二次函数与几何综合类存在问题39PPT课件
二次函数的应用课件ppt课件ppt课件ppt
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
中考复习:二次函数与几何综合类存在性问题(共29张PPT)
解析
(1)由题意知,点 A 与点 B 关于直线 x=-1 对
称,A(-3,0),
∴B(1,0). (2)①当 a=1 时,则 b=2,把 A(-3,0)代入 y=x2+2x
+c 中得 c=-3, ∴该抛物线的关系式为 y=x2+2x-3.
∵S△BOC=12·OB·OC=21×1×3=32,
∴S△POC=4S△BOC=4×32=6.
故经过 A、B、C 三点的抛物线的关系式是 y=-12x2+32x+2.
解析
(2)∵y=-12x2+32x+2=-12x-232+285,
∴M 32,285.
设直线 MC 对应的函数关系式是 y=kx+b,
把 C(0,2),M
32,285
代入,得285=32k+b, b=2,
--322-3×-32=94.
总结:
解有关二次函数的综合问题时,首先要根据已知条件求出二 次函数的关系式,再结合图象,运用几何知识解决问题.
探究二.二次函数与四边形的结合
例2.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象 与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于C(0,-3), 点P是直线BC下方抛物线上的动点.
总结:此类问题常涉及运用待定系数法求二次函数、一次 函数的关系式,矩形的性质,相似三角形的判定和性质,直 角三角形、等腰三角形的判定.要注意的是当相似三角形的 对应边和对应角不明确时,要分类讨论,以免漏解.
探究四.二次函数与圆的结合
例4.如图,在平面直角坐标系中,坐标原点 为O,A点坐标为(4,0),B点坐标为(-1,0), 以AB的中点P为圆心,AB为直径作⊙P与y轴 正半轴交于点C. (1)求经过A、B、C三点的抛物线所对应的函 数关系式; (2)设M为(1)中抛物线的顶点,求直线MC对 应的函数关系式; (3)试说明直线MC与⊙P的位置关系,并证明 你的结论.
二次函数的课件ppt课件ppt课件
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则
解
根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。
中考复习专题:二次函数与几何的综合题PPT课件
10
即y=∴∴13x–二23–次=a函83(0x数+–13的).(0解–析9),式解为4分得y=a=13(x3+1,)(x–9),
(2011资阳)已知抛物线C:y=ax2+bx+c(a<0)过原点,与x 轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1) 如图14-1,若∠AOB=60°,求抛物线C的解析式;(3分)
2008年资阳24.(本小题满分12分)如图10,已知点A的坐标是(-1,0),
点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、 BC,过A、B、C三点作抛物线. (1)求抛物线的解析式;
解:(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
3.联立函数表达式.
互转化的基础是:点坐标与线段长。 一般解题思路是:
解析式方程组的解是图像交点坐标
(1)已知点坐标 线段长,线段长 点
坐标;
(2)用待定系数法求函数解析式;
(3)解析式 点坐标 线段长 面积
及其它。
(压轴题07) 点P为抛物线 y x2 2mx m2 (m为常数, )上任m一点0,将抛物线绕顶点G逆时针旋转90度后得到的 新图象与y轴交于A、B两点(点A在点B的上方),点Q 为点P旋转后的对应点.
(2) (3分) 求点D的坐标;
三垂直:横平竖直
F
O'D=O'A=2,DC=AC=4 ∆DO'F∽∆CDM,类似比1:2 设O'F=a,DF=b。 则DM=2a,CM=2b。 所以,2a+b=4.且2+a=2b。
DN=DF-FN=3/5
N
二次函数与几何图形综合题(共67张PPT)
∴y=-3x+3,
∴当△ACG是一个以AG为底边的等腰三角形时,CG的解析式为y=-3x+3;
③以CG为底边,则AC=AG,
∴10=(1+g)2,
解得x1=-1+ 10,x2=-1- 10, ∴点G的坐标为(-1+ 10 ,0)或(-1- 10 ,0),
将G(-1+ 10 ,0),C(0,3)代入y=kx+b中,可得y=-
3.
