数值计算方法32 (插值多项式中的误差)

合集下载

数值计算方法插值法讲解

数值计算方法插值法讲解

又因为lk1(xk1) 1,故a(xk1 xk )(xk1 xk1) 1,得:
a

(xk 1

xk
1 )( xk 1

xk1) ,从而lk1(x)

(x (xk 1

xk xk
)(x xk1) , )(xk1 xk1)
lk
(x)

(x ( xk

问题的提出
插值问题的数学提法:已知函数y f (x)在n 1个 点x0 , x1, , xn上的函数值yi f (xi ), (i 0,1, , n), 求一 个多项式y P(x),使其满足P(xi ) yi , (i 0,1, , n). 即要求该多项式的函数曲线要经过y f (x)上已知的
平面上两点 xk , yk , xk1, yk1 ,求一条直线过该已
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)

yk

yk 1 xk 1

yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P 1(x)
x xk1 xk xk 1
由于li (xk ) 0,k i,故li (x)有因子:
(x x0 ) (x xi1)(x xi1) (x xn ),因其已经是n 次多项式,故而仅相差一个常数因子。令:
li (x) a(x x0 ) (x xi1)(x xi1) (x xn )
插值法的概念
已知函数在n+1个点x0 ,x1 ,…,xn 上的函数值 yi=f(xi ), (i=0,1,…,n) ,求一个简单函数y=P(x),使其满 足: P(xi )=yi ,(i=0,1,…,n) 。即要求该简单函数的 曲线要经过y=f(x)上已知的这个n+1个 点: (x0 ,y0 ),(x1 ,y1 ),…,(xn ,yn ),同时在其它 x∈[a,b]上要估计误差: R(x) = f(x) - P(x)

数值计算中的误差估计与分析

数值计算中的误差估计与分析

数值计算中的误差估计与分析在数值计算中,误差是无法避免的。

无论是数值积分、求根、线性方程组求解还是常微分方程求解,我们都需要对误差进行估计与分析,以保证结果的可靠性。

1.舍入误差:计算机中数字的存储精度是有限的,常用的浮点数表示法只能表示有限位数的小数。

当进行计算时,由于舍入操作会使结果产生一定的误差。

舍入误差是由于浮点数计算机表示能力造成的,它依赖于计算机所采用的机器数系统。

2.截断误差:在数值计算方法中,我们通常会使用有限项的级数展开式或多项式插值来近似解析解。

但由于展开或插值时的截断限制,会导致结果与真实结果之间的误差。

3.近似误差:数值计算方法本身就是在对问题进行近似求解,所以解的精确性受到近似精度的限制。

比如,对于数值积分来说,选择积分点的个数、插值多项式的次数都会影响结果的准确性。

4.舍入误差传播:在多步计算的过程中,每一步的舍入误差都会传播到下一步计算中,进而影响最终结果。

舍入误差的传播是一个累积效应,有时即使每一步舍入误差非常小,但在多步计算的累加下,也会导致结果产生很大的误差。

二、误差估计方法1.精度估计:对于一些数值方法,可以通过理论分析推导出误差的范围。

例如,对于数值积分,可以通过误差估计公式进行分析。

这种方法需要对问题进行数学建模,并具备一定的数学推导能力。

2.实验估计:对于一些复杂问题,很难通过理论分析得到精确的误差范围。

此时可以通过实验的方式来估计误差。

实验方法可以是计算机模拟实验,也可以是通过比较数值方法与解析解的差异来估计误差。

3.改进方法:除了估计误差大小,我们还可以通过改进数值方法来减小误差。

比如,可以采用更高阶的数值积分公式、使用更精确的数值微分方法等。

这些改进方法在一定程度上可以提高数值计算的准确性,并减小误差。

三、误差分析策略1.迭代策略:很多数值方法都是通过迭代来逐步逼近真实解的。

在迭代过程中,我们可以通过观察迭代序列的变化情况来判断结果是否趋近真实解,以及误差的变化是否在可接受范围内。

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

第一章测试1.数值计算方法研究的误差有()A:截断误差;B:观测误差;C: 模型误差;D:舍入误差.答案:AD2.A:只有模型误差、截断误差与观测误差。

B: 只有舍入误差、截断误差与观测误差;C:只有模型误差、观测误差与舍入误差;D:只有模型误差、截断误差与舍入误差;答案:C3.A:4位B:5位C:3位D:2位答案:A4.对于下列表达式,用浮点数运算,精度较高是A:B:C:D:答案:A5.A:B:C:D:答案:B第二章测试1.A:0.5000B:0.6250C:0.5625D:0.6875答案:C2.A:B:C:D:答案:CD3.关于Steffensen(斯蒂芬森)迭代方法,下列命题中正确的是:A:Steffensen迭代法使得收敛的迭代格式加速收敛,发散的迭代格式更快发散。

B:Steffensen迭代法使得某些发散的迭代格式变为收敛。

C:Steffensen迭代法使得任何收敛的迭代格式加速收敛。

D:Steffensen迭代法使得某些收敛的迭代格式加速收敛。

答案:BD4.关于Newton迭代法,下列命题中正确的是:A:求解任一方程的Newton迭代法都是2阶收敛的。

B:Newton迭代格式若收敛,则一定是超线性收敛的。

C:D:Newton迭代格式可能收敛也可能发散。

答案:CD5.A:6B:3C:5D:4答案:A第三章测试1.A:若求解失败,则说明矩阵A奇异。

B:算法的计算量与近似成正比。

C:若A的对角线元素的绝对值都大于1,则求解结果的精度一定较高。

D:只要A非奇异,则求解结果的精度一定较高。

答案:B2.列主元Gauss消去法与Gauss顺序消元法相比,优点是:A:提高了稳定性,减少了误差的影响。

B:方程组的系数矩阵奇异时也可以求解。

C:能求出方程组的精确解。

D:减少了计算量。

答案:A3.A:平方根法与Gauss列主元消去法相比,提高了稳定性,但增加了计算量。

B:只要是对称正定矩阵,就可用平方根法求解。

数值计算方法期末复习答案终结版

数值计算方法期末复习答案终结版

一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。

2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。

如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。

3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。

4. 向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足(1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。

