碾压土石坝计算书_毕业设计
土石坝坝体设计 毕业设计论文
目录摘要 (1)Abstract (2)前言 (3)第1章设计的基本资料 (4)1.1概况 (4)1.2基本资料 (4)1.2.1地震烈度 (4)1.2.2水文气象条件 (4)1.2.3坝址地形、地质与河床覆盖条件 (5)1.2.4建筑材料概况 (5)1.2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3.1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3.1.2 坝型选择 (9)3.2 枢纽组成建筑物确定 (9)3.3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4.2 坝的断面设计 (10)4.2.1 坝顶高程确定 (10)4.2.2 坝顶宽度确定 (12)4.2.3 坝坡及马道确定 (12)4.2.4 防渗体尺寸确定 (13)4.2.5 排水设备的形式及其基本尺寸的确定 (14)4.3 土料设计 (14)4.3.1 粘性土料设计 (14)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4.4 土石坝的渗透计算 (16)4.4.1 计算方法及公式 (16)4.4.2 计算断面及计算情况的选择 (17)4.4.3 计算结果 (17)4.4.4 渗透稳定计算 (18)4.5 稳定分析计算 (19)4.5.1 计算方法与原理 (19)4.5.2 计算公式 (19)4.5.3 稳定成果分析 (20)4.6 地基处理 (20)4.6.1 坝基清理 (20)4.6.2 土石坝的防渗处理 (20)4.6.3 土石坝与坝基的连接 (20)4.6.4 土石坝与岸坡的连接 (20)4.7 土坝的细部结构 (21)4.7.1 坝的防渗体、排水设备 (21)4.7.2 反滤层设计 (21)4.7.3 护坡及坝坡设计 (22)4.7.4 坝顶布置 (22)第5章溢洪道设计 (23)5.1 溢洪道路线选择和平面位置的确定 (23)5.2 溢洪道基本数据 (23)5.3 工程布置 (23)5.3.1 引渠段 (23)5.3.2 控制段 (24)5.3.3 泄槽 (25)5.3.4 出口消能段 (30)5.4 衬砌及构造设计 (32)5.5 地基处理及防渗 (32)结论 (33)感想体会 (34)致谢 (35)参考文献 (36)附录一:计算书 (37)附录二:外文翻译 (66)摘要适当修建大坝可以实现一个流域地区防洪、灌溉的综合效益。
土石坝毕业设计资料
土石坝毕业设计资料题目:土石坝设计及施工技术的综合分析摘要:该毕业设计主要以土石坝的设计和施工技术为研究对象,通过对土石坝的相关理论知识进行深入学习和总结,结合实际案例,分析土石坝的设计原理和施工过程中的技术要点。
通过对土石坝设计与施工工艺的综合分析,进一步提高土石坝工程的质量和安全性。
本文主要分为引言、土石坝的设计原理、土石坝施工技术以及结论四个部分。
1.引言土石坝作为一种常见的水利工程建筑物,起到了水库蓄水和防洪的重要作用,因此对其设计和施工技术进行研究具有重要意义。
本章主要介绍研究背景和研究目的,明确本论文的主要内容和研究方法。
2.土石坝的设计原理介绍土石坝的定义、分类和设计原则。
分析土石坝的重力坝和堆石坝两种主要设计方式,并对其设计原理进行详细解释。
重点介绍土石坝的坝体结构设计、防渗措施及排水设计等方面的原理和方法。
3.土石坝施工技术从土石坝施工的准备阶段、基础施工、坝体施工和防渗施工四个方面,详细介绍了土石坝施工过程中的关键技术要点。
包括土石料的选择、卸料和压实技术、重力坝的坝体施工流程、堆石坝的填筑和压实方法,以及防渗层的施工工艺等。
4.结论通过对土石坝设计与施工技术的综合分析,总结了土石坝设计和施工技术的关键要点。
强调了设计中应考虑的因素和施工过程中的注意事项,以及土石坝工程质量和安全性的重要性。
最后,提出了进一步研究和改进土石坝设计与施工技术的建议。
关键词:土石坝、设计原理、施工技术、质量、安全性注:以上摘要只为示例,实际内容可以根据具体情况进行调整和增加。
具体内容请查看附件。
H江碾压混凝土重力坝设计计算书
目录第一章工程规模的确定....................................................... - 3 -1.1 水利枢纽与水工建筑物的等级划分..................................... - 3 -1.2 永久建筑物洪水标准................................................. - 3 -第二章调洪演算 ............................................................ - 4 -2.1洪水调节计算....................................................... - 4 -2.1.1 洪水调节计算方法........................................................ - 4 -2.1.2 洪水调节具体计算........................................................ - 4 -2.1.3 计算结果统计:.......................................................... - 8 -第三章大坝设计 ............................................................. - 9 -3.1 坝顶高确定 ........................................................ - 9 -3.1.1 计算方法................................................................ - 9 -3.1.2 计算过程................................................................ - 9 -3.2 坝顶宽度 ......................................................... - 10 -3.3 开挖线的确定...................................................... - 10 -3.4 非溢流坝剖面设计.................................................. - 10 -3.4.1 折坡点高程拟定......................................................... - 11 -3.4.2 非溢流坝剖面拟定....................................................... - 11 -3.5 非溢流坝段坝体强度和稳定承载能力极限状态验算...................... - 17 -3.5.1 荷载计算成果........................................................... - 17 -3.5.2正常蓄水位时坝体沿坝基面的抗滑稳定性及强度验算.......................... - 42 -3.5.3正常蓄水位时坝体2-2面的抗滑稳定性及强度验算............................ - 43 -3.5.4正常蓄水位时坝体3-3面的抗滑稳定性及强度验算............................ - 43 -3.5.5正常蓄水位时坝体4-4面的抗滑稳定性及强度验算............................ - 46 -3.5.6校核洪水位时坝体沿坝基面的抗滑稳定性及强度验算.......................... - 47 -3.5.7校核洪水位时坝体2-2面的抗滑稳定性及强度验算............................ - 47 -3.5.8校核洪水位时坝体3-3面的抗滑稳定性及强度验算............................ - 48 -3.5.9校核洪水位时坝体4-4面的抗滑稳定性及强度验算............................ - 50 -3.5.10正常蓄水位地震时坝体沿坝基面的抗滑稳定性及强度验算..................... - 52 -3.5.11正常蓄水位地震时坝体2-2面的抗滑稳定性及强度验算....................... - 53 -3.5.12正常蓄水位地震时坝体3-3面的抗滑稳定性及强度验算....................... - 53 -3.5.13正常蓄水位地震时坝体4-4面的抗滑稳定性及强度验算....................... - 56 -3.5.14设计水位时坝体沿坝基面的抗滑稳定性及强度验算........................... - 57 -3.5.15设计水位时坝体2-2面的抗滑稳定性及强度验算............................. - 59 -3.5.16设计水位时坝体3-3面的抗滑稳定性及强度验算............................. - 59 -3.5.17设计水位时坝体4-4面的抗滑稳定性及强度验算............................. - 61 -3.6 应力计算 ......................................................... - 62 -3.6.1 边缘应力............................................................... - 63 -3.6.2内部应力............................................................... - 63 -3.6.3 截面应力计算表......................................................... - 65 -3.6.4 应力图................................................................. - 65 -3.7 溢流坝段的设计.................................................... - 79 -3.7.1 溢流坝剖面设计......................................................... - 79 -3.7.2 消能防冲设计........................................................... - 81 -3.7.3 稳定及应力的计算....................................................... - 83 -第四章第二建筑物(压力钢管)的设计计算.....................................- 102 -4.1 引水管道的布置................................................... - 102 -4.1.1压力钢管的型式 ........................................................ - 102 -4.1.2轴线布置 .............................................................. - 102 -4.1.3 进水口................................................................ - 102 -4.2 闸门及启闭设备................................................... - 103 -4.3 细部构造 ........................................................ - 103 -4.3.1通气孔设计 ............................................................ - 103 -4.3.2充水阀设计 ............................................................ - 103 -4.3.3伸缩节设计 ............................................................ - 103 -4.4 压力钢管结构设计与计算........................................... - 103 -4.4.1 确定钢管厚度.......................................................... - 104 -4.4.2 承受内水压力的结构分析................................................ - 105 -第五章施工组织设计 ........................................................- 111 -5.1 导流标准 ........................................................ - 111 -5.2导流方案......................................................... - 111 -5.3 导流工程参数..................................................... - 112 -第一章工程规模的确定1.1 水利枢纽与水工建筑物的等级划分参考《水利水电工程等级划分及洪水标准》SL252-20001、可确定该工程规模为大(1)型工程等级为Ⅰ级2、水工建筑物级别(永久性水工建筑物)工程等级为Ⅰ级,则主要建筑物级别1级,次要建筑物3级3、临时性水工建筑物级别保护对象为1级主要永久建筑物,3级次要永久建筑,则临时性水工建筑物为4级。
土石坝毕业设计(全)
前言根据教学大纲要求,我们在毕业前必须完成毕业设计。
毕业设计是我在大学学习的重要环节,对于培养工程技术人员独立承担专业工程技术任务重要。
通过毕业设计可以进一步巩固、加深、扩大我们所学的基本理论和专业知识,使之系统化;培养我们运用理论知识解决实际技术问题的能力,初步掌握设计原则、方法和步骤;培养我们具有正确的设计思想,树立严肃认真、实事求是和刻苦钻研的工作作风;培养我们独立思考、独立工作的能力,加强计算、绘图、编写说明书及使用规范、手册等技能;培养我们对土石坝设计计算的基本技能,同时了解国内外该行业的发展水平。
这次我的设计任务是E江水利枢纽工程设计(土石坝),本设计采用斜心墙坝。
该斜心墙土石坝设计大致分为:洪水调节计算、坝型选择与枢纽布置、大坝设计、泄水建筑物的选择与设计等部分。
