导数及定积分知识点的总结及练习(经典)
高中数学导数知识点归纳总结及例题
高中数学导数知识点归纳总结及例题导数考试知识要点1. 导数(导函数的简称)的定义:设x0是函数y f(x)定义域的一点,如果自变量x在x0处有增量x,则函数值y也引起相应的增量y f(x0x)f(x0);比值yf(x0x)f(x0)称为函数y f(x)在点x0到x0x之间的平均变化率;如果极限x xf(x0x)f(x0)y存在,则称函数y f(x)在点x0处可导,并把这个极限叫做lim x0x x0xlim记作f’(x0)或y’|x x0,即f’(x0)=limy f(x)在x0处的导数,f(x0x)f(x0)y. lim x0x x0x注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数y f(x)定义域为A,y f’(x)的定义域为B,则A与B关系为A B.2. 函数y f(x)在点x0处连续与点x0处可导的关系:⑴函数y f(x)在点x0处连续是y f(x)在点x0处可导的必要不充分条件.可以证明,如果y f(x)在点x0处可导,那么y f(x)点x0处连续.事实上,令x x0x,则x x0相当于x0.1于是limf(x)limf(x0x)lim[f(x x0)f(x0)f(x0)] x x0x0x0 lim[x0f(x0x)f(x0)f(x0x)f(x0)x f(x0)]lim lim limf( x0)f’(x0)0f(x0)f(x0).x0x0x0x xy|x|,当x>0时,x x⑵如果y f(x)点x0处连续,那么y f(x)在点x0处可导,是不成立的. 例:f(x)|x|在点x00处连续,但在点x00处不可导,因为y y y不存在. 1;当x<0时,1,故lim x0x x x注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数y f(x)在点x0处的导数的几何意义就是曲线y f(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线y f(x)在点P(x0,f(x))处的切线的斜率是f’(x0),切线方程为y y0f’(x)(x x0).4. 求导数的四则运算法则:(u v)’u’v’y f1(x)f2(x)...fn(x)y’f1’(x)f2’(x)...fn’(x) (uv)’vu’v’u(cv)’c’v cv’cv’(c为常数)vu’v’u u(v0) 2v v’注:①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设f(x)2sinx22,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xx f(x)g(x)sinx cosx在x0处均可导.5. 复合函数的求导法则:fx’((x))f’(u)’(x)或y’x y’u u’x复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数y f(x)在某个区间内可导,如果f’(x)>0,则y f(x)为增函数;如果f’(x)<0,则y f(x)为减函数.⑵常数的判定方法;如果函数y f(x)在区间I内恒有f’(x)=0,则y f(x)为常数.注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)= 0,同样f(x)0是f(x)递减的充分非必2要条件.②一般地,如果f(x)在某区间(sinx)cosx (arcsinx)’1 x2(xn)’nxn1(n R)(cosx)’sinx (arccosx)’ 1x2 1’11’(arctanx)II. (lnx)(logax)logae xxx21’(ex)’ex (ax)’axlna (arccotx)’III. 求导的常见方法:①常用结论:(ln|x|)’1x2 1 (x a1)(x a2)...(x an)1.②形如y(x a1)(x a2)...(x an)或y两(x b1)(x b2)...(x bn)x边同取自然对数,可转化求代数和形式.③无理函数或形如y xx这类函数,如y xx取自然对数之后可变形为lny xlnx,对两边y’1lnx x y’ylnx y y’xxlnx xx. 求导可得yx 3导数中的切线问题例题1:已知切点,求曲线的切线方程曲线y x33x21在点(1,1)处的切线方程为()例题2:已知斜率,求曲线的切线方程与直线2x y40的平行的抛物线y x2的切线方程是()注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22x b0,又因为0,得b1,故选D.例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.求过曲线y x32x上的点(1,1)的切线方程.例题4:已知过曲线外一点,求切线方程1求过点(2,0)且与曲线y相切的直线方程.x4练习题:已知函数y x33x,过点A(016) ,作曲线y f(x)的切线,求此切线方程.看看几个高考题1.(2009全国卷Ⅱ)曲线y x在点1,1处的切线方程为2x 122.(2010江西卷)设函数f(x)g(x)x,曲线y g(x)在点(1,g(1))处的切线方程为y2x1,则曲线y f(x)在点(1,f(1))处切线的斜率为3.(2009宁夏海南卷)曲线y xe2x1在点(0,1)处的切线方程为。
导数与定积分知识汇总
导数与定积分知识汇总导数和定积分是微积分的重要概念之一、导数描述了函数在其中一点上的变化率,而定积分则计算了函数在给定区间上的累积量。
本文将对导数和定积分的基本定义、性质和应用进行详细介绍。
一、导数的定义和性质1. 导数的定义:对于函数f(x),在其中一点a处的导数定义为:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)。
导数表示了函数y=f(x)在x=a处的切线斜率。
2.导数的几何意义:导数表示了函数图像在其中一点上的切线斜率。
如果导数大于零,则函数在该点上递增;如果导数小于零,则函数在该点上递减;如果导数等于零,则函数在该点上取极值;如果导数不存在,则函数在该点上存在间断。
3.导数的计算方法:可以使用基本导数公式来计算导数,例如常数函数、幂函数、指数函数、对数函数等。
此外,还可以使用导数的四则运算法则,包括求和、差、积和商的导数。
4.高阶导数:函数的导数可以继续求导,得到高阶导数。
第n阶导数表示了函数的n次变化率,可以用f^(n)(x)表示。
例如,如果函数的二阶导数大于零,那么函数在该点上呈现凸的曲线形状。
