第14章 一次函数全章水平测试(含答案)
新人教版八年级数学下册《一次函数》章节测试题及答案
新人教版八年级数学下册《一次函数》章节测试题及答案新人教版八年级数学下册《一次函数》章节测试题及答案一、选择题1.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是().A.(3,1)B.(-3,8)C.(8,14)D.(-1,4)2.变量x,y有如下关系:①x+y=10 ②y=-5x ③y=|x-3|④y^2=8x。
其中y是x的函数的是A.①B.①②C.①②③D.①②③④3.下列各曲线中不能表示y是x的函数是().A. B. C. D.4.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,1),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A。
k>5 B。
k<5 C。
k>-5 D。
k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B.二象限C.四象限D.不能确定7.如果通过平移直线y=x/(x+5)得到y=-x/(x+5)的图象,那么直线y=5必须().A.向上平移5个单位 B.向下平移5个单位 C.向上平移3个单位 D.向下平移3个单位8.经过一、二、四象限的函数是A。
y=7 B。
y=-2x C。
y=7-2x D。
y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D.±211.根据如图的程序,计算当输入x=3时,输出的结果y=.输入y=-x+5(x>1)y=x+5(x≤1)输出12.已知直线y=2x与直线y=-2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A.①③④B.②③C.①②③④D.①②③二、填空题13.已知y=(m-2)x^n-1+3是关于x的一次函数,则m,n分别为:m=2,n=2.14.当直线y=2x+b与直线y=kx-1平行时,k=2,b=-1.15.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的函数关系式为Q=55-10s;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶450千米。
八年级数学第十四章一次函数单元测试题(含答案)
第十四章 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。
初二 第14章 一次函数 单元测试含答案
八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。
1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
人教版八年级下册数学《一次函数》单元测试卷合集(含答案)
人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
(完整版)初中数学一次函数练习题及答案
一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。
一次函数经典提高题(含答案)
n dg s14一次函数经典练习题过关测试一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6(C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限(B )二象限(C )三象限(D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2(C )y 1<y 2(D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-x-4的图像,可把直线y=-x ( ).3232(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-(B )m>5 (C )m=- (D )m=5141411.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<(B )<k<1 (C )k>1(D )k>1或k<13131312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5, 这样的直线可以作( )(A )4条(B )3条 (C )2条 (D )1条 13.已知abc≠0,而且=p ,那么直线y=px+p 一定通过( )a b b c c ac a b+++==(A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个(B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于( 0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个(B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,12时间为t (分),离开点A 的路程为S (米), 那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A 的路程S (米) 之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P 到x 轴的距离等于3, 则点P 的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=x 与y=-2x+3的图像的交点在第_________象限.238.某公司规定一个退休职工每年可获得一份退休金, 金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b≠a),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、 q )表示______元.9.若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9, 则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. 小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x (cm ) 37.040.042.045.0桌高y (cm )70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后, 测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) 求小明出发多长时间距家12千米?5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B 在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位, 求正比例函数和一次函数的解析式.he i r8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点, 点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD,求图象经过B 、D 两点的一次函数的解析式.9.