函数与几何图形

合集下载

(完整版)《一次函数与几何图形综合》专题

(完整版)《一次函数与几何图形综合》专题

《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。

一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。

1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。

专题六 二次函数与几何图形的综合

专题六 二次函数与几何图形的综合
∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;
若不存在,请说明理由.
+ + = ,
【解析】(1)由题意得:ቐ

= ,


= ,
解得ቊ
= −,
故抛物线的表达式为y=x2-5x+4①;
(2)对于y=x2-5x+4,令y=x2-5x+4=0,解得x=1或4,令x=0,则y=4,
= − +
= −
得:ቐ
,解得ቐ = ,
=
= + +
=
∴抛物线的表达式为:y=-x2+2x+3;
(2)∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,
∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;
(3)存在.∵抛物线交正方形OBDC的边BD于点E,
设AB的中点为J,连接PJ,则J(-2,-2),

∴PJ= AB=2

,∴12+(n+2)2=(2 )2,解得n= -2或n=- -2,
∴P3(-1, -2),P4(-1,- -2),
综上所述,满足条件的点P的坐标为(-1,3)或(-1,-5)或(-1, -2)或(-1,- -2).
在Rt△BOM中,BM=tan 30°·OB= ,∴ME=BE-BM=2- ,
综上所述,ME的值为:3 -2或2- .
考点二直角三角形的存在性问题
解答二次函数中直角三角形存在性问题的方法:
(1)假设其存在,画出相应的图形.
(2)分情况讨论:当所给条件不能确定直角顶点时,应分情况讨论.分别令三角形三个

一次函数与几何图形的结合

一次函数与几何图形的结合

优翼微课
初中数学
一次函数与几何图形的结合
解题步骤归纳
根据条件
求出解析式
结合三角形全等求出线段长 待定系数法求解析式
根据解析式和正方形性质求出点的坐标
典例精讲
类型一:一次函数与三角形结合
如图①所示,直线l:y=mx+5m与x轴负半轴、y轴正 B A 图1 O
半轴分别交于A、B两点。
(1)当OA=OB时,试确定直线l的解析式; (2)在(1)的条件下,如图②所示,设Q为AB延长线上 一点,作直线OQ,过A、B两点分别作AM⊥OQ于 M,BN⊥OQ于N,若AM=4,BN=3,求MN的
Q
B A M N O
图2
长.
典例精讲
(2)在△AMO与△ONB中,
解:(1)∵直线l:y=mx+5m,
C E
x
课堂小结
一次函数 一次函数 与三角形 与四边形 结合 结合
Hale Waihona Puke ∴△ABO≌△DAH。∴DH=AO=2,AH=BO=4, ∴OH=AH-AO=2, ∴点D(2,-2)。 B
y
∴∠BAD=∠AOB=∠AHD=90°,
AB=AD
A O H
C E x
D
典例精讲
y
(2)设直线BD的表达式为y=kx+b ∴ 2 k b 2 b 4 k 3 解得 b 4 ∴直线BD的表达式为y=-3x+4. B A O H D
典例精讲
类型二:一次函数与四边形的结合
y
如图,一次函数y=2x+4的图象与x、y轴分别 相交于点A、B,四边形ABCD是正方形。 (1)求点A、B、D的坐标; (2)求直线BD的表达式.