∴∠C′BH=60°. 由翻折得∠DBH= 1 ∠C′BH=30°,
2
∵在Rt△BHD中,DH=BH· tan∠DBH=2tan30°=2 3 ,
3 ∴点D的坐标为(1, );(7分)
(3)如解图①,取(2)中的点C′,D,连接CC′, ∵BC′=BC,∠C′BC=60°, ∴△C′CB为等边三角形. 分类讨论如下:
(2)∵A(-5,0),B(-1,0),C(0,5), ∴AA′=AB=4, 由平移的性质可知C′(4,5). 四边形AA′C′C是平行四边形. 理由如下: ∵AA′=CC′=4,AA′∥CC′, ∴四边形AA′C′C是平行四边形;
(3)点G是坐标平面内一点,当四边形ACGM是平行四边形时,求GE的长;
第1题解图①
①当点P在x轴上方时,点Q在x轴上方, 连接BQ,C′P, ∵△PCQ,△C′CB为等边三角形, ∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°. ∴∠BCQ=∠C′CP. ∴△BCQ ≌ △C′CP. ∴BQ=C′P. ∵点Q在抛物线的对称轴上, ∴BQ=CQ. ∴C′P=CQ=CP.
第1题解图①
又∵BC′=BC,
∴BP垂直平分CC′.
由翻折可知BD垂直平分CC′,
∴点D在直线BP上.
设直线BP的函数表达式为y=kx+b(k≠0),
二次函数与几何综合类存在性问题课件
03
注意答案的完整性和规 范性;
04
在解答过程中,注意逻 辑的严密性和推理的准 确性。
02
二次函数与几何综合类存在
性问题的类型
以二次函数为背景的存在性问题
总结词
这类问题主要考察二次函数的性质,如开口方向、对称轴、顶点等,以及这些 性质在几何图形中的应用。
详细描述
这类问题通常会给出二次函数的一般形式,如$f(x) = ax^2 + bx + c$,然后要 求求解满足某些条件的点或线。例如,求函数$f(x) = x^2 - 2x$在$x$轴上的交 点,或求函数$f(x) = x^2 - 2x$的对称轴等。
3. 将代数结果和几何结果相互印证,得出最终结论。
04
二次函数与几何综合类存在
性问题的实例分析
实例一
总结词
利用抛物线的性质和点到直线距离公式,求出最小值。
详细描述
设抛物线方程为 $y = ax^2 + bx + c$,直线方程为 $y = mx + n$。首先,将抛线上的点 $(x, y)$ 到直线的距离表示为 $d = frac{|ax^2 + bx + c - mx - n|}{sqrt{m^2 + 1}}$。然后,利用抛物线的 性质和极值定理,求出 $d$ 的最小值。
实例三
总结词
利用双曲线的性质和点到直线距离公 式,求出最小值。
详细描述
设双曲线方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$,直线方程为 $y = mx + n$。首先,将双曲线上的点 $(x, y)$ 到直线的 距离表示为 $d = frac{|mx - y + n|}{sqrt{m^2 + 1}}$。然后,利用双曲线的性质和极值定理 ,求出 $d$ 的最小值。
二次函数与几何综合类问题复习课件
①当 m=-3, n>3 时, 求
S△ACO S四边形AOED
的值(用含 n 的代数式表示).
②当四边形 AOED 为菱形时, m 与 n 满足的关系式为________; 当四边形 AOED 为正方形时,m=________,n=________.
图 40-2
解:(1)当 m=-1 时,y=x =1,当 n=4 时,y=x =16. ∴点 A 的坐标为(-1,1),点 B 的坐标为(4,16). ∵直线 y=kx+b 过 A、B 两点, 1=-k+b, k=3, ∴ 解得 16=4k+b. b=4. 当 m=-2 时,y=x2=4,当 n=3 时,y=x2=9. ∴点 A 的坐标为(-2,4),点 B 的坐标为(3,9).