已知:如图一次函数y=x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线12交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30 台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元, 说明有多少种分派方案,并将各种方案写出.15.A 市、B 市和C 市有某种机器10台、10台、8台, 现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.答案:1.B 2.B 3.A 4.A 5.B 提示:由方程组 的解知两直线的交点为(1,a+b ),y bx ay ax b =+⎧⎨=+⎩而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1,故图C 不对;图D 中交点纵坐标是大于a ,小于b 的数,不等于a+b ,故图D 不对;故选B .6.B 提示:∵直线y=kx+b 经过一、二、四象限,∴ 对于直线y=bx+k ,0,k b <⎧⎨>⎩∵ ∴图像不经过第二象限,故应选B .0,0k b <⎧⎨>⎩7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b= 2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-x 的图像向下平移4个单位就可得到y=-x-4的图像.323210.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例,∴ ∴m=-,故应选C .5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即1411.B 12.C 13.B 提示:∵=p ,a b b c c ac a b+++==∴①若a+b+c≠0,则p==2;()()()a b b c c a a b c+++++++②若a+b+c=0,则p==-1,a b cc c+-=∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q│>0, k·b<0,||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭A A 一次函数y=kx+b 中,y 随x 的增大而减小一次函数的图像一定经过一、二、四000k k b <⎫⇒<⇒⇒⎬>⎭象限,选A .二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(,3)或(,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-31353当y=3时,x=;当y=-3时,x=;∴点P 的坐标为(,3)或(,-3).13531353提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b.将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组 92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩即∴两函数的交点坐标为(,),在第一象限.98348.. 9.y=2x+7或y=-2x+3 10.222()aq bp bp aq --10042009三、1.(1)由题意得: 20244a b a b b +==-⎧⎧⎨⎨==⎩⎩即即∴这个一镒函数的解析式为:y=-2x+4( 函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得 解得k=-2,p=5,2131k p k p +=⎧⎨+=-⎩∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 两点的直线解析式为y=k 3x ,∵B(1,15),∴y=15x.(0≤x≤1),分别令y=12,得x=(小时),x=(小时).26545答:小明出发小时或小时距家12千米.265455.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6,∴AO·│y B │=6,12∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得 1062223a ba ab b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩即即∴y=x,y=-x-3即所求.128.∵点A 、B 分别是直线与x 轴和y 轴交点,∴A(-3,0),B (0),∵点C 坐标(1,0)由勾股定理得,设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴①BC CD AB BD ==∴,∴8x 2-22x+5=0,22321112x x x -+=+∴x 1=,x 2=,经检验:x 1=,x 2=,都是方程①的根,52145214∵x=,不合题意,∴舍去,∴x=,∴D 点坐标为(,0).145252dAl l t he rb 设图象过B 、D 两点的一次函数解析式为y=kx+b ,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为.(2)若点D 在点C 左侧则x<1,可证△ABC∽△ADB,∴ ②AD BD AB CB == ∴8x 2-18x-5=0,∴x 1=-,x 2=,经检验x 1=,x 2=,都是方程②的根.14521452∵x 2=不合题意舍去,∴x 1=-,∴D 点坐标为(-,0),521414∴图象过B 、D (-,0)两点的一次函数解析式为,14综上所述,满足题意的一次函数为或.9.直线y=x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3),12∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即,OD OAOC OB=∴OD==8.∴点D 的坐标为(0,8),463OC OA OB ⨯=A 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由 2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩即即∴点E 的坐标为(,-).2254511.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.15.(1)由题设知,A 市、B 市、C 市发往D 市的机器台数分x ,x ,18-2x ,发往E 市的机器台数分别为10-x ,10-x ,2x-10.于是W=200x+300x+400(18-2x )+800(10-x )+700(10-x )+500(2x-10)=-800x+17200.