二、定积分的定义和性质1. 定积分的定义:对于函数f(x),在区间[a,b]上的定积分定义为:∫[a,b] f(x) dx = lim(n→∞) Σ[f(x_k) Δx_k],其中Σ表示求和,Δx_k是区间[a,b]上一个子区间的长度,x_k是该子区间内任意一点。
2.定积分的几何意义:定积分表示了函数f(x)在区间[a,b]上的曲线下面积。
如果函数在该区间上为正值,则积分值为正;如果函数在该区间上为负值,则积分值为负;如果函数在该区间上变号,则通过积分可以得到曲线上和曲线下的面积差。
3.定积分的计算方法:可以使用定积分的基本公式来计算定积分,如幂函数的定积分、三角函数的定积分等。
此外,还可以利用换元积分法、分部积分法等方法来计算更复杂的定积分。
4. 积分的性质:积分具有线性性质,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx + ∫[a,b] g(x) dx;积分也具有保号性质,即如果在[a,b]上f(x) ≤ g(x),那么∫[a,b] f(x) dx ≤ ∫[a,b] g(x) dx。
高中导数、定积分的复习讲义(含答案)精编版
一、知识点梳理1.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。
可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim000,符号“→”读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。
即 xx f x x f x f x ∆-∆+=→∆)()(lim)(0000'2.导数的四则运算法则:1))()())()((x g x f x g x f '±'='± 2))()()()(])()([x g x f x g x f x g x f '+'='3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)((3)x x cos )(sin =' (4)x x sin )(cos -=' (5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)x x e e =')( (8)a a a xx ln )(='例题:对下面几个函数求导 (1)、12832++=x x y (2)xxa x x e x f -+=ln 5)((3)22ln 3)(x xe xf x +=3.导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。
导数知识点总结及例题
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
导数与定积分知识汇总
高考数学----导数、定积分知识清单一 、导数的概念●(一)导数的概念函数y=f(x),如果自变量x 在x 0处有增量△x ,那么函数y 相应地有增量△y=f (x 0+△x )-f (x 0),比值△y△x叫做函数y=f (x )在x 0到x 0+△x 之间的平均变化率,即△y △x = f (x 0+△x )-f (x 0)△x 。
如果当0→∆x 时,△y△x 有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y’ | x = x0即f ‘(x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(例如:函数y = |x|在x = 0处得左极限与右极限不相等,所以函数y = |x|在x = 0处不存在极限,所以在x = 0处不可导)(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0);② 求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;③ 取极限,得导数f ’(x 0)=x yx ∆∆→∆0lim。
●(二)导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。
相应地,切线方程为y -y 0 = f ’(x 0)(x -x 0)。
定积分知识点和例题
定积分知识点和例题
定积分是积分的一种,是函数在某个区间上的积分和的极限。
定积分的概念起源于求图形面积和其他实际应用的问题。
下面我将列举一些定积分的知识点和例题:
知识点:
1. 定积分的定义:定积分是积分和的极限,即对一个给定区间[a,b]上的函数f(x)和任意分割法,求各小区间上函数值的点乘积和的极限。
如果存在一个常数I,对于任意给定的正数ε,总存在一个δ>0,使得当|ΔSi|<δ时,对区间[a,b]的任意分割法,和Si与I的差的绝对值都小于ε,则称I为f(x)在区间[a,b]上的定积分,记作∫abf(x)dx,其中a、b和I分别为定积分的下限、上限和值。
2. 定积分的几何意义:定积分的值等于由曲线y=f(x)与直线x=a、x=b 以及x轴所围成的曲边梯形的面积。
3. 定积分的性质:定积分的性质包括线性性质、积分中值定理、积分上限函数与被积函数的联系等。
4. 定积分的计算方法:主要包括基本初等函数的积分公式和不定积分的性质及计算方法,如换元法、分部积分法等。
例题:
1. 计算定积分∫10(x^2+1)dx的值。
2. 计算定积分∫π20(sinx+cosx)dx的值。
3. 计算定积分∫10|x-1|dx的值。
4. 计算定积分∫10x^2dx的值。
5. 计算定积分∫21(1/x)dx的值。
导数与定积分总结
x 例3 求函数 y 2 的单调区间. x 9
解:
x ( x 9) x( x 9) x 9 y 2 0 2 2 2 ( x 9) ( x 9)
' 2 2 ' 2 '
f ( x)的定义域为x 3,
当x (, 3), x (3,3), x (3, )
导数与定积分总结
知识点总结:
(一)对导数定义的理解;
f '( x0 ) lim
x 0
f ( x0 x) f ( x0 ) x
f ( x0 x) f ( x0 ) A:平均变化率 x f ( x0 x) f ( x0 ) B:割线斜率 x
f ( x0 x) f ( x0 ) lim 瞬时变化率 x 0 x f ( x0 x) f ( x0 ) lim 切线斜率 x 0 x
本节内容是本章最根本,最重要,最基本的内容
y f x x f x 1. f x lim lim x 0 x x 0 x
2. C 0C为常数 m x mx m -1 m Q sinx cosx cosx sinx x e ex
3
2 3 .
