高级微观经济课件
《微观经济学》PPT课件
〔2〕比较静态分析法:只分析 始点和终点的经济变量的 状 况
〔3〕动态分析法 引入时间因 素,分析某一时期内经济变量 的过程状况 .
三、经济模型
1、 经 济 模 型 〔economic
model>:用来表述经济
P price
变量之间的依存关系的理
李嘉图发展了亚当、斯密的思想,建立起了以劳动价 值论为基础,以分配论为中心的理论体系.并提出了 比较成本学说.他认为:每个国家都可以通过生产具 有相对优势的商品,通过国际贸易获得利益.
3、萨伊<Say>〔法〕 〔1767-1832〕
让·巴蒂斯特·萨伊
代表作《政治经济学概论》1803年
他认为:供给创造需求,储蓄必然转化 为投资,生产就是消费,供给就是需求, 生产过剩的危机是不会发生的.一个 国家生产者越多,产品越多,企业越多, 贸易越多社会财富越多.主张发展生 产.
2、按研究经济问题判断标准的不同可分为:
• 实证经济学<positive economics>:用事 实说明经济现象的现状如何?回答是什么 〔What is>如:某一时期的经济增长率为 8%,失业率是6%.
•规范经济学<normative economics>:以一 定的判断标准为出发点,力求回答应该是 什么〔What ought to be>.如:要实现8%的 年经济增长速度,政府应采取什么样的财 政政策和货币政策.某国的收入分配是不 是公平.
亚当、斯密的《国富论》
在《国富论》的序论中的第一句话就是: "被看作政治家或立法家的一门政治经济学 提出两个目标: 第一,给人民提供充足的收入或生计, 第二,给国家或社会提供充足的收入. 总之,其目的在于富国裕民".
高级微观经济学2.ppt
analyze the maximum value function.
2008-09-10
18
2.1 Unconstrained Optimization
2008-09-10
19
2008-09-10
20
2008-09-10
21
2.2 Constrained Optimization
❖ 1. The same idea applies can be applied to the maximum-value function in constrained optimization.
2008-09-10
22
2008-09-10
23
2008-09-10
24
consume given income and prices.
❖ Note that the demand of a good depends on all prices. If we plot x1 (p, y) against pi, holding y and all prices other than pi constant, we get the demand curve of good i. A change in y or some pj , j≠ i, would be represented by a shift of the demand curve.
2008-09-10
4
2008-09-10
5
5. Proof:
❖ (a) Multiplying both prices and income by the same factor leaves the budget set unchanged.
高级微观经济学(清华大学-武康平)ppt课件
.
7
特点之二:逻辑思辨
从方法论上讲,高级经济学是数学思辨模式的
经济学,数学构成了她的方法论基础。
高级经济学力图使经济学成为真正的科学。这
样一来,她就离不开逻辑分析工具的运用。她对经
济问题的研究,总是从一系列假设前提出发,来建
立起经济现象的理论模型,并经过严密的逻辑推理
分析,得出结论,然后又应用理论去指导实践。
的来设计的。
具体包括:微观经济学发展动态、消费者行为
理论、需求理论、不确定条件下的选择、理性生产
者行为分析、竞争与垄断、博弈论、一般均衡与社
会福利。
这些内容可以帮助学员进一步提高分析、解决
经济问题的能力,建立起经济学的思维方式,加深
对经济学的理解。但因课时限制,其中的部分内容
要求学员根据教材《高级微. 观经济学》自学。
高级微观经济学
课程简介
任课教师:武康平
2008年9月15日
.
1
课程教材 高级微观经济学
武康平 编著 清华大学出版社,2001年版
参考书
Microeconomic Theory
by A. Mas-Colell, M. D. Whinston & J. R. Green,
Oxford University.Press(1995)
dijg.06@
.
3
课程讨论区
学院主页课程讨论区高级微观经济学
序 号:
学生帐号: 学生口令:
助教帐号: 助教口令:
.