几何图形中函数思想总结

几何图形中函数思想总结

几何图形中函数思想总结函数思想在几何图形中的应用是数学中的一个重要领域。

通过函数思想,我们可以给几何图形赋予更多的数学分析和推理能力,从而更好地理解和解决几何问题。

下面对几何图形中函数思想的应用进行总结。

首先,函数思想可以用来定义几何图形。

在几何学中,我们经常需要定义各种形状和大小的图形,而函数思想提供了一种很好的方法。

比如,我们可以用函数描述一个圆的形状,其方程为x^2+y^2=r^2,其中r为半径。

这样,我们就能通过该函数方程来确定圆的形状和大小。

其次,函数思想可以用来描述几何图形的运动和变化。

在几何学中,我们经常需要研究几何图形在平面上的运动和变化情况,而函数思想能够提供一个很好的分析工具。

通过将几何图形的位置或形状与某个参数关联起来,我们就可以用函数来描述图形的运动和变化。

比如,我们可以用函数描述一条直线的斜率,通过改变斜率的值,可以实现直线的平行移动或斜率变化。

函数思想还可以用来解决几何图形之间的关系问题。

在几何学中,我们经常需要研究图形之间的位置关系和相交情况,而函数思想可以提供一种很好的分析方法。

通过将几何图形的性质和特征用函数表示,我们可以通过函数的交点或相交情况来确定图形之间的位置关系。

比如,我们可以用函数表示两条直线的方程,通过求解方程组的解,可以确定两条直线的交点。

最后,函数思想还可以用来证明几何图形的性质和定理。

在几何学中,我们经常需要证明各种图形的性质和定理,而函数思想提供了一种很好的方法。

通过将几何图形的性质和特征用函数表示,我们可以利用函数的性质和运算来推导和证明各种几何定理。

比如,我们可以利用函数的导数性质来证明曲线的切线斜率等于该点的导数值。

综上所述,函数思想在几何图形中的应用是非常广泛的。

通过函数的定义、描述、分析和推导,我们可以更好地理解和解决几何问题。

因此,函数思想在几何学中的应用具有重要的意义,对于我们深入研究几何学和数学的其他分支都具有积极的推动作用。

专题:反比例函数与几何图形结合

专题:反比例函数与几何图形结合

专题4:反比例函数与几何图形结合方法点睛反比例函数与几何图形结合常涉及以下几个方面:1.求反比例函数与一次函数的解析式:(1)找到或求出反比例函数图象上一点的坐标,利用待定系数法求解;(2)找到或求出一次函数图象上两点的坐标,再利用待定系数法求解.注:当已知一次函数与反比例数函数图象上的一个交点A的坐标及交点B的横(纵)坐标,确定两个函数的解析式时,先利用点A的坐标求得反比例函数解析式,再由反比例函数解析式求得点B的坐标,再利用A,B两点的坐标确定一次函数解析式.2、(1)给出图形面积求点的坐标:根据解析式用只含一个参数的代数式表示该点的坐标,列出关于该图形面积的等式进行求解.(2)点的存在性问题:涉及线段和面积的关系,图形的判定等,对这类题应观察图形,结合问题,建立数学模型,按照题意列出等量关系式进行求解.典例分析例1:(2022达州中考)如图,一次函数1y x =+与反比例函数k y x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P专题过关1.(2022西宁中考)如图,正比例函数4y x =与反比例函数()0k y x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.2.(2022绵阳中考)如图,一次函数1y k x b =+与反比例函数2k y x=在第一象限交于(2,8)M 、N 两点,NA 垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和PMN3.(2022眉山中考)已知直线y x =与反比例函数k y x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与k y x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.4.(2022衡阳中考)如图,反比例函数myx=的图象与一次函数y kx b=+的图象相交于()3,1A,()1,B n-两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.A,B两点.5.(2022常德中考)如图,已知正比例函数1y x=与反比例函数2y的图象交于()2,2y y<时x的取值范围;(1)求2y的解析式并直接写出12(2)以AB为一条对角线作菱形,它的周长为,在此菱形的四条边中任选一条,求其所在直线的解析式.6.(2022绥化中考)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.7.(2022大庆中考)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.8.(2022湘潭中考)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.9.(2022成都中考)如图,在平面直角坐标系xOy 中,一次函数26y x =-+的图象与反比例函数ky x=的图象相交于(),4A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P 是第三象限内的反比例函数图象上一点,ABPQ 是完美筝形时,求P ,Q 两点的坐标.10.(2022河南西华二模)如图,反比例函数(0)my x x=>的图象与一次函数y kx b =+的图象交于(14)B ,和(1)C n ,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式(0)mkx b x x+> 的解集;(3)将直线BC 向下平移5个单位长度得到直线l ,已知点P ,Q 分别为x 轴、直线l 上的动点,当PC PQ +的值最小时,请直接写出点P 的坐标.11.(2022河南西华一模)在平面直角坐标系xOy 中,函数()0ky x x=>的图象经过点()2,3A ,()6,B a ,直线l :y =mx +n 经过A ,B 两点,直线l 分别交x 轴,y 轴于D ,C 两点.(1)求反比例函数与一次函数的解析式;(2)在y 轴上是否存在一点E ,使得以A ,C ,E 为顶点的三角形与△CDO 相似?若存在,请求出点E 的坐标;若不存在,请说明理由.12.(2022河南长垣一模)如图,在平面直角坐标系中,直线y x =与反比例函数1y x=(x >0)的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C ,且13BC OA =.AD ⊥y 轴于点D 、CE ⊥y 于点E .(1)求证:△BCE ∽△OAD ;(2)求点A 和点C 的坐标;(3)求k 值.13.(2022河南虞城二模)如图,点A 为直线y =3x 上位于第一象限的一个动点,过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度到点C ,以AB ,BC 为边构造矩形ABCD ,经过点A 的反比例函数()0ky x x=>的图象交CD 于点M .(1)若B(1,0),求点M 的坐标;(2)连接AM ,当AM ⊥OA 时,求点A 的坐标.14.(2022河南商城二模)如图,一次函数2y x =与反比例函数(0)ky k x=>的图象交于点A ,B ,点P 在以点(2,0)C -为圆心,1为半径的C 上,Q 是AP 的中点,OQ 长的最大值为32时.(1)试确定反比例函数ky x=的表达式.(2)C 与x 轴在点C 的左侧交于点M ,请直接写出劣弧MP 的长是___________.(sin 310.52︒≈,sin 400.64︒≈,sin530.8︒≈.)15.(2022新乡二模)如图,在平面直角坐标系中,正比例函数为11y k x =和反比例函数22k y x=图像交于A ,B 两点,矩形OAEC 的边EC 交x 轴于点D ,AD ⊥x 轴,点D 的坐标为(2,0),且AE=ED .(1)求这两个函数的解析式;(2)点P 为y 轴上的一个动点,当PE-PA 的值最大时,求点P 的坐标.16.(2022河南西平一模)如图,一次函数11y k x b =+经过点()4,0A ,()0,4B ,与反比例函数()220k y x x=>的图象交于点()1,C n ,D 两点.(1)求反比例函数和一次函数的解析式;(2)结合函数图象,直接写出当210k k x b x<+≤时x 的取值范围;(3)点P 在x 轴上,是否存在PCD 是以CD 为腰的等腰三角形,若存在,请直接写出点P 的坐标;若不存在,说明理由.17.(2022河南天一大联考)如图,一次函数y =k 1x+b 的图象与反比例函数y 2k x=的图象交于点A (m ,2),B (﹣1,4),与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的解析式;(2)求△OAB 的面积;(3)若点P 在y 轴上,且BP 12=OA ,请直接写出点P 的坐标.18.(2022河南实验中学一模)如图,在矩形OABC中,AB=2,BC=4,D是AB边的中点,反比例函数yk x(x>0)的图象经过点D,与BC边交于点E.(1)求反比例函数的表达式及点E的坐标;(2)若点P在y轴上,当△PDE的周长最小时,求出此时点P的坐标.19.(2022河南虞城二模)如图,一次函数142y x=-+交反比例函数(0)ky xx=>于A,B两点,过点A作AC x⊥轴于点C,AOC△的面积为3.(1)求反比例函数的解析式;(2)D为y轴上一个动点,当DA DB+有最小值时,求点D的坐标.20.(2022河南夏邑一模)在平面直角坐标系xOy 中,函数(0)k y x x=>的图象经过点(2,3),(6,)A B a ,直线:l y mx n =+经过A ,B 两点.(1)求反比例函数与一次函数的解析式,并在下面的平面直角坐标系中描绘出一次函数的大致图象.(2)当直线l 向下平移b 个单位时,与(0)k y x x=>的图象有唯一交点,求b 的值.(3)若直线AB 分别交x 轴,y 轴于D ,C 两点,在y 轴上是否存在一点Q ,使得ACQ 与CDO 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.21.(2022南阳方城二模)如图,在矩形OABC 中,2,4AB BC ==,点D 是边AB 的中点,反比例函数1(0)k y x x=>的图象经过点D ,交BC 边于点E ,直线DE 的解析式为2(0)y mx n m =+≠.(1)求反比例函数1(0)k y x x=>的解析式和直线DE 的解析式;(2)在y 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标;(3)在(2)的条件下,PDE △的周长最小值是______.22.