5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。

6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。

若||||A 满足(1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 的范数。

(完整word版)数值计算方法期末复习答案终结版

(完整word版)数值计算方法期末复习答案终结版

一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。

2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。

如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。

3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。

4。

向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。

5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。

6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。

矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。

数值计算方法期末复习标准标准答案终结版

数值计算方法期末复习标准标准答案终结版

一、 名词解释1.误差:设*x 为准确值x 地一个近似值,称**()e x x x =-为近似值*x 地绝对误差,简称误差.2.有效数字:有效数字是近似值地一种表示方法,它既能表示近似值地大小,又能表示其精确程度.如果近似值*x 地误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零地数字到这一位地所有数字均称为有效数字.算法:是指解题方案地准确而完整地描述,是一系列解决问题地清晰指令,算法代表着用系统地方法描述解决问题地策略机制.计算一个数学问题,需要预先设计好由已知数据计算问题结果地运算顺序,这就是算法.4. 向量范数:设对任意向量n x R ∈,按一定地规则有一实数与之对应,记为||||x ,若||||x 满足(1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 地范数.5. 插值法:给出函数()f x 地一些样点值,选定一个便于计算地函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 地近似地方法.6相对误差:设*x 为准确值x 地一个近似值,称绝对误差与准确值之比为近似值*x 地相对误差,记为*()r e x ,即**()()r e x e x x=7. 矩阵范数:对任意n 阶方阵A ,按一定地规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 地范数.8.算子范数:设A 为n 阶方阵,||||∙是n R 中地向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||∙诱导出地矩阵范数,也称算子范数.9. 矩阵范数与向量范数地相容性:对任意n 维向量x ,都有||||||||Ax A ≤||||x这一性质称为矩阵范数与向量范数地相容性.10.1-范数,∞-范数和2-范数: (1)1-范数11||||||ni i x x ==∑(2)∞-范数1||||max{||}i i nx x ∞≤≤=(3)2-范数221||||x x =+二、简答题1.高斯消元法地思想是:先逐次消去变量,将方程组化成同解地上三角形方程组,此过程称为消元过程.然后按方程相反顺序求解上三角形方程组,得到原方程组地解,此过程称为回代过程.2. 迭代法地基本思想是:构造一串收敛到解地序列,即建立一种从已有近似解计算新地近似解得规则,由不同地计算规则得到不同地迭代法.3. 雅可比(Jacobi )迭代法地计算过程(算法): (1)输入()ij A a =,1(,,)n b b b =,维数n ,(0)(0)(0)(0)12(,,,)n x x x x =,ε,最大容许迭代次数N. (2)置1k = (3)对1,2,,i n =(0)1()/ni i ij j ii j j i x b a x a =≠=-∑(4)若(0)x x ε-<,输出x 停机;否则转5. (5)k N <,置(0)1,(1,2,,)i i k k x x i n +⇒⇒=,转3,否则,输出失败信息,停机.4. 插值多项式地误差估计:(P102)由(1)(1)101()()()()()()()(1)!(1)!n n n n n f f R x x x x x x x x n n ξξω+++==---++当(0,1,,)i x x i n ==时,上式自然成立,因此,上式对[,]a b 上地任意点都成立,这就叫插值多项式地误差估计.5. 反幂法地基本思想:设A 为阶非奇异矩阵,λ,u 为A 地特征值和相应地特征向量,则1A - 地特征值是A 地特征值地倒数,而相应地特征向量不变,即11A u u λ-=因此,若对矩阵1A -用幂法,,即可计算出1A -地按模最大地特征值,其倒数恰为A 地按模最小地特征值.6. 雅可比(Jacobi )迭代法是:选取初始向量(0)x 代入迭代公式(1)()k k i x Bx g +=+(0,1,2,)k =产生向量序列(){}k x ,由上述计算过程所给出地迭代法. 7. 数值计算中应注意地问题是:(1)避免两个相近地数相减 (2)避免大数“吃”小数地现象(3)避免除数地绝对值远小于被除数地绝对值 (4)要简化计算,减少运算次数,提高效率 (5)选用数值稳定性好地算法8. 高斯消去法地计算量:由消去法步骤知,在进行第k 次消元时,需作除法n k -次,乘法()n k -(1)n k -+次,故消元过程中乘除运算总量为乘法次数121()(1)(1)3n k n n k n k n -=--+=-∑ 除法次数11()(1)2n k nn k n -=-=-∑在回代过程中,计算k x 需要(1)n k -+次乘除法,整个回代过程需要乘除运算地总量为1(1)(1)2nk nn k n =-+=+∑,所以,高斯消去法地乘除总运算量为322(1)(1)(1)32233n n n n n N n n n n =-+-++=+-9. 迭代法地收敛条件:对任意初始向量(0)x 和右端项g ,由迭代格式(1)()k k x Mx g +=+(0,1,2,)k =产生地向量序列(){}k x 收敛地充要条件是()1M ρ<.10. 