中考数学经典例题

合集下载

初中数学最值问题专题

初中数学最值问题专题

中考数学最值问题【例题1】(经典题)二次函数y二2 (x-3) 2-4的最小值为.【例题2】(2018江西)如图,AB是。

的弦,AB=5,点C是。

上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是___ .C【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y 轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ+ 2 QC是否存在最小值若存在,求出这个最小值;若不存在,请说明理由.1.(2018河南)要使代数式V-2^37有意义,则乂的( )A.最大值为2B.最小值为2C.最大值为-D.最大值为°3 3 2 22.(2018四川绵阳)不等边三角形AABC的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为。

3.(2018齐齐哈尔)设a、b为实数,那么“2+“〃 +从一” 的最小值为04.(2018云南)如图,MN是。

的直径,MN=4, NAMN=40° ,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.C5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1WxV15)之间的函数关系式,并求出第几天时销售利润最大(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第15天在第14天的价格基础上最多可降多少元6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R (元),售价每只为P (元),且R、P与x的关系式分别为R = 500 + 30x , P = 170 —2x。

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

初中数学最值问题典型例题(含答案分析)

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

(2、代数计算最值问题3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”几何基本模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小例1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。

ABA'′Pl例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。

中考数学“因式分解”典例及巩固训练

中考数学“因式分解”典例及巩固训练

中考数学“因式分解”典例及巩固训练(1)一、典型例题例1、(2017•广东省)分解因式:a 2+a = .解:答案为a (a+1)例2、(2019•黄冈市)分解因式3x 2﹣27y 2= . 解:原式=3(x 2﹣9y 2)=3(x +3y )(x ﹣3y ),故答案为:3(x +3y )(x ﹣3y )例3、因式分解:221222x xy y ++. 解:22221122(44)22x xy y x xy y ++=++21(2)2x y =+.二、巩固训练1.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .(a +b )(a ﹣b )=a 2﹣b 2C .x 2+4x +4=(x +2)2D .ax 2﹣a =a (x 2﹣1)2.下列多项式可以用平方差公式分解因式的是( )A .224x y +B .224x y -+C .224x y --D .324x y -3. 下列各式中,能用完全平方公式分解的个数为( )①21025x x -+:②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+ A .1个 B .2个 C .3个 D .4个4.如果代数式2425x kx ++能够分解成2(25)x -的形式,那么k 的值是( )A .10B .20-C .10±D .20±5. 分解因式:(1)a 2b ﹣abc = .(2)3a (x ﹣y )﹣5b (y ﹣x )= .6.分解因式:4a 2﹣4a +1= .7.分解因式:2a 2﹣4a +2= .8.(2017•广州市)分解因式:xy 2﹣9x = .9.分解因式:x 6﹣x 2y 4= .10.(2018•黄冈市)因式分解:x 3﹣9x = .11.(2018•葫芦岛市)分解因式:2a 3﹣8a = .12.因式分解: (1)2218x -; (2)224129a ab b -+; (3)3221218x x x -+;13.(2019·河池市)分解因式:2(1)2(5)x x -+-.14.分解因式:4224816x x y y -+.15.分解因式:(1)22()+x y x y -- ; (2)22()()a x y b x y ---; (3)229()()m n m n +--.★★★★1.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式22(41)(47)9x x x x -+-++进行因式分解的过程. 解:设24x x y -=原式(1)(7)9y y =+++(第一步)2816y y =++(第二步)2(4)y =+(第三步)22(44)x x =-+(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式22(2)(22)1x x x x ++++进行因式分解.2.【阅读材料】对于二次三项式222a ab b ++可以直接分解为2()a b +的形式,但对于二次三项式2228a ab b +-,就不能直接用公式了,我们可以在二次三项式2228a ab b +-中先加上一项2b ,使其成为完全平方式,再减去2b 这项,(这里也可把28b -拆成2b +与29b -的和),使整个式子的值不变.于是有:2228a ab b +-222228a ab b b b =+-+-2222(2)8a ab b b b =++--22()9a b b =+-[()3][()3]a b b a b b =+++-(4)(2)a b a b =+-我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用 法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①268m m ++;②4224a a b b ++★★★★★1.数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A 类、C 类正方形卡片和B 类长方形卡片.用若干张A 类、B 类、C 类卡片可以拼出如图2的长方形,通过计算面积可以解释因式分解:2223(2)()a ab b a b a b ++=++.(1)如图3,用1张A 类正方形卡片、4张B 类长方形卡片、3张C 类正方形卡片,可以拼出以下长方形,根据它的面积来解释的因式分解为 ;(2)若解释因式分解2234()(3)a ab b a b a b ++=++,需取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,请画出相应的图形;(3)若取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,使其面题1图积为22++,则m的值为,将此多项式分解因式5a mab b为.巩固训练参考答案1.C2.B3. B4.B5. (1) ab (a ﹣c) . (2)(3a+5b )(x ﹣y ) .6.(2a ﹣1)2.7.2(a ﹣1)2.8.x (y +3)(y ﹣3).9. x 2(x 2+y 2)(x +y )(x ﹣y ) .10.x (x +3)(x ﹣3).11.2a (a +2)(a -2).12.解:(1);(2);(3)原式.13.解:原式.14.解:原式.15.解:(1)原式=;(2)原式;(3)原式.★★★★1.解:(1)故选:;2218x -22(9)x =-2(3)(3)x x =+-224129a ab b -+22(2)12(3)a ab b =-+2(23)a b =-222(69)2(3)x x x x x =-+=-221210x x x =-++-29x =-(3)(3)x x =+-22(4)x y =-22(2)(2)(2)x y x y x y =+-+22())(x y x y ---)[2(1])(x y x y =---)(22(1)x y x y =---22()()x y a b =--()()()x y a b a b =-+-22[3()]()m n m n =+--(33)(33)m n m n m n m n =++-+-+4(2)(2)m n m n =++C(2),设,原式,,,,;故答案为:;(3)设,原式,,,,.2.解:(1)上式中添(拆项后先把完全平方式组合在一起,然后用公式法实现分解因式. 故答案为:公式;(2)①;②.22(41)(47)9x x x x -+-++24x x y -=(1)(7)9y y =+++2816y y =++2(4)y =+22(44)x x =-+4(2)x =-4(2)x -22x x y +=(2)1y y =++221y y =++2(1)y =+22(21)x x =++4(1)x =+)268m m ++2691m m =++-22(3)1m =+-(31)(31)m m =+++-(4)(2)m m =++4224a a b b ++4224222a a b b a b =++-2222()()a b ab =+-2222()()a b ab a b ab =+++-★★★★★1.解:(1)由图可得,,故答案为:;(2)如右图所示;(3)由题意可得,,,故答案为:6,.2243()(3)a ab b a b a b ++=++2243()(3)a ab b a b a b ++=++6m =2256(5)()a ab b a b a b ++=++(5)()a b a b ++中考数学“因式分解”典例及巩固训练(2)一、典型例题例1、因式分解:222a ab b ac bc ++++.解:原式22(2)()a ab b ac bc =++++2()()a b c a b =+++()()a b a b c =+++例2、用十字相乘法进行因式分解:232x x ++.解:原式(1)(2)x x =++.例3、在实数范围内进行分解因式:35x x -.解:原式2(5)x x =-(x x x =+-.二、巩固训练1.用分组分解法进行因式分解:(1)2221x y xy +--; (2)3223x x y xy y +--.2.(2017•百色市)阅读理解:用“十字相乘法”分解因式2x 2﹣x ﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”; 题2图1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1. 即:(x +1)(2x ﹣3)=2x 2﹣3x +2x ﹣3=2x 2﹣x ﹣3,则2x 2﹣x ﹣3=(x +1)(2x ﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x ﹣12= .3.用十字相乘法分解因式:(1)x 2+2x ﹣3= .(2)x 2﹣4x +3= .(3)22x x +-= .(4)2215a a --= .(5)4x 2+12x ﹣7= .4.选择恰当的方法进行分解因式:(1)26x x --; (2)2363a a -+; (3)226a ab b --;(4)29(2)(2)a x y y x -+-; (5)2222a b a b --+;(6)34x x -;5.分解因式:(1)22430y y --; (2)224414a b b +--.6.在实数范围内将下列各式分解因式:(1)22363ax axy ay -+; (2)35x x -.7.在实数范围内分解因式:(1)9a 44b - 4; (2)x 22- 3+;(3)x 5﹣4x .★★★★1.阅读下面的问题,然后回答,分解因式:223x x +-,解:原式22113x x =++--2(21)4x x =++-2(1)4x =+-(12)(12)x x =+++- (3)(1)x x =+-上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式: (1)243x x -+; (2)24127x x +-.2.在实数范围内分解因式221x x --.3.因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”例:32331x x x -+-,当1x =时,整式的值为0,所以,多项式有因式(1)x -,设322331(1)(1)x x x x x ax -+-=-++,展开后可得2a =-,所以3223331(1)(21)(1)x x x x x x x -+-=--+=-根据上述引例,请你分解因式:(1)2231x x -+; (2)32331x x x +++.★★★★★1.请看下面的问题:把44x +分解因式.分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,而且属于平方和222()2x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得:4422222222224444(2)4(2)(2)(22)(22)x x x x x x x x x x x x +=++-=+-=+-=++-+人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”. 请你依照苏菲·热门的做法,将下列各式因式分解. (1)444x y +;(2)2222x ax b ab ---. 2.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式2ax bx c ++进行因式分解呢?我们已经知道,2211221212211212122112()()()a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++.我们发现,二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图①所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为1122()()a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”. 例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即62(3)-=⨯-;然后把1,1,2,3-按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1(3)121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为(2)(3)x x +-.题2图请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法” 分解因式:26x x +-= (3)(2)x x +- .【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2257x x +- ;(2)22672x xy y -+= . 【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk乘积作为第三列,如果mq np b +=,pk qj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式2235294x xy y x y +-++-= .(2)若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.(3)已知x ,y 为整数,且满足2232231x xy y x y ++++=-,请写出一组符合题意的x ,y 的值.巩固训练参考答案1.解:(1).解:(2)原式. 2.(x +3)(3x ﹣4). 3.(1)(x +3)(x -1) . (2)(x ﹣1)(x ﹣3) . (3) . (4) . (5)(2x +7)(2x ﹣1) .4.解:(1)原式. (2)原式; (3)原式; (4)原式.(5)原式. (6)原式; 5..解:(1)原式 ;(2)原式.6.解:(1)原式;2221x y xy +--2()1x y =--(1)(1)x y x y =-+--3223222()()()()()()x x y xy y x x y y x y x y x y =+-+=+-+=+-(2)(1)x x +-(5)(3)a a -+(2)(3)x x =+-23(21)a a =-+23(1)a =-(3)(2)a b a b =-+29(2)(2)a x y x y =---2(2)(91)x y a =--(2)(31)(31)x y a a =-+-()()2()()(2)a b a b a b a b a b =+---=-+-2(4)(2)(2)x x x x x =-=+-22(215)y y =--2(5)(3)y y =-+224(144)a b b =--+224(12)a b =--(221)(221)a b a b =+--+223(2)a x xy y =-+23()a x y =-(2)原式,.7.解:(1)原式; (2)原式.(3)原式=★★★★1.解:(1)(2)2.解:.3.解:(1)当时,整式的值为0,所以,多项式有因式, 于是; (2)当时,整式的值为0,多项式中有因式,2(5)x x =-(x x x =222222(32)(32)(32)a b a b a b =+-=++2(x =2(2)(x x x x +243x x -+24443x x =-+-+2(2)1x =--(21)(21)x x =-+--(1)(3)x x =--24127x x +-2412997x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-221x x --22111x x =-+--2(1)2x =--(11x x =---1x =(1)x -2231(1)(21)x x x x -+=--1x =-∴32331x x x +++(1)x +于是可设,,, ,,.★★★★★1.解:(1)原式; (2)原式. 2.解:【阅读与思考】分解因式:; 故答案为:; 【理解与应用】(1); (2);故答案为:(1);(2); 【探究与拓展】(1)分解因式; 故答案为:(2)∵关于,的二元二次式可以分解成两个一次因式的积, 存在其中,,;而,,或,故的值为43或;(3),为整数,且满足,可以是,(答案不唯一).32232331(1)()(1)()x x x x x mx n x m x n m x n +++=+++=++++-13m ∴+=3n m +=2m ∴=1n =3223331(1)(21)(1)x x x x x x x ∴+++=+++=+442222222222222444(2)4(22)(22)x y x y x y x y x y x y xy x y xy =++-=+-=+++-22222222()()()(2)x ax a a b ab x a a b x b x a b =-+---=--+=+--26(3)(2)x x x x +-=+-(3)(2)x x +-2257(1)(27)x x x x +-=-+22672(1)(27)x xy y x x -+=-+(1)(27)x x -+(1)(27)x x -+2235294(21)(34)x xy y x y x y x y +-++-=+--+(21)(34)x y x y +--+x y 22718524x xy y x my +--+-∴111⨯=9(2)18⨯-=-(8)324-⨯=-71(2)19=⨯-+⨯51(8)13-=⨯-+⨯271643m ∴=+=72678m =--=-m 78-x y 2232231x xy y x y ++++=-1x =-0y =。