(2022洛阳一模)如图,反比例函数()0k y k x =≠的图象与正比例函数32y x =-的图象相交于(),3A a ,B 两点.(1)求k 的值及点B 的坐标;(2)请直接写出不等式32k x x >-的解集;(3)已知AD x ∥轴,以AB 、AD 为边作菱形ABCD ,求菱形ABCD 的面积.23.(2022开封二模)如图,平面直角坐标系中,反比例函数()0n y n x=≠与一次函数()0y kx b k =+≠的图像相交于点()1,A m ,()3,1B --两点.(1)求反比例函数与一次函数的解析式;(2)直接写出n kx b x+>的解集.(3)已知直线AB 与y 轴交于点C ,点(),0P t 是x 轴上一动点,作PQ ⊥x 轴交反比例函数图像于点Q ,当以C ,P ,Q ,O 为顶点的四边形的面积等于2时,求t 的值.24.(2022鹤壁一模)如图,在矩形ABCO 中,84AB BC ==,,点D 是边AB 的中点,反比例函数11(0)k y x x=<的图象经过点D ,交BC 边于点E ,直线DE 的解析式为()2220y k x b k =+≠.(1)求反比例函数和直线DE 的解析式.(2)在x 轴上找一点P ,使PDE △的周长最小,求出此时点P 的坐标.(3)在(2)的条件下,PDE △的周长最小值是_________.25.(2022周口扶沟一模)如图,正比例函数y x =的图象与反比例函数k y x=(0x >)的图象交于点()1,A a ,在ABC 中,90ACB ∠=︒,CA CB =,点C 坐标为()2,0-.(1)求k 的值;(2)求AB 所在直线的解析式.26.(2022信阳一模)如图,直线y=-2x+b与x轴、y轴分别相交于点A,B,以线段AB为边在第一象限作正方形ABCD,已知(1)求直线AB的解析式;(2)求点D的坐标,并判断点D是否在双曲线y=12x,说明理由.27.(2022雅安中考)如图,在平面直角坐标系中,等腰直角三角形ABO的直角顶点A的坐标为(m,2),点B在x轴上,将△ABO向右平移得到△DEF,使点D恰好在反比例函数y=8x(x>0)的图象上.(1)求m的值和点D的坐标;(2)求DF所在直线的表达式;(3)若该反比例函数图象与直线DF的另一交点为点G,求S△EFG.28.(2022盘锦中考)如图,平面直角坐标系xOy 中,四边形OABC 是菱形,点A 在y 轴正半轴上,点B 的坐标是(4,8)-,反比例函数(0)k y x x=<的图象经过点C .(1)求反比例函数的解析式;(2)点D 在边CO 上,且34CD DO =,过点D 作DE x 轴,交反比例函数的图象于点E ,求点E 的坐标.29.(2022天门中考)(7分)如图,OA=OB,∠AOB=90°,点A,B分别在函数y=(x>0)和y=(x >0)的图象上,且点A的坐标为(1,4).(1)求k1,k2的值;(2)若点C,D分别在函数y=(x>0)和y=(x>0)的图象上,且不与点A,B重合,是否存在点C,D,使得△COD≌△AOB.若存在,请直接写出点C,D的坐标;若不存在,请说明理由.30.(2022恩施中考)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.31.(2022河南中考)如图,反比例函数()0ky x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.32.(2022荆州中考)小华同学学习函数知识后,对函数()()2410410x x y x x x⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.x…-4-3-2-134-12-14-01234…y (1)4324941140-4-243--1…请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接PA ,PB .①求当n =3时,直线l 的解析式和△PAB 的面积;②直接用含....n .的代数式表示......△PAB 的面积.33.(2022牡丹江中考)如图,在平面直角坐标系中,四边形ABCD ,A 在y 轴的正半轴上,B ,C 在x 轴上,AD//BC ,BD 平分ABC ∠,交AO 于点E ,交AC 于点F ,CAO DBC ∠=∠.若OB ,OC 的长分别是一元二次方程2560x x -+=的两个根,且OB OC >.请解答下列问题:(1)求点B ,C 的坐标;(2)若反比例函数()0ky k x=≠图象的一支经过点D ,求这个反比例函数的解析式;(3)平面内是否存在点M ,N (M 在N 的上方),使以B ,D ,M ,N 为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N 的坐标;若不存在,请说明理由.34.(2022驻马店六校联考三模)如图,在平面直角坐标系中,反比例函数kyx(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.35.(2022周口川汇区一模)如图,正方形ABCD的边AB在x轴上,点D的坐标为(2,2),点M是AD的中点,反比例函数ykx的图象经过点M,交BC于点N.(1)求反比例函数的表达式;(2)若点P是x轴上的一个动点,求PM+PN的最小值.36.(2022郑州外国语一模)如图,点()4,B a 是反比例函数()120y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,连接BF .(1)求k 的值;(2)求BDF 的面积;(3)设直线DE 的解析式为1y k x b =+,请结合图像直接写出不等式1kk x b x+<的解集______.37.(2022郑州二模)如图1,点A、B是双曲线y=kx(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且S阴影=1,△AGB的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A和点B,上述作图不变,得到矩形OCGF(阴影部分),点A、B在运动过程中始终保持S阴影=1不变(如图2),则△AGB的面积是否会改变?说明理由.38.(2022信阳三模)如图,在矩形OABC中,BC=4,OC,OA分别在x轴、y轴上,对角线OB,AC交于点E;过点E作EF⊥OB,交x轴于点F.反比例函数kyx=(x>0)的图像经过点E,且交BC于点D,已知S△OEF=5,CD=1.(1)求OF的长;(2)求反比例函数的解析式;(3)将△OEF沿射线EB个单位长度,得到△O'E'F',则EF的对应线段E'F'的中点(填“能”或“不能”)落在反比例函数kyx=(x>0)的图上.39.(2022河南新野一模)如图,()()4,30P m m m ->是双曲线12y x =-上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线k y x=于E 、F 两点.(1)求直线AB 的解析式;(2)若12BFBP =,求k 的值和EF 的长.40.(2022平顶山二模)如图,四边形ABCD,EFGH均为菱形,其中点E,A,B,F四点均在x轴上,点D,H在y轴上,EH∥AD.双曲线y=kx(x>0)的图象过点C(5,4),交边GH于点P(103,a).(1)填空:k=______,a=______;(2)求菱形EFGH的面积.41.(2022南阳卧龙一模)如图,已知在平面直角坐标系中,点(3,4)B 在反比例函数(0,0)k y k x x=>>的图象上,过点B 作BA x ⊥轴于点A ,连接OB ,将OAB 向右平移,得到,'''''O A B O B 交双曲线于点(3,)C a a .(1)求k ,a 的值;(2)求OAB 向右平移的距离;(3)连接,BC OC ,则OBC 的面积为____________.42.(2022洛阳伊川一模)如图,已知点()0,1A 在y 轴上,点()10B ,在x 轴上,以AB 为边在第一象限内作正方形ABCD ,此时反比例函数(0)k y k x=≠在第一象限内的图象恰好经过点C ,D .(1)直接写出点D 的坐标和反比例函数的表达式;(2)将正方形ABCD 绕点B 按顺时针方向旋转,当点C 的对应点C '落在x 轴上时,判断点D 的对应点D ′是否落在反比例函数k y x =的图象上,并说明理由.43.(2022洛阳二模)如图,在平面直角坐标系中,ABCD 的顶点分别为()1,2A ,()4,2B ,()7,5C ,曲线():0k G y x x=>.(1)求点D 的坐标;(2)当曲线G 经过ABCD 的对角线的交点时,求k 的值;(3)若曲线G 刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,则直接写出k 的取值范围是______.44.(2022河南林州一模)如图,在平面直角坐标系中,正方形ABCD 的边BC 在x 轴上,点A 坐标为()2,4,点M 是AB 的中点,反比例函数k y x=的图象经过点M ,交CD 于点N .(1)求反比例函数的表达式;(2)若反比例函数图象上的一个动点(),P m n 在正方形ABCD 的内部(含边界),求POC △面积的最小值.45.(2022河南兰考一模)如图,在平面直角坐标系中,ABCD 的顶点分别为(1,2),(4,2),(7,5)A B C ,曲线(0)k y k x=>.(1)当曲线经过ABCD 的对角线的交点时,求k 的值.(2)若曲线刚好将ABCD 边上及其内部的“整点”(横、纵坐标都为整数的点)分成数量相等的两部分,求k 的取值范围.46.(2022河南兰考二模)如图,在矩形OABC 中,2AB =,4BC =,D 是AB 边的中点,反比例函数()0k y x x=>的图象经过点D ,与BC 边交于点E .(1)求反比例函数的表达式及点E 的坐标;(2)若点P 在y 轴上,当△PDE 的周长最小时,直接写出△PDE 的面积.47.(2022河南滑县一模)如图,平行四边形OABC 的顶点A ,C 都在反比例函数y k x=(k >0)的图象上,已知点B 的坐标为(8,4),点C 的横坐标为2.(1)求反比例函数y k x=(k >0)的解析式;(2)求平行四边形OABC 的面积S .48.(2022河南邓州一模)如图,在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),反比例函数k y x =的图象经过了矩形的顶点B ,且1tan 2ABD ∠=.(1)求反比例函数表达式;(2)动手画直线OB ,记为y mx =,结合图象直接写出关于x 的不等式0k mx x ->的解集.。

