高一数学第二章《基本初等函数》单元测试卷4
(完整版)必修1第二章基本初等函数测试题
必修1 第二章 基本初等函数测试题一、选择题(每题5分,共35分)1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log =2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=- A .1 B .2 C .3 D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称4.已知13x x-+=,则3322x x -+值为( )A .B .C .D . -5.函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3 6.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<< C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe + 二、填空题(每题5分,共25分)1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x x y 的值是_____________。
5.方程33131=++-xx的解是_____________。
三、解答题1.已知),0(56>-=a a x 求x x xx a a a a ----33的值。
2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6. 三个数60.7 ,0.76 ,6log7.0的大小顺序是 ( )A .0.76<6log 7.0<60.7 B. 0.76<60.7<6log 7.0 C. 6log 7.0<60.7<0.76 D. 6log 7.0<0.76<60.77.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知 )2(log ax y a -=(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数)10(log )(<<=a x x f a 在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.(本小题满分12分)解方程:3)23(log )49(log 22+-=-x x18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)33152232232222log ()25⨯=++⨯+=++⨯-=⨯.17.解原方程可化为:8log )23(log )49(log 222+-=-x x , 即012389=+⋅-xx .解得:23=x (舍去)或63=x, 所以原方程的解是6log 3=x 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞.当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]ST =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()()424f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学训练题(二)一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a += B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5)U D .(,2)(5,)-∞+∞U6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102ab==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)设集合}21|{<<-=x x A ,}31|{<<=x x B ,求B A ⋂,()R A B ⋂ð, ()()R R A B ⋃痧..17. (本小题满分15分)已知函数⎩⎨⎧<≥+-=0,,0,4222x x x x x y , (1)画出函数的图像;(2)求函数的单调区间;(3)求函数在区间[]3,2-上的最大值与最小值.18. (本小题满分15分)(1)如果定义在区间(1,0)-的函数3()log (1)a f x x =+满足()0f x <,求a 的取值范围;(2)解方程:3log (323)2xx +•=19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21. 某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数⎪⎩⎪⎨⎧>≤≤-=400,100000,4000,21400)(2x x x x x g . 其中x 是仪器的月产量(单位:台).(1)将利润表示为月产量x 的函数)(x f ;(2)当月产量x 为何值时,公司所获利润最大?最大利润为多少元? (总收益=总成本﹢利润)参考答案一.选择题11. 9 . 12.12. 13. 1-. 14. 4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a xx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-I , (2,3]S T =-U .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩.11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==()y f x =有最小值31()24f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x xx x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.}0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a.)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。
初升高一数学 第二章基本初等函数