1 6.
条.
(四)怎样理解极点,极值;还有最值点,最值 (应该学会结合原函数与其导函数图形理解)
y=f(x) D E 0 G A C B F K x H D
y f '( x) H
E 0 G A C B F
K
x
y f ( x)
y f '( x)
请你根据上面图象指出哪些是极点,极值;最值点,最值
(2)设f(x)在x=x0处可导,且
积分导数知识点总结
积分导数知识点总结一、导数的定义1.导数的定义:函数f在点x处的导数为该点处的极限,即f'(x) = lim(h→0) (f(x+h) - f(x))/h2.导数的几何意义:导数表示函数在某一点处的斜率,即切线的斜率。
3.导数的物理意义:导数表示物理学中的速度、加速度等变化率。
4.导数存在的条件:函数在某一点处存在导数的条件是该点的邻域内函数有定义且函数在该点处有有限的斜率。
5.导数存在的判定:若函数在某一点处存在导数,则函数在该点处一定连续二、导数的计算方法1.利用导数的定义计算导数2.利用导数的基本公式计算导数3.利用导数运算法则计算导数4. 利用导数的性质计算导数三、导数的应用1. 导数与函数的图像(1)导数与函数的单调性:函数在某一区间内单调增加(减少)的充分必要条件是函数在该区间内导数恒大于(小于)零。
(2)导数与函数的极值:函数在某一点处取得极大值、极小值的充分必要条件是函数在该点处的导数为零或不存在。
(3)导数与函数的凹凸性:若函数在某一区间内的导数恒大于零(小于零),则该函数在该区间内为凹函数(凸函数)。
2. 导数与曲线问题(1)切线方程:函数在某一点处的切线方程为y=f'(x0)(x− x0)+f(x0)(2)法线方程:函数在某一点处的法线方程为y=(−1/f'(x0))(x− x0)+f(x0)(3)切线与曲线的问题:切线与曲线的交点、长度、曲率等问题。
3. 导数在科学工程中的应用(1)速度、加速度:物体运动的速度、加速度等问题。
(2)最优化问题:求函数取得最大值、最小值时的条件。
(3)微分方程:描述自然现象的微分方程。
四、积分的定义1. 积分的定义:积分是导数的逆运算。
2. 定积分的定义:定积分是函数在区间[a, b]上的积分,表示曲线以下的面积。
3. 不定积分的定义:不定积分是函数的不定积分,表示函数的原函数。
5. 积分存在的条件:函数在某一区间内存在积分的条件是该函数在该区间内有界、可积。
导数与定积分知识汇总
高考数学-———导数、定积分知识清单一 、导数的概念●(一)导数的概念函数y=f (x),如果自变量x 在x 0处有增量△x ,那么函数y 相应地有增量△y=f (x 0+△x )-f (x 0),比值△y△x 叫做函数y=f (x)在x 0到x 0+△x 之间的平均变化率,即错误!= 错误!。
如果当0→∆x 时,错误!有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y' | x = x0即f ‘(x 0)=0lim→∆x x y∆∆=0lim→∆x x x f x x f ∆-∆+)()(00.说明:(1)函数f (x)在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数.(例如:函数y = |x|在x = 0处得左极限与右极限不相等,所以函数y = |x |在x = 0处不存在极限,所以在x = 0处不可导)(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0);② 求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;③ 取极限,得导数f ’(x 0)=x yx ∆∆→∆0lim.●(二)导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。
相应地,切线方程为y -y 0 = f '(x 0)(x -x 0)。
导数和积分知识点总结
导数和积分知识点总结一、导数的概念导数是描述函数变化速率的一个重要概念。
对于函数y=f(x),在某一点x处的导数表示为f'(x),它的几何意义是函数曲线在该点的切线斜率。
在物理学中,导数可以描述物体的运动速度和加速度。
导数的计算方法有:求导法则(和差积商的导数、复合函数的导数)、高阶导数、隐函数求导、参数方程求导等。
二、导数的应用1. 导数在切线和曲率的计算中有广泛的应用;2. 导数可以用来求函数的最大值和最小值,以及函数的拐点;3. 导数可以用来计算函数的增减性和凹凸性;4. 导数在物理学中可以描述速度、加速度等概念。
三、不定积分的概念不定积分是求函数的原函数的过程,表示为∫f(x)dx=F(x)+C,其中F(x)是不定积分的结果,C为积分常数。
不定积分的计算方法有:基本初等函数的不定积分、分部积分、换元积分等。
四、定积分的概念定积分是对函数在区间[a,b]上的面积或曲线长度的度量。
表示为∫a^b f(x)dx。
定积分的计算方法有:定积分的性质与计算、定积分的应用(如物理学中的质心、工程学中的弧长等)。
五、积分中值定理积分中值定理是微积分的基本定理之一,它表明了函数的积分值与函数自身在某点的函数值之间的关系。
积分中值定理包括:拉格朗日中值定理和柯西中值定理。
六、导数和积分之间的关系导数和积分都是函数的重要特征,它们之间有着密切的关系。
牛顿—莱布尼茨公式揭示了导数与积分的关系:如果函数F(x)是函数f(x)的一个原函数,则函数f(x)的定积分可以表示为F(x)在区间[a,b]上的变化量。
七、常用函数的导数和不定积分1. 常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等的导数和不定积分的计算;2. 求导和积分的基本公式及常用函数的导数和不定积分。
八、微分方程的解法微分方程是描述变化规律的数学模型,它在物理、生物、经济等领域有着广泛的应用。
微分方程可分为常微分方程和偏微分方程两大类,同时它的解法有:变量分离法、齐次方程、一阶线性微分方程、二阶线性微分方程等。