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)近日,举行了一次关于一次函数与几何图形综合的专题讲座。

在思想方法方面,介绍了函数方法和数形结合法。

函数方法是通过观察运动和变化来分析数量关系,并将其抽象升华为函数模型,从而解决问题的方法。

数形结合法则是将数与形结合起来,分析研究并解决问题的一种思想方法,对于与函数有关的问题,使用数形结合法能够事半功倍。

在知识规律方面,讲座介绍了常数k和b对直线y=kx+b(k≠0)位置的影响。

当b大于0时,直线与y轴的正半轴相交;当b等于0时,直线经过原点;当b小于0时,直线与y轴的负半轴相交。

当k和b异号时,即b大于0时,直线与x轴正半轴相交;当k和b同号时,即k和b的乘积小于0时,直线与x轴负半轴相交。

当k大于0且b大于0时,图象经过第一、二、三象限;当k大于0且b等于0时,图象经过第一、三象限;当b大于0且b小于0时,图象经过第一、三、四象限;当k小于0且b大于0时,图象经过第一、二、四象限;当k小于0且b等于0时,图象经过第二、四象限;当b小于0且b小于0时,图象经过第二、三、四象限。

讲座还介绍了直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系。

当b大于0时,将直线y=kx向上平移b个单位,即可得到直线y=kx+b;当b小于0时,将直线y=kx向下平移|b|个单位,即可得到直线y=kx+b。

另外,当k1不等于k2时,y1与y2相交;当k1等于k2且b1不等于b2时,y1与y2平行但不重合;当k1等于k2且b1等于b2时,y1与y2重合。

最后,讲座还通过一个例题对知识规律进行了精讲。

题目是直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB。

要求求出AC的解析式。

的性质,需要灵活运用几何知识和代数知识。

在解答过程中,要注意清晰的逻辑思路和准确的计算,避免出现错误。

2) 在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q。

我们来探究一下BP与PQ的数量关系,并证明结论。

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题函数与几何图形问题呈现了完美的结合,函数与几何密不可分,其中复杂的问题可以通过分析函数与几何之间的联系来解决。

下面介绍几个常见的函数与几何图形问题。

一、抛物线:抛物线是一种二元二次函数,它的定义式为:y = ax² + bx + c,它有一个最典型的图形,类似于一个“U”字型,许多科学问题都可以使用该图来描述和解决,抛物线是应用非常广泛的几何图形。

二、双曲线:双曲线是一种三元一次函数,它的定义式为:y² = ax² + bx + c,双曲线通常由两个半双曲线组成,是几何图形当中比较复杂的一种,其在科学研究中发挥重要的作用。

三、圆形:圆形是一种二元一次函数,它的定义式为:(x-a)²+(y-b)²=r²,即圆心(a,b)与半径(r)的函数形式,圆形的函数表达式非常简单,其曲线在理论上可用无穷条线段来逼近,也是几何图形中最重要的图形之一。

四、椭圆:椭圆是一种三元二次函数,它的定义式为:(x-a)²/a²+(y-b)²/b²=1,椭圆是一种比较复杂的几何图形,它和圆形相差较大,它的定义比较复杂,其在科学研究中发挥重要的作用。

五、曲面:曲面是一种三维函数,它的定义式为:z = f(x, y),它是一种比较复杂的几何图形,其表面结构可以有多种样式,例如凸曲面、凹曲面等,曲面是应用非常广泛的几何图形之一。

总之,函数与几何图形问题是一个十分重要的课题,它们俩结合可以解决许多复杂的科学问题,上述就是常见的几种函数与几何图形问题,它们在科学研究中是扮演着重要的角色。

三角函数在几何图形中的应用

三角函数在几何图形中的应用

三角函数在几何图形中的应用简介:三角函数是数学中的一门重要的分支,它在几何图形中有着广泛的应用。

本文将探讨三角函数在几何图形中的应用,包括在三角形、圆形和多边形等几何图形中的角度计算、边长计算以及面积计算等方面的应用。

一、三角函数在三角形中的应用三角形是几何学中最基本的图形之一,三角函数在三角形中的应用非常广泛。

在三角形中,我们可以利用正弦定理、余弦定理和正切定理等三角函数的性质来计算角度、边长和面积等。

1.1 角度计算在三角形中,我们经常需要计算各个角度的大小。

利用正弦函数、余弦函数和正切函数,我们可以通过已知的边长来计算角度的大小。

例如,已知三角形的两条边长a和b,以及它们之间的夹角θ,我们可以通过正弦定理sinθ = a/b来计算θ的大小。

1.2 边长计算在三角形中,我们也经常需要计算各个边长的大小。

利用正弦函数、余弦函数和正切函数,我们可以通过已知的角度来计算边长的大小。

例如,已知三角形的一个角度θ和与该角度相对应的边长a,以及另外两个边长b和c,我们可以通过余弦定理cosθ = (b² + c² - a²)/(2bc)来计算边长a的大小。

1.3 面积计算在三角形中,我们还可以利用三角函数来计算三角形的面积。

例如,已知三角形的一个角度θ和与该角度相对应的边长a和b,我们可以通过正弦函数的性质来计算三角形的面积。

三角形的面积等于底边长乘以高,而高可以通过正弦函数来计算,即面积= 1/2 * a * b * sinθ。

二、三角函数在圆形中的应用圆形是几何学中的另一个重要图形,三角函数在圆形中也有着广泛的应用。

在圆形中,我们可以利用三角函数的性质来计算圆的周长、面积以及弧长等。

2.1 周长计算在圆形中,我们经常需要计算圆的周长。

利用三角函数的性质,我们可以通过圆的半径r来计算圆的周长。

圆的周长等于2πr,其中π是一个常数,约等于3.14159。

2.2 面积计算在圆形中,我们也可以利用三角函数来计算圆的面积。

函数与几何

函数与几何

函数与几何一、引言函数与几何是数学中两个重要的概念,二者之间有着密切的联系。

函数可以描述几何图形的形状和位置,而几何图形也可以用函数来表示。

本文将介绍函数与几何的基本概念、关系以及应用。

二、函数的基本概念1. 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中唯一确定的元素上。

通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

2. 函数的性质(1)单调性:如果对于任意x1和x2(x1<x2),有f(x1)<f(x2),则称函数单调递增;如果有f(x1)>f(x2),则称函数单调递减。

(2)奇偶性:如果对于任意x,有f(-x)=f(x),则称函数为偶函数;如果有f(-x)=-f(x),则称函数为奇函数;如果既不是偶函数也不是奇函数,则称其为一般函数。

(3)周期性:如果存在一个正数T,使得对于任意x,有f(x+T)=f(x),则称其为周期函数,T为最小正周期。

三、几何图形的基本概念1. 点、线、面的定义点是几何中最基本的图形,没有大小和形状,只有位置。

线是由无数个点组成的,没有宽度和厚度,只有长度和方向。

面是由无数个线段组成的,有长度和宽度,但没有厚度。

2. 几何变换几何变换是指将一个几何图形按照一定规律进行移动、旋转、翻折等操作后得到的新图形。

常见的几何变换包括平移、旋转、镜像和缩放等。

四、函数与几何之间的关系1. 函数与直线之间的关系(1)斜率:直线可以用y=kx+b表示,其中k为斜率,表示直线在x 轴上每增加1单位时在y轴上增加的单位数。

斜率为正表示直线向上倾斜,斜率为负表示直线向下倾斜。

(2)截距:b为截距,表示直线与y轴交点在y轴上的坐标值。

(3)函数与直线相交:如果一个函数与一条直线有且仅有一个交点,则这条直线是该函数的切线。

切线可以用导数来求解。

2. 函数与圆之间的关系圆可以用(x-a)²+(y-b)²=r²表示,其中(a,b)为圆心坐标,r为半径。

一次函数与几何综合(题型齐全)

一次函数与几何综合(题型齐全)