初升高一数学第二章基本初等函数初升高一数学暑假第二章基本初等函数-单元测试卷(答案)第二章《基本初等函数》单元测试卷一.选择题:1.若集合则( )2.已知函数且则( )3.设则的大小关系是( )4.若且则( )5.设函数则满足的的取值范围是( )6.已知函数是定义在的奇函数,且是增函数,则函数的大致图象是( )7.方程的解得个数是( )8.函数在上是减函数,则的取值范围是( )9.若函数的值域为则实数的取值范围是( )10.若函数的定义域为则函数的定义域为( )12.若函数且在区间上恒有则函数的单调增区间为( )二.填空题:13.若则14.若的反函数为则15.若不等式对一切实数恒成立,则实数的取值范围是___________________.16.若函数为常数在区间上是增函数,则的取值范围是_______________.三.解答题:17.已知函数的图象经过点其中且18.已知(1)求的值; (2)判断函数的奇偶性.19.已知定义域为的奇函数(1)求的解析式;(2)证明:在上是减函数;(3)若对于任意不等式恒成立,求的取值范围. 20.若函数满足其中且(1)求函数的解析式,并判断其奇偶性和单调性;(2)当时,的值恒为负数,求的取值范围.21.已知函数是偶函数.(1)求的值;(2)若方程有实数根,求实数的取值范围;(3)设若函数与的图象有且只有一个公共点,求实数的取值范围.第二章《基本初等函数》单元测试卷参考答案一.选择题:1.解析:2.解析:或或3.解析:又4.解析:当时,成立;当时,5.解析:或或故选6.解析:是定义在的奇函数,又是增函数,的图象是将的图象向右平移1个单位得到的,故选7.解析:函数的图象与函数的图象只有1个交点,故选8.解析:且是减函数,在上是减函数,是增函数,又在上需满足综上,故选9.解析:当时,当时,且的值域为故选10.解析:的定义域为即在函数中,即函数的定义域为,故选11.解析:12.解析:依题意,当时,恒成立,在上是减函数,的单调增区间应为的单调减区间,且保证故选二.填空题:13.答案:解析:14.答案:解析:设则解得15.答案:解析:对一切实数恒成立,16.答案:解析:在上是增函数,在上是减函数,又在区间上是增函数,三.解答题:17.答案:(1)(2)解析:(1)依题意即(2)即值域为18.答案:(1)(2)偶函数.解析:(1)(2)由得即函数的定义域为,是关于原点对称的区间.是偶函数.19.答案:略.解:(1)是上的奇函数,即恒成立,比较系数得(2)证明:由(1)可知设且则在上是减函数.(3)由(2)知,是上的减函数,恒成立.令则只需20.答案:是奇函数;是上的增函数.解析:(1)设则且是奇函数.①当时,是增函数,也是增函数,且是偶函数;②当时,是减函数,也是减函数,且是偶函数;综上可知,是上的增函数.(2)由(1)知,也是上的增函数.依题意在上恒成立,故只需即整理得解得又21.答案:解析:(1)的定义域是且是偶函数,即2.由(1)知,若方程有实数根,即有实数根,令则函数的图象与直线有交点,(3)由(1)知,依题意,方程有且只有一个实数根.令则关于的方程有且只有一个正实根.①当时,不合题意,舍去;②当时,则方程有两个相异实根或两个相等的正实根,若方程有两个相异实根,则若方程有两个相等的正实根,则综上可知,。
人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f xax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log ay x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <).(Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()1111()()()x x x x x x x x x x x x --+--=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =- , (2,3]S T =- .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==时,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x xf x -=-+.对12,x x R ∀∈,当12x x <时,总有 2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
高一数学 第2章 函数概念与基本初等函数 单元检测卷
高一数学第2章函数概念与基本初等函数单元检测卷一、选择题(每题5分,共40分)1.若二次函数y=f(x)满足f(5+x)=f(5-x),且方程f(x)=0有两个实根x1,x2,则x1+x2等于( )A.5 B.10 C.20 D.5 22.下列函数为偶函数的是( )A.y=x2+x B.y=-x3 C.y=e x D.y=ln x2+13.若2log a(M-2N)=log a M+log a N,则MN的值为( )A.14B.4 C.1 D.4或14.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( ) A.-3 B.-1 C.1 D.35.若奇函数f(x)在区间[3,7]上是减函数且有最大值4,则f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-4 B.增函数且最大值为-4C.减函数且最小值为-4 D.减函数且最大值为-46.已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:x 12 3f(x) 6.1 2.9-3.5则函数f(x)A.(-∞,1) B.(1,2) C.(2,3) D.(3,+∞)7.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A.y=x3 B.y=|x|+1 C.y=-x2+1 D.y=2-|x|8.函数y=f(x )的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是( )A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)二、填空题(每题5分,共30分)9.若关于x的方程x2-32x-k=0在(-1,1)上有实根,则k的取值范围是__________.10.已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)=________.11.