1 工程提要E 江水利枢纽系防洪、发电、灌溉、渔业等综合利用的水利工程,该水利枢纽工程由土石坝、泄洪隧洞、冲沙放空洞、引水隧洞、发电站等建筑物组成。
该工程建成以后,可减轻洪水对下游城镇、厂矿和农村的威胁,根据下游防洪要求,设计洪水时最大下泄流量限制为900s m /3,本次经调洪计算100年一遇设计洪水时,下泄洪峰流量为672.6s m /3。
原100年一遇设计洪峰流量为1680s m /3,水库消减洪峰流量1007.4s m /3;其发电站装机为3×8000kw ,共2.4×104kw ;建成水库增加保灌面积10万亩,正常蓄水位时,水库面积为15.16km 2,为发展养殖创造了有利条件。
综上该工程建成后发挥效益显著。
1.1 工程等别及建筑物级别根据SDJ12-1978《水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)》之规定,水利水电枢纽工程根据其工程规模﹑效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、灌溉面积、电站的装机容量等,工程规模由库容决定,由于该工程正常蓄水位为2821.4m ,库容约为 3.85亿m 3,估计校核情况下的库容不会超过10亿m 3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。
土石坝初步设计---毕业设计
⼟⽯坝初步设计---毕业设计前⾔毕业设计是我们在校期间最后的、总结性的重要教学环节,其⽬的是:1.巩固、加深、扩⼤我们所学的基本理论和专业知识,并使之系统化;2.培养我们运⽤所学的理论知识解决实际技术问题功能⼒,初步掌握设计原则、⽅法和步骤;3.培养我们具有正确的设计思想,树⽴严肃认真、实事求是和刻苦钻研的⼯作作风;4.锻炼我们独⽴思考、独⽴⼯作的能⼒,并加强计算、绘图、编写说明书及使⽤规范、⼿册等技能训练。
本次毕业设计为⼟⽯坝设计,设计满⾜枢纽布置安全要求。
本设计结合国内外⼀些⼟⽯坝实例作出⽐较合理的选择,设计以减⼩⼯程量,布局经济合理为原则。
本设计共分六章。
第⼀章为本⼯程的⼀些概况,包括枢纽任务、流域概况、⽓候特性、⽔⽂特性、⼯程地质、建筑材料、经济资料等的介绍;第⼆章为洪⽔调节计算,主要内容为泄洪⽅式和拟定泄洪建筑物孔⼝尺⼨的选择,及防洪库容、上游设计和校核洪⽔位和相应的下泄流量的确定;第三章为坝型选择及枢纽布置,主要通过不同⽅案的初步技术经济⽐较,选定坝型,并确定⽔利枢纽的布置⽅案;第四章为⼟⽯坝的设计,主要通过分析⽐较,确定⼤坝基本剖⾯型式与轮廓尺⼨,通过渗流验算和静⼒稳定计算以论证选⽤坝坡的合理性;第五章为泄⽔建筑物的设计,主要为泄⽔⽅案、线路的选择和隧洞的⽔⼒计算;第六章为施⼯组织设计,也是本次设计的深⼊部分,主要进⾏施⼯导流和施⼯控制性进度的设计,⽽施⼯交通运输、施⼯总布置由于能⼒有限和时间关系并没有做进⼀步的设计。
由于没有参加过实际⼯程的施⼯组织设计,⼯作经验有限,查阅参考资料⼜有许多局限性,设计中定会存在⼀些缺点和错误,请⽼师批评指正。
摘要本⽔利枢纽⼯程由挡⽔建筑物、泄⽔建筑物和⽔电站建筑物等组成,同时具有防洪、发电、灌溉、渔业等综合作⽤。
本次设计主要内容如下:1.根据防洪要求,对⽔库进⾏洪⽔调节计算,确定坝顶⾼程及溢洪道尺⼨;2.对可能的⽅案进⾏⽐较,确定枢纽组成建筑物的型式、轮廓尺⼨及⽔利枢纽布置⽅案;3.通过详细设计和⽐较,确定⼤坝的基本剖⾯和轮廓尺⼨,拟定地基处理⽅案与坝⾝构造;4.坝型选定后,选择建筑物的型式及轮廓尺⼨,确定布置⽅案;拟定细部构造,进⾏⽔⼒、静⼒计算。
碾压混凝土重力坝设计计算书
目录第一章设计依据11.1 工程等级与建筑物级别21.2 工程洪水标准3第二章洪水调节计算52.1 工程洪水标准52.2 调洪计算52.2.1 调洪计算基本原理52.2.2 水位与流量关系的确定62.2.3 机算调洪数据72.2.4校核水库防空时间24第三章水能计算263.1 电站出力的估算263.2 机组台数和单机容量的选择263.3 水轮机型号和参数选择263.4 淤沙高程与电站取水口高程计算273.4.1 淤沙高程273.4.2 电站进水口底板高程27第四章水电站厂房初步设计294.1 水电站厂房的布置294.2 厂房轮廓的确定294.2.1主厂房长度的确定294.2.2 主厂房宽度的确定294.2.3 尾水平台与尾水闸室的布置30第五章大坝设计315.1 大坝有关参数的确定315.2 非溢流坝设计325.2.1 非溢流坝基本剖面设计325.2.2 非溢流坝实用剖面设计335.2.3 非溢流坝的荷载组合335.2.4 非溢流坝抗滑稳定验算(坝基处2—2截面)345.2.5 非溢流坝段应力验算(坝基处2—2截面)385.2.6 坝基处2—2截面部应力验算405.2.7非溢流坝段折坡处抗滑稳定验算(1—1截面)435.2.8非溢流坝段折坡应力验算(1—1截面)485.3 溢流坝段设计495.3.1 溢流坝段基本数据495.3.2溢流坝段实用剖面设计505.3.3溢流坝段消能设施的结构尺寸确定515.3.4溢流坝抗滑稳定验算(坝基处2—2截面)525.3.5溢流坝段应力验算(坝基处2—2截面)565.3.6 溢流挑射距离和冲坑深度计算585.4 厂房坝段设计595.4.1 水电站厂房的型式595.4.2 水电站厂房的布置595.4.3 电站引水管的布置形式595.4.4 厂房坝段坝身剖面设计59第六章施工组织设计616.1 施工导流标准616.2 施工导流布置和水力计算616.2.1导流方法616.2.2 导流布置616.3 一期导流计算626.3.1 导流水力计算626.3.2 上下游围堰的堰顶高程636.3.3 围堰断面设计636.3.4 围堰工程量计算666.4 二期导流机算676.4.1 坝体缺口和底孔联合泄流水力计算676.4.2 堰顶高程的确定与堰顶宽度的确定676.4.3 围堰断面设计676.4.4 围堰工程量计算686.5 封堵时间与蓄水计划69毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作与取得的成果。
土石坝毕业设计
引言概述:
土石坝作为一种常见的重要水利工程结构,被广泛应用于水资源利用、洪水控制、水流调节等方面。
在毕业设计中,我们将对土石坝进行综合分析和设计,通过详细的介绍和研究土石坝的各方面内容,以期提高对土石坝工程设计和施工的认识和理解。
正文内容:
1.土石坝的概念和分类
1.1土石坝的定义
1.2土石坝的分类
1.3土石坝的结构特点
2.土石坝的材料与力学性质
2.1土石坝使用的材料
2.2土石坝材料的力学性质
2.3土石坝材料的可行性分析
3.土石坝的基本设计原理
3.1土石坝的稳定性分析
3.2土石坝的渗透性分析
3.3土石坝的抗震性设计
3.4土石坝的温度效应分析
3.5土石坝的变形与监测
4.土石坝的施工工艺和质量管理
4.1土石坝的施工工艺
4.2土石坝的施工监测
4.3土石坝的质量管理
5.土石坝的经济性与环境影响
5.1土石坝的经济性分析
5.2土石坝的社会影响
5.3土石坝的环境影响评价
总结:
通过对土石坝的综合分析和设计,我们深入了解了土石坝的概念、分类、结构特点以及土石坝材料的力学性质。
在基本设计原理方面,我们分析了土石坝的稳定性、渗透性、抗震性、温度效应、变形与监测等方面。
我们还介绍了土石坝的施工工艺、质量管理以及土石坝的经济性和环境影响等方面内容。
通过本文对土石坝的全面论述,希望能够提高对土石坝工程设计和施工的认识和理解,为相关领域的实践工作提供一定的参考价值。
土石坝毕业设计
土石坝毕业设计1. 引言土石坝是一种常见的水利工程结构,用于水库的蓄水和防洪。
在毕业设计中,我们将研究土石坝的设计原理、施工过程和监测方法,以及可能遇到的问题和解决方案。
本文档将详细介绍土石坝的相关内容,并提供设计和建设土石坝的指导。
2. 土石坝的基本原理土石坝是一种以土石材料为主要构造材料的大坝,主要由堤体、坝基和坝顶组成。