迭代法地误差估计:设有迭代格式(1)()k k x Mx g +=+,若||||1M <,(){}k x 收敛于*x ,则有误差估计式()*(1)(0)||||||||||||1||||Kk M xx x x M -≤--.二、 计算题1.假定运算中数据都精确到两位小数,试求*1.21 3.659.81x =⨯-地绝对误差限和相对误差限,计算结果有几位有效数字?解:由式12121212121212()()()()()()r r r e x x e x e x x x e x x e x e x x x x x ±=±⎧⎪⎨±=±⎪±±⎩和1221121212()()()()()()r r r e x x x e x x e x e x x e x e x ≈+⎧⎨≈+⎩得 *() 3.65(1.21) 1.21(3.65)(9.81)e x e e e =⨯+⨯-因为式中数据都精确到两位小数,即其误差限均为21102-⨯,故有*|()| 3.65|(1.21)| 1.21|(3.65)||(9.81)|e x e e e ≤⨯+⨯+***|()|0.0293|()|0.0054|| 5.3935r e x e x x =≤=所以,*x 地绝对误差限为0.0293,相对误差限为0.0054,计算结果有两位有效数字.2.求矩阵223477245A ⎡⎤=⎢⎥⎢⎥-⎣⎦地三角分解.解:由式111111(1,2,,)(2,,,,,)()/(1,2,,1,1,,)j j i ij ij ik kjk j ij ij ik kj jjk u a j n u a l u i n j i n l a l u u j n i j n -=-=⎧⎪==⎪⎪=-==⎨⎪⎪=-=-=+⎪⎩∑∑,12122u a ==,13133u a ==2121114/22l a u ===,3131112/12l a u -===- 222221127223u a l u =-=-⨯=,232321137231u a l u =-=-⨯=3232311222()/[4(1)2]/32l a l u u =-=--⨯=333331133223()5[(1)321]6u a l u l u =-+=--⨯+⨯=所以21(3.65 1.211)100.02932-≤++⨯⨯=100223210031121006A ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3.用幂法(2k =)求矩阵210021012A -⎡⎤=-⎢⎥⎢⎥-⎣⎦地按模最大地特征值和相应地特征向量.取(0)(0,0,0)T x =. (P 77)解:(0)(0)(0,0,1)T y x ==(1)(0)(0,1,2)T x Ay ==-, 2α=(1)(1)(0,0.5,1)T x yα==-(2)(1)(0.5,2,2.5)T x Ay ==-, 2.5α=4. 已知函数ln y x =,x 地值是10,11,12,13,14对应地ln y x =地值分别是 2.3026,2.3979,2.4849,2.5649,2.6391.用Lagrange 线性插值求ln11.5地近似值.解:取两个节点011x =,112x =,插值基函数为1001()(12)x x l x x x x -==---0110()11x x l x x x x -==-- 由式011010110()x x x x x y y x x x x ϕ--=+--得 1() 2.3979(12) 2.4849(11)L x x x =--+-将x=11.5代入,即得1ln11.5(11.5) 2.39790.5 2.48490.5 2.4414L ≈=⨯+⨯=按式(1)1()()()(1)!n n n f R x x n ξω++=+(,)a b ξ∈得 "1(ln )()(11)(12)2!x R x x x ξ=--因为"21(ln )x x =-,ξ在11和12之间,故"2211|(ln )|0.008264511x ξξ=≤= 于是311|(11.5)|0.00826450.50.5 1.03306102R -≤⨯⨯⨯=⨯5. 用Jacobi 迭代法(1k =)求解线性方程组1231231231027210283542x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ .解:由Jacobi 迭代法得计算公式(1)()11nk k iiij j j iiiij ib xa x a a +=≠=-+∑得 (1)()()123(1)()()213(1)()()3120.10.27.20.10.28.30.20.28.4k k k k k k k k k x x x x x x x x x +++⎧=++⎪=++⎨⎪=++⎩ 取(0)(0,0,0)T x =,代入上式得(1)17.2x =(1)28.3x =(1)38.4x =(2)10.18.30.28.47.29.71x =⨯+⨯+=(2)20.17.20.28.48.310.70x =⨯+⨯+= (2)30.27.20.28.38.411.50x =⨯+⨯+=6. 设有方程组Ax b =,其中111221112211122A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,讨论用Jacobi 迭代法求解地收敛性. 解:因为A 为对称矩阵,且其各阶主子式皆大于零,故A 为对称正定矩阵,A 不是弱对角占优阵,故不能判别Jacobi 迭代地收敛性.易算出Jacobi 迭代法地迭代矩阵为1110221102211022B I D A -⎡⎤--⎢⎥⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦其特征方程311221113||22441122I B λλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥-==+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦21()(1)02λλ=-+=有根1212λλ==,31λ=-,因而()1B ρ=.由向量序列(){}k x 收敛地充要条件是()1B ρ<,故Jacobi 迭代法不收敛.7.用反幂法(1k =)求矩阵210021012A -⎡⎤=-⎢⎥⎢⎥-⎣⎦接近2.93地特征值,并求相应地特征向量,取(0)(0,0,0)T x =.解:对 2.93A I -作三角分解得0.93102.9300.931010.93A I --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦1000.931001000.9311101000.930.930.93⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎣⎦⎣⎦ 8. 