函数y=(log31x)2+log31x+1的单调增区间为__________.12.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.13.已知函数x=ln π,y=log52,z=e-12,则x,y,z从小到大排列为________.14.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=.三、解答题(共80分)15.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.16.(12分)已知函数f(x)=bxax2+1(b≠0,a>0).(1)判断f(x)的奇偶性;(2)若f(1)=12,log3(4a-b)=12log24,求a,b的值.17.(14分)对于函数f(x),若存在x0∈R使f(x0)=x0成立,则称x0为f(x)的不动点,已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.18.(14分)设海拔x m处的大气压强是y Pa,y与x之间的函数关系式是y=c e kx,其中c,k为常量,已知某地某天在海平面的大气压为1.01×105 Pa,1 000 m高空的大气压为0.90×105 Pa,求600 m高空的大气压强(精确到0.001).19.(14分)某工厂今年1月、2月、3月生产某种产品的数量分别是1、1.2、1.3万件,为了预测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y 与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?并说明理由.20.(14分)已知函数f(x)=3x2-6x-5.(1)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在[1,3]上的最小值;(2)若对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,求实数b的取值范围.参考答案一、选择题(每题5分,共40分)1.B 2.D 3.B 4.A 5.C 6.C 7.B 8.D 解析:利用函数图象的对称性求解.假设y =f (x )的反函数为y =k (x ),则函数y =k (x )与函数y =f (x )的图象关于直线y =x 对称.又函数y =f (x )的图象与函数y =g (x )的图象关于直线x +y =0对称,所以y =k (x )的图象与y =g (x )的图象关于原点对称,故y =f (x )的反函数为y =-g (-x ).二、填空题(每题5分,共30分)9.⎣⎢⎡⎭⎪⎫-916,52 10.-1 11.[3,+∞) 12.(-5,0)∪(5,+∞) 13.y <z <x 14.解析:利用函数的对称轴和奇偶性来确定函数值即可. ∵f (x )的图象关于直线x =2对称, ∴f (4-x )=f (x ).∴f (4-1)=f (1)=f (3)=3, 即f (1)=3.∵f (x )是偶函数,∴f (-x )=f (x ). ∴f (-1)=f (1)=3. 答案:3三、解答题(共80分)15.解析:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )的最小值为1;x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为x =-a ,∵f (x )在区间[-5,5]上是单调函数,-a ≤-5或-a ≥5,∴a ≥5或a ≤-5. 即a 的取值范围是(-∞,-5]∪[5,+∞). 16.解析:(1)f (x )的定义域为R , f (-x )=-bxax 2+1=-f (x ),故f (x )是奇函数. (2)由f (1)=ba +1=12,得a -2b +1=0. 又log 3(4a -b )=12log 24=1,即4a -b =3.由⎩⎨⎧a -2b +1=0,4a -b =3 解得a =1,b =1.17.解析:(1)∵a =1,b =-2时,f (x )=x 2-x -3, 由f (x )=x ⇒x 2-2x -3=0⇒x =-1或x =3, ∴f (x )的不动点为-1和3.(2)由题设知ax 2+(b +1)x +b -1=x 有两个不等实根,即为ax 2+bx +b -1=0有两个不等实根,∴Δ=b 2-4a (b -1)>0⇒b 2-4ab +4a >0恒成立.∴(-4a )2-4×4a <0⇒0<a <1. 故a 的取值范围是(0,1).18.解析:将x =0,y =1.01×105;x =1 000 , y =0.90×105, 代入 y =c e kx 得:⎩⎨⎧1.01×105=c e k ·0,0.90×105=c ek ·1 000, 即⎩⎨⎧c =1.01×105, ①0.90×105=c e1 000k. ② 将①代入②得:0.90×105=1.01×105e 1 000k ⇒k =11 000×ln 0.901.01,计算得:k =-1.15×10-4. ∴y =1.01×105×e -1.15×10-4x .将 x =600 代入,得:y =1.01×105×e -1.15×10-4×600,计算得:y =0.943×105(Pa). 所以在600 m 高空的大气压约为0.943×105 Pa.19.解析:根据题意,该产品的月产量y 是月份x 的函数,可供选用的函数有两种,其中哪一种函数确定的4月份该产品的产量越接近于1.37万件,哪种函数作为模拟函数就较好,故应先确定这两个函数的具体解析式.设y 1=f (x )=px 2+qx +r (p ,q ,r 为常数,且p ≠0),y 2=g (x )=ab x +c ,根据已知有⎩⎨⎧p +q +r =1,4p +2q +r =1.2,9p +3q +r =1.3和⎩⎨⎧ab +c =1,ab 2+c =1.2,ab 3+c =1.3,解得⎩⎨⎧p =-0.05,q =0.35,r =0.7和⎩⎨⎧a =-0.8,b =0.5,c =1.4.所以f (x )=-0.05x 2+0.35x +0.7,g (x )=-0.8×0.5x+1.4.所以f (4)=1.3,g (4)=1.35. 显然g (4)更接近于1.37,故选用y =-0.8×0.5x+1.4作为模拟函数较好. 20.解析:(1)g (x )=x 2+(m -6)x -5,对称轴方程为x =6-m 2,分6-m 2<1,1≤6-m 2≤3,6-m 2>3三种情况分类讨论,易得g (x )min=⎩⎪⎨⎪⎧3m -14,m <0,-m 2+12m -564,0≤m ≤4,m -10,m >4.(2)不等式可化为2x 2+2ax -(a +b +5)≤0, 令φ(x )=2x 2+2ax -(a +b +5),对称轴x =-a2.由已知得-a 2∈⎣⎢⎡⎦⎥⎤-1,-12,∴φmax (x )=φ(3)=5a -b +13,∴只要当a ∈[1,2]时,5a -b +13≤0恒成立即可.而当a ∈[1,2]时,b ≥5a +13恒成立, ∴b 的取值范围是[23,+∞).。