又 010,010,01828,59,x x x x ≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x 是整数).由上式可知,W 是随着x 的增加而减少的,所以当x=9时,W 取到最小值10000元; 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为x ,y ,18-x-y ,发往E 市的机器台数分别是10-x ,10-y ,x+y-10,于是W=200x+800(10-x )+300y+700(10-y )+ 400(19-x-y )+500(x+y-10)=-500x-300y-17200.又010,010,010,010,0188,1018,x x y y x y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且(x ,y 为整数).010,010,018.x y x y ≤≤⎧⎪≤≤⎨⎪≤+≤⎩W=-200x-300(x+y )+17200≥-200×10-300×18+17200=9800.当x= 10,y=8时,W=9800.所以,W 的最小值为9800.又W=-200x-300(x+y )+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W 的最大值为14200.。
一次函数单元测试题(含答案)
第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
第14章 平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)
第14章平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系内,把点p(-3,1)向右平移一个单位,则得到的对应点p'的坐标是()A.(-3,2);B.(-3,0);C.(-4,1);D.(-2,1).2、如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y= 过点B且与AC交于点N,如果AN=3CN,S△NBC= ,那么k的值为()A.8B.9C.10D.123、在平面直角坐标系中,点关于y轴的对称点的坐标是()A. B. C. D.4、在平面直角坐标系中,点P(﹣5,﹣4)位于()A.第一象限B.第二象限C.第三象限D.第四象限5、将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( )A.(-6,0)B.(6,0)C.(0,-2)D.(0,2)6、若a+b<0,ab<0,则下列判断正确的是( )A.a、b都是正数B.a、b都是负数C.a、b异号且负数的绝对值大 D.a、b异号且正数的绝对值大7、下列命题:①(a≥0)表示a的平方根;②立方根等于本身的数是0;③若ab=0,则P(a,b)在坐标原点;④在平面直角坐标系中,若点A的坐标为(﹣1,﹣2),且AB平行于x轴,AB=5,则点B 的坐标为(4,﹣2),其中真命题的个数为()A.0B.1C.2D.38、一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)10、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)11、如果点M(m+3,2m+4)在x轴上,那么点M的坐标是( )A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)12、如图,半径为1的半圆的圆心在原点,直径AB在x轴上,过原点的任意一条半径与半圆交于点P,过P作PN垂直于x轴,N为垂足,则∠OPN的平分线过定点()A.(0,﹣1)B.(0,﹣)C.(0,﹣)D.(0,﹣)13、如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)14、在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个15、已知点P(3﹣m,m﹣1)在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则点B’的坐标是________17、在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为________.18、如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B 在y轴上移动时,PB的长度为________.19、如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第 200 个点的横坐标为________.20、若点N(x,y)在第二象限,且到x轴距离为2,到y轴距离为3,则点N的坐标是________.21、在电影票上如果将“8排4号”记作(8,4),那么(1,5)表示________.22、如图,在平面直角坐标系中,点A在第一象限,⊙A与轴相切于B,与轴交于C (0,1)、D(0,4)两点,则点A的坐标是________.23、如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是________24、如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为________.25、已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标________(写出一个即可),此时△ABO的面积为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
初中数学 第14章一次函数 全章预习提纲 14.1.2函数(第一课时)
仙游南方中学八年级数学(上)第十四章《轴对称》自学参考提纲
第一课时变量
执笔人:严顺志审核人:陈黎辉陈贵陈美都组长:余荣
班级座号姓名
一、内容:教科书P95—97
二、学习目标:
1、经过回顾思考认识变量中的自变量与函数.
2、进一步理解掌握确定函数关系式.
三、预习方法:回顾思考─探索交流─归纳总结.
四、预习过程
1、知识衔接:我们来回顾一下上节课所研究的每个问题中各有两个变量。
那么同一问题中的两个变量之间的联系。
1、细读课本P95,完成课本中的空白处,并回答这些问题的共同特征:
(1)(2)
由以上特点我们可以归纳出这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就。
2、生活中的许多问题中,都能看到两个变量有上面那样的关系。
(课本第96页的“思考”。
)
3、归纳总结函数的相关概念:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有与其对应,那么我们就说x是,y是x的。
x 时y=b,那么b叫做当自变量x的值为a时y的。
如果当a
4、计算器上的程序操作问题。
(见教材第97页)
探究(1).y是x的函数吗?它们的关系式是。
探究(2).y是x的函数吗?它们的关系式是。
三、课堂练习:练习1、见教材第99页练习。
练习2、见教材第107页习题6.
补充练习:1、
3、下列关系中,y不是x函数的是()
.2