中招数学经典例题

中招数学经典例题

中招数学经典例题中考数学经典例题在中考数学考试中占据重要地位,考生们应该掌握这些例题,才能够顺利应对中考数学考试。

下面我们来介绍一些经典例题。

一、平面向量1. 有两个平面向量 $\vec{a}=3\vec{i}-\vec{j}$,$\vec{b}=2\vec{i}+\vec{j}$,求它们的数量积。

2. 已知两个平面向量 $\vec{a}=2\vec{i}-\vec{j}+3\vec{k}$,$\vec{b}=-\vec{i}+5\vec{j}+2\vec{k}$,求它们的叉积。

3. 已知两个平面向量 $\vec{a}=3\vec{i}+4\vec{j}$,$\vec{b}=2\vec{i}-\vec{j}$,试求它们的夹角 $cos\alpha$。

二、三角函数1. 求证:$cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$。

2. 已知 $\frac{sinx}{cosx}+tanx=1$,求 $x$ 的值。

3. 已知正弦函数 $y=a\sin\omega x$,求 $y$ 的最大值和最小值。

三、平面几何1. 已知四边形 $ABCD$,$E$、$F$ 分别为 $AB$、$BC$ 上的点,$EF$ 与 $AD$、$CD$ 的延长线交于 $P$、$Q$,试证明:四边形$APBQ$ 与 $EPFQ$ 的面积相等。

2. 在 $\triangle ABC$ 中,点 $E$、$F$ 分别在 $AC$、$AB$ 上,$BE$ 与 $CF$ 交于点 $O$,若 $\frac{AE}{EC}=\frac{BF}{FA}$,则证明 $AO$ 是 $\triangle ABC$ 中的角平分线。