一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。

或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。

专题七 函数图象与几何图形的结合

专题七      函数图象与几何图形的结合

M
数 学
ath
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
M
数 学
ath 4.如图1,直线 AB分别与x轴负半轴、 y轴正半轴交于 A、B 两点.OA 、 OB的长度分别为a和b,且满足a2-2ab+b2=0. (1)判断△AOB的形状; (2)如图2,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B 两点分别作 AM ⊥ OQ 于 M , BN ⊥ OQ 于 N ,若 AM=9 , BN=4 ,求 MN的长.
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
M
数 学
ath
[总结]本题主要考查了一次函数与直角三角形的综合运用和有关轴 对称的性质.要熟练掌握根据函数分析式求得有关线段的长度的方法, 灵活运用数形结合的知识解题.
中考2号·河北专版
M
数 学
ath
中考2号·河北专版
中考2号·河北专版
M
数 学
ath
[解析]①由于A、B在同一反比例函数y=2x图象上,由反比例系数的 几何意义可得:S△ODB=S△OCA=1;
②由于矩形 OCMD 、△ ODB 、△ OCA 为定值,则四边形 OAMB 的面积
不会发生变化; ③连接 OM ,若点 A 是 MC 的中点,且 S △ ODB =S △ OCA =1 ,则△ OBD 和 △OBM面积相等,点B一定是MD的中点.
以利用坐标表示线段的长度,进而与线段有关的三角函数、相似三角 形及面积问题形成综合问题 .这类问题多是以所给图象为背景,综合考 查函数及几何图形的相关知识 .通常先利用待定系数法求解析式,再利 用函数性质进一步解决问题.