堤体由多种土石材料堆积而成,形成防洪和蓄水的屏障。
坝基是土石坝的基础,承受来自水体和土壤的力。
坝顶则是坝体的上部,用于堵塞水流并支撑堤体。
3. 土石坝的设计3.1 坝型选择在设计土石坝时,首先需要根据实际情况选择合适的坝型。
常见的土石坝坝型包括碾压土石坝、心墙土石坝和重力土石坝。
不同的坝型适用于不同的地质和水力条件。
本文将介绍各种坝型的特点和适用范围,以供设计参考。
3.2 坝体稳定性分析为了确保土石坝的安全性,需要进行坝体稳定性分析。
这项分析用于确定坝体在正常和极端载荷条件下的稳定性,并评估任何可能的破坏机制。
本文将介绍常用的稳定性分析方法,包括切片法、有限元法和稳定性计算软件的应用。
3.3 坝体渗流分析土石坝的渗流是一个重要的问题,如果不能得到有效控制,可能会导致坝体破坏。
因此,在设计土石坝时,需要进行渗流分析,以确定坝体内部的渗流路径和渗流通量。
本文将介绍渗流分析的基本原理和方法,包括渗流试验和数值模拟。
3.4 坝体材料选择土石坝的堤体材料是其结构的基础,对坝体的稳定性和安全性有重要影响。
在设计土石坝时,需要选择合适的材料,并确定其物理和力学性质。
本文将介绍常见的土石材料和其特点,以及如何选择和测试合适的材料。
4. 土石坝的施工4.1 坝基处理坝基是土石坝的基础,其处理对于坝体的稳定性至关重要。
在施工土石坝之前,需要对坝基进行处理,包括地质勘察、坑底平整和加固措施的设计。
本文将介绍坝基处理的基本原理和具体方法,以保证坝体在施工和运营中的稳定性。
4.2 堤体填筑堤体填筑是土石坝施工的核心环节,涉及大量的土石材料运输和堆积。
土石坝设计毕业设计
目录摘要 (1)Abstract (2)前言 (3)第1章设计的大体资料 (4)概况 (4)大体资料 (4)1.2.1地震烈度 (4)1.2.2水文气象条件 (4)1.2.3坝址地形、地质与河床覆盖条件 (5)1.2.4建筑材料概况 (5)1.2.5其他资料 (7)第2章工程品级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3.1.2 坝型选择 (9)枢纽组成建筑物肯定 (9)枢纽整体布置 (9)第4章大坝设计 (10)土石坝坝型选择 (10)坝的断面设计 (10)4.2.1 坝顶高程肯定 (10)4.2.2 坝顶宽度肯定 (12)4.2.3 坝坡及马道肯定 (12)4.2.4 防渗体尺寸肯定 (13)4.2.5 排水设备的形式及其大体尺寸的肯定 (14)4.3.1 粘性土料设计 (14)4.3.2 石渣坝壳料设计(按非粘性土料设计) (15)土石坝的渗透计算 (16)4.4.1 计算方式及公式 (16)4.4.2 计算断面及计算情形的选择 (17)4.4.3 计算结果 (17)4.4.4 渗透稳固计算 (18)稳固分析计算 (18)4.5.1 计算方式与原理 (18)4.5.2 计算公式 (19)4.5.3 稳固功效分析 (20)地基处置 (20)4.6.1 坝基清理 (20)4.6.2 土石坝的防渗处置 (20)4.6.3 土石坝与坝基的连接 (20)4.6.4 土石坝与岸坡的连接 (20)土坝的细部结构 (20)4.7.1 坝的防渗体、排水设备 (20)4.7.2 反滤层设计 (21)4.7.3 护坡及坝坡设计 (21)4.7.4 坝顶布置 (22)第5章溢洪道设计 (23)溢洪道线路选择和平面位置的肯定 (23)溢洪道大体数据 (23)工程布置 (23)5.3.1 引渠段 (23)5.3.2 控制段 (24)5.3.3 泄槽 (25)5.3.4 出口消能段 (30)地基处置及防渗 (32)结论 (33)感想体会 (34)致谢 (35)参考文献 (36)附录一:计算书 (37)附录二:外文翻译 (65)摘要适当修建大坝能够实现一个流域地域防洪、浇灌的综合效益。
土石坝毕业设计
前言1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。
因此,应把必要的资料整理到说明书中。
通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。
2、本次设计内容及要求:(1)坝轴线选择。
(2)坝型选择。
(3)枢纽布置。
(4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。
(5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。
选取溢洪道设计。
(6)施工导流方案论证(选作内容)。
仅作简单的阐述。
3、工程设计概要ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。
水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。
灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。
水库防洪标准为百年设计,万年校核。
枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。
摘要:土坝设计渗流计算稳定计算细部结构第一章基本数据第一节工程概况及工程目的本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。
水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。
枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。
土石坝毕业设计说明书
三百梯水库为一般小(2)型水库。水库大坝坝型为砂壤土均质坝,最大坝高为14.42m,大坝总长76.00m。根据《水利水电工程等级划分及洪水标准》SL252—2000及《防洪标准》GB50201-94之规定,确定为小(2)型水库系Ⅴ等工程,主要建筑物为5级,次要建筑物为5级。
1.3.
1.
大坝:三百梯水库于1956年10月动工,至1957年3月完工,根据“三查三定资料”,大坝坝型为砂壤均质土坝,坝顶高程为341.56m,坝顶长度76.0m,顶宽2.0m,最大坝高14.42m;上游坝坡上段坡比1:1.82,下段坡比1:3.5,下游坝坡上段坡比1:2.25和1:1.84,坝坡下段坡比1:2.35和1:2.86,下游坝脚未设排水棱体和反滤层,坝底总宽77.72m。
水库所在河流属长江水系璧南河的中段右岸支流上,库区内植被一般。水库大坝坝址河谷底高程327.14m(黄海高程系统,下同)。坝址以上集雨面积1.56km2,水库总库容32.26万m3(复核后成果),三百梯水库工程是一座以农业灌溉为主,兼有农村居民点供水、防洪以及养殖等综合效益的小㈡型水利工程,设计灌溉面积914亩,有效灌面593亩。
水库所在河流属长江水系璧南河中段右岸一支流,库区内植被一般。水库坝址是不对称“U”型河谷,谷底高程326.00m(黄海高程系统,下同)。原坝址以上集雨面积1.56km2。
三百梯水库大坝为砂壤土均质坝,最大坝高14.42m,总库容31.6万m3(复核前),根据SL252-2000《水利水电工程等级划分及洪水标准》和GB50201-94《防洪标准》规定,该水库工程规模为小㈡型水利工程,工程等别为Ⅴ级,主要建筑物为5级水工建筑物。洪水标准为20年一遇设计,设计洪水位为340.16m,相应洪峰流量为22.283/s,设计下泄流量为17.63m3/s;200年一遇校核,校核洪水位为340.77m,相应洪峰流量为34.75m3/s,校核下泄流量为29.86m3/s。
土石坝出险加固毕业设计计算说明书范文
土石坝出险加固毕业设计计算说明书范文第一章坝体稳定复核根据《碾压式土石坝设计规范》(SDJ274-2001)规定,计算方法采用摩根斯顿-普赖斯法。