已知函数ln y x =,x 地值是10,11,12,13,14对应地ln y x =地值分别是 2.3026,2.3979, 2.4849, 2.5649, 2.6391.用Lagrange 抛物线插值求ln11.5地近似值.解:取011x =,112x =,213x =,插值多项式为2(12)(13)(11)(13)(11)(12)() 2.39792.4849 2.5649(1112)(1113)(1211)(1213)(1311)(1312)x x x x x x L x ------=++------1.19895(12)(13)2.4849(11)(13) 1.28245(11)(12)x x x x x x =-----+--所以2ln11.5(11.5)L ≈1.19895(0.5)( 1.5)2.48490.5( 1.5) 1.282450.5(0.5) 2.442275=⨯-⨯--⨯⨯-+⨯⨯-=因为"'32(ln )x x=,于是 "'2311132max |(ln )|0.15031011x x -≤≤≤=⨯ 因此用抛物线插值法计算地误差为"'2|(ln )||(11.5)||(11.511)(11.512)(11.513)|3!x R ξ=---2510.1503100.50.5 1.59.3938106--≤⨯⨯⨯⨯⨯=⨯ 查表可得ln11.5 2.442347= 三、 证明题1. 若x 地近似值x *=1210.10(0)m n a a a a ±⨯≠…有n 位有效数字,则111102n a -+⨯为其相对误差限.反之,若x *地相对误差限rε满足111102(1)n r a ε-+≤⨯+,则x *至少具有n 位有效数字.证明:由式*1||102m n x x --≤⨯得**1|()|||102m n e x x x -=-≤⨯从而有**1*121110()12|()|||100.102m nn r m n e x e x x a a a a --+⨯=≤≤⨯⨯ 所以111102n a -+⨯是*x 地相对误差限. 若111102(1)n r a ε-+≤⨯+,由式***()|()|||r r e x e x xε=≤得 ***12|()||()|0.10m r nr e x x e x a a a ε=≤⨯111111(1)1010102(1)2m n m n a a --+-≤+⨯⨯⨯=⨯+由式*1||102m n x x --≤⨯,*x 至少有n 位有效数字.2. 设01,,,n x x x …为1n +个互异节点,(),(0,1,)i l x i =…,n 为这组点上地Lagrange 插值基函数,试证明0()1ni i l x =≡∑.证明:上式地左端为插值基函数地线性组合,其组合系数均为1.显然,函数()1f x ≡在这n+1个节点处取值均为1,即()1i i y f x ==(0,1,,)i n =,由式0()()nn i i i L x y l x ==∑知,它地n 次Lagrange 插值多项式为0()()nn i i L x l x ==∑对任意x ,插值余项为(1)1()()()()()0(1)!n n n n f R x f x L x x n ξω++=-=≡+所以 0()()()1nn i i L x l xf x ==≡=∑3设A 为任意n 阶方阵,∙为任意由向量范数诱导出地矩阵范数,则()A A ρ≤ 证明:对A 地任一特征值i λ及相应地特征向量i u ,都有||i λ||||||||||||||||i i i i u u Au A λ==≤||||i u因为i u 为非零向量,于是有 ||||||i A λ≤由i λ地任意性即得 ()||||A A ρ≤4. 设A 为n 阶方阵,则lim 0k k A →∞=地充分必要条件为()1A ρ<.证明:必要性.若lim 0k k A →∞=由相关定义得 l i m ||||k k A→∞= 而 0()[()]||K K K A A A ρρ≤=≤ 于是由极限存在准则,有 l i m [()]k k A ρ→∞= 所以()1A ρ<.充分性.若()1A ρ<,取1()02A ρε-=>,由||||()A A ρε≤+,存在一种矩阵范数∙,使得1()||||()12A A A ρρε+≤+=< 而||||||||k k A A ≤,于是 l i m ||||l i m |||k k k k A A →∞→∞== 所以 l i m0k k A →∞=五、应用题1.平面桁架是由刚性元件通过结点互相联结而组成地力学结构,它通常出现在桥梁结构和其他需要力学支撑地结构中.如图是一个简单地静力桁架结构,其中刚性元件(5m =)通过结点,,,A B C D 相连.求各个结点地合力方程,并求出当,36ππαβ==外部负荷12250,1500g N g N ==时,求各个节点内力.解:设五个刚性元件地内力为125{,,,}f f f ,它们都处理为压力,如果解是负地,表明该力是张力.桁架地左边由固定结点A 支撑,右边由滑轮D 支撑,678,,f f f 是外部支撑力,12,g g 是外部负荷.由于在静力平衡时,每个结点处地水平方向合力与垂直方向地合力为零,那么有结点A 12617cos 0sin 0f f f f f αα+-=⎧⎨+=⎩ 结点B 141134cos cos 0sin sin 0f f g f f f αβαβ-++=⎧⎨---=⎩结点C 253200f f f g -+=⎧⎨-=⎩ 结点D 4548cos 0sin 0f f f f ββ--=⎧⎨+=⎩设f 表示未知力向量,上述方程组可用矩阵表示为12cos 10001000sin 00000100cos 00cos 0000sin 01sin 000000100100000010*******cos 10000000sin 00010g f g αααβαβββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 若取,36ππαβ==,外部负荷12250,1500g N g N ==.采用列主元素法,得各结点地内力如下:(1174,837,1500,966.5,837,250,1017,483.3)T f =--版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有 This article includes some parts, including text, pictures, and design. Copyright is personal ownership.kavU4。