高中数学导数与积分知识点归纳总结
高中数学导数与积分知识点归纳总结在高中数学中,导数和积分是两个重要的概念。
它们在计算和解决数学问题时起着关键作用。
以下是导数和积分的一些核心知识点的总结。
导数导数可以理解为函数在某一点的变化率。
它描述了函数在不同点的斜率或曲线的切线。
以下是导数的一些重要知识点:1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) =lim(h→0) [(f(x+h) - f(x))/h]。
2. 导数的计算:使用导数的定义,我们可以通过求极限来计算导数。
另外,还有一些常见函数的导数公式,如幂函数、指数函数、对数函数和三角函数等。
3. 导数的性质:导数具有一些重要的性质,如线性性、乘法法则、除法法则和链式法则等。
这些性质可以简化导数计算的过程。
4. 高阶导数:除了一阶导数外,函数还可以有更高阶的导数,称为二阶导数、三阶导数等。
高阶导数描述了函数的曲率和曲线的变化情况。
积分积分可以理解为函数的累积总和。
它是导数的逆运算,可以用来计算曲线下面的面积或实现函数的反向操作。
以下是积分的一些重要知识点:1. 定积分:定积分是指对函数在给定区间上的积分。
定积分的计算可以使用黎曼和或牛顿-莱布尼茨公式等方法。
2. 不定积分:不定积分是指对函数求积分得到的含有任意常数的函数。
不定积分可以通过求导的逆运算来计算。
3. 积分的性质:积分具有一些重要的性质,如线性性、换元法、分部积分法等。
这些性质可以简化积分计算的过程。
4. 定积分的应用:定积分在几何学、物理学和经济学等领域有广泛的应用。
它可以用来计算曲线下的面积、质心、弧长以及求解各种实际问题。
以上是高中数学中导数和积分的一些核心知识点的归纳总结。
导数和积分在数学的不同领域中都具有重要的应用价值,例如计算、物理学、工程学等。
希望这份总结对您的学习和应用有所帮助。
导数知识点总结与计算
导数知识点总结与计算导数是微积分中的重要概念,它描述了函数在某一点的变化率。
计算导数可以用于求解函数在某一点的切线斜率、最大值最小值以及函数的变化趋势等问题。
在实际应用中,导数也被广泛应用于物理、经济、工程等领域,因此对于导数的理解和掌握是十分重要的。
本文将对导数的基本概念、求导法则以及常见函数的导数进行总结,并进行详细的解释和示例计算,以便读者更好地掌握导数知识。
一、导数的基本概念1. 函数的导数在微积分中,函数f(x)在点x处的导数表示为f'(x),即导数是函数在某一点的变化率。
可以用极限的概念来定义函数的导数:若函数f(x)在点x处的导数存在,则f'(x)=lim (Δx→0) (f(x+Δx)-f(x))/Δx其中Δx表示自变量x的增量。
当Δx趋于0时,函数在点x处的导数即为该点的切线斜率。
2. 导数的几何意义导数可以用几何意义来解释:函数f(x)在点x处的导数即为该点处曲线的切线斜率。
当导数为正时,函数在该点处是增加的;当导数为负时,函数在该点处是减少的;当导数为零时,函数在该点处取得极值。
因此,导数可以用于描述函数在某一点的变化趋势。
3. 导数的物理意义在物理学中,导数也具有重要的物理意义。
例如,当我们知道一个物体的位移函数时,可以通过求导得到该物体的速度函数;再对速度函数求导,可以得到该物体的加速度函数。
因此,导数可以帮助我们描述物体的运动规律。
二、求导法则对于常见的函数,我们可以通过一些基本的求导法则来求解其导数。
下面将介绍求导的基本法则及其示例计算。
1. 常数函数的导数若f(x)=c,其中c为常数,则f'(x)=0。
因为常数函数在任意点的变化率均为0。
示例计算:求函数f(x)=5的导数。
解:f'(x)=0。
2. 幂函数的导数若f(x)=x^n,其中n为正整数,则f'(x)=nx^(n-1)。
即幂函数的导数等于指数与原函数的指数减一的乘积。
导数的知识点和典型例题
导数的知识点和典型例题导数的基本概念1. 导数的定义导数是微积分中的重要概念,表示函数在某一点上的变化率。
对于函数f(x),在点x处的导数可以通过以下公式定义:其中,h表示x点附近的一个小增量。
该定义可以简化为下面的形式:2. 导数的几何意义导数的几何意义是切线的斜率。
对于曲线y=f(x),在点(x, f(x))处的导数即为曲线在该点切线的斜率。
导数正值表示曲线逐渐上升,负值表示曲线逐渐下降。
3. 导数的物理意义导数在物理学中具有速度和加速度的物理意义。
对于位移函数s(t),其导数s’(t)表示在时刻t的瞬时速度。
二阶导数s’’(t)则表示在时刻t的瞬时加速度。
导数的计算方法1. 基本函数的导数以下是一些常见的函数的导数公式:•常数函数:常数函数的导数为0。
•幂函数:幂函数f(x)=x n的导数为f’(x)=nx(n-1)。
•指数函数:指数函数f(x)=a x的导数为f’(x)=a x * ln(a),其中ln(a)表示以e为底a的对数。
•对数函数:对数函数f(x)=log_a(x)的导数为f’(x)=1/(x * ln(a)),其中ln(a)表示以e为底a的对数。
•三角函数:三角函数的导数公式如下:–sin(x)的导数为cos(x)。
–cos(x)的导数为-sin(x)。
–tan(x)的导数为sec^2(x)。
•反三角函数:反三角函数的导数公式如下:–arcsin(x)的导数为1/sqrt(1-x^2)。
–arccos(x)的导数为-1/sqrt(1-x^2)。
–arctan(x)的导数为1/(1+x^2)。
2. 导数的基本运算法则导数具有一些基本的运算法则,便于计算更复杂函数的导数:•常数因子法则:对于函数y=c f(x),其中c为常数,f(x)为可导函数,其导数为y’=c f’(x)。
•和差法则:对于函数y=f(x)±g(x),其中f(x)和g(x)均为可导函数,其导数为y’=f’(x)±g’(x)。
导数及定积分知识点总结及练习(经典)
导数的应用及定积分(一)导数及其应用1.函数y =f (x )在x =x 0处的瞬时变化率是limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx 。