数学中的三角函数与几何图形

数学中的三角函数与几何图形

数学中的三角函数与几何图形在数学领域中,三角函数是一类重要而广泛应用于各个领域的函数。

它们与几何图形之间有着密切的联系,通过研究三角函数与几何图形的关系,我们可以更深入地理解数学的本质。

一、三角函数的定义与性质三角函数包括正弦函数、余弦函数、正切函数等。

这些函数的定义是基于单位圆上的点的坐标,从而与几何图形产生了联系。

例如,正弦函数可以定义为一个角的对边与斜边的比值,这个比值可以表示为sinθ,其中θ代表一个角的度数或弧度。

三角函数具有许多重要的性质。

例如,正弦函数和余弦函数是周期函数,其周期为2π或360度。

这意味着它们的图像在每个周期内重复出现。

此外,三角函数还具有奇偶性质,即sin(-θ)=-sinθ和cos(-θ)=cosθ。

这些性质对于解决问题和简化计算过程非常有用。

二、三角函数与几何图形的关系1. 正弦函数与几何图形的关系正弦函数与几何图形之间的关系可以通过单位圆来解释。

单位圆是以原点为中心,半径为1的圆。

对于一个角θ,我们可以将单位圆上的点与角度联系起来。

例如,当θ=0度或0弧度时,对应的点位于单位圆的x轴上。

通过单位圆,我们可以将正弦函数与几何图形联系起来。

正弦函数的图像是一个连续的波动曲线,其振幅为1,周期为2π或360度。

正弦函数的值在0到1之间变化,当θ=90度或π/2弧度时,正弦函数的值达到最大值1。

2. 余弦函数与几何图形的关系余弦函数也可以通过单位圆来解释。

与正弦函数类似,余弦函数的图像也是一个连续的波动曲线,其振幅为1,周期为2π或360度。

不同的是,余弦函数在θ=0度或0弧度时取最大值1,而在θ=90度或π/2弧度时取最小值0。

通过观察正弦函数和余弦函数的图像,我们可以发现它们是相互关联的。

正弦函数的图像在x轴上方和下方波动,而余弦函数的图像则在x轴上方和下方之间波动。

这种关系反映了三角函数之间的互补性。

3. 正切函数与几何图形的关系正切函数是另一个重要的三角函数。

一次函数与几何图形的联系

一次函数与几何图形的联系

一次函数与几何图形的联系一次函数,也称为一次方程,是数学中的基础概念之一。

它表示了一个变量与另一个变量之间的线性关系。

与一次函数密切相关的是几何图形,特别是直线。

本文将探讨一次函数与几何图形之间的联系,包括一次函数的图像、斜率与截距的几何意义,以及在几何图形中应用一次函数进行问题求解的实际例子。

一、一次函数的图像一次函数的图像是一条直线,具有如下一般形式:y = mx + b其中,m代表斜率,b代表截距。

斜率决定了直线的倾斜方向和陡峭程度,截距则决定了直线与y轴的交点。

对于斜率m,当m > 0时,直线向右上方倾斜;当m < 0时,直线向右下方倾斜;当m = 0时,直线平行于x轴。

斜率的绝对值越大,直线的倾斜程度越大。

对于截距b,当b > 0时,直线与y轴的交点在y轴的上方;当b < 0时,直线与y轴的交点在y轴的下方;当b = 0时,直线通过y轴的原点。

通过改变斜率m和截距b的值,可以绘制出直线在坐标系中的各种位置和倾斜情况的图像。

这些图像不仅在数学中有重要意义,也在几何图形中有广泛应用。

二、斜率与截距的几何意义斜率和截距在几何图形中具有重要的几何意义,对于理解和描述直线的性质起着关键作用。

1. 斜率的几何意义斜率代表了直线上两个点之间的纵向变化与横向变化之间的比例关系。

具体来说,斜率等于直线上任意两个点的纵坐标之差与横坐标之差之比。

在几何上,当两点的纵向变化与横向变化之间的比例关系相等时,得到的直线是一条直角线,即斜率为正负无穷大。

当两点的纵向变化与横向变化之间的比例关系不相等时,得到的直线是一条斜线,斜率为有限值。

斜率还可以表示直线的坡度和倾斜程度。

当斜率越大(绝对值越大),直线越陡峭;当斜率越小(绝对值越小),直线越平缓。

2. 截距的几何意义截距代表了直线与y轴的交点在坐标系中的位置。

截距为正时,直线与y轴的交点在y轴的上方;截距为负时,直线与y轴的交点在y轴的下方;截距为零时,直线通过y轴的原点。

三角函数在几何图形中的应用

三角函数在几何图形中的应用

三角函数在几何图形中的应用2023年,随着科技的不断发展,人类对数学的理解越来越深入,而三角函数作为数学中的一个基本概念,在几何图形中的应用也越来越广泛。

首先,三角函数在三角形中的应用是最为常见的。

根据三角函数中的正弦、余弦、正切等概念,我们能够求出三角形的各种属性,比如边长、角度、面积等等。

此外,我们还能利用三角函数中的反函数,比如反正切函数,求出三角形的某个角度。

这些信息在很多实际应用中都非常有用,比如建筑设计、地图制作等等。

同时,随着人工智能技术的发展,我们也可以利用计算机模拟三角形的各种情况,提高计算的精度和速度,使得三角形的属性计算更加准确和高效。

除了三角形,三角函数在其他几何图形中的应用也非常广泛。

比如在圆形和椭圆的计算中,我们常常要使用三角函数的概念和公式。

利用正弦和余弦函数,我们可以求出圆的直径和周长,计算出椭圆的长轴和短轴长度。

利用正切函数,我们还可以计算出椭圆的离心率等重要信息。

这些信息在很多领域的工程设计和研究中都非常重要,比如航空航天、光学设计等等。

此外,三角函数也在立体图形中的应用得到了广泛的应用。

在计算棱锥和棱柱的体积和表面积时,我们也要使用到三角函数的概念和公式。

利用正弦和余弦函数,我们可以求出棱锥和棱柱的斜高和高,并进而计算出它们的体积和表面积。

这些信息在很多领域中都非常重要,比如土木工程、机械设计等等。

总之,三角函数在几何图形中的应用无处不在,它不仅帮助我们计算各种几何图形的属性和参数,还帮助我们研究和应用这些信息,提高我们的科学技术水平。

相信随着科技的不断发展和人类对数学的不断深入理解,三角函数的应用会越来越广泛,发挥着越来越重要的作用。

数学公式知识:几何图形与三角函数的图像比较

数学公式知识:几何图形与三角函数的图像比较

数学公式知识:几何图形与三角函数的图像比较在我们日常生活中,经常会接触到各种几何图形和三角函数的概念与运用。

几何图形是我们研究空间形态、计算面积、周长等问题时用到的基础知识,而三角函数则是我们研究角度大小、正弦、余弦、正切等数学概念时用到的重要方法。

本文将从几何图形和三角函数的图像比较入手,细致地介绍这两个数学概念的联系和应用。

一、直线与正弦函数我们首先来比较一下直线和正弦函数的图像。

直线是我们初中时学习的一个基础概念,其图像可以用一条斜线来表示。

而正弦函数是三角函数中比较基础和重要的一个函数,用函数符号写作y=sin x,其图像呈现周期性的波浪形。

将两个图像进行对比,我们发现,直线的斜率一定,与x轴方向同一直线上的y值也是一定的;而正弦函数的图像在每个周期内都经历一次最大值和最小值的变化,y轴向上和向下摆动,而且这个摆动是以周期为单位进行的。

因此,从图像上来看,直线与正弦函数是有很大的不同之处的。

二、圆与余弦函数圆是一个非常重要的几何图形,其在数学和物理中都有广泛的应用。

我们将圆的图像与余弦函数进行比较。

圆的图像是一个沿着圆周轨迹的连续曲线,其在数学中的关系式可以用x²+y²=r²来表示。

而余弦函数是比较基础和重要的三角函数之一,用函数符号写作y=cos x,其图像也与正弦函数相似,呈周期性波形,并且在每个周期内也会经历一次最大值和最小值的变化。

将圆和余弦函数的图像进行比较,我们可以发现,图像形状非常相似,因为余弦函数的图像是沿着一个曲线波形进行变化的,并且在每个周期内也经历了最大值和最小值。

从图像上来看,圆和余弦函数是比较相近的两个图像。

三、三角形与正切函数三角形是几何图形中最基础的形状之一,而正切函数是三角函数中比较重要的一个函数,与余弦函数和正弦函数不同,其图像是在x 轴和y轴之间摆动的。

将三角形和正切函数的图像进行比较,可以发现,它们的形状差别其实很大,因为三角形由三条线段组成,其形状可以各异,并且角度大小和三边长度的关系也非常多样化;而正切函数的图像则是一条在x轴和y轴之间来回摆动的曲线,其每个周期内也会经历一次正无穷值和负无穷值的变化。

二次函数与几何图形

二次函数与几何图形

A 0 二次函数与几何图形一、1、线段的和差最值问题例题:已知在抛物线的对称轴上存在一点 △P ,使得 PBC 的周长最小,请求出点 P 的坐标 .2、抛物线与几何图形的面积问题例 1:已知抛物线 y=-x2+2x+3 与 x 轴交于 A,B 两点,其中 A 点位于 B 点的左侧,与 y 轴交于 C 点,顶点为 P练习、如图所示,已知抛物线 y=ax2+bx+c(a≠0)与 x 轴相交于两点 (x1, ) B (x2,0)(x1<x2)与 y 轴负半轴相交于点 C ,若抛物线顶点 P 的横坐标是 1,A 、 B 两点间的距离为 4,且△ABC 的面积为 6。

(1)求点 A 和 B 的坐标 (2)求此抛物线的解析式 (3)求四边形 ACPB 的面积变式(4)在抛物线上(除点 C 外), 是否存在点 N ,使得 △S NAB = S△ABC, 若 存在,求出点 N 的坐标, 若不存在,请说明理由。

变式(5)设 M (a ,b )(其中 0<a<3)是抛物线上的一个动点,试求四边形 OCMB 面积的最大值,及此时点 M 的坐标。

练习 2:运动中的面积问题在矩形 ABCD 中,AB=12cm ,BC=6cm ,点 P 沿 AB 边从点 A 出发向 B 以 2cm/秒的速度移动;点 Q 沿 DA 边从点 D 开始向 A 以 1cm/秒的速度移动。

如果 P 、Q 同时 出发,用 t 秒表示移动的时间(0<t <6)那么: (1)设运动开始后第 t 秒钟 后,五边形 QPBCD 的面积为 Scm2,写出 S 与 t 的函数关系式; t 为何值时,S 最小?最小值是多少? (2)求四边形 QAPC 的面积;提出一个与计算结果有关的结论。

①当线段 PQ = AB 时,求 tan ∠CED 的值;二、因动点产生的等腰三角形问题例 12012 年扬州市中考第 27 题如图 1,抛物线 y =ax 2+bx +c 经过 A(-1,0)、B(3, 0)、C(0 ,3)三点,直线 l 是抛物线的对称 轴.(1)求抛物线的函数关系式;(2)设点 P 是直线 l 上的一个动点,当△P AC 的周长最小时,求点 P 的坐标; (3)在直线 l 上是否存在点 △M ,使 MAC 为等腰三角形,若存在,直接写出所有符合 条件的点 M 的坐标;若不存在,请说明理由.三、因动点产生的直角三角形问题例 32011 年沈阳市中考第 25 题如图 1,已知抛物线 y =x 2+b x +c 与 x 轴交于 A 、B 两点(点 A 在点 B 左侧),与 y 轴交于 点 C(0,-3),对称轴是直线 x =1,直线 BC 与抛物线的对称轴交于点 D .(1)求抛物线的函数表达式; (2)求直线 BC 的函数表达式;(3)点 E 为 y 轴上一动点,CE 的垂直平分线交 CE 于点 F ,交抛物线于 P 、Q 两点, 且点 P 在第三象限.3 4②当以 C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点 P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图 1四、因动点产生的平行四边形问题1、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)例 1.已知抛物线 y = -ax 2 + 2ax + b 与 x 轴的一个交点为 A(-1,0),与 y 轴的正半轴交于点 C .D x N⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2.已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=12x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(,),N(,);(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.B NCyO N′BP1CyOP2x AM第(2)题AM备用图2、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)1.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。