高中数学必修基本初等函数单元测试题含参考答案
高中数学必修基本初等函数单元测试题含参考答案Last revised by LE LE in 2021高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mma a =C .log log log ()a a a m n m n ÷=-D .43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( )A .122lg xx x >> B .122lg xx x >> C .122lg x x x >> D .12lg 2x x x >>5.函数(2)log (5)x y x -=-的定义域是 ( )A .(3,4)B .(2,5)C .(2,3)(3,5)D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减7.若1005,102a b ==,则2a b += ( )A .0B .1C .2D .38. 函数()lg(101)2x xf x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)x x x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(22)4()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543++++-17.求下列各式中的x 的值(共15分,每题5分)1)1x (ln )1(<- 0231)2(x1<-⎪⎭⎫⎝⎛-1.a 0a ,1)3(212≠>⎪⎭⎫⎝⎛>--且其中x x a a18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2x T y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4,(Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.22.已知函数)1a (log )x (f x a -= )1a 0a (≠>且, (1)求f(x)的定义域;(2)讨论函数f(x)的增减性。
2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(最新整理)
16.(Ⅰ). 解:原式 4 27 2 7 2 101.
(Ⅱ)解:原式 3 2 2 3 log3(4 25) 3 2 2 3 2 15 .
2
log3
(
1 2
1 5
)
2
2
17.解原方程可化为: log2 (9x 4) log2 (3x 2) log2 8 , 即 9x 8 3x 12 0 .
对于 t R (*)成立 k 1 . 3
∴ k 的取值范围是 (, 1) . 3
7
11.计算: log4 27 log5 8 log9 625
.
12.已知函数
f
(x)
lo2gx且3
x且 (x > 0) (x 0)
,则 f [ f (1)] 3
.
13. 若 f (x) a ln( x2 1 x) bx3 2 , 且 f (2) 5 , 则 f (2)
.
14.若函数 f (x) loga x(0 a 1) 在区间[a, 2a] 上的最大值是最小值的 3 倍,则 a
3)6 (2
4
2)3
4 (16 )
1 2
4
2
80.25
.
49
2
(Ⅱ) ln(e
e
)
log2
(log3
81)
21log2
3
log log9
3
1
4
2
1 3
2 log3 5 log3 125
.
17.(本小题满分 12 分)
解方程: log2 (9x 4) log2 (3x 2) 3
18.(共 12 分)(Ⅰ)解不等式 a2x1 ( 1 )x2 (a 0且 a 1) . a
高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学单元测试题必修1第二章《基本初等函数》班级姓名序号得分一.选择题.(每小题5分后,共50分后)1.若m?0,n?0,a?0且a?1,则下列等式中正确的是()(a)?aa.mnm?n41344logam?logan?loga(m?n)d.mn?(mn)3b.a?mc.a1m2.函数y?loga(3x?2)?2的图象必过定点()a.(1,2)b.(2,2)c.(2,3)d.(,2)233.已知幂函数y?f(x)的图象过点(2,2),则f(4)的值为()2a.1b.2c.1d.824.若x?(0,1),则以下结论恰当的就是()a.2x?lgx?xb.2x?x?lgxc.x?2x?lgxd.lgx?x?2x5.函数y?log(x?2)(5?x)的定义域就是()a.(3,4)b.(2,5)c.(2,3)?(3,5)d.(??,2)?(5,??)6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是()a.减少1.99%b.增加1.99%c.减少4%d.不增不减7.若100?5,10?2,则2a?b?()a.0b.1c.2d.38.函数f(x)?lg(10?1)?xab12121212x就是()2a.奇函数b.偶函数c.既奇且偶函数d.非奇非偶函数9.函数y?loga(x?2x)(0?a?1)的单调递增区间是()a.(1,??)b.(2,??)c.(??,1)d.(??,0)10.未知y?log2(2?ax)(a?0且a?1)在[0,1]上就是x的减至函数,则a的值域范围就是()2a.(0,1)b.(0,2)c.(1,2)d.[2,??)一.选择题(每小题5分,共50分)题号答案12345678910二.填空题.(每小题5分,共25分)11.排序:log427?log58?log9625?.12.未知函数f(x)??(x>0)?log3x,1,则f[f()]?.x32,(x?0)?2313.