数值计算方法插值法资料

数值计算方法插值法资料

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk

1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。

在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。

插值方法就是为了解决这个问题而设计的。

插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。

常见的插值方法有拉格朗日插值、牛顿插值等。

下面我们将重点介绍这两种方法。

1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。

它是基于拉格朗日多项式的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。

然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。

2. 牛顿插值法牛顿插值法是另一种常见的插值方法。

它是基于差商的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

牛顿插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。

《数值计算方法》试题集及答案(1-6) 2

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2。

367,0。

252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n ab );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算中的误差

数值计算中的误差

曲线拟合的最小二乘法
法方程:带权离散内积 正交多项式法:关于离散点集的带权正交多项式

3
第四章

数值积分
插值型求积公式
机械求积公式,代数精度及其计算方法,收敛性,稳定性 梯形公式,抛物线(Simpson)公式,Newton-Cotes公式 余项估计(三步曲)
复合求积公式:复合梯形公式,复合Simpson公式 Romberg算法

梯形法的递推计算,Romberg外推思想与计算过程
Gauss求积公式
Gauss点的计算,Gauss系数的计算 Gauss-Legendre公式,Gauss-Chebyshev公式

数值微分
向前一阶差分,向后一阶差分,余项计算 中心差分(一阶导数,二阶导数,推导过程),余项计算

4
正交多项式
正交多项式族,首项系数为 1 的正交多项式递推公式 Legendre多项式,Chebyshev多项式,Chebyshev插值多项式

最佳逼近
最佳平方逼近:法方程,Hilbert矩阵,正交多项式法(推广到一般区间) n 次多项式的 n-1 次最佳一致逼近(推广到一般区间) ,Chebyshev级数
Hermite 插值

两点三次,三点三次,推导过程,余项推导
分段低次插值

分段线性插值,分段Hermite插值,余项推导
三次样条插值

三次样条函数,三弯矩方程2第三章源自范数与内积函数逼近
范数与内积的定义,常见范数与内积:Rn, C[a, b] 正交,Cauchy-Schwarz 不等式,Gram矩阵 带权内积,权函数,内积导出范数
第一章 数值计算中的误差

数值分析中的(插值法)

数值分析中的(插值法)
与其他方法的结合
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项

多项式插值计算方法

多项式插值计算方法

多项式插值计算方法引言:在数学和计算机科学中,插值是一种常见的数值计算方法,用于通过已知的数据点来估计未知的数据点。

多项式插值是插值方法中的一种,通过构造一个多项式函数来逼近数据点,从而实现插值的目的。

本文将介绍多项式插值的基本概念、计算方法和应用领域。

一、多项式插值的基本概念多项式插值是指通过已知的n个数据点(x1, y1), (x2, y2), ..., (xn, yn),构造一个n次多项式函数P(x)来逼近这些数据点。

通过将P(x)代入已知的数据点,可以满足P(xi) = yi,即多项式函数经过已知数据点。

二、多项式插值的计算方法1. 拉格朗日插值法拉格朗日插值法是一种常用的多项式插值计算方法。

通过构造一个满足已知数据点的n次多项式函数P(x),可以使用拉格朗日插值公式来计算多项式的系数。

具体步骤如下:- 构造插值多项式P(x) = L1(x)y1 + L2(x)y2 + ... + Ln(x)yn,其中Li(x)为拉格朗日基函数。

- 拉格朗日基函数的计算公式为Li(x) = Π(j=1 to n, j ≠ i)(x-xj)/(xi-xj),即除了第i个数据点外,其他数据点的插值基函数的乘积。

- 将已知数据点代入插值多项式,可以得到相应的系数,进而得到插值多项式P(x)。

2. 牛顿插值法牛顿插值法是另一种常用的多项式插值计算方法。

通过构造一个满足已知数据点的n次多项式函数P(x),可以使用牛顿插值公式来计算多项式的系数。

具体步骤如下:- 构造插值多项式P(x) = c0 + c1(x-x0) + c2(x-x0)(x-x1) + ... + cn(x-x0)(x-x1)...(x-xn-1),其中ci为差商。

- 差商的计算公式为ci = f[x0, x1, ..., xi]/(xi-x0)(xi-x1)...(xi-xi-1),即已知数据点的函数值的差商。

- 使用差商递推公式可以计算出所有的差商,进而得到插值多项式P(x)。

数值计算中的插值误差和截断误差分析

数值计算中的插值误差和截断误差分析

在数值计算中,插值误差和截断误差是两个重要的概念。

插值误差是指使用插值方法对函数进行逼近时,所引入的误差;而截断误差则是指数值计算方法所带来的误差。

本文将对插值误差和截断误差进行详细的分析和解释。

首先,我们从插值误差开始讨论。

插值是一种通过已知数据点的函数值来近似计算未知数据点的函数值的方法。

常见的插值方法包括拉格朗日插值和牛顿插值。

但无论使用何种插值方法,都会引入一定的误差。

这是因为通过有限多个数据点进行逼近,很难完全还原出原函数的形状。

插值误差可以通过理论上的分析或数值计算方法进行估计。

设函数f(x)在区间[a,b]上有定义,对于插值节点x0, x1, ..., xn,我们希望通过这些节点来近似计算函数在其他位置的值。

利用插值方法可以构造一个插值多项式p(x),近似地代替原函数f(x)。

那么插值误差就是f(x)和p(x)之间的差值,即插值误差e(x) = f(x) - p(x)。

插值误差的分析可以通过拉格朗日插值公式进行。

对于任意x,通过拉格朗日插值公式可以计算出插值多项式p(x) = ∑f(xi) * L(x),其中L(x)是拉格朗日基函数。

然后可以通过将插值多项式代入插值误差公式,得到具体的误差表达式。

例如对于拉格朗日插值,插值误差可以表示为e(x) = [f(x)/((n+1)!)] * (x-x0)(x-x1)...(x-xn)。

接下来,我们来讨论截断误差。

截断误差是指数值计算方法所带来的误差,它是通过对原函数进行逼近的方法,例如泰勒级数展开。

截断误差会随着逼近程度的提高而减小,但是无法完全消除。

截断误差主要是由于原函数无法通过有限的项来精确表达。

以泰勒级数展开为例,假设函数f(x)在点a处的各阶导数存在。

那么对于给定的x,通过泰勒级数展开可以得到f(x)的近似值。

但是由于截断误差的存在,通过有限阶的泰勒级数展开无法完全还原出原函数的形状,因此会引入一定的误差。

截断误差的分析可以通过泰勒级数展开公式进行。

(完整版)数值计算方法教案

(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。

第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。

数值计算方法教案插值方法

数值计算方法教案插值方法

复习:1.数值计算方法的含义 2.误差及误差限 3.误差与有效数字4.数值计算中应注意的问题第二章 插值方法一.插值的含义 问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。