4
I. 经济学的学习层次
西方经济学一般要分为三个层次来逐步学习: 初级 中级 高级
初级:本科一年级,启蒙阶段,经济学入门课程,目的是帮 助学员建立起经济学的直观概念。
微观经济学ppt课件
研究重点
03
微观经济学关注个体经济行为和市场机制,宏观经济
学关注国民经济运行和政策效应。
微观经济学的研究对象和方法
研究对象
微观经济学的研究对象包括消费者、生产者、市场等个体经济单位及其行为。
研究方法
微观经济学采用实证分析方法,通过观察和实验收集数据,并运用数学模型和 统计工具对数据进行分析和解释。此外,微观经济学还运用规范分析方法,研 究经济行为的道德标准和价值取向。
长期生产函数:所有要素均可变
长期生产函数定义
所有生产要素投入量均可变动的生产函数。
规模报酬变化
描述生产规模变动时产量变动的规律,包括规模报酬递增、递减和不变三种情况 。
成本函数与收益函数
成本函数定义
描述企业生产过程中各 种成本与产量之间关系 的数学表达式。
成本类型
总成本、平均成本和边 际成本等。
物品。
1.谢谢聆 听
表示在一定时期内消费者对某种商品 需求量的变动对于消费者收入量变动 的反应程度。正常品的收入弹性大于 0,低档品的收入弹性小于0,奢侈品 的收入弹性大于1。
企业和政府可以利用弹性理论来制定 价格策略、税收政策等。例如,对于 富有弹性的商品可以通过降价来增加 销售量;对于缺乏弹性的商品可以通 过提高价格来增加利润。同时政府也 可以通过调整税收来改变商品的相对 价格从而影响消费者的选择。
地租决定因素
土地肥力、位置、用途等,以及土地供求关系 。
地租类型
级差地租、绝对地租等,反映土地不同等级和用途的价值差异。
资本市场及利息决定
利息决定因素
资本边际生产力、资本供求关系、预期通货 膨胀率等。
资本市场概述
资本供给来自储蓄,需求来自投资,利息是 使用资本的价格。
微观经济学完整版(获奖课件)
消费者剩余与价格歧视
要点一
消费者剩余
消费者剩余是指消费者在购买商品时 ,愿意支付的价格与实际支付的价格 之间的差额。如果消费者愿意支付的 价格高于实际支付的价格,那么消费 者剩余就是正的。
要点二
价格歧视
价格歧视是指企业根据消费者的不同 需求和支付能力来制定不同的价格策 略,以获取更多的利润。例如,企业 可以对不同的客户群体制定不同的价 格,或者对同一产品在不同地区制定 不同的价格。
边际效用递减
根据该理论,消费者在购买商品时,每增加一单位商品,所获得的效用增加量(即“边 际效用”)会逐渐减少。
应用
在市场营销中,企业可以根据边际效用理论来制定价格策略和促销策略,以吸引消费者 购买。
消费者选择与边际效用
消费者选择
消费者在有限的资源下,根据商 品的价格和效用来选择购买不同 的商品组合。
ABCD
成本函数
根据生产函数,描述了生产过程中所耗费的成本 ,包括固定成本和可变成本。
平均成本曲线
描述了生产过程中平均成本随着产量的变化而变 化的规律,呈先下降后上升的趋势。
最大化利润与边际收益
最大化利润
根据成本函数和生产函数,选 择合适的投入品数量以最大化
利润。
边际收益递减
随着产量的增加,每增加一单 位产量所带来的收益增量递减 。
微观经济学的基本假设和模型
基本假设ቤተ መጻሕፍቲ ባይዱ
微观经济学的基本假设是市场出清和完全理性。市场出清意味着市场上的供给和需求总是处于平衡状 态;完全理性意味着每个经济单位都是理性的,能够根据最大化的原则进行决策。
常用模型
微观经济学有许多常用的模型,如供需模型、成本收益模型、竞争模型、垄断模型等。这些模型都是 基于市场出清和完全理性的基本假设,通过对个体经济单位的决策行为进行分析来解释经济现象。
《高级微观经济学》课件
公共支出
政府通过提供公共服务和基础 设施,弥补市场失灵,提高社 会福利。
监管和行政干预
政府对市场进行监管和行政干 预,防止垄断和不公平竞争。
市场失灵与政府干预的案例分析
环境污染案例
政府通过制定环保法规和排污标准,限制企 业排污,保护环境。
医疗保障案例
政府通过提供医疗保险和医疗救助,弥补市 场失灵,保障公民健康。
最优消费选择
在预算约束下,消费者选择能够最大化效用的商品组合。
边际替代效应
描述消费者在保持效用不变的情况下,一种商品对另一种商品的 替代程度。
消费者行为理论的扩展
风险偏好与不确定性
研究消费者在面临风险和不确定性时的消费行 为。
跨期消费选择
探讨消费者在不同时期之间的消费决策和储蓄 行为。
消费外部性
分析消费行为对其他个体或社会的影响,以及如何通过政策干预来改善消费行 为。
微观经济学的重要性
微观经济学是现代经济学的重要组成部分,它为政策制定者、企业家和消费者提供了理解和预测市场运作的基础 。通过研究微观经济学,人们可以更好地理解市场机制、价格体系和资源配置,从而做出更明智的决策。
微观经济学的基本假设和概念
基本假设
微观经济学通常基于一些基本假设, 如完全竞争、理性行为、完全信息等 。这些假设为理论分析提供了基础, 但在实际生活中可能并不完全成立。
公共选择理论与政治经济学
01
公共选择理论
研究公共物品和服务的供给和需求,以及政府决策的经济学分析。
02
政治经济学
研究政治和经济之间的相互作用,以及政治制度对经济发展的影响。
03
总结
公共选择理论和政治经济学是微观经济学的前沿领域,它们对于理解政
高级微观经济学(信息经济学)PPT课件
农民的净所得:
s f (e) c(e) f (e) R c(e)
f '(e) c'(e)
e*
努力的边际成本等于边际产出,又因为R为常数, 所以符合激励相容约束。
根据参与约束:
s f (e*) c(e*) R u
R
2020/3/28
可编辑
39
(2)工资合约
工资合约:通常,一个工人的工资合约:
2020/3/28
可编辑
10
二手车市场存在的可能性探讨
若二手车的质量服从[q0,q1](q0>0)上的均匀分布:
卖方卖二手车的条件: p q
信息不对称:买方不知道二手车的质量信息,仅知道二 手车质量的分布为[q0,q1](q0>0) 。
E(uB
)
yB
[
3 2
E(q)
p]
nB
p
3 2
E(q)
2020/3/28
2020/3/28
可编辑
12
如果卖、买双方都不知道产品质量,信息是对称的,效用函 数同前,此时即为不确定性问题: 卖方:
效用函数: E(us) M s E(q)ns (1 ns ) p ns 1: 不卖; ns 0 : 卖;
卖方卖二手车的条件: p E(q)
E(q)
Hale Waihona Puke p3 2E(q)
2020/3/28
2020/3/28
可编辑
19
设这个劳动力市场上,能干的工人的比例是h,不能干的工人 有比例是1-h。
企业付给每个工人的工资等于工人的边际产出(价值)。
如果企业知道每个工人的类型(type)(信息对称),那么能 干的工人的工资wH = AH ,不能干的工人的工资是wL = AL。
高级微观经济学课件 (7)
费方案都有着相同的偏好。这是因为,如果不是这样的话,那么消 费者就不会把 D( p, r) 中的向量毫不挑剔地地作为最终消费选择。
其次,D( p, r) 显示出预算集合 ( p, r) 中没有一种方案能够比需