计算断面选取大坝桩号0+313断面进行计算。
水位:正常高水位357.91m,坝后按无水考虑。
㈠计算工况利民山水库库区地震基本烈度为Ⅵ度,根据规范规定,坝体不需进行抗震计算,则计算工况如下:正常运用情况:⑴水位在最不利水位(1/3坝高)时,上游坝坡稳定情况;⑵在正常蓄水位下稳定渗流期,下游坝坡稳定情况;非常运用情况I:⑶库水位发生骤降时,上游坝坡稳定情况;大坝结构稳定分析的有关地质参数见表5-1。
土坝稳定分析岩土特征值设计参数表表5-1土层名称坝壳风化料坝体粘性土淤泥质壤土坝基砂砾石γ(t/m3)1.881.951.742.09γat(t/m3)2.081.981.802.19φ30,28141430,28C(t/m2)01.51.30㈡稳定分析成果大坝稳定分析计算中采用北京理正软件设计研究所2001年3月编写的“边坡稳定设计软件3.0版”进行电算,计算成果见表表5-2。
大坝坝坡抗滑稳定分析计算成果表表5-2计算条件序号12工况1/3坝高水位、上游坡正常蓄水、下游坡断面K1.4321.259K允1.251.25正常运用情况0+313非常运用情况Ⅰ3正常蓄水骤降、上游坡1.3561.15㈢结论经对典型断面进行坝坡稳定分析,各工况下坝坡抗滑稳定安全系数均满足规范要求,坝坡为稳定状态。
桩号0+313最不利水位迎水坡稳定分析简图桩号0+313正常水位稳定渗流期背水坡稳定分析简图桩号0+313水位骤降期迎水坡稳定分析简图第二章土坝渗流分析㈠坝体及坝基渗漏量计算选取大坝桩号0+313m断面进行渗漏量计算。
⑴各土层渗透系数坝壳风化料K=0.864m/d坝体粘性土K=0.00864m/d淤泥质壤土K=0.0432m/d坝基砂砾石K=26.78m/d⑵计算结果本次采用北京理正软件设计研究所2001年4月编写的“渗流分析软件1.1版”进行计算。
土石坝毕业设计计算书_
土石坝设计方向毕业设计计算书水利水电工程专业毕业设计目录第一章调洪计算 (3)第二章坝高计算 (9)第三章土料计算及料场分析 (11)第四章渗流计算 (16)第五章稳定分析 (20)第六章细部结构计算 (27)第七章泄水建筑物的计算 (29)第八章施工组织计算 (33)土石坝 斜心墙第一章 调洪计算主要建筑物为2级,次要建筑物为3级,临时建筑物为4级。
永久建筑物洪水标准:正常运用(设计)洪水重现期100年;非常运用(校核水重现期2000年。
由于明渠开挖量巨大,故采用隧洞泄洪方案水库运用方式:洪水来临时用闸门控制下泄流量等于来流量,水库保持汛前限制水位不变,当来流量继续加大,则闸门全开,下泄流量随水位的升高而加大,流态为自由泄流。
调洪演算原理采用以峰控制的同倍比放大法对典型洪水进行放大,得出设计与校核洪水过程线如下:2320×6h流量坝址水文站单位过程线流量1680×6h 坝址水文站单位过程线图1-1 设计洪水过程线 图1-2 校核洪水过程线拟定几组不同堰顶高程 I 及孔口宽度B 的方案。
堰顶自由泄流公式Q=Bmє(2g)1/2H3/2可确定设计洪水和校核洪水情况下的起调流量Q 起,由Q 起开始,假定三条泄洪过程线(为简便计算,假设都为直线),在洪水过程线上查出Q 泄,并求出相应的蓄水库容V 。
根据库容水位关系曲线可得相应的库水位H ,由三组(Q 泄,H )绘制的Q ~H 曲线与由Q=Bmє(2g)1/2H3/2绘制的Q ~H 曲线相交,所得交点即为所要求的下泄流量及相应水位。
水利水电工程专业毕业设计方案一:∇I=2812m, B=7m 起调流量232Hg mB Q ξ=起=0.9⨯0.5⨯8⨯81.92⨯⨯1023=501.743m /s321 V3=29.83*4.176*10^5=12.46*10^6V2=27.17*4.176*10^5=11.35*10^6 V1=25.00*4.176*10^5=10.44*10^6501.742320×6h流量坝址水文站单位过程线流量1680×6h 132V3=22.43*3.024*10^5=6.78*10^6V2=20.78*3.024*10^5=6.28*10^6V1=17.71*3.024*10^5=5.37*10^6坝址水文站单位过程线图1-3 方案一设计洪水过程线 图1-4 方案一校核洪水过程线B H 正常 ΔI H 水位 Q 第1组7 2823.2 2812 2823.2 501.7377 7 2823.2 2812 2823.7 535.7085 7 2823.2 2812 2824.2 570.4131 7 2823.2 2812 2824.7 605.8363 7 2823.2 2812 2825.2 641.9639 7 2823.2 2812 2825.7 678.7824 7 2823.2 2812 2826.2 716.279 72823.228122826.7754.4417土石坝 斜心墙 第1组 VΔV V 总 Q H 设计426 5.37 431.4 770 2823.63 426 6.28 432.3 630 2823.68426 6.78 432.8 560 2823.75 校核426 10.44 436.4 773.28 2823.88 426 11.35 437.4 676.63 2823.9442612.46438.5579.982824设计流量Q=541.433m /s,水位H=2823.76m 校核流量Q=5603m /s,水位H=2824m方案二:∇I=2812m, B=8m 起调流量232Hg mB Q ξ=起=0.9⨯0.5⨯7⨯81.92⨯⨯1023=573.413m /s坝址水文站单位过程线V1=16.54*3.024*10^5=5.00*10^6V2=17.88*3.024*10^5=5.41*10^6V3=19.28*3.024*10^5=5.83*10^6231×6h 1680量流坝址水文站单位过程线量流×6h2320573.4V1=22.11*4.176*10^5=9.23*10^6 V2=23.97*4.176*10^5=10.01*10^6V3=25.94*4.176*10^5=10.83*10^6123573.4图1-5 方案二设计洪水过程线 图1-6 方案二校核洪水过程线B H 正常 ΔI H 水位 Q 第2组8 2823.2 2812 2823.2 573.4145 8 2823.2 2812 2823.7 612.2382 8 2823.2 2812 2824.2 651.9006 8 2823.2 2812 2824.7 692.3843 8 2823.2 2812 2825.2 733.673 8 2823.2 2812 2825.7 775.7513 8 2823.2 2812 2826.2 818.604682823.228122826.7862.2191水利水电工程专业毕业设计第2组 VΔV V 总 Q H 设计426 5 431 770 2823.61 426 5.41 431.4 700 2823.64426 5.83 431.8 630 2823.67 校核426 9.23 435.2 869.99 2823.82 426 10.01 436 773.28 2823.8642610.83436.8676.632823.92设计流量Q=6033m /s,水位H=2823.60m 校核流量Q=622.863m /s,水位H=2823.89m 方案三:∇I=2811m, B=7m 起调流量232Hg mB Q ξ=起=0.9⨯0.5⨯7⨯81.92⨯⨯1123=570.413m /s321V3=25.94*4.176*10^5=10.83*10^6V2=23.97*4.176*10^5=10.01*10^6V1=22.11*4.176*10^5=9.23*10^62320×6h流量坝址水文站单位过程线流量1680×6h 