3. 已知圆 $O$ 的半径为 $r$,圆上分别取两点 $A$、$B$,则弦$AB$ 的中垂线长为多少?四、解析几何1. 已知点 $A$、$B$ 的坐标分别为 $A(-2,-1)$,$B(4,3)$,求点 $M$ 到$AB$ 的距离。

2020中考数学应用题和证明题经典例题

2020中考数学应用题和证明题经典例题

2020应用题复习1.已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s (km)与时间t (h)的函数关系的图象。

根据图象解答下列问题。

(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?2.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树。

(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式。

(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少。

3.某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).5.某商店经销某玩具每个进价60元,每个玩具不低于80元出售,玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长小明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到________ 元?6.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t (t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t (t为整数,单位:天)的部分对应值如图所示.时间t (天)0510********日销售量y1 (百件)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.7.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售。

中考数学试卷典型例题解析

中考数学试卷典型例题解析

例题1:一元二次方程的应用题题目:某工厂生产一批产品,若每天生产80件,则生产完这批产品需要10天;若每天生产100件,则生产完这批产品需要8天。

问:这批产品共有多少件?解析:设这批产品共有x件。

根据题意,我们可以列出以下方程:80 × 10 = x100 × 8 = x解这个方程组,我们可以得到:x = 800答案:这批产品共有800件。

例题2:几何证明题题目:已知:在三角形ABC中,AB=AC,点D是BC边上的一个点,AD⊥BC。

证明:∠B=∠C。

解析:证明:由于AB=AC,根据等腰三角形的性质,我们有∠ABC=∠ACB。

又因为AD⊥BC,所以∠ADB=∠ADC=90°。

在直角三角形ADB和ADC中,∠BAD=∠CAD,所以三角形ADB和ADC是相似的。

根据相似三角形的性质,我们有:∠B/∠A = ∠C/∠A由于∠A是公共角,可以约去,得到:∠B = ∠C答案:证明完成,∠B=∠C。

例题3:函数问题题目:已知函数f(x) = 2x - 3,求函数f(x)在x=2时的函数值。

解析:要求函数f(x)在x=2时的函数值,我们只需将x=2代入函数f(x)中。

f(2) = 2 × 2 - 3f(2) = 4 - 3f(2) = 1答案:函数f(x)在x=2时的函数值为1。

例题4:代数式求值题目:已知a+b=5,ab=6,求(a+b)^2的值。

解析:首先,我们知道(a+b)^2可以展开为a^2 + 2ab + b^2。

由题意,a+b=5,ab=6,代入上式,得:(a+b)^2 = a^2 + 2ab + b^2(a+b)^2 = (a+b)^2 + 2ab(a+b)^2 = 5^2 + 2×6(a+b)^2 = 25 + 12(a+b)^2 = 37答案:(a+b)^2的值为37。

通过以上例题解析,我们可以看到中考数学试卷中的典型题目涉及了代数、几何、函数等多个知识点,考生需要掌握扎实的数学基础和解题技巧。

中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)

中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题13一次函数的实际应用中最值问题【典型例题】1.(2022·河南汝阳·九年级期末)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)要使每天销售的利润为6000元,且让顾客得到最大的实惠.售价应定为多少元?(3)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?【专题训练】一、解答题1.(2022·山东青岛·模拟预测)“菊润初经雨,橙香独占秋”,如图,橙子是一种甘甜爽口的水果,富含丰维生素C.某水果商城为了了解两种橙子市场销售情况,购进了一批数量相等的“血橙”和“脐橙”供客户对比品尝,其中购买“脐橙”用了420元,购买“血橙”用了756元,已知每千克“血橙”进价比每千克“脐橙”贵8元.(1)求每千克“血橙”和“脐橙”进价各是多少元?(2)若该水果商城决定再次购买同种“血橙”和“脐橙”共40千克,且再次购买的费用不超过600元,且每种橙子进价保持不变.若“血橙”的销售单价为24元,“脐橙”的销售单价为14元,则该水果商城应如何进货,使得第二批的“血橙”和“脐橙”售完后获得利润最大?最大利润是多少?2.(2022·山东莱芜·九年级期末)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?3.(2022·河南·郑州中学九年级期末)冰墩墩(Bing Dwen Dwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小冬第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小冬来说哪一次更合算?(注:利润率=(利润÷成本)×100%).4.(2021·山东青岛·一模)某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?5.(2022·江苏滨湖·八年级期末)小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.6.(2021·山东北区·一模)六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.7.(2022·四川简阳·八年级期末)某校准备组织八年级280名学生和5名老师参加研学活动,已知用1辆小客车和2辆大客车每次可运送120人;用3辆小客车和1辆大客车每次可运送135人.(1)每辆小客车和每辆大客车各能坐多少人?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金6000元,大客车每辆需租金7500元,总租金为W元,写出W与m的关系式,根据关系式选出最省钱的租车方案,并求出最少租金.8.(2022·山东城阳·八年级期末)七月份河南暴雨,鸿星尔克因捐款5000万爆红网络,为表达对品牌的支持,国人掀起购物潮.我区一家鸿星尔克门店有库存上衣和裤子共1450件,若上衣按每件获利50元卖,裤子按每件获利80元卖,则售完这些库存共可获利92000元.(1)该门店库存有上衣、裤子各多少件?。

中考数学折叠,旋转问题专题含答案

中考数学折叠,旋转问题专题含答案

【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。

中考数学最值—胡不归问题(解析+例题)

中考数学最值—胡不归问题(解析+例题)

中考数学最值——胡不归问题(点在直线上运动)(PA+k·PB型最值)【历史典故】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为射线AC上一动点。

②问题:P在何处时,BP+nm AP最短(nm<1)。

③方法:第一步在AC的一侧,PB的异侧构造∠CAE=α,使得sinα=nm 第二步做BH⊥AE,交AC于P,点P就是所求位置,BH就是其最小值。

【模型分析】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D 选在何处时,所用时间最短?个运动过程中用时最少,请求出最少时间和此时点F的坐标。

【巩固训练】练习1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上BM的最小值为_____。

任意一点,则AM+12练习2:如图,等腰ΔABC中,AB=AC=3,BC=2,BC边上的高为A0,点D为射线A0上一点,一动点P从点A出发,沿AD-DC运动,动点P在AD上运动速度3个单位每秒,动点P在CD上运动的速度为1个单位每秒,则当 AD= 时,运动时间最短为秒。