情况二:当-2<t<0 时,如图②,设过点 P 且平行于 y 轴 的直线交 AC 于点 N,则 OP=-t,PA=t-(-2)=t+2. ∵PN∥OC,∴△APN∽△AOC, PN PA PN t+2 ∴ = ,即 = , OC OA 3 2 3 ∴PN= (t+2), 2
1 1 3 3 ∴S△APN= PN·PA= × (t+2)×(t+2)= (t+2)2, 2 2 2 4 1 3 3 2 2 ∴S=S△ABC-S△APN= ×6×3- (t+2) =- (t+2) +9. 2 4 4 3 综上所述,当 0≤t<4 时,S= (4-t)2;当-2<t<0 时,S 8 3 =- (t+2)2+9. 4
②如图,连接 AE 交 OD 于点 P.
∵点 A(m,m2)关于 y 轴的对称点为 E, ∴E(-m,m2),∴OP=m2. ∵k=m+n,b=-mn,∴D(0,-mn). 若四边形 AOED 为菱形,则 OP=DP,即-mn=2m2,∴n=-2m. 若四边形 AOED 为正方形,则 OP=AP,即-m=m2,解得 m=-1 或 m=0(舍去),∴n=-2m=2. 故答案为 n=-2m;-1,2.
二次函数初三ppt课件ppt课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
二次函数的图像和性质ppt课件
二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件
目
CONTENCT
录
• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答
《二次函数》ppt课件
判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。
二次函数解析几何--存在性问题
二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。
二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考向互动探究
探究一 二次函数与三角形的结合 例 1 [2014·内江] 如图抛物线 y=ax2+bx+C 经过点 A(-3,0),C(0, 4),点 B 在抛物线上,CB∥x 轴,且 AB 平分∠CAO.
(1)求抛物线所对应的函数解析式. (2)线段 AB 上有一动点 P,过点 P 作 y 轴的平行线,交拋物线于点 Q,求线段 PQ 的最大值. (3)抛物线的对称轴上是否存在点 M,使△ABM 是以 AB 为直角边 的直角三角形?如果存在,求出点 M 的坐标;如果不存在,说明理由.
第39课时┃ 二次函数与几何综合类存在性问题
【例题分层分析】
(1)根据CB∥x轴,且AB平分∠CAO等几何条件,能求出点B 的坐标吗?
(2)为了求抛物线所对应的函数解析式已具备了哪些条件? (3)点P在哪儿,如何用x表示点P的坐标?事实上只要求出AB 所在直线所对应的函数解析式就可以了. (4)线段PQ的两个端点在哪两个函数图象上,怎样表示它们 的坐标,如何表示PQ的长? (5)△ABM是以AB为直角边的直角三角形存在以∠MAB为直 角和以∠MBA为直角两种情况.
第39课时┃ 二次函数与几何综合类存在性问题
解:(1)点 A 的坐标为(-3,0),点 C 的坐标为(0,4),∴AC =5.
∵AB 平分∠CAO,∴∠CAB=∠BAO. ∵CB∥x 轴,∴∠CBA=∠BAO, ∴∠CAB=∠CBA,∴AC=BC=5, ∴点 B 的坐标为(5,4). 将 A(-3,0),C(0,4),B(5,4)代入 y=ax2+bx+c,得
∴直线 AB 所对应的函数解析式为 y=12x+32. 设点 P 的坐标为(x,12x+32),则点 Q 的坐标为(x,-16x2+56x +4), PQ=-16x2+56x+4-(12x+32)=-16(x-1)2+83, 故当 x=1 时,线段 PQ 的值最大,最大值为83.