说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。

解决方法:构造一个简单函数()P x 来替代未知(或复杂)函数()y f x =,则用()P x '作为函数值()f x '的近似值。

二、泰勒(Taylor )插值 1.问题提出:已知复杂函数()y f x =在0x 点的函数值()0f x ,求0x 附近另一点0x h +的函数值()0f x h +。

2.解决方法:构造一个代数多项式函数()n P x ,使得()n P x 与()f x 在0x x =点充分逼近。

泰勒多项式为:()()()()()()()()()200000002!!n n n f x f x P x f x f x x x x x x x n '''=+-+-++-显然,()n P x 与()f x 在0x x =点,具有相同的i 阶导数值(i=0,1,…,n )。

3.几何意义为:()n P x 与()f x 都过点()()00,x f x ;()n P x 与()f x 在点()()00,x f x 处的切线重合; ()n P x 与()f x 在点()()00,x f x 处具有相同的凹凸性;其几何意义可以由下图描述,显然函数()3f x 能相对较好地在0x 点逼近()f x 。

4.误差分析(泰勒余项定理):()()()()()()1101!n n n f P x f x x x n ξ++-=-+,其中ξ在0x 与x 之间。

5.举例:已知函数()f x ()115f 。

数值分析中的插值方法

数值分析中的插值方法

数值分析中的插值方法在数值分析中,插值是一种通过在已知数据点之间估计未知数据点的方法。

它是一种常见的数据处理技术,用于填补数据间的空白,揭示数据间的关联性,或者建立数据模型。

在本文中,我们将讨论数值分析中的几种常见的插值方法。

一、拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。

假设有n个离散数据点,我们想要在这些点之间插值得到未知数据点的值。

拉格朗日插值可以通过构建一个n次多项式来实现。

例如,给定三个数据点(x0, y0),(x1, y1),(x2, y2),我们可以假定插值多项式为:P(x) = y0 * L0(x) + y1 * L1(x) + y2 * L2(x)其中,L0(x),L1(x),L2(x)是拉格朗日插值多项式的基函数,由以下公式得到:L0(x) = (x - x1) * (x - x2) / ((x0 - x1) * (x0 - x2))L1(x) = (x - x0) * (x - x2) / ((x1 - x0) * (x1 - x2))L2(x) = (x - x0) * (x - x1) / ((x2 - x0) * (x2 - x1))利用这些基函数,我们可以得到插值多项式P(x),从而计算出未知点的值。

二、牛顿插值牛顿插值是另一种常见的插值方法,也是基于多项式的。

与拉格朗日插值不同的是,牛顿插值使用了差商的概念来构建插值多项式。

差商是一种表示数据间差异的指标,它可以用于计算插值多项式的系数。

对于n个数据点,差商可以由以下递归公式计算得到:f[x0] = f(x0)f[x0, x1] = (f[x1] - f[x0]) / (x1 - x0)f[x0, x1, ..., xn] = (f[x1, x2, ..., xn] - f[x0, x1, ..., xn-1]) / (xn - x0)基于差商,我们可以得到牛顿插值多项式的表达式:P(x) = f[x0] + f[x0, x1] * (x - x0) + f[x0, x1, x2] * (x - x0) * (x - x1) + ...利用牛顿插值,我们可以通过已知数据点构建插值多项式,进而估计未知点的值。

数值分析中关于多项式插值的教学思考

数值分析中关于多项式插值的教学思考

数值分析中关于多项式插值的教学思考【摘要】多少。

谢谢!在数值分析中,多项式插值是一种常见的数值逼近方法,旨在通过已知数据点构建一个满足特定条件的多项式函数来近似未知函数。

本文将深入介绍多项式插值的概念、常见的插值方法、插值误差分析以及适用范围。

我们还将探讨在教学中应如何有效地传授这一内容,以促进学生对数值分析的理解和应用能力。

通过对多项式插值的教学思考,可以帮助学生建立数值分析的基础知识,提升他们的数学建模能力和问题解决能力。

在我们将对本文所涉及的内容进行总结,展望多项式插值在未来的应用前景,并提出我们的个人思考。

【关键词】数值分析、多项式插值、教学思考、引言、正文、结论、介绍、研究背景、目的、什么是多项式插值、插值方法、插值误差分析、适用范围、教学方法、总结、展望、思考。

1. 引言1.1 介绍数目、标题等。

的内容如下:多项式插值是数值分析领域中的重要内容,它是利用已知数据点构造一个多项式函数,以逼近插值点处函数的值。

在实际的科学计算和工程应用中,经常需要根据已知数据点估计其它数据点的值,而多项式插值是一种广泛使用的方法。

多项式插值方法可以用来拟合直线、曲线等复杂的函数形式,从而实现对数据的近似描述和预测。

通过选择适当的插值节点和插值次数,可以达到较高的精度和准确性。

掌握多项式插值方法对于数值分析和工程实践具有重要意义。

本文将介绍多项式插值的基本概念和原理,探讨不同的插值方法及其特点,分析插值误差的来源和影响因素,归纳多项式插值的适用范围,并讨论在教学中如何有效地传授和应用这一内容。