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题1、如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米) 解:延长CD 交AB 于G ,则CG=12(千米)依题意:PC=300×10=3000(米)=3(千米) 在Rt △PCD 中: PC=3,∠P=60° CD=PC ·tan ∠P =3×tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.2、如图,水坝的横断面是梯形,背水坡AB 的坡 角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈).答案:(10分)解:过B作BE ⊥AD 于E在Rt △ABE 中,∠BAE= 60, ∴∠ABE= 30 ∴AE =21AB31032021=⨯=∴BE ()()303103202222=-=-=AE AB∴在Rt △BEF 中, ∠F= 45, ∴EF =BE =30 ∴AF=EF-AE=30-310∵732.13=, ∴AF =12.68≈133、施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千米P C D G60°(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解:(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, …………………………………3分 ∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分4、在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图, 若 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分5、在东西方向的海岸线l 上有一长为1km 的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东NM 东北BCAlCBA17cm(第19题) A BCF60°,且与A相距83的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.答案解:(1)由题意,得∠BAC=90°,………………(1分)∴2240(83)167BC=+=.…………(2分)∴轮船航行的速度为41671273÷=时.……(3分)(2)能.……(4分)作BD⊥l于D,CE⊥l于E,设直线BC交l于F,则BD=AB·cos∠BAD=20,CE=AC·sin∠CAE=43,AE=AC·cos∠CAE=12.∵BD⊥l,CE⊥l,∴∠BDF=∠CEF=90°.又∠BFD=∠CFE,∴△BDF∽△CEF,……(6分)∴,DF BDEF CE=∴3220343EFEF+=,∴EF=8.……(7分)∴AF=AE+EF=20.∵AM<AF<AN,∴轮船不改变航向继续航行,正好能行至码头MN靠岸.6、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)答案(1)如图,作AD⊥BC于点D……………………………………1分Rt△ABD中,AD=AB sin45°=42222=⨯……2分在Rt△ACD中,∵∠ACD=30°FEDlAC北东M NABE FQ P ∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分 解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP 应挪走. …………………………………………………………8分7、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)答案 (1)相等30,6030BEQ BFQ EBF EF BF ∠=∠=∴∠=∴=....................................2分 又6060AF P BFA ∠∠=∴∠=在AEF 与△ABF 中,,EF BF AFE AFB AF AFAFE AFB AE AB=∠=∠=∴≅∴=...........................................................................5分 (2)法一:作AH PQ ⊥,垂足为H 设 AE=x 则AH=xsin74°HE= xcos74° HF=xcos74°+1 ...............................................................................................7分tan60Rt AHF AH HF=中,所以xsin74°=(xcos74°+1)tan60°即0.96x=(0.28x+1)×1.73所以 3.6x≈即AB 3.6km≈法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1, 所以 EG=3在Rt△AEG中376,cos760.24 3.6 AEG AE EG∠==÷=÷≈答: 两个岛屿A与B之间的距离约为3.6km8、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,AB45°60°C E D∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ……………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………3分9、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分10、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,第19题图A45°60°结果保留整数).解:根据题意,可知45ACB ∠=︒,60ADB ∠=︒,50DC =.在Rt △ABC 中,由45BAC BCA ∠=∠=︒,得BC AB =. 在Rt △ABD 中,由tan ABADB BD∠=, 得3tan tan 60AB AB BD AB ADB ===∠︒. ..............................6分 又 ∵ BC BD DC -=,∴ 350AB AB -=,即(33)150AB -=. ∴ 11833AB =≈-.答:该兴趣小组测得的摩天轮的高度约为118 m. .....................8分11、小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.25.连结AN 、BQ∵点A 在点N 的正北方向,点B 在点Q 的正北方向 ∴l AN ⊥ l BQ ⊥--------------------------1分 在Rt △AMN 中:tan ∠AMN=MNAN∴AN=360-----------------------------------------3分 在Rt △BMQ 中:tan ∠BMQ=MQBQ∴BQ=330----------------------------------------5分 过B 作BE ⊥AN 于点E 则:BE=NQ=30∴AE= AN -BQ -----------------------------------8分 在Rt △ABE 中,由勾股定理得:222BE AE AB +=22230)330(+=AB∴AB=60(米)12、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中,………………1分 ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°. ………………4分∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ………………5分 ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. ………………7分ACD EBABCD第19题图解法二: ∵∠CAD =∠ABE , ∠ACD =∠AEB =90°,∴△ACD ∽△BEA. ………………6分 ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14. ………………7分∴镜框顶部到墙壁的距离CD 约是0.14米.………………8分13、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米1、(2010山东济南)图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 3求线段AD 的长.解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ··················· 1分 ∴在Rt △ADC 中,cos30ACAD =︒············· 2分=3×3··········· 3分=2 . ·············· 4分14、热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为60m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:2 1.414,3 1.732≈≈)答案: 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD =60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中,∵BDtan BAD AD∠=……………………4分 ∴ BD = AD ·tan ∠BAD= 603 ……………………5分∴BC = CD+BD= 60+603 ……………………6分≈ 163.9 (m) …………………7分答:这栋高楼约有163.9m . …………………8分 (本题其它解法参照此标准给分)15、如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并PD CBA求出最大值.22.(1)在Rt ABC ∆中,5sin B =,25AB =, 得5AC AB =,∴2AC =,根据勾股定理得:4BC =. …… 3分(2)∵PD ∥AB ,∴ABC ∆∽DPC ∆,∴12DC AC PC BC == 设PC x =,则12DC x =,122AD x =- ∴2211111(2)(2)122244ADP S AD PC x x x x x ∆=⋅=-⋅=-+=--+ ∴当2x =时,y 的最大值是1. ……… 8分16、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)答案:解:设CD = x .在Rt △ACD 中,tan37AD CD︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° = BD CD, 则1110BD x=, ∴1110BD x =. ∵AD +BD = AB , B37° 48° D CA 第19题图∴31180 410x x+=.解得:x≈43.17、在市政府广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan,80.037cos,60.037sin≈︒≈︒≈︒73.13≈)解:过A作AD⊥CB,垂足为点D.………………………1分在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=31233660tan==︒CD≈20.76.……5分在Rt△ADB中,∵AD≈20.76,∠BAD=37°.∴BD=37tan⨯AD≈20.76×0.75=15.57≈15.6(米).………8分答:气球应至少再上升15.6米.…………………………9分18、图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.【答案】解:根据题意得:DE=3.5×16=56,AB=EF=16∵∠ACB=∠CBG-∠CAB=15°,∴∠ACB =∠ CAB∴CB=AB=16.∴CG=BCsin30°=8CH=CG+HG=CG+DE+AD=8+56+5=69.∴塔吊的高CH的长为69m.BACD。

中考数学规律型问题专题

中考数学规律型问题专题

中考数学规律型问题专题【例题1】(2019•省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣C.D.【例题2】(2019•省市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【例题3】(2019•省市)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【例题4】(2019)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【例题5】(2019•庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【例题6】(2019•省市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3一、选择题1.(2019)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.82.(2018)如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+13.(2019)按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是()A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+14.(2019)如图,小聪用一面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019B.C.D.5.(2019)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A .(,﹣) B .(1,0) C .(﹣,﹣) D .(0,﹣1) 6.(2019·广西贺州)计算++++…+的结果是( ) A .B .C .D .7.(2019•)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .121)1(---n n x B .12)1(--n n x C .121)1(+--n n x D .12)1(+-n n x二、填空题8.(2018)观察下列各式:,,,设n 表示正整数,用关于n 的等式表示这个规律是 .9.(2019)探索与发现:下面是用分数(数字表示面积)砌成的“分 数墙”,则整面“分数墙”的总面积是 .10.(2019·)如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 .11.(2019•省)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.12.(2019•省市)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)13.(2019)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)14.(2019省)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.15. (2019•省市)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x 轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.16.(2019•)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.17.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限交于点P1,半径为3的圆与l2在第一象限交于点P2,…,半径为n+1的圆与l n在第一象限交于点P n,则点P n的坐标为.(n为正整数)三、解答题18.(2019)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?19. (2019•)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).答案【例题1】(2019•省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣C.D.【答案】D.【解析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=【例题2】(2019•省市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【例题3】(2019•省市)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【答案】(﹣22017,22017).【解析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017【例题4】(2019)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题5】(2019•庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【答案】13a+21b.【解析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b【例题6】(2019•省市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3【答案】D.【解析】直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n =2n﹣1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n=。

中考《整式及因式分解》经典例题及解析

中考《整式及因式分解》经典例题及解析

整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等. 二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如325a b c -是6次单项式。