由显示性偏好 可引出显示性严格偏好 和无差异关系~ : n 严格偏好:对任何 x, yX ,x y 是指 x y 且 y x ; n 无差异关系~:对任何 x, yX , x ~ y 是指 x y 且 y x。
从显示性偏好的定义,可以看出显示性偏好的如下一些特点:
(1) 对任何 x, yX , 关系式 x y、x ~ y 和 x y 中至多只能成立一个。
对于任何( p, r), D( p, r)中的向量是观察到的消费者的购买向 量,这表明D( p, r)是消费者的购买欲望与购买能力的综合反映。因
此, D( p, r)必然在预算集合 ( p, r)之内:D( p, r) ( p, r)。
本质上看,这种需求集映D: X 代表着消费者的选择法则。 n 选择法则: 对于任何 ( p, r),消费者首先面对一个由客观条件
二、基于选择的需求映射
从现在开始,我们只讨论需求映射,即处处取值为单点集的集 值映射。其实,这样做也符合通过观察得出需求这种做法的特点。
l 观察式需求的特点:任给定价格体系 p 和消费者收入 r 之后,能 够观察得到的消费者需求向量只有一个,即D( p, r)是单点集。 从理论上讲,D( p, r)可能包含有多种消费方案,但这要求对需
和购买能力决定的选择范围 ( p, r) (即预算集合),然后在这个范
高级微观经济学课件(上海财经大学夏纪军) 3
L 1 2 * 1 0 x2
10 1 x1 -2 0=0
x1 10
Slide 32
作业3
1.20、1.22、1.23、1.24、1.25、 1.26、1.27
Slide 33
*
(2)
Slide 20
Ch 1.3.2 解的充要条件
定理1.4:内点解必要条件的充分性 * 如果效用函数连续拟凹,在 x 可导, 而且 (p,y) 0,* 0。那么满足以下必 x 要条件的解一定是消费者的效用最大 化解。
(1.10)
u (x ) * pi 0 xi
*
Slide 17
Ch 1.3.2 解的充要条件
必要条件:Kuhn-Tucker条件
L u (x * ) * pi 0 I、 xi xi
u (x * ) xi* ( * pi ) 0 xi
II、 y p x 0
*
* (y p x* ) 0
Ch 1.3.1 解的性质:唯一性
非严格凸偏好
x2
x tx (1 t )x t [0,1]
t 1 2
x1 x2
x1
Slide 14
Ch 1.3.1 解的性质:瓦尔拉斯法则
瓦尔拉斯法则
偏好的递增性
px
*
y
Slide 15
Ch 1.3.1 解的性质
偏好的理性、连续性
Ch 1.3 消费者问题
Ch 1.3 消费者选择问题
最优解的性质 最优解的充分必要条件
Slide 2
Ch 1.3 消费者选择问题
复旦大学管理学院 高级微观经济学课件
Consumer Theory III:Duality1The Dual Problem1.1Expenditure Minimization1.The expenditure minimization problem:p:xminxs:t:u(x) u;x 0:The solution to this problem tells us the minimum expenditure that is necessary such that the consumer’s utility is not lower than u.2.Solving this problem tells the decision-maker(e.g.the government)the payment necessary to keep a person’s utility above a minimum level.3.De…nitions:A solution to the expenditure minimization problemis known as the Hicksian demand function and is denoted byx h(p;u):Substituting x h(p;u)into the objective function gives us the ex-penditure functione(p;u) p x h(p;u):4.Properties of Hicksian Demand:Suppose u is continuous and strictlyincreasing,then x h has the following properties:(a)Homogeneity of degree zero in p.That is,x h(tp;u)=x h(p;u)for all scalar t>0.(b)No excess utility:u x h(p;u) =u.5.These properties are similar to those of the Marshallian demand.Brie‡y,(a)is obvious from the defn.of the minimization problem;(b)follows from strict monotonicity.6.Theorem:Suppose u is strictly increasing and x h(p;u)is uniquefor all p.Then for any p0and p00;(p00 p0): x h(p00;u) x h(p0;u) 0:7.Proof.We note thatu x h(p00;u) =u x h(p0;u) :By de…nition,x h(p00;u)and x h(p0;u)are the cheapest way to achieve u under p00and p0,respectively.Hencep00 x h(p00;u) p00 x h(p0;u);p0 x h(p0;u) p0 x h(p00;u):These two inequalities imply that(p00 p0): x h(p00;u) x h(p0;u) 0: Note that this result follows entirely from the fact that x h min-imizes expenditure.It does not use any other properties of the utility functions.8.This result is called the compensated law of demand.It statesthat an expenditure-minimizing consumer should substitute low-price goods for high-price goods.Note that if p00and p0di¤er only in the price of good i,then the result becomes(p00i p0i) x h i(p00;u) x h i(p0;u) 0;which means that the Hicksian demand for good i is downward sloping.9.Properties of the Expenditure Function:If u(:)is continuous andstrictly increasing,then the expenditure function e(p;u)has the following properties:(a)Zero when u takes on the lowest level of utility(i.e u(0)whenthe utility function is increasing).