通过深入学习和研究多项式插值,帮助读者更好地理解数值分析的基本原理和方法,为实际问题的解决提供有效的数值计算工具。

1.2 研究背景数分析中关于多项式插值的教学思考多项式插值作为数值分析中重要的内容之一,是一种用于近似表示离散数据的方法。

在实际应用中,经常需要根据给定的数据点进行插值,以便推测中间数值。

多项式插值不仅在科学计算和工程技术领域具有广泛的应用,还在数学教育中扮演着重要的角色。

多项式插值计算方法

多项式插值计算方法

多项式插值计算方法一、引言多项式插值是数值分析中常用的一种方法,它可以通过已知的数据点来构造一个多项式函数,从而在数据点之间进行插值。

多项式插值方法在实际应用中具有广泛的用途,例如图像处理、数据拟合、信号处理等领域。

本文将介绍多项式插值的基本原理和几种常用的计算方法。

二、基本原理多项式插值的基本原理是通过已知的数据点来构造一个多项式函数,使得该函数经过这些数据点。

假设已知的数据点为(x1, y1), (x2, y2), ..., (xn, yn),其中xi和yi分别表示自变量和因变量的取值。

我们希望找到一个多项式函数P(x),使得P(xi) = yi。

根据插值定理,只要选取足够多的数据点,就可以找到一个唯一的多项式函数满足插值条件。

三、拉格朗日插值法拉格朗日插值法是一种常用的多项式插值方法。

它基于拉格朗日插值多项式的思想,通过构造一个n次多项式来实现插值。

具体步骤如下:1. 根据已知的n+1个数据点,构造拉格朗日插值多项式的基函数Li(x),其中i表示第i个数据点。

2. 将基函数Li(x)与对应的因变量yi相乘,得到Li(x)*yi。

3. 将所有的Li(x)*yi相加,得到最终的插值多项式P(x)。

4. 将自变量x代入插值多项式P(x)中,即可得到对应的插值结果。

拉格朗日插值法的优点是简单易懂,计算量较小。

但当数据点较多时,计算复杂度会增加,同时在边界处的插值结果可能会出现较大误差。

四、牛顿插值法牛顿插值法是另一种常用的多项式插值方法。

它基于差商的概念,通过构造一个n次多项式来实现插值。

具体步骤如下:1. 根据已知的n+1个数据点,计算差商表。

2. 根据差商表的值,构造牛顿插值多项式。

3. 将自变量x代入插值多项式中,即可得到对应的插值结果。

牛顿插值法的优点是计算效率高,尤其适用于数据点较多的情况。

但在插值区间较大时,插值结果可能会出现振荡现象。

五、埃尔米特插值法埃尔米特插值法是一种基于导数信息的多项式插值方法。

03-2.4插值多项式的误差分析(ppt)

03-2.4插值多项式的误差分析(ppt)

2.4插值多项式的误差分析
2.4.1 插值余项
[,]
a b ()
n P x ()
f x 如何计算或估计插值多项式截断误差 ?
()()()n n R x f x P x =- 若记 ,则 就是用 近似代替 时所产
生的截断误差,称为插值多项式 的余项或简称为n 次插值余项。

()n P x ()f x ()n P x ()n R x ()()()n n R x f x P x =-
设 在区间 上有直到 阶导数, 为
,n x
假设 在区间 中变化不大,将上面两式相除,即
可见,用线性插值求得的近似值为10.714,用抛物线插值求得的
图 2.4.1
可见,当n增大时,该函数在等距节点下的高次插值多项式,在区间的两端会发生激烈的振荡。

这种现象称为Runge现象。


如何改进高次多项式插值逼近会发生激烈振荡的问题?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并作图比较. 解:
1 yi = f ( xi ) = 1 + xi2
作n次Lagrange插值多项式
华长生制作
n ( x − xi ) 1 ⋅ Ln ( x ) = ∑ 1 + x 2 ∏ ( x j − xi ) j =0 i =0 j i≠ j
n
n = 2 ,4 ,6 ,8 ,10
比较不同的插值多项式次数对插值的影响
%Chazhibijiao.m x=-5:0.1:5;z=0*x;y=1./(1+x.^2); plot(x,z,'k',x,y,'r') axis([-5 5 -1.5 2]);pause,hold on for n=2:2:10 x0=linspace(-5,5,n+1); y0=1./(1+x0.^2); x=-5:0.1:5; y1=lagrangen(x0,y0,x); plot(x,y1), pause end y2=1./(1+x0.^2);y=interp1(x0,y2,x); plot (x,y,'k'),hold off gtext('n=2'),gtext('n=4'),gtext('n=6') gtext('n=8'),gtext('n=10') gtext('f(x)=1/(1+x^2)')
1 1 ≤ M 2 N 2 ≤ × 1.14 × 10 − 4 × 300 ≤ 1.71 × 10 −2 | R1 ( x )| 2! 2
1 1 | R2 ( x )| ≤ M 3 N 3 ≤ × 1.51 × 10 − 6 × 9300 ≤ 2.35 × 10 −3 3! 6
从以上分析可知, 在求 175时 用Lagrange二次插值比线性插值的 误差更小
解:
设R1 ( x )为Lagrange线性插值的余项 R2 ( x )为二次Lagrange插值的余项
f ′( x ) =
1 2 x
169 ≤ x ≤ 225
3 1 −2 f ′′( x ) = − x 4
5 3 −2 f ′′′( x ) = x 8
M 2 = max | f ′′( x )| = f ′′(169 )| ≤ 1.14 × 10 −4 |
华长生制作 9
1 例2. 设函数 f ( x ) = 1 + x 2 , x ∈ [ −5 ,5] = −5 + ih , h = , i = 0 ,1,L , n n
试就n = 2 ,4 ,6 ,8 ,10作f ( x )的n次Lagrange插值多项式
M 3 = max | f ′′′( x )|= f ′′′(144 )|≤ 1.51 × 10 −6 |
144 ≤ x ≤ 225
华长生制作 8
N 2 = ω 2 ( x )| = (175 − 169 )(175 − 225)| = 300 | |
N 3 = ω 3 ( x )| = (175 − 144 )(175 − 169 )(175 − 225 )|= 9300 | |
i =0
n