132V3=19.28*3.024*10^5=5.83*10^6V2=17.88*3.024*10^5=5.41*10^6V1=16.54*3.024*10^5=5.00*10^6坝址水文站单位过程线570.4570.4图1-7 方案三设计洪水过程线 图1-8 方案三校核洪水过程线土石坝 斜心墙B H 正常 ΔI H 水位 Q 第3组7 2823.2 2811 2823.2 570.4131 7 2823.2 2811 2823.7 605.8363 7 2823.2 2811 2824.2 641.9639 7 2823.2 2811 2824.7 678.7824 7 2823.2 2811 2825.2 716.279 7 2823.2 2811 2825.7 754.4417 7 2823.2 2811 2826.2 793.2592 72823.228112826.7832.7204第3组 VΔV V 总 Q H 设计426 5 431 770 2823.61 426 5.41 431.4 700 2823.64426 5.83 431.8 630 2823.67 校核426 9.23 435.2 869.99 2823.82 426 10.01 436 773.28 2823.8642610.84436.8676.632823.92设计流量Q=6003m /s,水位H=2823.60m 校核流量Q=622.863m /s,水位H=2823.89m方案四:∇I=2811m, B=8m 起调流量232Hg mB Q ξ=起=0.9⨯0.5⨯8⨯81.92⨯⨯1023=651.93m /s水利水电工程专业毕业设计坝址水文站单位过程线V1= 14.30*3.024*10^5=4.32*10^6V2=15.45*3.024*10^5=4.67*10^6V3=16.65*3.024*10^5=5.03*10^6231×6h 1680量坝址水文站单位过程线量×6h2320651.9V1=19.46*4.176*10^5=8.13*10^6V2=21.10*4.176*10^5=8.81*10^6 V3=22.80*4.176*10^5=9.52*10^6123651.9图1-9 方案四设计洪水过程线 图1-10 方案四校核洪水过程线B H 正常 ΔI H 水位 Q 第4组8 2823.2 2811 2823.2 651.9006 8 2823.2 2811 2823.7 692.3843 8 2823.2 2811 2824.2 733.673 8 2823.2 2811 2824.7 775.7513 8 2823.2 2811 2825.2 818.6046 8 2823.2 2811 2825.7 862.2191 8 2823.2 2811 2826.2 906.5819 82823.228112826.7951.6804土石坝 斜心墙第4组 V ΔV V 总 Q H 设计426 4.32 430.3 840 2823.57 426 4.67 430.7 770 2823.59426 5.03 431 700 2823.61 校核426 8.13 434.1 966.67 2823.77 426 8.81 434.8 870.01 2823.84269.52435.5773.282823.83设计流量Q=6843m /s,水位H=2823.59m校核流量Q=706.673m /s,水位H=2823.86m第二章 大坝高程的计算坝顶在水库静水位以上的超高按下式确定:a e R y ++=其中:y----坝顶超高;R----最大波浪在坝顶的爬高;e----最大风壅水面高度;A----安全超高。
土石坝毕业设计
土石坝毕业设计土石坝毕业设计在水利工程领域中,土石坝作为一种常见的水利工程结构,承担着调节水流、防洪、蓄水等重要功能。
而作为水利工程专业的毕业设计课题,土石坝的设计无疑是一个具有挑战性和实践性的任务。
本文将从土石坝的设计原理、工程实施和环境影响等方面进行探讨。
一、土石坝的设计原理土石坝是利用土石材料充填建筑而成的一种水利工程结构。
其设计原理主要包括坝体稳定性、坝顶宽度、坝体材料选择等方面。
首先,坝体稳定性是土石坝设计中最关键的问题。
设计师需要考虑到土石材料的强度、抗滑性和抗冲刷性等因素,以确保土石坝在各种外力作用下不发生破坏。
其次,坝顶宽度的设计需要考虑到坝体的自重和水压力等因素,以保证坝顶的稳定性和安全性。
最后,坝体材料的选择需要根据工程实际情况和经济性来确定,常见的土石材料有黏土、砂土和碎石等。
二、土石坝的工程实施土石坝的工程实施包括坝基处理、坝体充填和坝顶建设等步骤。
首先,坝基处理是土石坝工程实施中的重要环节。
设计师需要对坝基进行地质勘察和地质力学分析,以确定坝基的稳定性和承载能力。
其次,坝体充填需要根据设计要求,选取合适的土石材料进行填筑,同时要进行合理的压实和加固,以确保坝体的稳定和坝顶的安全。
最后,坝顶建设需要进行防渗处理和排水系统的设计,以防止水流对坝顶的侵蚀和损坏。
三、土石坝的环境影响土石坝的建设对周围环境产生一定的影响,主要包括水文影响、生态影响和社会影响等方面。
首先,土石坝的建设会改变水流的路径和速度,对下游的水文条件产生影响,可能引起洪水和干旱等问题。
其次,土石坝的建设会破坏原有的生态系统,导致生物多样性的减少和生态平衡的破坏。
最后,土石坝的建设会对周围的居民和社会经济产生影响,可能导致土地沉降、人口迁移和经济发展等问题。
综上所述,土石坝的毕业设计是一个具有挑战性和实践性的任务。
设计师需要充分理解土石坝的设计原理,合理进行工程实施,并考虑到土石坝建设对环境的影响。
通过毕业设计的实践,学生们可以深入了解土石坝的工程特点和设计要求,提高自己的专业能力和实践能力。
土石坝毕业设计
土石坝毕业设计土石坝是一种以土壤和石块为主要材料,经过合理布置而形成的一种坝型结构。
它具有施工简单、成本低等特点,被广泛应用于水利工程中。
本篇文章将以土石坝的设计为主题,探讨其毕业设计的相关内容。
首先,土石坝毕业设计的目标是什么?在进行设计之前,我们需要明确自己的设计目标,即希望通过设计实现什么样的效果。
土石坝主要用于水库、蓄水池等地的水利工程,我们可以根据具体的需求确定设计目标,比如最大蓄水容量、坝高、坝体稳定性等。
在确定设计目标之后,我们可以根据这些目标制定相应的设计方案。
其次,土石坝的毕业设计需要考虑哪些因素?土石坝的设计需要综合考虑多个因素,包括地质条件、水文条件、工程经济等。
首先,地质条件可以影响土石坝的选址和坝体的稳定性。
我们需要对地质条件进行详细的勘察和分析,确定合适的选址,并进行坝址地质勘察。
其次,水文条件可以影响土石坝的蓄水容量和坝体的稳定性。
我们需要对水文条件进行详细的分析和计算,确定合适的蓄水容量,并进行洪水计算。
最后,工程经济是设计中一个重要的考虑因素。
我们需要根据工程经济的原则,进行合理的材料选用和设计布局,以实现经济、合理地利用资源。
最后,土石坝毕业设计的设计内容有哪些?土石坝的毕业设计主要包括选址、设计计算以及施工方案等内容。
首先,选址是土石坝设计的第一步,我们需要根据地质条件、水文条件等因素选择合适的选址,并进行坝址地质勘察。
其次,设计计算是土石坝设计的核心内容,我们需要根据设计目标和具体的地质、水文条件进行相关计算,包括坝体稳定性计算、蓄水容量计算等。
最后,施工方案是土石坝设计的最后一步,我们需要制定合理的施工方案,包括施工工艺、材料选用等内容。
综上所述,土石坝毕业设计是一个系统性的工程设计过程。
我们需要确定设计目标,综合考虑地质、水文、工程经济等因素,设计相关内容,最终实现设计的目标。
土石坝的毕业设计可以培养我们的综合分析和创新能力,为将来从事相关工作打下基础。
土石坝坝体设计毕业设计