(b)Continuous on its domain R n++ U.(c)For all p>>0;strictly increasing and unbounded above in u.(d)Increasing in p.(e)Homogeneous of degree1in p.(f)Concave in p:10.Proof:(a)The consumer can achieve u(0)by not spending anything.(b)Intuitively,the result follows from the continuity of u and thecontinuity of the budget set.(c)This is straightforward.Suppose e is not strictly increasing inu.Then there exist p,u0and u1,u1>u0,such that e(p;u1)e(p;u0).Since u is continuous and strictly increasing in x,itis possible to reduce consumption by some small"such thatu x h(p;u1) " >u0andp:(h(p;u1) ")<e(p;u0):Here"is a vector:This violates the de…nition of e(p;u0).Sup-pose that e is bounded by some e (meaning that e(p;u) efor all p and y).Since e is strictly increasing in u,e(p;v(p;e )+1)must be greater than e ,a contradiction.(d)If p1 p0(that is,p1i p0i for all i),then any consump-tion bundle x that is feasible under p1is also under p0.Sincee(p;u)is by de…nition the lowest expenditure that is neces-sary to achieve u,e p0;u p0x h p1;u p1x h p1;u e p1;u :(e)This immediately follows from the fact the Hicksian demandis homogeneous in degree zero in p.(f)Let x1=x h(p1;u)and x2=x h(p2;u).By de…nition,for anyx such that u(x) ue p1;u =p1x1 p1xande p2;u =p2x2 p2x:It follows that for any t2[0;1]and for any x such thatu(x) ute p1;u +(1 t)e p2;u tp1+(1 t)p2 x:The above equation holds for all x such that u(x) u,in-cluding x h(tp1+(1 t)p2;u).Hence,te p1;u +(1 t)e p2;u tp1+(1 t)p2 x h tp1+(1 t)p2;ue tp1+(1 t)p2 ;u :It is important to note that the concavity of e follows from thede…nition of e and does not require that u be quasiconcave.11.Di¤erentiable Utility.Solving a minimization problem involves thesame technique as solving a maximization problem.However,inthis problem the last equation comes from the utility constraint,whereas in the maximization problem it comes from the budgetconstraint.The Lagrangian function isL=p:x+ (u u(x)):The…rst order conditions are(assuming x>>0):@L @x i =p i @u@xi=0for all i=1;:::;n;@L@=u u(x)=0: The…rst n equations imply@u@x1 p1=::::=@u@x np n12.Shephard’s lemma:If e(p;u)is di¤erentiable in p at(p0;u0)withp0>>0,then@e(p0;u0)@p i=x h i p0;u0 ;i=1;:::;n:The results follows directly from the envelope theorem.@e @p i =@L@p i=x h i.The Shephard’s lemma is the counterpart of Roy’s Identity.Same Intuition.1.2Relationship Between Marshallian and Hick-sian Demand Functions1.The indirect utility function and expenditure function are inti-mately connected.So are the Marshallian and Hicksian demand functions.We have already seen that the two demand functions share a common tangency condition.Regardless of whether one’s objective is to maximize utility or minimize