中学数学函数与几何图形关系

中学数学函数与几何图形关系

中学数学函数与几何图形关系一、引言数学是一门研究数量、结构、变化以及空间关系的学科。

其中,函数和几何图形是数学中重要的概念。

函数描述了两个变量之间的关系,而几何图形则研究了空间的形状和性质。

本文将探讨中学数学中函数与几何图形之间的关系以及应用。

二、函数与几何图形的基本概念1. 函数的基本概念函数是数学中的一个重要概念,它描述了一个变量(称为自变量)与另一个变量(称为因变量)之间的关系。

在数学中,函数通常用符号表示,例如f(x)或y = f(x),其中x为自变量,y为因变量。

函数可以用图表、方程或表格的形式表示,它可以是线性的、二次的、指数的、对数的等等。

2. 几何图形的基本概念几何图形是由点、线、面组成的空间形状。

常见的几何图形有直线、射线、线段、角、三角形、四边形、圆等。

几何图形的属性包括长度、面积、周长、角度等。

几何图形可以通过坐标系进行研究和描述,这涉及到函数和方程。

三、函数与直线的关系1. 常数函数与直线常数函数形如f(x) = c,其中c为常数。

当图像在坐标系中表示时,它是一条水平线,其斜率为0。

因此,常数函数与直线的关系十分紧密。

2. 一次函数与直线一次函数的标准形式为y = kx + b,其中k为斜率,b为截距。

一次函数的图像为一条直线,它与数学中研究的直线有着密切的联系。

3. 函数与平行直线如果两条直线的斜率相等,则它们互相平行。

在函数的概念中,斜率可以看作是函数的特征之一。

因此,函数与平行直线的关系也是十分重要的。

四、函数与曲线的关系1. 二次函数与抛物线二次函数的标准形式为y = ax^2 + bx + c,其中a、b和c为常数且a ≠ 0。

二次函数的图像为一个抛物线。

通过调整参数a、b和c的值,可以得到不同形状的抛物线。

2. 指数函数与曲线指数函数的标准形式为y = a^x,其中a为底数且a > 0。

指数函数的图像为一条曲线,并且它们的增长速度随着自变量的增大而加快。

几何图形中的函数

几何图形中的函数

几何图形中的函数几何函数是指在几何图形中的函数。

它是数字函数的特殊形式。

几何函数是由几何图形中的直线和曲线构成的。

它有两个自变量,它们是x和y,y是x的函数。

一般来说,几何函数是在不同类型的几何图形中使用的。

几何函数的一个常见应用就是用于描述物理学中的问题。

它可以用来描述物理现象的变化,例如力的大小,力学轨道,电磁场的变化等。

几何函数也可以用来描述几何图形的变化。

例如,圆是从原点开始的xy极坐标系的曲线,它的函数是:r=sqrt(x^2+y^2)。

椭圆的函数是:r=sqrt(x^2/a^2+y^2/b^2)。

等腰三角形的函数是:y=ax。

几何函数也可以用来描述几何变换,例如旋转、反射和缩放。

旋转可以使用类似函数:x’=xcosθ-ysinθ,y’=xsinθ+ycosθ;反射可以使用类似函数:x’=x,y’=-y;缩放可以使用类似函数:x’=c*x,y’=c*y。

另外,几何函数也可以用来描述几何对象的形状,例如平行四边形的函数是:x=acos(t),y=bsin(t);五边形的函数是:x=acos(3t),y=bsin(3t);六边形的函数是:x=acos(2t),y=bsin(2t)。

几何函数还可以用来描述更复杂的几何图形,例如螺旋曲线的函数是:x=acos(t)*cos(pt),y=bsin(t)*sin(pt);和环螺线的函数是:x=acos(t)*sin(qt),y=bsin(t)*cos(qt)。

总之,几何函数是在几何图形中使用的一种特殊函数,它是一种由不同类型几何元素构成的双变量函数,它可以用来描述物理模型,几何图形的变化,以及更复杂的几何图形。

因此,几何函数是数学的重要概念,它对科学技术的发展有很大的贡献。

函数与几何图形课件

函数与几何图形课件

6 y= x
3 y= 在第一象限内 x
想一想: 想一想:
在一个反比例函数 图象上任意取两点P、 图象上任意取两点 、 Q,过点 、Q分别作 分别作x ,过点P、 分别作 轴的平行线, 轴和y轴的平行线 轴和y轴的平行线,与 坐标轴围成的矩形面 积分别记为S 积分别记为 1和S2, 则S1和S2之间有什么 关系?说明理由。 关系?说明理由。
y C N B
Q
O
M
图12
P
A
x
(1)点 (填M或N)能到达终点; (2)求△AQM的面积S与运动时间t的函数 关系式,并写出自变量t的取值范围,当t为何 值时,S的值最大; (3)是否存在点M,使得△AQM为直角三角 形?若存在,求出点M的坐标,若不存在, 说明理由. y
C N B
Q
O
M
图12
P
6. 如图正比例函数
y = kx ( k > 0 )与反比
1 例函数 y = 的图像相交于A、C两点,过A x
作x轴的垂线交x轴于B, 连结BC.若∆ABC的面积 为S,则 S A. = 1 B.S = 2 S C. = 3 D.S的值不确定
练一练
m (m>0,n>0).反比例函数 y = 反比例函数 x
考察面积不变性和 中心对称性。 中心对称性。
1 5. 如图,A、C是函数 y = 的图象上的任 x 意两点,过A作 x 轴的垂线,垂足为B;过C 作 y 轴的垂线,垂足为D.记 Rt∆AOB 面积 Rt 为S1 , ∆COD 的面积为S 2 ,则 S1 与 S 2 的
关系是( ).
S (A) 1> S 2 (B) S1 < S 2 (C)S1 = S 2 S (D) 1 与S 2的大小关系 不能确定.