目录摘要 (1)Abstract (2)前言 (3)第1章设计的基本资料 (4)1.1概况 (4)1.2基本资料 (4)1.2.1地震烈度 (4)1.2.2水文气象条件 (4)1.2.3坝址地形、地质与河床覆盖条件 (5)1.2.4建筑材料概况 (6)1.2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3.1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3.1.2 坝型选择 (9)3.2 枢纽组成建筑物确定 (9)3.3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4.2 坝的断面设计 (10)4.2.1 坝顶高程确定 (10)4.2.2 坝顶宽度确定 (12)4.2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4.2.5 排水设备的形式及其基本尺寸的确定 (14)4.3 土料设计 (14)4.3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4.4 土石坝的渗透计算 (17)4.4.1 计算方法及公式 (17)4.4.2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4.4.4 渗透稳定计算 (19)4.5 稳定分析计算 (19)4.5.1 计算方法与原理 (19)4.5.2 计算公式 (20)4.5.3 稳定成果分析 (20)4.6 地基处理 (20)4.6.1 坝基清理 (21)第页I4.6.2 土石坝的防渗处理 (21)4.6.3 土石坝与坝基的连接 (21)4.6.4 土石坝与岸坡的连接 (21)4.7 土坝的细部结构 (21)4.7.1 坝的防渗体、排水设备 (21)4.7.2 反滤层设计 (22)4.7.3 护坡及坝坡设计 (22)4.7.4 坝顶布置 (23)第5章溢洪道设计 (24)5.1 溢洪道路线选择和平面位置的确定 (24)5.2 溢洪道基本数据 (24)5.3 工程布置 (24)5.3.1 引渠段 (24)5.3.2 控制段 (25)5.3.3 泄槽 (26)5.3.4 出口消能段 (32)5.4 衬砌及构造设计 (33)5.5 地基处理及防渗 (33)结论 (34)感想体会 (35)致谢 (36)参考文献 (37)II附录一:计算书 (38)附录二:外文翻译 (68)第页III摘要适当修建大坝可以实现一个流域地区防洪、灌溉的综合效益。
土石坝毕业设计论文计算书讲解
目录第一章:工日分析 (1)第二章:施工导流计算 (7)第一节:导流标准 (7)第二节:导流方案 (7)第三节:导流工程规划布置 (8)第四节:大坝分期及安全校核 (13)第三章:主体工程施工计算 (16)第一节:土石坝施工 (16)第二节:导流洞开挖 (20)第一章:工日分析月有效工日=日历天数-法定假日-因雨雪、气温不能施工天数-其他原因停工天数。
计算过程中法定假日与因雨、气温停工日期重合未考虑;降雨次数不考虑,仅按连续降雨+停工天数考虑;其他原因停工未考虑;星期六和星期天考虑正常施工。
23表1-4理论状态下总休息天数4根据上表可知有较多月份休息天数较多,相应的有效施工天数较少,为保证施工进度的正常进行,可采取一定的组织措施对其进行调控,在满足施工人员正常休息、又不能在环境恶劣情况的前提下,尽可能的不延误施工进度,避免总工期的不能实现。
本设计根据现场施工情况,对上述情况进行了分析,总结有两种方案可供选择,详情如下所示。
1、可将在因降雨、温度影响下不能正常施工的天数与国家法定节假日进行相补。
即将因降雨、气温而影响不能施工的时间用作休息日,而周六、周末正常施工,以弥补因外在因素而产生的误工问题。
如石料开采一项,因降雨原因停工4天,即可将这4天作为休息日,而将两个周六周末进行施工作业,既满足了正常的施工需要,有合理的使施工人员得到充分的休息时间。
2、将本月的周六周日向后延迟,在别的月份进行补偿,如混凝土自然施工,其因降雨、气温、假日原因休息时间长达25天,远远不能满足正常的施工需要,故可将一月份的假日向后推迟,在后期的月份内进行弥补。
而根据现场实际休息时间可知:因降雨、气温共计17天,而及国家法定节假日共计11天,则需将全部的法定节假日全部用在降雨天和低温天气,即可满足施工人员休息,有可延长施工时间,但总的休息时间仍未17天,所造成的施工延误可在后续环境较好的情况下进行加班施工。
所以,第一种互补方案较为可行。
土石坝(黏土心墙)毕业设计说明书、计算书
目录摘要 0Abstract (1)前言 (2)第1章设计的基本资料 (4)1。
1概况 (4)1.2基本资料 (4)1.2。
1地震烈度 (4)1.2。
2水文气象条件 (4)1.2。
3坝址地形、地质与河床覆盖条件 (5)1。
2。
4建筑材料概况 (6)1。
2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3。
1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3。
1。
2 坝型选择 (9)3。
2 枢纽组成建筑物确定 (9)3。
3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4。
2 坝的断面设计 (10)4。
2.1 坝顶高程确定 (10)4。
2.2 坝顶宽度确定 (13)4。
2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4。
2.5 排水设备的形式及其基本尺寸的确定 (14)4。
3 土料设计 (15)4。
3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4。
4 土石坝的渗透计算 (17)4。
4.1 计算方法及公式 (17)4.4。
2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4。
4。
4 渗透稳定计算 (19)4.5 稳定分析计算 (20)4。
5。
1 计算方法与原理 (20)4。
5。
2 计算公式 (20)4.5。
3 稳定成果分析 (21)4。
6 地基处理 (21)4.6。
1 坝基清理 (21)4.6。
2 土石坝的防渗处理 (21)4。
6。
3 土石坝与坝基的连接 (22)4.6.4 土石坝与岸坡的连接 (22)4.7 土坝的细部结构 (22)4。
7。
1 坝的防渗体、排水设备 (22)4.7.2 反滤层设计 (23)4。
7.3 护坡及坝坡设计 (23)4.7.4 坝顶布置 (25)第5章溢洪道设计 (26)5.1 溢洪道路线选择和平面位置的确定 (26)5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、求设计洪峰流量Qm及汇流时间
①列表计算Qt值
将表1-3第7栏自最大时段净雨开始,按前后相邻时段大小连续排列填于表1-4第1栏。由第1栏计算累积值∑ht值填于第2栏除于相应历时得∑ht/t值填于第3栏。由第3栏按公式Qt=0.278F∑ht/t计算各时段相应流量填于第4栏。
②列表试算Q 值
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
P60min
(1)
100
P3~P60min
(2)
60
40
P6~P3
(3)
20
40
40
P24~P3
(4)
5
5
5
5
5
5
0
0
0
10
10
10
9
9
8
5
5
4
表1-1以60分钟为时段的雨型分配表
表1-2流域30年一遇24小时暴雨时程分配计算表
表1-3流域30年一遇净雨过程计算
2)扣除稳渗求时段地面径流量
计算设计24小时平均暴雨强度 = 24/24=189.8/24=7.9mm/h.