若f(x)?aln(x?1?x)?bx?2,且f(2)?5,则f(?2)?.14.若函数f(x)?logax(0?a?1)在区间[a,2a]上的最大值是最小值的3倍,则a=.15.已知0?a?1,给出下列四个关于自变量x的函数:①y?logxa,②y?logax,③y?(log1x)④y?(log1x).aa2312其中在定义域内是增函数的有.三.解答题(6小题,共75分)16.(12分)计算下列各式的值:1?160.25(ⅰ)(32?3)?(2?2)?4?()2?42?8.49643(ⅱ)ln(ee)?log2(log381)?21?log23?log32?2log35.11log9?log31254317.谋以下各式中的x的值(共15分后,每题5分后)1(1)ln(x1)1(2)31?x?2?01(3)a2x1ax?2,其中a?0且a?1.18.(共12分)(ⅰ)解不等式a2x?11?()x?2(a?0且a?1).ax(ⅱ)设立子集s?{x|log2(x?2)?2},子集t?{y|y?()?1,x??2}谋s?t,s?t.122xx119.(12分后)设立函数f(x)??.logxx?1?4(ⅰ)求方程f(x)?1的求解.4(ⅱ)求不等式f(x)?2的解集.20.(13分后)设立函数f(x)?log2(4x)?log2(2x)的定义域为[,4],(ⅰ)若t?log2x,谋t的值域范围;(ⅱ)求y?f(x)的最大值与最小值,并求出最值时对应的x的值.21.(14分后)未知定义域为r的函数(ⅰ)谋b的值;(ⅱ)证明函数f?x?在r上是减函数;(ⅲ)若对任一的t?r,不等式f(t?2t)?f(2t?k)?0恒设立,谋k的值域范围.2214?2x?bf(x)?x?1是奇函数.2?222.已知函数f(x)?loga(a?1)(a?0且a?1),(1)求f(x)的定义域;(2)讨论函数f(x)的增减性。
人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学必修1单元测试题 第二章《基本初等函数》一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mm a a=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >>5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .38. 函数()lg(101)2x xf x =+-是 ( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)x x x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 .三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <). (Ⅰ)求2212x x ---的值; (Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4,(Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案二.填空题.11. 9. 12.12.13. 1. 14..15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17.解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()1111()()()x x x x x x x x x x x x --+--=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x a a -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤. ∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-.(Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()()424f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++, ∴12()()f x f x >.∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
学年高一(上)数学 第二章 基本初等函数 单元测试卷
2019学年高一(上)数学 第二章 基本初等函数 单元测试卷(满分:150分;考试时间:100分钟)一、选择题(本大题共12小题. 每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的)1.指数函数y=a x的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) (A )23 (B )32(C )2 (D )3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg aa b b=-;③b ab a lg )lg(212= ; ④1lg()log 10abab =. 其中正确命题的个数为 ( )A .0B .1C .2D .36.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2} C.{3} D.{4}8.设⎭⎬⎫⎩⎨⎧----∈α3,2,1,21,31,21,1,2,3,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( ) A. 1 B. 2 C. 3 D. 49.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a<b<1<d<cB. 0<b<a<1<c<dC. 0<d<c<1<a<bD. 0<c<d<1<a<b10.函数)1(log )(++=x a x f a x在]1,0[上的最大值与最小值之和为a ,则a 的值为( )A.41 B.21 C.2 D. 411.函数y= | lg (x-1)| 的图象是 ( )12.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x. 