2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb .8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-. (2)完全平方公式:222()2a b a ab b ±=±+. 9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-.运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.经典例题 代数式及相关问题1.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费___________元. 【答案】()3015m n +【分析】根据单价×数量=总价,用代数式表示结果即可.【解析】解:根据单价×数量=总价得,共需花费()3015m n +元,故答案为:()3015m n +.【点睛】本题考查代数式表示数量关系,理解和掌握单价×数量=总价是解题的关键,注意当代数式是多项式且后面带单位时,代数式要加括号.2.若221m m +=,则2483m m +-的值是( ) A .4 B .3C .2D .1【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可. 【解析】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.1.已知73a b =-,则代数式2269a ab b ++的值为_________. 【答案】49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【解析】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 2.点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5 B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【解析】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b , ∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学; 第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案. 【解析】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +; 第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -); ∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.【点睛】本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.经典例题 整式及其相关概念1.若多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【解析】解:Q 多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.1.单项式3212a b 的次数是_____. 【答案】5.【分析】根据单项式次数的意义即可得到答案. 【解析】单项式3212a b 的次数是325+=.故答案为5. 【点睛】本题考查单项式次数的意义,解题的关键是熟练掌握单项式次数的意义. 2.下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y -【答案】C【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解析】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确;D.513y -与233x y 不是同类项,故本选项错误;故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.经典例题1.若单项式32m x y 与3m n xy +的值是_______________. 【答案】2【分析】先根据同类项的定义求出m 与n 的值,再代入计算算术平方根即可得.【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩2===故答案为:2.【点睛】本题考查了同类项的定义、算术平方根,熟记同类项的定义是解题关键.1.若单项式122m x y -与单项式2113n x y +是同类项,则m n +=___________. 【答案】4【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n 的值,再代入求解即可. 【解析】解:∵单项式122m x y -与单项式2113n x y +是同类项,∴m-1=2,n+1=2, 解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【点睛】本题考查了同类项的概念,正确理解同类项的定义是解题的关键. 2.若3m x y 与25n x y -是同类项,则m n +=___________. 【答案】3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可. 【解析】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.经典例题 规律探索题1.观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 【答案】(1)n-(1)3⨯+nn n 【分析】观察已知一组数,发现规律进而可得这一组数的第n 个数. 【解析】解:观察下列一组数:﹣23=﹣1123⨯,69=2233⨯,﹣1227=﹣3343⨯2081=4453⨯, ﹣30243=﹣5563⨯,…,它们是按一定规律排列的,那么这一组数的第n 个数是:(﹣1)n (1)3⨯+nn n , 故答案为:(1)n-(1)3⨯+nn n . 【点睛】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.1.按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【解析】解:Q a ,2a -,4a ,8a -,16a ,32a -,…, 可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------∙∙∙∴ 第n 项为:()12.n a -- 故选A .【点睛】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.2.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之个数记为2a ,第三个数记为3a ,……,【答案】20110【分析】根据所给数据可得到关系式【解析】由已知数据1,3,6,10,15,∴445102a ⨯==,2002002012a ⨯==【点睛】本题主要考查了数字规律题的知识经典例题1.如图,正方体的每条棱上放置相同数目则表达错误的是( )A .12(1)m -B .48(2)m m +【答案】A【分析】先根据规律求出小球的总个数【解析】解:由题可知求小球的总数的方法会衔接处的小球,则每条棱上剩下12(m-2)个小项B 中48(2)m m +-1216m =-,故B,C,【点睛】本题考查了图形的规律,合并同类行线之间的一列数:1,3,6,10,15,……,我们把,第n 个数记为n a ,则4200a a +=_________.()12n n n a +=,代入即可求值. ,……,可得()12n n n a +=, 20100,∴420020100+10=20110+=a a .的知识点,找出关系式是解题的关键. 同数目的小球,设每条棱上的小球数为m ,下列代数式- C .12(2)8m -+ D .1216m -,再将选项逐项化简求值即可解题.方法会按照不同的计数方法而规律不同,比如可以按照个小球,加上衔接处的8个小球,则小球的个数为12(B,C,D均正确,故本题选A. 并同类项,需要学生具有较强的逻辑抽象能力,能够不重我们把第一个数记为1a ,第二10.故答案为20110. 代数式表示正方体上小球总数,以按照一共有12条棱,去掉首尾2)81216m m -+=-,选够不重不漏的表示出小球的总数是解题关键.1. 把黑色三角形按如图所示的规律拼图案形,第③个图案中有6个黑色三角形A .10 B .15 【答案】B【分析】根据前三个图案中黑色三角形的个第⑤个图案中黑色三角形的个数.【解析】解:∵第①个图案中黑色三角形的第②个图案中黑色三角形的个数3=第③个图案中黑色三角形的个数6=∴第⑤个图案中黑色三角形的个数为1+2+【点睛】本题主要考查图形的变化规律,1+2+3+4+……+n .2.小明用大小和形状都完全一样的正方体方体上写“心”字,寓意“不忘初心”.其中案中有6个正方体,……按照此规律,从第体的概率是( )A .1100B .120【答案】D拼图案,其中第①个图案中有1个黑色三角形,第角形,…,按此规律排列下去,则第⑤个图案中黑色C .18D .21形的个数得出第n 个图案中黑色三角形的个数为1+2角形的个数为1, 1+2, 1+2+3,……1+2+3+4+5=15,故选:B .,解题的关键是根据已知图形得出规律:第n 个图正方体按照一定规律排放了一组图案(如图所示),每个其中第(1)个图案中有1个正方体,第(2)个图案中有从第(100)个图案所需正方体中随机抽取一个正方体C .1101D .2101第②个图案中有3个黑色三角中黑色三角形的个数为( )1+2+3+4+……+n ,据此可得个图案中黑色三角形的个数为每个图案中他只在最下面的正案中有3个正方体,第(3)个图正方体,抽到带“心”字正方【分析】根据图形规律可得第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【解析】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体; 第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体; 第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体; 第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;... 第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体;则:第100个图形共有1+2+3+4+ (100)()11001002+=5050个正方体,最下面有100个带“心”字正方体;∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=, 故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.经典例题 幂的运算1.下列运算正确的是( ) A .236a a a ⋅= B .()325a a = C .22(2)2a a = D .32a a a ÷=【答案】D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可. 【解析】A 、23235a a a a +⋅==,此项错误;B 、()23236a a a ⨯==,此项错误C 、22(2)4a a =,此项错误;D 、3232a a a a -÷==,此项正确;故选:D .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟记整式的运算法则是解题关键.1.下列计算正确的是( ) A .a 3+a 3=a 6 B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab3【答案】B【分析】根据合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算法则进行计算即可. 【解析】解:3332a a a +=,因此选项A 不正确;32326()a a a ⨯==,因此选项B 正确;62624a a a a -÷==,因此选项C 不正确;333()ab a b =,因此选项D 不正确;故选:B .【点睛】本题考查合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算方法,掌握相关运算方法是解题的关键.2.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( ) A .302B B .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【解析】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B ;故选A . 【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.经典例题 整式的运算1.先化简,再求值:22(2)(2)()2(2)(2)x y x y x x y x y x y +++-+-++,其中1,1x y =+=-.【答案】23y xy -;-.【分析】利用完全平方公式将原式化简,然后再代入计算即可.【解析】解:原式22[(2)(2)]x y x y x xy =+-+--22()x y x xy =---2222x xy y x xy =-+--23y xy =-当1,1x y =+=-时,原式21)1)=--+- 33=--=-。

