 q 0 的根,求 p 、 q 的值.第二节 根的判别式【例题求解 】【例 1】已知关于 x 的一元二次方程 (12 ) x 2 2 k1 1 0有两个不相等的实数根,那么kxk 的取值范围是 .【例 2】已知关于 x 的方程 x 2(k 2)x2 k 0,(1) 求证:无论 k 取任何实数值,方程总有实数根;(2) 若等腰三角形△ ABC 的一边长 a = 1,另两边长 b 、 c 恰好是这个方程的两个根,求△ ABC 的周长.【例 3】设方程 x 2 ax 4 ,只有 3 个不相等的实数根,求 a 的值和相应的 3 个根.【例 4】已知关于 x 的方程 x 22(2 m) x 3 6m 0(1) 求证:无论 m 取什么实数,方程总有实数根;(2) 如果方程的两实根分别为 x 1 、 x 2 ,满足 x 1 =3 x 2 ,求实数 m 的值.【练习题 】1. 已知 a 4 b 10 ,若方程 kx 2 ax b 0 有两个相等的实数根,则 k = . 2. 若关于 x 的方程 x22 k x 1 0有两个不相等的实数根,则k 的取值范围是.3. 已知关于 x 方程 x22 k4x k 0有两个不相等的实数解, 化简 k 2k 2 4k 4 =.4. 若关于 x 的一元二次方程 (m2) 2 x 2 (2m 1) x 1 0 有两个不相等的实数根,则m 的取值范围是 ()A . m3 B . m3 C . m3且 m 2D . m3且 m 24444 5. 已 知 一 直 角 三 角 形 的 三 边 为 a 、 b 、 c , ∠ B = 90 ° , 那 么 关 于 x 的 方 程a(x 2 1) 2cx b( x 2 1) 0 的根的情况为 ()A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定6. 如 果 关 于 x 的 方 程(m2)x 2 2(m 1)x m0 只 有 一 个 实 数 根 , 那 么 方 程mx 2 ( m 2) x (4 m)0 的根的情况是 ()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根7. 在等腰三角形 ABC 中,∠ A 、∠ B 、∠ C 的对边分别为 a 、 b 、 c ,已知 a 3 , b 和 c 是 关于 x 的方程 x2mx2 1 m 0的两个实数根,求△ ABC 的周长.28. 已知一元二次方程x2 bx c 0 ,且 b 、c可在 1、2、3、4、5 中取值,则在这些方程中有实数根的方程共有( )A . 12 个B . 10 个C. 7 个D. 5 个9. 如果关于x的方程mx2 2(m 2) x m 5 0 没有实数根,那么关于 x 的方程( m 5) x2 2(m 2)x m 0 的实根的个数 ( )A . 2 B. 1 C.0 D .不能确定a2x2 (c2 a 2 b 2 ) x b2 0 ,则方10. 已知△ ABC 的三边长为a、b、 c,且满足方程程根的情况是 ( )A .有两相等实根B.有两相异实根C.无实根D.不能确定11. a、 b 为实数,关于x的方程 x2 ax b 2 有三个不等的实数根.(1)求证: a 2 4b 8 0 ;(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°;(3) 若该方程的三个不等实根恰为一直角三角形的三条边,求 a 和b的值.12. 关于x的方程kx2(k 1) x 1 0 有有理根,求整数是的值.第三节韦达定理【例题求解】【例 1】已知、是方程 x2 x 1 0 的两个实数根,则代数式 2 ( 2 2) 的值为.【例 2】如果、都是质数,且 2 13 0 2 b aa ba m ,b 13b m 0 ,那么的值为 ( )a a bA. 123 B.125或 2 C. 125 D.123或 222 22 22 22【例 3】已知关于x的方程: x2 (m 2) x m2 04(1)求证:无论 m 取什么实数值,这个方程总有两个相异实根.(2) 若这个方程的两个实根x1、 x2满足 x2 x1 2 ,求 m 的值及相应的 x1、 x2.【例 4】设 x1、x2是方程 2x2 4mx 2m2 3m 2 0 的两个实数根,当 m 为何值时,x1 2 x 2 2 有最小值 ?并求出这个最小值.【例 5 】已知:四边形ABCD 中, AB ∥ CD ,且 AB 、 CD 的长是关于x的方程x 2 2mx ( m 1)2 7 0 的两个根.2 4(1)当 m= 2 和 m>2 时,四边形 ABCD 分别是哪种四边形 ?并说明理由.(2)若 M 、N 分别是 AD 、BC 的中点,线段 MN 分别交 AC 、BD 于点 P,Q,PQ= 1,且 AB<CD ,求 AB 、 CD 的长.【练习题】1. (1) 已知 x1 和 x 为一元二次方程2x2 2x 3m 1 0 的两个实根,并 x 和 x2满足不等式2 1x1 x21 ,则实数m取值范围是.x1 x2 4(2) 已知关于x的一元二次方程8x 2 (m 1) x m 7 0 有两个负数根,那么实数m 的取值范围是.2. 已知、是方程的两个实数根,则代数式 3 2 2 2 的值为.3. CD 是 Rt△ABC 斜边上的高线, AD 、BD 是方程 x2 6x 4 0 的两根,则△ ABC 的面积是.4. 设 x1、 x2是关于x的方程 x2 px q 0 的两根, x1 +1 、 x2 +1 是关于x的方程x2 qx p 0 的两根,则 p 、 q 的值分别等于 ( )A . 1, -3B. 1,3C. -1, -3 D . -1, 35.在 Rt△ ABC 中,∠ C= 90°, a、 b、 c 分别是∠ A 、∠ B 、∠ C 的对边, a、 b 是关于x的方程 x 2 7x c 7 0 的两根,那么AB 边上的中线长是 ()A .3B .5D. 2C.52 26. 方程 x 2 px 1997 0 恰有两个正整数根x1、 x2,则(x1 p 的值是 () 1)(x2 1)A . 1 B. -l C.1D.1 2 27. 已知、是方程 x 2 x 1 0 的两个根,则 4 3 的值为.8. △ ABC 的一边长为5,另两边长恰为方程 2 2 12x m 0的两根,则m 的取值范围x是.9. 已知关于x 的方程x2 (2k 3) x k2 1 0 .(1)当 k 是为何值时,此方程有实数根;(2) 若此方程的两个实数根x1、 x2满足:x2x1 3 ,求 k 的值.10.如图,在矩形 ABCD 中,对角线 AC 的长为 10,且 AB 、 BC(AB>BC) 的长是关于x的方程的两个根.(1)求 rn 的值;(2)若 E 是 AB 上的一点, CF⊥ DE 于 F,求 BE 为何值时,△ CEF 的面积是△ CED 的面积的1,请说明理由.311. 如图,已知在△ ABC 中,∠ ACB=90°,过 C 作 CD ⊥ AB 于 D,且 AD = m,BD=n ,AC 2:BC 2= 2:1;又关于x 的方程1x22(n 1) x m212 0 两实数根的差的平方小于192,求4整数 m、 n 的值.。

相关文档
最新文档