其中满足条件f 12()2x x +>12()()2f x f x + (x 1>x 2>0)的函数的个数 是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题4分,共16分)13.函数21()log (2)f x x =-的定义域是 .14.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .15.函数)x 2x (log y 221-=的单调递减区间是_________________.16.关于函数)R x ,0x (|x |1x lg)x (f 2∈≠+=有下列命题: ①函数)x (f y =的图象关于y 轴对称; ②在区间)0,(-∞上,函数)x (f y =是减函数; ③函数)x (f 的最小值为2lg ;④在区间),1(∞上,函数)x (f 是增函数. 其中正确命题序号为_______________.C xyOy=log a xy=log b xy=log c x y=log d x1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第二章《基本初等函数》单元测试卷
班级 学号 姓名
一、选择题(每小题5分,共40分) 1.3334)2
1()21
()2()2(---+-+----的值( ) A 4
37 B 8 C -24 D -8 2.函数x y 24-=的定义域为( )
A ),2(+∞
B (]2,∞-
C (]2,0
D [)+∞,1
3.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C 31
x y = D x y 5.0=
4.函数x x f 4log )(=与x x f 4)(=的图象( )
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线x y =对称
5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )
A 2-a
B 25-a
C 2)(3a a a +-
D 132--a a
6.若函数)1,0)(1(≠>+-=a a b a y x 的图象在第一、三、四象限,则有( )
A 1>a 且1<b
B 1>a 且0>b
C 10<<a 且0>b
D 10<<a 且0<b
7.已知10<<a ,0log log <<n m a a ,则 ( )
A m n <<1
B n m <<1
C 1<<n m
D 1<<m n
8.函数⎩⎨⎧>-≤-=--)
1(23)1(2311x x y x x 的值域是
A )1,2(--
B ),2(+∞-
C ]1,(--∞
D ]1,2(--
二、填空题(每小题5分,共20分)
9.若n m a a )()(->-ππ,且1>>n m ,则实数a 的取值范围为 。
10.已知函数)(x f 为偶函数,当),0(+∞∈x 时,12)(+-=x x f ,当)0,(-∞∈x 时,=)(x f _____________.
11.已知函数⎩⎨⎧<+≥=-),
3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.
12.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________
三、解答题(共40分)
13(本题满分10分)计算下列各式的值:(写出化简过程)
(1)5.021
20)01.0()41
2(2)532(-⨯+--;(5分)
(2)432
981⨯;(5分)
14.已知函数x y 2=
(1)作出其图象;(4分)
(2)由图象指出单调区间;(2分)
(3)由图象指出当x 取何值时函数有最小值,最小值为多少?(4分)
15.已知[]2,1,4329)(-∈+⨯-=x x f x x
(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分)
(2)求)(x f 的最大值与最小值;(6分)
16.已知函数.11lg )(x
x x f +-= (1) 求证:);1()()(xy
y x f y f x f ++=+(4分) (2) 若,2)1(,1)1(
=--=++ab
b a f ab b a f 求)(a f 和)(b f 的值.(6分)
《基本初等函数》参考答案
一、1~8 CBCD ABAD
二、9、{}1-<πa a 10、12)(+-=-x x f
11、121
12、{}21<<a a
三、13、(1)1516
(2) 67
3
14、(1)如图所示:
(2)单调区间为()0,∞-,[)+∞,0.
(3) 由图象可知:当0=x 时,函数取到最小值1min =y
15、解:(1)x t 3= 在[]2,1-是单调增函数
∴ 932max ==t ,31
31min ==-t
(2)令x t 3=,[]2,1-∈x ,⎥⎦⎤
⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f ,1
x
y
3)1()(2+-=∴t x f ,⎥⎦
⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f 。
16、(1)证明: .11lg )(x x x f +-=y
y y f +-=∴11lg )( xy
y x xy y x y x y x y y x x y f x f ++++--=++--=+-++-=+11lg )1)(1()1)(1(lg 11lg 11lg )()( xy y x xy y x y x xy y x xy xy y x f xy y x xy y
x ++++--=++++-+==+++++++-11lg 1)(1lg lg )1(1111 )1()()(xy
y x f y f x f ++=+∴ (2))1()()(xy
y x f y f x f ++=+ )()()1(b f a f ab b a f +=++∴,1)()(=+∴b f a f ,111lg 11lg =+-++-∴b b a a )()())
(1)(()1(b f a f b a b a f ab b a f -+=-+-+=--∴ 2)()(=-+∴b f a f ,211lg 11lg =-+++-b b a a 211lg 11lg =+--+-∴b b a a , 111lg 11lg =+-++-b
b a a 解得311lg 2=+-a
a , 2
311lg )(=+-=∴a a a f 。
同理2111lg )(-=+-=b b b f。