expenditure,one should consume in such a way that the marginal utility per dollar spent on each good is the same.2.Theorem1.8.Let v(p;I)and e(p;u)be the indirect utility func-tion and expenditure function for a consumer with a continuous and strictly increasing utility function.Then(a)e(p;v(p;I))=I;(b)v(p;e(p;u))=u:3.Part1says that if the maximum utility the consumer can obtaingiven p and I is v,then the minimum expenditure needed to achieve v is I.Part2says that if the minimum expenditure needed to achieve utility u given p is e,then maximum utility one can obtain given p and e is u.4.Proof:I will only prove part1.Part2can be proven in the sameway.Since e(p;v(p;I))is by de…nition the minimum expenditure needed to attain v(p;I),it must be that e(p;v(p;I)) I.Suppose e(p;v(p;I))<I.Then,there exists x such that px <I and u(x ) v(p;I).By strict monotonicity,p(x +")<Iand u(x +")>v(p;I)for some small".This contradicts the supposition that v(p;I)is the highest utility attainable given p and I.5.Note that the theorem is incorrect if the utility function is notstrictly increasing.For example:if u(x)=10for all x,thenv(p;5)=10;e(p;10)=0:6.Theorem1.9.Suppose u is continuous,strictly quasiconcave,andstrictly increasing.Then for all p>>0,I 0,and u2U,we have(a)x(p;I)=x h(p;v(p;I)).(b)x h(p;u)=x(p;e(p;u)).7.The…rst relation says that the Marshallian demand at prices pand income I is equal to the Hicksian demand at prices p and the maximum utility level that can be achieved at prices p and incomeI.The second says that the Hicksian demand at any prices pand utility level u is the the same as the Marshallian demand at those prices and an income level equal to the minimum expenditure necessary to achieve the utility level.8.Proof:Strict quasiconcavity means that both x(p;I)and x h(p;u)are unique.To prove part1,note that by Theorem1.8the mini-mum expenditure needed to attain v(p;I)is I.Since u(x(p;I))= v(p;I)(by de…nition of v)and px(p;I)=I,x(p;I)is the solu-tion of the expenditure minimization problem.The proof for the second part is similar.9.There are two ways to derive the Hicksian demand.The direct wayis to solve expenditure minimization problem.But we can also get the marshallian demand by solving the utility maximization problem.Substitute the demand back into the utility function.This gives the indirect utility function.From the indirect utility function,we know how much income need to change to keep utility constant as price change.Substitute this back into the Marshallian demand gives the Hicksian demand.10.Cobb-Douglas example:u(x1;x2)=x 1x 2, + =1x1= Ip1;x2=Ip2The indirect utility function isv(I;p1;p1)=u(x(p1;p2;I);x2(p1;p2;I))= I p1 I p2 = p1 p2 I Rearranging the termse(p x;p y;u)=up1 p2 = p1 p2 u:The Hicksian demand for Cobb-Douglas utility function is x h1= p1 1 p2 u;x h2= p1 p2 1u:1.3An Example:CES(continued)We continue the example u(x1;x2)=(x 1+x 2)1= :We want to derive the corresponding expenditure function,then compare it with the indirect utility function,and show the duality between Marshallian