2.导数的几何意义函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=limΔx →0f (x 0+Δx )-f (x 0)Δx.3.函数的导数对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=limΔx →0f (x 0+Δx )-f (x 0)Δx.4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。
5.常见函数的导数(x n )′=__________.(1x )′=__________.(sin x )′=__________.(cos x )′=__________.(a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则:(f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,⎝⎛⎭⎫f (x )g (x )′=___________________.(3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.6.函数的单调性设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________.(2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________.7.函数的极值x ,如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个_________;如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个________.极大值与极小值统称为________,极大值点与极小值点统称为________.8.函数的最值假设函数y =f(x)在闭区间[a ,b]上的图象是一条连续不断的曲线,该函数在[a ,b]上一定能够取得____________与____________,若该函数在(a ,b)内是__________,该函数的最值必在极值点或区间端点取得.9.生活中的实际优化问题(1)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中__________的取值范围.(2)实际优化问题中,若只有一个极值点,则极值点就是__________点. (二)定积分1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b(a≠b)、y =0和曲线________所围成的图形称为曲边梯形.(2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b]分成许多小区间,进而把曲边梯形拆分为一些_______________; ①近似代替:对每个小曲边梯形“___________”,即用__________的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的________;①求和:把以近似代替得到的每个小曲边梯形面积的近似值________;①取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个________,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v(t),那么也可以采用________、________、________、________的方法,求出它在a≤t≤b 内所作的位移s.3.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑=ni 1f(ξi )Δx=_____________(其中Δx 为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的_________,记作⎰baf (x )dx ,即⎰baf (x )dx =_________.________,x 叫做________,f(x)dx 叫做________.4.定积分的几何意义如果在区间[a ,b ]上函数f (x )连续且恒有___________,那么定积分⎰baf (x )dx 表示由_________________________,y =0和_____________所围成的曲边梯形的面积.5.定积分的性质 ①⎰bakf(x )dx =__________________(k 为常数);②⎰ba(x )]dx f±(x )[f 21=________________;③⎰baf (x )dx =⎰caf (x )dx +_______________(其中a <c <b ).6.微积分(1)微积分基本定理如果F (x )是区间[a ,b ]上的________函数,并且F ′(x )=________,那么⎰baf (x )dx =___________.(2)用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找被积函数的________,利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F (x ).(3)被积函数的原函数有很多,即若F (x )是被积函数f (x )的一个________,那么F (x )+C (C 为常数)也是被积函数f (x )的________.但是在实际运算时,不论如何选择常数C (或者是忽略C )都没有关系,事实上,以F (x )+C 代替式中的F (x )有⎰baf (x )dx =[F (b )+C ]-[F (a )+C ]=F (b )-F (a ).(4)求定积分的方法主要有:①利用定积分的________;②利用定积分的___________;③利用_______________。