第39课时┃ 二次函数与几何综合类存在性问题
第39课时 二次函数与几何综合类 存在性问题
第39课时┃ 二次函数与几何综合类存在性问题
二次函数与三角形、四边形、圆和相似三角形常常综合 在一起考查,解决这类问题需要用到数形结合思想,把“数 ”与“形”结合起来,互相渗透.存在探索型问题是指在给 定条件下,判断某种数学现象是否存在、某个结论是否出现 的问题,解决这类问题的一般思路是先假设结论存在,然后 在这个假设下进行演绎推理,若推出矛盾,即可否定假设; 若推出合理,则可肯定假设.
0=9a-3b+c,
a=-16,
44==c2,5a+5b+c,解得bc==456,,
∴抛物线所对应的函数解析式为 y=-16x2+56x+4.
第39课时┃ 二次函数与几何综合类存在性问题
(2)设直线 AB 所对应的函数解析式为 y=kx+n,把 A(-3, 0),B(5,4)代入,得04= =- 5k3+k+ n,n,解得nk==1232,,
第39课时┃ 二次函数与几何综合类存在性问题
【例题分层分析】
(1)图中已知抛物线上几个点?将点B,C的坐标代入二次函 数的解析式.
(2)画出四边形POP′C,若四边形POP′C为菱形,那么点P必 在OC的垂直平分线上,由此能求出点P的坐标吗?
(3)由于△ABC的面积为定值,求四边形ABPC的最大面积 ,即求△BPC的最大面积.
探究二 二次函数与四边形的结合
例 2 [2013·枣庄] 如图,在平面直角坐标系中,二次函数 y= x2+bx+C 的图象与 x 轴交于 A,B 两点,点 B 的坐标为(3,0), 与 y 轴交于点 C(0,-3),点 P 是直线 BC 下方抛物线上的动点.
(1)求这个二次函数的解析式. (2)连接 PO,PC,并将△POC 沿 y 轴对折,得到四边形 POP′C, 那么是否存在点 P,使得四边形 POP′C 为菱形?若存在,求出此 时点 P 的坐标;若不存在,请说明理由. (3)当点 P 运动到什么位置时,四边形 ABPC 的面积最大?求 出此时点 P 的坐标和四边形 ABPC 的最大面积.
(3)抛物线 y=-16x2+56x+4 的对称轴是直线 x=52. 要使△ABM 是以 AB 为直角边的直角三角形,有两种情况: ①当点 B 为直角顶点时,如图①所示.
设抛物线的对称轴与 BC 交于点 D,与 AB 交于点 G,与 x 轴交于点 H.
由点 G 在直线 AB 和抛物线的对称轴上可知,点 G 的坐标 为(52,141).
第39课时┃ 二次函数与几何综合类存在性问题
∵∠BDG=90°,BD=5-52=52,DG=4-141=54,
∴BG= BD2+DG2=
(5)2+(5)2=5
2
4
4
5.
同理 AG=11 4 5. ∵∠AGH=∠MGB,∠AHG=∠MBG=90°, ∴△AGH∽△MGB,
11 5
∴MAGG=GGHB,即
第39课时┃ 二次函数与几何综合类存在性问题
【解题方法点析】 以二次函数、三角形为背景的有关点的存在性的问题是以二 次函数的图象和解析式为背景,判断三角形满足某些关于点 的条件时,是否存在的问题,这类问题有关于点的对称点、 线段、三角形等类型之分.这类试题集代数、几何知识于一 体,数形结合,5
4
,解得 5
MG=245,
4
∴MH=MG+GH=245+141=9, 故点 M 的坐标为(52,9).
第39课时┃ 二次函数与几何综合类存在性问题
②当点 A 为直角顶点时,如图②所示.设抛物线的对称轴与 AB 交于点 G,与 x 轴交于点 H.
由①知 GH=141.∵∠GHA=∠BAM=90°, ∴∠MAH=90°-∠GAH=∠AGM. ∵∠AHG=∠MHA,∠AGH=∠MAH, ∴△AGH∽△MAH,∴GAHH=MAHH,即3+14152=3M+H52, 解得 MH=11,∴点 M 的坐标为(52,-11). 综上所述,存在点 M,点 M 的坐标为(52,9)或(52,-11).