由 =7.9mm/h,查中表2-3,用经验公式fc=0.196 计算得
fc=0.196×7.9=1.55mm/h,取fc=1.6mm/h填于表2-3第6栏。
由表1-3第5栏减去第6栏即得设计24小时净雨过程,填入表1-3第7栏
表1-6各点转折点坐标
坐标
a起涨点
b起涨段转折点
c洪峰
d退水段转折点
e终止点
Q地面(m3/s)
0
0
时间T(h)
0
0.1T
0.25T
0.5T
T
T为过程线底宽,由下式计算
T=9.67W/Qm地面(h)
式中:W为洪水总量,由下式计算
已知净雨总量h24=120.7mm,地面洪峰流量Qm地面=26.5m /s,则
根据工程地理位置分别查附录图2-6和附图2-8,得流域中心最大6小时和60分钟点暴雨量,P6=72mm;P60min=44.5mm;查附图2-7和附图2-9,得Cv6=0.42;Cv60min=0.335。由设计频率P=3.33%和CS=3.5Cv查附表5-2得
。
则30年一遇60分钟,6小时点暴雨量为:
第一章
1.1
市东山街办南山村老虎坑,坝址座落于章江水系二级支流老虎坑河,东经114°44´,北纬25°10´,设计历时为24小时,坝址以上控制集水面积1.2km2,主河长1.63km,河床平均坡降43‰,设计频率为30年一遇为例。参照《手册》,计算步骤如下(说明:以下所用附图均来自于手册):
1.1.1
③列表计算设计暴雨时程分配
将表1-1控制时段雨量的百分数列于表1-2第1、3、5、7栏。由设计24小时暴雨控制时段雨量:
按各时段所占百分数计算各时段的雨量,填入表1-2第2、4、6、8栏。第9栏即为设计24小时暴雨过程。
时段
(60min)
控制
时段雨量
(mm)
占控制时段雨量的百分数(%)
序号
1
2
3
4
5
3小时暴雨由公式 计算,
式中: 。
则P3(3.33%)=73.8×30.316=114mm。
由流域面积F=1.2km2和暴雨历时t=60min,t=3h,t=6h分别查附图5-1,得点面系数a60min=0.9993,a3=0.9994,a6=0.9995。
则30年一遇60分钟,3小时,6小时面暴雨量为:
工程地点流域面积F=1.2km2,主河道长度L=1.63km,主河道比降J=0.043。
1.1.2
1、求三十年一遇24小时点暴雨量
根据工程地理位置查附图2-4,得流域中心最大24小时点暴雨值P24=101.5mm;附图2-5得Cv24=0.37,由设计频率P=3.33%和CS=3.5Cv查附表5-2,得
2.7
5.3
②地下径流回加计算
由已知表1-3第6栏地下径流深R下=29.3mm,表2-7地面径流过程线底宽T=5.3h。以此时间为地下流量峰顶位置,按下列公式计算地下流量峰值。
Qm地下=R下·F/3.6T=(29.3×1.2)/(3.6×5.3)=1.8m3/s,填入表1-8第5栏5行。
自Qm地下开始,向后每增加一个时段(△t=1h),其流量随之减少一个 =1/5.3×1.8=0.34,向前每减少一个时段(△t),其流量减少一个 △Q地下=△t/5.3×1.8=0.34·△t,分别向后或向前填于表2-8第5栏的第6~11行和第4~1行。即得地下流量过程线。
不同 值对应的流量 ,如表1-5第1、2栏。
表1-5流域 计算表
点绘 , 相关线,如图3-1,得 , 光滑曲线交点对应的流量Qm地面=26.5m3/s,汇流时间 =0.8h,即为所求地面设计洪峰流量和汇流时间。
图1-1本流域 , 相关
2、设计洪水过程线推求
①地流量过程线的推求
由(手册表3-2)概化五点折腰多边形过程线推求地面流量过程线。各转折点的坐标如表1-6第1,2栏。
则30年一遇24小时点暴雨量
2、求30年一遇24小时面暴雨量
根据流域面积F=1.2km2和暴雨历时t=24h查附图5-1,得点面系数 =0.9998。
则30年一遇24小时面暴雨量为:
3、求设计暴雨24小时的时程分配
①设计暴雨24小时雨配
查附表2-1,得以60分钟为时段的雨型分配表,如表1-1。
②查算30年一遇60分钟,3小时,6小时暴雨参数
1.1.3
1)扣除初损求时段总径流量
由附图3-1产流分区知,该工程地点在产流第Ⅱ区。
将表1-2第9栏各时段毛雨量列于表1-3第1栏,计算各时段累积雨量,填于第2栏。将各时段累积雨量∑P与设计前期雨量Pa(该区为70mm),相加填入表1-3第3栏。在附表3-2(Ⅱ),得相应各时段累积径流∑R总,填于表1-3第4栏。计算各时段径流量∑R总,填于表1-3第5栏。
由附图4-2推理公式分区图知,该工程地点在第Ⅱ区。
根据θ=L/J =1.63/(0.043)1/3=4.66。应用第Ⅱ区经验公式(手册表2-3)或直接查附图6-3(Ⅱ)计算参数m。
用经验公式m=0.429θ0.164计算,得m=0.633。
根据公式 =0.278L/mJ1/3Qτ1/4=0.278θ/m ,得
W=0.1×120.7×1.2=14.5(万m )
T=9.67×14.5/26.5=5.3(h)
根据表1-6第1、2两栏计算各转折点流量和时间,表1-7第1、2栏,即为所求地面流量过程线。
表1-7该流域地面流量过程线计算表
座标
序号
a点
b点
c点
d点
e点
1
0
2.7
26.5
5.3
0
T (h)
2
0
0.5
1.3