and Hicksian demand functions.1.3.1Expenditure functionBecause the preferences are monotonic,we can formulate the expenditure minimization problem as:minx1;x2p1x1+p2x2subject to:(x 1+x 2)1= =u;x1;x2 0And its LagrangianL(x1;x2; )=p1x1+p2x2+ [u (x 1+x 2)1= ] Assuming the interior solution in both goods,and by the…rst-order condition we have:@L@x1=p1 (x 1+x 2)(1= ) 1x 11=0@L@x2=p2 (x 1+x 2)(1= ) 1x 12=0@L@=u (x 1+x 2)1= =0By the…rst two,we can getx1=x2 p1p2 1=( 1)By the third one,we haveu=(x 1+x 2)1=1.3.2Hicksian demandsBy the above two equations,we can get the Hicksian demandsx h1(p;u)=u(p r1+p r2)(1=r) 1p r 11;x h2(p;u)=u(p r1+p r2)(1=r) 1p r 12where r= =( 1):1.3.3Expenditure functionTherefore,we can obtain the expenditure function:e(p;u)=p1x h1(p;u)+p2x h2(p;u)=u(p r1+p r2)1=r:1.3.4Relationship between indirect utility and expenditurefunctionsThey actually imply each other.When you get one,you can get the other very quickly.In previous lecture,we’ve already got the indirect utility function:v(p;I)=I(p r1+p r2) 1=r:For income level I=e(p;u);we must havev(p;e(p;u))=e(p;u)(p r1+p r2) 1=rWe’ve already know from theorem1.8,that v(p;e(p;u))=u;there-fore we haveu=e(p;u)(p r1+p r2) 1=rWe can get the expenditure functione(p;u)=u(p r1+p r2)1=rAnd you can try to get the indirect utility function given the expen-diture function is known.1.3.5Relationship between Marshallian and Hicksian demands We know the Marshallian demands in the previous lecture asx i(p;I)=p r 1iIp r1+p r2;i=1;2;x i(p;e(p;u))=e(p;u)p r 1ip r1+p r2=u(p r1+p r2)(1=r) 1p r 1i=x h i(p;u)2Income and Substitution E¤ects1.Slutsky equation:sincex h i(p;u )=x i(p;e(p;u ))@x h i(p;u )@p j =@x i(p;I)@p j+@x i(p;I)@I@e(p;u )@p j=@x i(p;I)@p j+@x i(p;I)@Ix h j(p;u )(by Sheppard’s lemma) =@x i(p;I)@p j+x j(p;I)@x i(p;I)@IRearranging the terms,we have@x i(p;I)@p j =@x h i(p;u )@p j x j(p;I)@x i(p;I)@I(1)The Slutsky equation decompose the e¤ect of the price of good j on the quantity demand of good i into a substitution e¤ect and an income e¤ect.The former captures the e¤ect of relative price,and the latter the e¤ect of purchasing power.To separate the income e¤ect from the substitution e¤ect,we can imagine that the consumers are compensated for the change in purchasing power due to a change in price so that their utility remain unchanged,and study how their demand for a good will change purely as a result of relative price changes.Hence,the Hicksian demand is also called the compensated demand,and the Marshallian Demand uncompensated demand.From the theorem,we certainly have@x i(p;I)@p i =@x h i(p;u )@p i x i(p;I)@x i(p;I)@I@x h i(p;u )i 0.The reason is because the expenditure function is a concave function of p;therefore we have@2e(p;u)@p2i =@x h i(p;u)@piThe income e¤ect can be positive or negative.Thus,(1)tells that for normal goods(@x i>0),@x i @p j <@x h i@p jmeaning that the Marshallian demand has a‡atter slope.The opposite is true for inferior goods.2.1The Slutsky Substitution Matrix1.Given a Marshallian demand function x (p;I ),let