中考数学隐形圆专题含答案

中考数学隐形圆专题含答案

类型一:定点到动点定长点A为定点,点B为动点,AB为定长,则点B的轨迹为圆心为点A,半径为AB的圆。

【经典例题1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F 是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是___.【解析】如图所示:当∠BFE=∠B′EF,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE=1022622=+,∴B′D=102−2.练习1-1如图③,矩形ABCD 中,AB=3,BC=4,点E 是AB 边上一点,且AE=2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度。

若不存在,请说明理由。

【解析】(3)如图3,△四边形ABCD 是矩形,△CD=AB=3,AD=BC=4,△ABC=△D=90°,根据勾股定理得,AC=5, △AB=3,AE=2,△点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,△S 四边形AGCD =S △ACD +S △ACG =21AD×CD+21AC×h=21×4×3+21×5×h=25h+6, △要四边形AGCD 的面积最小,即:h 最小,△点G 是以点E 为圆心,BE=1为半径的圆上在矩形ABCD 内部的一部分点, △EG△AC 时,h 最小,由折叠知△EGF=△ABC=90°,延长EG 交AC 于H ,则EH△AC ,在Rt△ABC 中,sin△BAC=AC BC =54, 在Rt△AEH 中,AE=2,sin△BAC=AE EH =54, △EH=54AE=58,△h=EH -EG=58-1=53 △S 四边形AGCD 最小=25h+6=25×53+6=215. 练习1-2如图,等边△ABC 的边AB=8,D 是AB 上一点,BD=3,P 是AC 边上一动点,将△ADP 沿直线DP 折叠,A 的对应点为A',则CA'的长度最小值是 .【解析】2练习1-3如图,在平行四边形ABCD 中,△BCD =30°,BC =4,CD=M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△AMN ,连接A'C ,则A'C 长度的最小值是 .【解析】如图,连接MC ;过点M 作ME△CD ,交CD 的延长线于点E ;△四边形ABCD 为平行四边形,△AD△BC ,AD=BC=4,△点M 为AD 的中点,△BCD=30△,△DM=MA=2,△MDE=△BCD=30△, △ME=21DM=1,DE=3, △CE=CD+DE=43,由勾股定理得:CM 2=ME 2+CE 2,第4题图AB C DA'M N△CM=7;由翻折变换的性质得:MA′=MA=2,显然,当折线MA′C 与线段MC 重合时,线段A′C 的长度最短,此时A′C=7−2=5,故答案为5.练习1-4如图,在边长为2的菱形ABCD 中,∠A=60∘,点M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连结A′C ,则A′C 长度的最小值是( ) A. 7 B. 7−1 C. 3 D. 2【解析】如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60∘,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60∘,∴∠FMD=30∘,∴FD=21MD=21,∴FM=DM×cos30∘=23, ∴MC=722=+CF FM ,∴A′C=MC−MA′=7−1.故选:B.变式:在Rt △ABC 中,∠C=90°,AC=6,BC=8,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____解题思路:同上题,不难看出点P 的运动轨迹为以点F 为圆心,PF 为半径的圆上运动,求点P 到AB 的距离最小,可过点F 作AB 的垂线于点M ,交圆 F 于点P ,此时,最小值为PM 。

中考复习——初中数学经典四边形习题50道(附答案)

中考复习——初中数学经典四边形习题50道(附答案)
四边形经典例题 50 道
1.已知:在矩形 ABCD 中, _A
AEBD 于 E,∠DAE=3∠BAE ,
求:∠EAC 的度数。
_O
_E _B
2.已知:直角梯形 ABCD 中,BC=CD=a _A
且∠BCD=60,E、F 分别为梯形的腰
AB、
_E
DC 的中点,求:EF 的长。
_D
_C _D
_F
_A
_D
_E
证:ADEF 是平行四边形。
_D
_E
_B
_C _F
_F
_A
_A
14、在四边形 ABCD 中,AB=CD,
_P
P、Q 分别是 AD、BC 中点,M、N
_D
_B
_C
分别是对角线 AC、BD 的中点,
求证:PQMN。
_N
_M
_B
_Q
19、M、N 为ABC 的边 AB、AC 的中点,E、F 为边 AC 的
G,BG= 4 2 ,则ΔCEF 的周长为( )
A.8 B.9.5
C.10
D.11.5
正确的
A.③② B.③④ C.①④② D.②③④
例 4.13.在下列命题中,是真命题的是( )
A.两条对角线相等的四边形是矩形 B.两条对角线互相垂
直的四边形是菱形 C.两条对角线互相平分的四边形是平行
四边形 D.两条对角线互相垂直且相等的四边形是正方形
_D _E
_A
_C
8 、在正方形 ABCD 中,直 _G
_A
_D
_C
线 EF 平
行 于 对 角 线 AC ,与 边
_G
_F
ABBC 、的交 点为 E 、

(完整版)全等三角形经典例题(含答案)

(完整版)全等三角形经典例题(含答案)

全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA)..【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E 在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC ≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是①和③,命题的结论是②和④(均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD 全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳

中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。

24年初中中考数学典型例题解析-数形结合

24年初中中考数学典型例题解析-数形结合

24年初中中考数学典型例题解析-数形结合1.如图,在边长为3的正方形ABCD中,30∠=︒CDE,DE CF⊥,则BF的长是______.【分析】根据题意,证得()ASA△≌△DCE CBF,从而BF CE=,在Rt CDE△中,30∠=︒CDE,3CD=,根据含30︒直角三角形边的关系与勾股定理可得CE=得到答案.【详解】解:在正方形ABCD中,BC CD=,90B DCE∠=∠=︒,DE CF⊥,90CDE DCF∴∠+∠=︒,90DCE DCF BCF∠=︒=∠+∠,∴CDE BCF∠=∠,在DCE△和CBFV中,90B DCEBC CDCDE BCF∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ASA△△≌DCE CBF∴,∴BF CE=,在Rt CDE△中,30∠=︒CDE,3CD=,在含30︒直角三角形中:①由30︒所对的直角边是斜边的一半可设CE x=,则2DE x=;②由勾股定理得到CD==;从而可得CE===,【点睛】本题考查正方形背景下求线段长,涉及正方形性质、全等三角形的判定与性质、含30︒直角三角形、勾股定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.2.如图,在ABC 中,70CAB ∠=︒,将ABC 绕点A 逆时针旋转到AB C '' 的位置,使得CC AB '∥,划BAB '∠的度数是()A.35︒B.40︒C.50︒D.70︒【答案】B 【分析】根据平行线的性质,结合旋转性质,由等腰三角形性质及三角形内角和定理求解即可得到答案.【详解】解:∵70CC AB CAB '∠=︒,∥,∴70C CA CAB '∠=∠=︒,∵将ABC 绕点A 逆时针旋转到AB C '' 的位置,∴70C AB CAB AC AC '''∠=∠=︒=,,∴由等腰三角形性质可得70AC C C CA ''∠=∠=︒,∴由三角形内角和定理得到180707040C AC '∠=︒-︒-︒=︒,BAB CAB CAB ''∠=∠- ,CAC C AB CAB ''''∠=∠-,∴40BAB C AC ''∠=∠=︒,即旋转角的度数是40︒,故选:B .【点睛】本题考查旋转性质求角度,涉及平行线的性质、旋转性质、等腰三角形的判定与性质及三角形内角和定理,熟练掌握旋转性质,数形结合,是解决问题的关键.3.将图绕其中心旋转某一角度后会与原图形重合,这个角不能是()A.90︒B.120︒C.180︒D.270︒【答案】B 【分析】将图按照对角线分成四个相同的基本图形,利用旋转的性质求解即可得到答案.【详解】解:如图所示:正方形对角线将图形分成四个完全一样的基本图形,可看作由这个基本图形旋转90︒所组成,∴将图绕其中心最小旋转角90︒后会与原图形重合,∴该图形绕其中心旋转90︒的正整数倍后会与原图形重合,从而确定这个角不能是120︒,故选:B .【点睛】本题考查图形旋转,分析出图中的基本图形是解决问题的关键.4.用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列三个问题:(1)如图1是著名的“赵爽弦图”,由四个全等的直角三角形拼成,请用它验证勾股定理222c a b =+.(2)如图2,在Rt ABC △中,90ACB CD ∠=︒,是AB 边上的高,43AC BC ==,,求CD 的长度;(3)如图1,若大正方形的面积是13,小正方形的面积是1,求()2a b +的值()a b <.【答案】【小问1】见解析【小问2】125【小问3】25【分析】(1)如图1所示,大正方形的面积等于四个全等的直角三角形面积与小正方形面积和,用代数式表示出各部分面积按要求列等式化简即可得证;(2)利用勾股定理得到5AB =,根据等面积法列式求解即可得到125AC BC CD AB ⋅==;(3)由(1)的结论,结合完全平方公式变形,代值求解即可得到答案.【小问1详解】解:如图1所示:大正方形的面积等于四个全等的直角三角形面积与小正方形面积和,2S c = 大正方形;()2S b a =-小正方形;12S ab =直角三角形;()22142c b a ab ∴=-+⨯,即222c a b =+;【小问2详解】解:如图2所示:在Rt ABC △中,90ACB ∠=︒,43AC BC ==,,∴由勾股定理可得5AB ==,CD 是AB 边上的高,∴由等面积法可得1122ABC S AC BC AB CD =⋅=⋅△, 43AC BC ==,,5AB =,∴125AC BC CD AB ⋅==;【小问3详解】解:∵大正方形的面积是13,小正方形的面积是1,()a b <,如图1所示:∴()22131c b a -==,,∴()22221b a a b ab +--==,由(1)知222c a b =+,∴22113112ab c =-=-=,∴()222222131225a b a b ab c ab +++=+=+==,即()2a b +的值为25.【点睛】本题考查等面积法解决问题,涉及勾股定理证明、等面积法求线段长、以及完全平方公式与勾股定理综合,熟练掌握等面积法求解是解决问题的关键.5.下列图形不是轴对称图形的是()A. B. C.D.【答案】C【分析】根据轴对称图形定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项验证即可得到答案.【详解】解:A 、该图形是轴对称图形,不符合题意;B 、该图形是轴对称图形,不符合题意;C 、该图形不是轴对称图形,符合题意;D 、该图形是轴对称图形,不符合题意;故选:C .【点睛】本题考查轴对称图形的定义与判断,熟练掌握轴对称图形的定义是解题关键.6.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状如图所示,这个几何体是由()个小立方块搭成的.A.4B.5C.6D.7【答案】B 【分析】从上面看到的图确定底层小立方块个数及形状;从正面看到的图确定行列小立方块的个数及形状;从左面看到的图确定行列小立方块的个数及形状,综合起来即可得到答案.【详解】解:从上面看到的图确定最底层由4个小立方块组成;从正面看到的图及从左面看到的图确定前行只有1个小立方块、第二层有1个小立方块;综上所述,这个几何体由5个小立方块搭成,故选:B .【点睛】本题考查从三个方面看组合体,借助空间想象能力,由三个方面看到的平面图还原成立体图形是解决问题的关键.7.完成下面的证明.如图,己知AD BC ⊥于点D ,EF BC ⊥于点F ,12∠=∠,求证:AB DG ∥.证:AD BC ⊥ 于点D ,EF BC ⊥于点F (_________)90ADB EFB ∴∠=∠=︒(垂直的定义)AD EF ∴∥(__________________)1∴∠=_________(两直线平行,同位角相等)12∠=∠ (已知)2∴∠=_________(__________________)AB DG ∴∥(内错角相等,两直线平行)【答案】已知,同位角相等,两直线平行,BAD ∠,BAD ∠,等量代换【分析】根据平行线的判定与性质,按照题中证明过程求解即可得到答案.【详解】证:AD BC ⊥ 于点D ,EF BC ⊥于点F (已知)90ADB EFB ∴∠=∠=︒(垂直的定义)AD EF ∴∥(同位角相等,两直线平行)1∴∠=BAD ∠(两直线平行,同位角相等)12∠=∠ (已知)2∴∠=BAD ∠(等量代换)AB DG ∴∥(内错角相等,两直线平行),故答案为:已知,同位角相等,两直线平行,BAD ∠,BAD ∠,等量代换.【点睛】本题考查平行线的判定与性质,读懂题意,按照题中证明过程求解是解决问题的关键.8.如图,四边形ABCD 是长方形,8BC =,6CD =,将ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,求DE 的长.【答案】5DE =【分析】由四边形ABCD 为矩形,得到BAD ∠为直角,由折叠得到EF BD ⊥,AE EF =,AB BF =,利用勾股定理求出BD 的长,由BD BF -求出DF 的长,在Rt DEF △中,设EF x =,表示出ED ,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出DE 的长.【详解】解: 四边形ABCD 是长方形,8BC =,6CD =,90A ∴∠=︒,6AB CD ==,8BC AD ==,将ABE 沿BE 折叠可得,90EFB A ∠=∠=︒,AE EF =,6BF AB ==,在Rt △ABD 中,90A ∠=︒,6AB =,8AD =,则由勾股定理得10BD ==,即1064FD BD BF =-=-=,设EF AE x ==,则有8ED x =-,在Rt DEF △中,90EFD ∠=︒,则由勾股定理得222DE EF FD =+,即()22284x x -=+,解得3x =,835DE AD AE ∴=-=-=.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,解方程等知识,熟练掌握相关几何定理及性质是解本题的关键.9.有足够多的长方形和正方形卡片(如图1),分别记为1号,2号,3号卡片.(1)如果选取4张3号卡片,拼成如图2所示的一个正方形,请用2种不同的方法表示阴影部分的面积(用含m ,n 的式子表示).方法1:__________________________________________________.方法2:__________________________________________________.(2)若320a b ab +-+-=,求2()a b -的值.(3)如图3,选取1张1号卡片,2张2号卡片,3张3号卡片,可拼成一个长方形(无缝隙不重叠),根据图形的面积关系,因式分解:2232m mn n ++=.【答案】【小问1】2()m n -;2()4m n mn+-【小问2】1【小问3】(2)()m n m n ++【分析】(1)从“整体”和“部分”两个方面分别表示阴影部分的面积即可;(2)根据非负数的定义可得6a b +=,4ab =,再根据22()()4a b a b ab -=+-进行计算即可;(3)求出所拼成的长方形的长、宽以及总面积即可.【小问1详解】解:方法1:图2中阴影部分是边长为()m n -,因此面积为2()m n -;方法2:图2阴影部分也可以看作从边长为()m n +的正方形减去4个长为m ,宽为n 的长方形面积,因此有2()4m n mn +-;【小问2详解】解:∵320a b ab +-+-=,30a b +-≥,20ab -≥,30a b ∴+-=,20ab -=,即3a b +=,2ab =,22()()4a b a b ab∴-=+-98=-1=;【小问3详解】解:如图所示:1张1号,2张2号,3张3号卡片的总面积为2223m n mn ++,而1张1号,2张2号,3张3号卡片可以拼成长为(2)m n +,宽为()m n +的长方形,∴2223(2)()m n mn m n m n ++=++,故答案为:(2)()m n m n ++.【点睛】本题考查了完全平方公式,数形结合,掌握完全平方公式的结构特征是关键.10.如图,在平行四边形ABCD 中,对角线AC BD ,相交于点O ,点E F ,在AC 上,点G H ,在BD 上.(1)若6050ADC CAD ∠=︒∠=︒,,求BAC ∠和BCD ∠的度数;(2)若四边形EHFG 是平行四边形,求证:AE CF =.【答案】【小问1】70120BAC BCD ∠=︒∠=︒,【小问2】证明见解析【分析】(1)根据三角形内角和定理得到70ACD ∠=︒,由平行四边形性质得AD BC AB CD ,∥∥,再由平行线性质即可得到答案;(2)根据平行四边形对角线相互平分即可得证.【小问1详解】解:∵6050ADC CAD ∠=︒∠=︒,,∴在ACD △中,由三角形内角和定理可得18070ACD ADC CAD ∠=︒-∠-∠=︒,∵四边形ABCD 是平行四边形,∴AD BC AB CD ,∥∥,∴5070BCA CAD BAC ACD ∠=∠=︒∠=∠=︒,,∴120BCD BCA ACD ∠=∠+∠=︒;【小问2详解】证明:∵四边形EHFG 是平行四边形,∴OE OF =,四边形ABCD 是平行四边形,∴OA OC =,∴OA OE OC OF -=-,即AE CF =.【点睛】本题考查平行四边形综合,熟练掌握平行四边形性质是解决问题的关键.。