积分的导数知识点总结
积分的导数知识点总结一、导数的定义1. 导数的定义若函数f(x)在点x处可导(即该点处的导数存在),则称函数f(x)在点x处可导。
函数f(x)在点x处的导数记为f'(x),即f'(x)=lim(Δx→0)(f(x+Δx)-f(x))/Δx。
2. 导数的几何意义函数f(x)在点x处的导数f'(x)代表了函数曲线在该点处的切线斜率,即函数曲线在该点处的变化率。
当导数大于0时,表示函数曲线在该点处呈递增趋势;当导数小于0时,表示函数曲线在该点处呈递减趋势;当导数等于0时,表示函数曲线在该点处的斜率为0,即函数在该点处有极值。
3. 导数的物理意义在物理学中,导数也代表了一种变化率。
例如,函数描述了某物体的速度,其导数就代表了物体在某一刻的加速度。
二、导数与积分的关系1. 导数与不定积分不定积分是导数的逆运算。
即若函数f(x)在区间[a,b]上可导,且F(x)是f(x)在该区间上的一个原函数,则F'(x)=f(x)。
2. 积分与定积分定积分也是导数的逆运算。
即若函数f(x)在区间[a,b]上连续,且F(x)是f(x)在该区间上的一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。
3. 牛顿-莱布尼兹公式牛顿-莱布尼兹公式是导数与积分的关系的一个重要定理,它表示了函数的不定积分与定积分之间的关系。
若函数f(x)在区间[a,b]上连续,且F(x)是f(x)在该区间上的一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。
三、导数的基本性质1. 常数函数的导数常数函数f(x)=c的导数为f'(x)=0,即常数函数的导数为0。
这是因为常数函数的图像是水平的,其斜率为0。
2. 线性函数的导数线性函数f(x)=ax+b的导数为f'(x)=a,即线性函数的导数是其斜率。
3. 幂函数的导数幂函数f(x)=x^n的导数为f'(x)=nx^(n-1),即幂函数的导数等于指数乘以原函数的n-1次幂。
高考积分,导数知识点精华总结[1]
高考积分,导数知识点精华总结[1]高考积分,导数学问点精华总结[1]定积分一、学问点与方法:1、定积分的概念设函数f(x)在区间[a,b]上连续,用分点ax0x1…xi1xi…xnb把区间[a,b]等分成n个小区间,在每个小区间[xi1,xi]上取任一点i(i1,2,…,n)作和式nIni1,把n即x0时,和式In的极限叫做函f(i)x(其中x为小区间长度)bbn数f(x)在区间[a,b]上的定积分,记作:f(x)dx,即f(x)dx=limaani1f(i)x。
这里,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。
(1)定积分的几何意义:当函数f(x)在区间[a,b]上恒为正时,定积分f(x)dx的几何意ab义是以曲线yf(x)为曲边的曲边梯形的面积。
(2)定积分的性质①akf(x)dxbkf(x)dxab(k;为常数);②abf(x)g(x)dxbcabf(x)dxbag(x)dxb③f(x)dxaaf(x)dxcf(x)dx(其中acb)。
2、微积分基本定理假如yf(x)是区间[a,b]上的连续函数,并且F(x)f(x),那么:baf(x)dxF(x)|aF(b)F(a)b3、定积分的简洁应用(1)定积分在几何中的应用:求曲边梯形的面积由三条直线xa,xb(ab),x轴及一条曲线yf(x)(f(x)0)围成的曲边梯的面积Sbaf(x)dx。
假如图形由曲线y1=f1(x),y2=f2(x)(不妨设f1(x)≥f2(x)≥0),及直线x=a,x=b(a二、练习题1、计算下列定积分:(1)(x1e1x1x0)dx(2)2(sinx2cosx)dx(3)(2sinx3e2)dx203x(4)(4xx2)dx( 5)|2x|dx0122、求下列曲线所围成图形的面积:(1)曲线y2xx2,y2x24x;(2)曲线yex,yex,x1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的应用及定积分(一)导数及其应用1.函数y =f (x )在x =x 0处的瞬时变化率是limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx 。
2.导数的几何意义函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=limΔx →0f (x 0+Δx )-f (x 0)Δx.3.函数的导数对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=limΔx →0f (x 0+Δx )-f (x 0)Δx.4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。
5.常见函数的导数(x n )′=__________.(1x )′=__________.(sin x )′=__________.(cos x )′=__________.(a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则:(f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,⎝⎛⎭⎫f (x )g (x )′=___________________.(3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.6.函数的单调性设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________.(2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________.7.