f ( n + 1 ) (ξ ) ω n + 1 ( x) | Rn ( x )| = (n ( n + 1)!
1 ≤ M n+1 Nn+1 ( n + 1)!
华长生制作
7
例1: 在上节例1.中, 若f ( x ) = x , 三个节点为144 ,169 ,225
试估计用Lagrange线性和二次插值做f (175)近似值的 截断误差.
华长生制作 2
假设在区间[a, b]上f ( x)的插值多项式为 Pn ( x)

Rn ( x) = f ( x) − Pn ( x)
显然在插值节点为 xi (i = 0,1, L , n)上 Rn ( xi ) = f ( xi ) − Pn ( xi ) = 0 , i = 0,1, L , n
华长生制作
14
= f ( n +1) (ξ ) − K ( x) ⋅ (n + 1)! = 0
5
f ( n +1) (ξ ) K ( x) = (n + 1)!
所以
f ( n +1) (ξ ) Rn ( x) = K ( x)ω n +1 ( x) = ω n +1 ( x) (n + 1)!
称Rn ( x)为插值多项式Pn ( x)的余项(截断误差)
n
Lagrange型余项
其中 ω n + 1 ( x ) = ∏ ( x − xi ) , ξ ∈ ( a , b ) , 且依赖于x.
i =0
华长生制作 6

M n + 1 = max| f ( n + 1 ) ( x )|
a ≤ x ≤b
N n + 1 = ω n + 1 ( x )|= ∏ ( x − xi )| | |
且 ϕ ( xi ) = f ( xi ) − Pn ( xi ) − K ( x )ω n + 1 ( xi ) = Rn ( xi ) − K ( x)ω n +1 ( xi ) = 0
注意t与x 的区分
也可令ϕ (t ) = R( x )ω n + 1 (t ) − R (t )ω n + 1 ( x )
10
%lagrangen.m function y=lagrangen(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i);s=0; for k=1:n Lagrange插值多项式 L=1; 求插值的Matlab程序. for j=1:n if j~=k L=L*(z-x0(j))/(x0(k)-x0(j)); end end s=s+L*y0(k); end y(i)=s; end y;华长生制作 11
由于 因此
华长生制作
( ϕ ( n+1) (t ) = f ( n +1) (t ) − Pn( n +1) (t ) − K ( x)ω nn +1) (t ) +1 ( + ϕ ( n +1) (ξ ) = f ( n +1) (ξ ) − Pn( n +1) (ξ ) − K ( x)ω nn 11) (ξ ) +
Ax = b a11 a12 L a1n a21 a22 L a2n i−1 A= M bi −∑lij xj M M 第二章 M插值与逼近 j=1 an1 an2 L ann xi = lii §2.2 插值多项式中的误差
i = 2,3,L, n
§3.2 插值多项式中的误差
i = 0,1, L, n
因此, 若令x ≠ xi , ϕ (t )在区间[a, b]上至少有n + 2个零点, 即
ϕ ( x) = 0 , ϕ ( xi ) = 0 , i = 0,1,2,L , n
由于Pn ( x)和ω n +1 ( x)为多项式,因此若f ( x)可微, 则ϕ (t )也可微
华长生制作 4
根据Rolle定理, ϕ ′(t )在区间(a, b)上有至少n + 1个零点 再由Rolle定理, ϕ ′′(t )在区间(a, b)上有至少n个零点 依此类推
在区间( a, b)内至少有一个点ξ , 使得ϕ (t )的n + 1阶导数为零
ϕ ( n +1) (ξ ) = 0
ϕ (t ) = f (t ) − Pn (t ) − K ( x)ω n +1 (t )
因此Rn ( x)在[a, b]上至少有n + 1个零点
设 其中
Rn ( x) = K ( x)ω n +1 ( x)
ω n +1 ( x) = ( x − x0 )( x − x1 ) L ( x − xn )
K (x)为待定函数
Rn ( x) = f ( x) − Pn ( x) = K ( x)ω n +1 ( x)
一、插值余项
从上节可知, y = f ( x)的Lagrange插值
Ln ( x ) = ∑ y j l j ( x )
j =0 n
满足

Ln ( xi ) = f ( xi )
∀x ∈ [a, b]
i = 0,1, L, n Ln ( x) = f ( x) 不会完全成立
因此,插值多项式存在着截断误差,那么我们怎样估 计这个截断误差呢?
华长生制作 3
f ( x) − Pn ( x) − K ( x)ω n +1 ( x) = 0 若引入辅助函数ϕ (t ) = f (t ) − Pn (t ) − K ( x)ω n +1 (t ) 则有 ϕ (x ) = f ( x ) − Pn ( x ) − K ( x )ω n + 1 ( x ) = 0
华长生制作 12
2
不同次数的Lagrange插值多项式的比较图
f(x )= 1/(1+ x 2 ) n= 10
1.5
1
n= 2 n= 4
0.5
0 n= 6 -0.5 n= 8 -1
-1.5 -5
-4
-3
-2
-1 0 1 Runge现象
2
3
4
5
华长生制作
13
结果表明,并不是插值多项式的次数越高,插值效果 越好,精度也不一定是随次数的提高而升高,这种现 象在上个世纪初由Runge发现,故称为Runge现象.
相关文档
最新文档