中考数学---《购买、分配类问题》例题讲解

中考数学---《购买、分配类问题》例题讲解

中考数学---《购买、分配类问题》例题讲解【典例1】(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【解答】解:(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,依题意得:,解得:.答:购进一根A种跳绳需10元,购进一根B种跳绳需15元.(2)∵该班级计划购买A、B两种跳绳共45根,且购买A种跳绳m根,∴购买B种跳绳(45﹣m)根.依题意得:,解得:23≤m≤25.4,又∵m为整数,∴m可以取23,24,25,∴共有3种购买方案,方案1:购买23根A种跳绳,22根B种跳绳;方案2:购买24根A种跳绳,21根B种跳绳;方案3:购买25根A种跳绳,20根B种跳绳.(3)设购买跳绳所需总费用为w元,则w=10m+15(45﹣m)=﹣5m+675.∵﹣5<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣5×25+675=550.答:在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.【变式1-1】(2022•黑龙江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【变式1-2】(2021•无锡)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【解答】解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,依题意得:+=25,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60,3x=45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m件,二等奖奖品n件,依题意得:60m+45n=1275,∴n=.∵m,n均为正整数,且4≤m≤10,∴或或,∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.【变式1-3】(2021•连云港)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.【解答】解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,,解得,答:A型消毒液的单价是7元,B型消毒液的单价是9元;(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小,∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a,解得a≤67,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23,答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.。

初三数学中考经典例题试卷

初三数学中考经典例题试卷

一、选择题(每题3分,共30分)1. 若实数a,b满足a^2 + b^2 = 1,则下列结论正确的是()A. a + b = 0B. a - b = 0C. a^2 - b^2 = 1D. ab = 12. 下列函数中,与y = x^2 + 2x + 1的图像相同的函数是()A. y = (x + 1)^2B. y = x^2 + 2C. y = x^2 - 2x - 1D. y = x^2 + 13. 已知等差数列{an}中,a1 = 2,公差d = 3,则第10项an的值为()A. 29B. 30C. 31D. 324. 若等比数列{bn}中,b1 = 2,公比q = 3,则第5项bn的值为()A. 48B. 54C. 60D. 725. 在直角坐标系中,点A(2,3)关于x轴的对称点为B,则点B的坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若直线y = kx + b经过点(1,2),则下列结论正确的是()A. k = 2,b = 0B. k = 2,b ≠ 0C. k ≠ 2,b = 0D. k ≠ 2,b ≠ 07. 在三角形ABC中,∠A = 90°,∠B = 30°,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°8. 已知函数f(x) = x^2 - 2x + 1,若a > 0,则f(a)的值()A. 大于0B. 小于0C. 等于0D. 不确定9. 在平面直角坐标系中,点P(2,3)到直线x + y - 5 = 0的距离是()A. 2B. 3C. 4D. 510. 下列命题中,正确的是()A. 所有的实数都是无理数B. 所有的无理数都是实数C. 所有的实数都是有理数D. 所有的无理数都是有理数二、填空题(每题3分,共30分)11. 若实数a,b满足a + b = 0,则ab的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O ()MB x DN()3322,S,,,,,628344
(图4)
01??t综上所述:当时,; St,,2363
212,,t当时,; Stt,,,,236343
t,2当时,( S,83
173,,832
173?S的最大值是( 2
动到与原点O重合时的值; t
D(3)如果取OB的中点,以OD为边在Rt?AOB内部作如图2所示的矩形ODCE,
AB点C在线段上(设等边?PMN和矩形ODCE重叠部分的面积为S,请求出当02??t秒时S与的函数关系式,并求出S的最大值( t
y y
APA C E
ONO MBDB xx
(图2) (图1)
3AB解:(1)直线的解析式为:( yx,,,433
PMIEC设交于点,
FEOPNECG交于点,交于点,
OFIGN重叠部分为五边形(
HGHOB,方法一,作于,FOt,,4323,?,,,,,EFtt23(4323)2323,
?,,EIt22,
12?,,,,,,,,,,,SSSttttt2363(22)(2323)236343?FEI梯形ONGE2
(
OFt,,,(42)3方法二,由题意可得MOt,,42,,,PIt,,4,PCt,,433
中考数学经典例题
中考数学经典例题:
B如图1,在平面直角坐标系中,已知点,点在正半轴上,且A(043),x
PABAB(动点在线段上从点向点以每秒个单位的速度运动,设运动3?ABO,30
时间为秒(在轴上取两点MN,作等边?PMN( tx
AB(1)求直线的解析式;
M(2)求等边?PMN的边长(用的代数式表示),并求出当等边?PMN的顶点运t
3t,PSQO,,,43N O S MB x2
,,33t(图1),?,,,,,PMt438,,,,22 y,,
P M当点与点O重合时,A
C G
,,,BAO60E
MHON DB x?,AOAP2(
,?,4323t(图2)?,t2( y
01??t(3)?当时,见图2( A P HPNEC设交于点,G C E EONG重叠部分为直角梯形,I N M F HGHOB,作于( O B H xD
(2)方法一,,,?,,ABOA283,,,AOB90,,ABO30
APt,3,?,,BPt833,
?PMN是等边三角形,,?,,MPB90
PM3tan,,PBM,(?,,,,,PMtt(833)8PB3
PPSx,S方法二,如图1,过分别作轴于,轴于,PQy,Q
y13t可求得,AQAP,,A P 22 Q
,,GH,23,,GNH60
(图3)?,HN2,
PMt,,8,
?,,BMt162,
OB,12,
,?,,,,,,,ONttt(8)(16212)4
?,,,,,,,,OHONHNttEG422,
1?,,,,,,,Sttt(24)232363( 2
S随的增大而增大,t
2St,,,再计算(42)3?FMO2
3322,St,,St,,(8)(4)?PMN?PIG44
331222?,,,,,,,,,,SSSSttt(8)(4)(42)3PMNPIGFMO442
2( ,,,,236343tt
3173t,S,当时,有最大值,(,,230?S,最大22y
Dt,2MPMN,,6N?当时,,即与重合,A P PMIPDECECG设交于点,交于点,重叠部C I E G IMNG分为等腰梯形,见图4(
相关文档
最新文档