函数的极值x ,如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个_________;如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个________.极大值与极小值统称为________,极大值点与极小值点统称为________.8.函数的最值假设函数y =f(x)在闭区间[a ,b]上的图象是一条连续不断的曲线,该函数在[a ,b]上一定能够取得____________与____________,若该函数在(a ,b)内是__________,该函数的最值必在极值点或区间端点取得.9.生活中的实际优化问题(1)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中__________的取值范围.(2)实际优化问题中,若只有一个极值点,则极值点就是__________点. (二)定积分1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b(a≠b)、y =0和曲线________所围成的图形称为曲边梯形.(2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b]分成许多小区间,进而把曲边梯形拆分为一些_______________; ②近似代替:对每个小曲边梯形“___________”,即用__________的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的________;③求和:把以近似代替得到的每个小曲边梯形面积的近似值________;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个________,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v(t),那么也可以采用________、________、________、________的方法,求出它在a≤t≤b 内所作的位移s.3.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑=ni 1f(ξi )Δx=_____________(其中Δx 为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的_________,记作⎰baf (x)dx ,即⎰baf (x )d x =_________.________,x 叫做________,f(x)dx 叫做________.4.定积分的几何意义如果在区间[a ,b ]上函数f (x )连续且恒有___________,那么定积分⎰baf (x)dx 表示由_________________________,y =0和_____________所围成的曲边梯形的面积.5.定积分的性质 ①⎰ba kf(x)dx =__________________(k 为常数);②⎰ba(x)]dx f ±(x)[f 21=________________;③⎰baf (x)dx =⎰caf (x)dx +_______________(其中a <c <b ).6.微积分(1)微积分基本定理如果F (x )是区间[a ,b ]上的________函数,并且F ′(x )=________,那么⎰baf (x)dx =___________.(2)用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找被积函数的________,利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F (x ).(3)被积函数的原函数有很多,即若F (x )是被积函数f (x )的一个________,那么F (x )+C (C 为常数)也是被积函数f (x )的________.但是在实际运算时,不论如何选择常数C (或者是忽略C )都没有关系,事实上,以F (x )+C 代替式中的F (x )有⎰baf (x)dx =[F (b )+C ]-[F (a )+C ]=F (b )-F (a ).(4)求定积分的方法主要有:①利用定积分的________;②利用定积分的___________;③利用_______________。
(5)常用公式 ①⎰ba cdx =cx |b a (c 为常数); ②⎰badx x n=1n +1x n +1|ba (n ≠-1); ③⎰ba1xd x =ln x |b a (b >a >0); ④⎰basinxdx =-cos x |b a ;⑤⎰bacosxdx=sin x |b a ;⑥⎰badx e x=e x |ba;⑦⎰badx a x=a x ln a |ba (a >0且a ≠1).1.若直线y =-x +b 为函数y =1x 的图象的切线,求b 及切点坐标.2.曲线y =23x 2在点(3,6)处的切线与x 轴、直线x =2所围成的三角形的面积为________________.3.设y =sin x1+cos x ,-π<x <π,当y ′=2时,x =________________.4.求下列函数的导数.①y =x 2sin x ②y =x 2(x 2-1) ③y =1x +22x +33x④y =x ·tan x ⑤y =ln sin xx⑥y =x 1-x⑦y =sin x2⎝⎛⎭⎫1-2cos 2x 45.已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0. (1)求a ,b 的值;16.设函数f (x )=ax -a x-2ln x .(1)f ′(2)=0,求函数f (x )的单调区间;(2)若f (x )在定义域上是增函数,求实数a 的取值范围.7.已知f(x)=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a 、b 的值.8.