s ij@x i (p;I )@p j +x j (p;I )@x i (p;I )@I :2.The Slutsky matrix is de…ned as 266664s 11s 12::s 1n s 21:::::s n 1s nn3777753.Theorem:Suppose x (p;I )is a Marshallian demand function gener-ated by some continuous,strictly increasing utility function.Then the Slutsky matrix of x is symmetric and negative semide…nite.4.Proof:The proof is not hard,but it makes use of several results that we have just learnt.From the Slutsky equation,we haves ij =@x h i @p j:(The reason we need the utility function to be strictly increasing or at least locally non-satiated,is that without it Theorem 1.9and,hence,the Slutsky equation does not hold.)By the Sheppard’s lemma,we have for any i and j@2e @p i @p j =@x h i @p j =@x h j @p i:This implies that the Slutsky matrix is symmetric.Finally,since e is concave,its Hessian matrix:26666664@x h 1@p 1@x h 1@p 2::@x h 1@p n @x h 2@p 1:::::@x h 1@p n @x h n @p n37777775must be negative semide…nite.2.2Compensating Variation and Consumer Surplus1.When the government decides whether to cut or raise sales taxes,it has to know how will the tax a¤ect consumer welfare.In an-titrust law suit,an important factor that the court will look into is whether consumers are hurt by the monopolist.2.The expenditure function provides us a formal way to measurehow a change in price a¤ects consumer welfare.De…nition:Com-pensating variation(CV)associated with a change in the price of good i is the income compensation required to keep the utility ofa consumer constant.That is,CV e(p0i;p i;u) e(p i;p i;u):Or,alternatively,v(p0i;p i;I+CV)=v(p i;p i;I):By Shephard’s Lemma,@e@p i=x h.It follows thatCV=Z p0i p i@e@p i dp i;=Z p0i p i x h(p i;p i;u)dp i:Thus,the compensating variation is the area to the left of the Hicksian demand between p i and p0i.(Draw diagram)This is an extremely important result because it allow us to evaluate the wel-fare consequence of a policy.3.Since Hicksian demand is not directly observable,it is more con-venient to measure welfare change using Marshallian rather than Hicksian demand.The consumer surplus(at p i),CS,is the area bound by the Marshallian demand and p i.The change in CS when the price of good i changes from p i to p0i is4CS=Z p i p0i x(p i;p i;I)dp i:Recall from the Slutsky equation that@x i@p j p;I=@x h i@p j p;v(p;I) @x i@I p;I x i(p;I): 11For normal goods,x i(p0i;I)<x h i p0i;v(p i;p i;I) when p0i>p i, that is,Marshallian demand decreases more when it is a price increase.x i(p0i;I)>x h i p0i;v(p i;p i;I) when p0i<p i,that is, Marshallian demand increases more when price goes down.The converse is true for inferior goods.Hence,for normal goodsj4CS j>j CV jif price decreases,andj4CS j<j CV jwhen price increases.For normal goods,the change in consumer surplus underestimates the welfare loss due to price increase and overestimate the welfare gain due to a price decrease.4.Although,j4CS j=j CV j,in practice the di¤erence is pretty smalland is insigni…cant compared to measurement errors.12。
高级微观经济学课件(上海财经大学夏纪军) 10
纳什均衡
零和博弈(Zero Game)