函数与几何图形

函数与几何图形

第13讲 函数与几何图形小测试 总分10分 得分___________1.(4分)周长为100cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的关系式为____________, x 的取值范围为____________.2.(6分)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是__________分钟.37.2【教学目标】能从图象中获取变量之间关系的信息.【教学重难点】解决动点问题【例1】如图,矩形ABCD 中,AB =4,BC =9,动点Q 沿着C →D →A →B 的方向运动至点B 停止,设点(1)当点Q 在CD 上运动时,求y 与x 的关系式;(2)当点Q 在AD 上运动时,△QCB 的面积改变了吗?请说明理由 (3)说一说y 是怎样随着x 的变化而变化的?(1)y = 9 2x ;(2)面积没有改变;(3)随着x 的变化,y 先增大,然后不变,最后减小【例2】如图,在△ABC 中,∠A =60°,AB =24cm ,AC =16cm .动点M 从点B 出发,沿AB 向点A 运的,速度为4cm /s ;同时,动点N 从点A 出发,沿AC 向点C 运的,速度为2cm /s .设CN =x ,AM =y .(1)求y 与x 的关系式;y =2x -8 (2)当△AMN 为等边三角形,求x 的值.894Q D CB A A BC MN的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少?【变式1】如图1,在△ABC中,AD是BC边上的高,AD=8cm,E是BC边上的一个动点,由B向C运动,△ADE的面积y(cm2)与BE的长x(cm)的关系如图2所示.(1)图2中P点表示什么?(2)求CD的长;(3)求y与x的关系式.【变式2】如图,在边长为4的正方形ABCD中,动点E以每秒1个单位的速度从点A开始沿边AB向点B运动,同时动点F以每秒1个单位的速度从点B开始沿边BC向点C运动.设运动时间为t秒.(1)求证:DE⊥AF;(2)当t为何值时,DE=DF?【变式3】如图,在△ABC中,∠C=90°,AC=BC,CD∥AB,CD=AB=4cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,连接PD交AC于点E,过点P作PF⊥PD,交BC于点F,连接PC.设点P的运动时间为x(秒).(1)若△PBC的面积为y,求y与x的关系式;(2)在点P的运动过程中,何时图中会出现全等三角形?直接写出x的值(有理数)以及相应的全等三角形的对数.(1)y=4-x;【家庭作业】C DC DA DB CFE如图,在长方形ABCD中,AB=4,BC=7,P是BC边上的动点(不与B点重合),过点P的直线交CD 的延长线于R,交AD于Q,且∠RPC=45°.设BP=x,四边形ABPQ的面积为y,四边形QPCD的面积为z.(1)求y与x的关系式;(2)当x为何值时,y=2z?x=83A DRQB CP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与几何图形1. 如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( D )2. (连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的ΔAOB ,ΔCOD 处,直角边OB ,OD 在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至ΔPEF 处时,设PE ,PF 与OC 分别交于点M ,N ,与x 轴分别交于点G ,H .(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由. 解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,,.设直线AC 所对应的函数关系式为y kx b =+. ······························································ 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+.……4分(2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上, 所以可设点P 的坐标为(3)a a -,.(第24题答图)过点M 作x 轴的垂线,设垂足为点K ,则有MK h =. 因为点M 在直线OC 上,所以有(2)M h h ,. ··················· 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ························································· 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ············································································································ 10分 法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-. 故11(3)22GH PH a ==-. 所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ·············································· 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ·························································· 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯-22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ········································································ 12分 当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,.3. (沈阳)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB=1,OB=3,矩形ABOC 绕点O 按顺时针方向旋转600后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线y=ax 2+bx+c 过点A ,E ,D .(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O ,B ,P ,Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. 解:(1)点E 在y 轴上……1分理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ·············································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ································································································· 5分由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为(···································································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:28299y x x =--+ ·························································· 9分(3)存在符合条件的点P ,点Q . ·············································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ··········································································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上28229m ∴-+=解得,10m=,28m =-1(02)P ∴,,22P ⎛⎫⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为28⎛⎫-⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫- ⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭.4. (徐州)如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.x5. (河南)如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.6. 如图20,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒).(1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或 秒时,MN=21AC ;(3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由. 解:(1)(4,0),(0,3); ························································································· 2分 (2) 2,6; ························································································································ 4分 (3) 当0<t ≤4时,OM =t .由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . ········································· 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. ·································· 7分由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. ·········································· 8分 S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积=12-)4(23-t -21(8-t )(6-t 43)-)4(23-t =t t 3832+-. ········································································································ 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ········································· 7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t . ······················ 8分 以下同方法一. (4) 有最大值. 方法一: 当0<t ≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ································································ 11分当4<t <8时, ∵ 抛物线S=t t 3832+-的开口向下,它的顶点是(4,6),∴ S <6. 综上,当t=4时,S 有最大值6. ················································································ 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ································· 11分 显然,当t=4时,S 有最大值6.7. (郴州)如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF ..(1) 求证:ΔBEF ∽ΔCEG .(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由.(3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少? (1) 因为四边形ABCD 是平行四边形,所以AB DG ························································································································ 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ········································································································ 3分 (2)BEF CEG △与△的周长之和为定值. ····································································· 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH 由 BC =10,AB =5,AM =4,可得CH =8,BH =6,所以BC +CH +BH =24 ··········································································································· 6分 理由二:由AB =5,AM =4,可知 在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====, 所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ················································· 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ········································ 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ······················································································· 9分最大值为1216.AM xH GF EDCB8. (镇江)如图,在直角坐标系xoy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(0,1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.解:(1)法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠, AOH QCH ∴△≌△.……(1分)OH CH ∴=,即H 为AQ 的中点. ········································································ (2分) 法二:(01)A ,,(01)B -,,OA OB ∴=. ···························································· (1分) 又BQ x ∥轴,HA HQ ∴=. ··················································································· (2分) (2)①由(1)可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠,RAH PQH ∴△≌△. ································································································ (3分) AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形. ···················································· (4分)②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ====+=.∴平行四边形APQR 为菱形. ··················································································· (6分)(3)设直线PR 为y kx b =+,由OH CH =,得22m H ⎛⎫⎪⎝⎭,,214P m m ⎛⎫ ⎪⎝⎭,代入得:2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-. ····················· (7分) 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . 9. (无锡)如图,已知点A 从(1,0)出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O ,A 为顶点作菱形OABC ,使点B ,C 在第一象限内,且∠AOC=600,;以P (0,3)为圆心,PC 为半径作圆.设点A 运动了t 秒,求:(1)点C 的坐标(用含t 的代数式表示);(2)当点A 在运动过程中,所有使⊙P 与菱形OABC 的边所在直线相切的t 的值. 解:(1)过C 作CD x ⊥轴于D ,1OA t =+,1OC t ∴=+,1cos602tOD OC +∴==,3(1sin 60DC OC ==,∴点C 的坐标为1)22t t ⎛⎫++ ⎪ ⎪⎝⎭,. ··········· (2分) (2)①当P 与OC 相切时(如图1),切点为C ,此时PC OC ⊥, cos30OC OP ∴=,3132t∴+=, 12t ∴=-. ················ (4分) ②当P 与OA ,即与x 轴相切时(如图2),则切点为O ,PC OP =,过P 作PE OC ⊥于E ,则12OE OC =, ······························································· (5分) 133cos302t OP+∴==,1t ∴=. ························································ (7分) ③当P 与AB 所在直线相切时(如图3),设切点为F ,PF 交OC 于G ,则PF OC ⊥,FG CD ∴==, 3(1sin 30PC PF OP ∴==+.···································································· (8分) 过C 作CH y ⊥轴于H ,则222PH CH PC +=,22213322t ⎫⎛+⎛⎫∴+=+⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 化简,得2(1)1)270t t +-++=,解得1t+=,9310t =-<, 1t∴=. ∴所求t的值是12-,1和1. 10. (辽宁)如图14,在Rt ΔABC 中,∠A=900,AB=AC,BC=42,另有一等腰梯形DEFG (GF ∥DE )的底边DE 与BC 重合,两腰分别落在AB,AC 上,且G,F 分别是AB,AC 的中点.(1)求等腰梯形DEFG 的面积;(2)操作:固定ΔABC ,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF ′G ′(如图15).探究1:在运动过程中,四边形BDG ′G 能否是菱形?若能,请求出此时x 的值;若不能,请说明理由.探究2:设在运动过程中ΔABC 与等腰梯形DEFG 重叠部分的面积为y ,求y 与x 的函数关系式.解:如图6,(1)过点G 作GM BC ⊥于M .AB AC =,90BAC ∠=,BC =G 为AB 中点 GM ∴=又GF ,分别为AB AC ,的中点AFG12GF BC ∴==··································· 2分162DEFG S ∴==梯形∴等腰梯形DEFG 的面积为6. ······················································································ 3分(2)能为菱形 如图7,由BG DG '∥,GG BC '∥∴四边形BDG G '是平行四边形当122BD BG AB ===时,四边形BDG G '为菱形,此时可求得2x = ∴当2x =秒时,四边形BDG G '为菱形.(3)分两种情况:①当0x <≤方法一:GM =BDG GS'∴∴重叠部分的面积为:6y =∴当0x <≤y 与x的函数关系式为6y =- ······································· 10分②当x ≤设FC 与DG '交于点P ,则45PDC PCD ∠=∠= 90CPD ∴∠=,PC PD =作PQ DC ⊥于Q ,则1)2PQ DQ QC x ===∴重叠部分的面积为:221111)))82244y x x x x =⨯==-+11. 如图14,已知半径为1的⊙O1与x 轴交于A ,B 两点,OM 为⊙O1的切线,切点为M ,圆心O1的坐标为(2,0),二次函数y=-x 2+bx+c 的图象经过A ,B 两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P ,O ,A 为顶点的三角形与ΔOO 1M 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.F GAF 'G 'BCE图7MF GAF 'G 'BCE图8Q D P解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩……2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ···················································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ········································································· 4分 OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ································ 5分1cos302OM OO ∴===,在Rt MOF △中,3cos3032OF OM ===. 1sin 3032MF OM ===. ∴点M 坐标为322⎛⎫⎪ ⎪⎝⎭, ······································································································ 6分设切线OM 的函数解析式为(0)y kx k =≠,由题意可知322k =,3k ∴= ······· 7分 ∴切线OM 的函数解析式为y x =·············································································· 8分 (3)存在. ··························································································································· 9分①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==11P ⎛∴ ⎝⎭·················································· 10分。

相关文档
最新文档