设函数f(x)=x 3+ax 2-a 2x +m(a>0). (1)求函数f(x)的单调区间;(2)若函数f(x)在x ∈[-1,1]内没有极值点,求a 的取值范围;(3)若对任意的a ∈[3,6],不等式f(x)≤1在x ∈[-2,2]上恒成立,求m 的取值范围.9.设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.10.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x 元.问该产品每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本).11.计算⎰-33(9-x 2-x 3)d x 的值;12.求下列定积分: (1)⎰31⎝⎛⎭⎫2x -1x 2d x (2)⎰94x (1+x )d x (3)⎰26ππcos 2x d x (4)⎰-222|x -x |d x .13.求直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积.6题:(1)由已知得x >0,故函数f (x )的定义域为(0,+∞). ∵f ′(x )=a +a x 2-2x ,∴f ′(2)=a +a 4-1=0,∴a =45.∴f ′(x )=45+45x 2-2x =25x2(2x 2-5x +2),令f ′(x )>0,得0<x <12或x >2,令f ′(x )<0,得12<x <2,(2)若f (x )在定义域上是增函数,则f ′(x )≥0对x >0恒成立,因为f ′(x )=a +a x 2-2x =ax 2-2x +ax 2,所以需x >0时ax 2-2x +a ≥0恒成立, 即a ≥2xx 2+1对x >0恒成立.因为2x x 2+1=2x +1x ≤1,当且仅当x =1时取等号,所以a ≥1.7题:因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b .所以⎩⎪⎨⎪⎧f ′(-1)=0f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1b =3,或⎩⎪⎨⎪⎧a =2b =9 .当a =1,b =3时,f ′(x)=3x 2+6x +3=3(x +1)2≥0, 所以f(x)在R 上为增函数,无极值,故舍去;当a =2,b =9时,f ′(x)=3x 2+12x +9=3(x +1)(x +3). 当x ∈[-3,-1]时,f(x)为减函数; 当x ∈[-1,+∞)时,f(x)为增函数,所以f(x)在x =-1时取得极小值.因此a =2,b =9. 8题:(1)∵f ′(x )=3x 2+2ax -a 2=3(x -a3)(x +a ),又a >0,∴当x <-a 或x >a 3时,f ′(x )>0;当-a <x <a3时,f ′(x )<0.∴函数f (x )的单调递增区间为(-∞,-a ),(a 3,+∞),单调递减区间为(-a ,a3).(2)由题设可知,方程f ′(x )=3x 2+2ax -a 2=0在[-1,1]上没有实根,∴⎩⎪⎨⎪⎧f ′(-1)<0,f ′(1)<0,∴⎩⎪⎨⎪⎧3-2a -a 2<0,3+2a -a 2<0,∵a >0,∴a >3.(3)∵a ∈[3,6],∴a3∈[1,2],-a ≤-3, 又x ∈[-2,2],∴当x ∈[-2,a 3)时,f ′(x )<0,f (x )单调递减,当x ∈(a3,2]时,f (x )单调递增,故f (x )的最大值为f (2)或f (-2).而f(2)-f(-2)=16-4a 2<0,f(x)max =f(-2)=-8+4a +2a 2+m , 又∵f(x)≤1在[-2,2]上恒成立, ∴-8+4a +2a 2+m ≤1,∵9-4a -2a 2的最小值为-87, ∴m ≤-87.9题:(1)由f ′(x )=-x 2+x +2a =-(x -12)2+14+2a ,当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a ;令29+2a >0,得a >-19,所以,当a >-19时,f (x )在(23,+∞)上存在单调递增区间.(2)令f ′(x )=0,得两根x 1=1-1+8a 2,x 2=1+1+8a2, 所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 因为0<a <2,所以x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2). 又f (4)-f (1)=-272+6a <0,所以f (4)<f (1),所以f (x )在[1,4]上的最小值为f (4)=8a -403=-163,得a =1,x 2=2,从而f (x )在[1,4]上的最大值为f (2)=10310题:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000 (x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0,故它就是最大值点,且最大值为:f (200)=-15×2003+24000×200-50000=3150000(元)答:每月生产200吨产品时利润达到最大,最大利润为315万元. 11题由定积分的几何意义得⎰-339-x 2d x =π×322=9π2,⎰-33x 3d x =0,由定积分性质得⎰-33(9-x 2-x 3)d x =⎰-339-x 2d x -⎰-33x 3d x =9π2. 13题:(1)如图所示由⎩⎪⎨⎪⎧y =4x ,y =x 3.解得⎩⎪⎨⎪⎧x =2,y =8,或⎨⎪⎧x =-2,实用标准∴第一象限的交点坐标为(2,8)由定积分的几何意义得,S= 20(4x-x3)d x=(2x2-44x)|20=8-4=4. 文案大全。