u2 (s1, s2 ) Fra bibliotek2 (s1, s2 ) s (s1, s2 ) S1 S2
42
纳什均衡
混合战略
给定一个有限的战略式博弈 G (Si ,ui )iN1,参与
者 率i分的布一个mi混=(合p1战,p略2 ,…mi是,p在k) 战略集上的一个概
混合战略集:Mi 混合战略组合:m=(m1, …,mN) M iN1 Mi 支付:
ui (m) m1(s1) mN (sN ) ui (s)
sS
43
纳什均衡
纳什均衡(NE) 给定战略式博弈G (Si ,ui )iN1 ,战略组合 mˆ
是一个纳什均衡,如果对每一个参与者都有
5
博弈的描述
战略 si
给定信息集下,一个战略决定了在每一个时点 上选择何种行动。
——是参与者行动计划的一个完整描述,告诉 参与者在每一种可预见的情况下选择什么行动。
战略集 Si 战略组合:s=(s1,…,sN)
s Nj1 Si
注:战略中隐含了关于参与者信息、行动集、行动顺序的信息 6
ui (sˆi , si ) ui (si , si ) si Si
那么称 si 为参与者在S上的严格劣战略
26
严格劣战略
U 参与者1 C
D
参与者2
L 3,0 1,-1 2,4
M 0,-5 3,3 4,1
R 0,-4 -2,4 -1,8
27
重复剔除严格劣战略均衡
参与者2
虚拟参与者:自然——在博弈的特定时点上以 特定的概率随机决定行动
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——愈来愈深化的问题,愈来愈能启发
新问题的问题。‛
5. 关于教材
教材:范里安:《微观经济学:现代观 点》(第八版),上海三联书店、上海人
民出版社2011年1月版
6. 主要参考书: 平狄克、鲁宾费尔德:《微观经济学》(
第七版),中国人民大学出版社2009年
7. 参考文献 ①图书:《经济学方法》,复旦大学出版社 2006年版 《青年经济学家指南》,上海财经大学出版 社2001年版 《应用经济学研究方法论》,经济科学出版 社1998年版 ②报刊杂志: 中国人民大学复印报刊资料经济类各专题、 CSSCI来源期刊
经济学中常用的数学理论
经济学是选择的科学,应用数学的目的——最优 化(优化理论) 数学分析、高等代数、微分方程、概率论、实变 函数、集合论、拓扑学、泛函分析——经济学语 言 经济学帝国主义——实证研究工具 社会科学研究现实的模式,数学研究逻辑可能的 模式。 理论研究:数理经济学(逻辑演绎) 经验研究:计量经济学(统计归纳)
数学(大海)与经济学(陆地)
人总希望脚踏实地。当被带离海岸线很远 时,会因失去对陆地的知觉而产生恐惧感 ,这是就初入海者而言的。渔民和航海家 则不同,他们会如鱼得水,如果把他们留 在岸边,他们会无所事事。但毕竟大多数 人都不是渔民和航海家,他们在海中游玩 时希望时刻看到岸边,并能随时上岸。岸 上的世界七彩斑斓,海中的世界单调乏味 ,但生命的本源却来自海洋。因此,我们 要培养自己在海中的生存能力。
know-what—知其然 显性知识 know-why—知其所以然 know-how—技巧、诀窍 隐性知识 know-who( 隔行如隔山
拥有:信息<知识<智慧<素质<觉悟
解决问题:?→。发现问题:?→? 波普尔《猜想与反驳》:‚科学和 知识的增长永远始于问题,终于问题
三、树立目标,持之以恒 ‚不想当元帅的士兵就不是好士 兵‛。 ——拿破仑 ‚不想当企业家的管理学院学生就 不是好学生‛。 ——贺 卫 ‚一个人追求的目标越高,他的才 力就发展得越快,对社会就越有益,我 确信这也是一个真理‛。 ——高尔基
‚严师出高徒,高徒出名师‛ 我欲当名师,盼君成高徒
‚经济学关注的是对观察到的现
4. 注意培养学习能力。 培根:‚知识就是力量‛。 智慧比知识更有力量,但智慧是潜 在的,有赖于我们去发掘。 托夫勒:‚未来的文盲不再是不识 字的人,而是没有学会学习的人‛。 当你们去开发知识的处女地时,必 须学会自己学习,把握一杆终生受益的 猎枪(学习能力),而不要贪图一时管用 的干粮(现有知识)。
没有废人。市场价格使适才适所: 人力资本积累多寡
微观经济学
微观经济学 它重点研究市场经济条件下微观经济主 体(厂商、居民、政府等)的决策行为及 其对经济资源配置的影响。 重要性 1. 现代经济学的基础; 2. 提供了一系列有用的分析工具 内容:新古典经济学、现代企业理论以及 博弈论和信息经济学
一、关于《高级微观经济学》
/2011econsummer-ge/spec.htm
一、关于《高级微观经济学》
‚财大暑期的课,后来我在报名处求到了听课证 ,从头到尾都去听了,一轮下来我感觉:微观= 数学,宏观=建模。宏观收获比微观多。高微我 很受不了,用各种高深的数学方法来论证,证明 了一个黑板,得出来的还是那些很广为人知的结 论,没有任何新的东西。而且发现微观是个很苛 刻的学科,建立在一堆假设上,有时候只是多了 一个假设,或者换了一个条件,就得出了完全不 同的理论结论。‛ ——‚经济学的初级、中级、高级的差别就是抽 象程度的不同,越抽象就越要使用数学,而越抽 象就越具有一般性或代表性。‛
了解你们:经济学与数学 我的作用:导读人、学习上的指路人, 研究型学习的辅导者。 叶圣陶:‚教,是为了不需要教。‛ 师傅领进门,修行在各人。 二、教学要求及方法 42学时争取讲23章,每章后面的作 业:眼过千遍不如手过一遍。 1. 课内课外相结合:要求课前预习,课 后复习。
古人云:‚谓学不暇者,虽暇亦不 能学‛。 富兰克林:‚成功与失败的分水岭, 可以用这么五个字来表达:‘我没有时 间’‛。 2. 坚持理论联系实际(三三制:课堂、 图书馆、社会),学以致用。 3. 适当做笔记,好记性不如烂笔头。
象进行解释和预测‛; ‚改造世界并非经济学所长,但
改造世界观却是经济学的强项‛;
‚经济学家参与改造世界,就是 被利用‛ 。
——张五常
张五常:经济学的研究路线
1. 福利经济学:庇古传统(政府干预) 2. 政策经济学:投其所好(政府、企业)
3. 经济哲学:思想家(圣贤)所为
4. 经济理论:技术专家所为(精通数学) ——诺奖得主多
第0章 开场白(几点说明) 一、关于《高级微观经济学》(最抽象) 学时、数学基础、专业、助教、网站 1. 马斯-科莱尔,温斯顿,格林:《微观 经济学》,中国社会科学出版社2001年 2. 杰里、瑞尼:《高级微观经济理论》 (第2版),上海财经大学出版社2002年 3. 瓦里安:《微观经济学:高级教程》 (第3版),经济科学出版社2002年
8. 未学过初级经济学者的补救办法 ——自学 高鸿业:《西方经济学》(微观部分) 中国人民大学出版社2011年版 曼昆:《经济学原理》 北京大学出版社2009年版 帕金以及萨缪尔森的:《经济学》 人民邮电出版社2008年版 9. 利用网络解决问题(搜索引擎) 人大经济论坛:/bbs
的完整结论。它不是一种教条,只是 一种方法、一种心灵的器官、一种思 维的技巧,帮助拥有它的人得出正确
结论。
——约翰·梅纳德·凯恩斯
微观经济学——资源配置(价格机制 )
——显学,新古典特色
从化学的视角看世界,没有废 物(元素)
从微观经济学的视角看世界,