x A y = 2.B y x = .C y = .D y x = 五、预习小结:通过预习,你学会了什么?与大家交流一下。
八年级数学上册 第14章 一次函数综合练习(含答案)
第十四章一次函数基础【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b中b=0时特殊的一次函数。
2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。
3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),( ,0)两点的一条直线。
4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴。
5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。
6.一次函数经常与一次方程、一次不等式相联系。
【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004·福州)已知正比例函数y=kx(k≠0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(2003·甘肃)结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是( )A.y=1B.1≤y<4C.y=4D.y>44.(2004·哈尔滨)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的电话费是38.7元,则通话时间是分钟,若通话时间62分钟,则电话费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.③对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD⊥x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0,表示汽车向数轴正方向行驶;速度c<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图像的形式画在了同一直角坐标系中,如图.请解答下列问题:(1)就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格.(2)甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.参考答案:1.B2.A3.D4.C5.y =0.15x+24,98,33.3 6.①,,亏损②3 ③y1=x ④y=x—27.(1)超过3000千米,(2)3000千米(3)个体8.(1)(2)当a≤—1时,S=2;当—1<a≤0时,S=2—(1+a)2;当0<a≤1时,S=(1—a)2;当a≥1时,S=0。
2020沪科版九年级上物理第14章了解电路培优试卷(含答案)
2020沪科版九年级上物理培优同步试卷(含答案)第十四章了解电路(全章)一、填空题(每空2分,共28分)1、a、b、c是三个轻质带电泡沫小球,它们相互作用情况如图所示。
已知a带负电,则b带电。
若用丝绸摩擦过的玻璃棒去靠近c,二者将相互(选填“吸引”或“排斥”)。
第 1 题第 2 题第 4 题2、如图所示为国产油电混合动力汽车。
给汽车蓄电池充电时,蓄电池相当于(选填“用电器”或“电源”);汽车各转向灯能独立工作,因此转向灯是联的;3、有些建筑物的顶端有避雷针,避雷针是针状金属物,它可以利用尖端放电,把云层所带的电荷导入大地,若云层带正电,那么尖端放电时,避雷针中自由电子的运动方向是(选填“从云层到大地”或“从大地到云层”)。
4、某同学连接的电路图如图所示,他所用的电源是四节新干电池,他将开关闭合后,电压表的示数为2V,则L1两端的电压为 V5、在如图所示的电路中,开关S闭合时,电灯L1和L2是联的,断开开关S,电流表的示数(选填“变大”、“变小”或“不变”)。
第 5 题第 6 题第 7 题6、在如图所示的电路中,闭合开关S后,电压表V1示数为4.5V,则电压表V2的示数为 V7、如图所示,在烧杯中加些盐水,然后将连在电压表上的铜片和锌片插入盐水中,这样就制成了一个电池。
观察电压表指针的偏转与接线可知:这个电池的电压是 V,电池的正极是片。
8、如图所示,在电路中要使电灯L1和L2并联,应闭合开关.要使电灯L1和L2串联应闭合开关;为了防止电路出现短路,不能同时闭合开关.第 8 题第 9 题9、如甲图所示电路,当开关S闭合后,电流表的指针偏转如乙图所示,则灯泡L2的电流应是 A。
二、选择题(每题3分,共30分)10、用毛皮摩擦橡胶棒、丝绸摩擦玻璃棒后,下列分析正确的是()A.丝绸摩擦的玻璃棒带正电 B.玻璃棒是绝缘体不会带电C.橡胶棒带负电不能吸引轻小物体 D.摩擦过的玻璃棒和橡胶棒靠近会互相排斥11、如图所示,取两个相同的验电器A和B,使A不带带电,B带负电,用带有绝缘手柄的金属棒把A和B连接起来。
一次函数全章各节同步练习题(含答案)
常量和变量 扎实基础1.在△ABC 中,它的底边是a ,底边上的高是h ,则△ABC 的面积S=21ah ,当高h 为定值时,此式子中( ) A.S 、a 是变量;21、h 是常量 B.S 、a 、h 是变量;21是常量 C.a 、h 是变量;21、S 是常量 D.S 是变量;21、a 、h 是常量2.对于圆的周长公式C=2πR,下列说法中正确的是( )A.C 、R 是变量,2、π是常量B.C 是变量,2、π、R 是常量C.C 、π、R 是变量,2是常量D.R 是变量,2、C 、π是常量 3.圆的面积S 与直径D 之间的关系是S=41πD 2,其中 是变量, 是常量. 4.某汽车以70千米/时的速度匀速行驶,行驶的路程s(千米)与行驶的时间t(小时)之间的解析式为 , 其中, 是变量, 是常量.5.现在有450本图书借给学生阅读,每人5本,剩下的书y(本)和学生数x(人)之间的关系是y=450-5x ,其中常量是 ,变量是 .6.某名工人共生产了600个零件,那么这名工人所用的生产时间t(min)与每分钟生产的零件个数a 之间的解析式为 ,其中的常量是 ,变量是 . 综合提升1.要画一个面积为15cm 2的长方形,其长为xcm ,宽为ycm ,在这一变化过程中,常量与变量分别是( ) A.常量为15,变量为x 、y B.常量为15、y ,变量为x C.常量为15、x ,变量为y D.常量为x 、y ,变量为152.以21m/s 的速度向上抛一个小球,小球的高度h(m)与小球运动的时间t(s)之间的关系是h=21t-4.9t 2,下列说法正确的是( )A.-4.9是常量,21,t ,h 是变量B.21,-4.9是常量,t ,h 是变量C.t ,h 是常量,21,-4.9是变量D.t ,h 是常量,-4.9是变量3.一只飞虫作匀速飞行,行程为40m ,若这只飞虫的飞行速度为v(m/s),所需时间为t(s),那么飞行速度v 与所需时间t 之间的解析式是 ,在这个式子中,常量是 ,变量是 .4.由实验测得某一弹簧的长度y(cm)与悬挂的重物x(kg)之间有如下的关系y=52x+12,在这里常量是 , 变量是 .5.用总长度为70m 的篱笆围成一个矩形场地,发现围成的矩形场地面积S(m 2)与一边长l(m)之间存在如下关系: S=l(35-l),其中35是 ,变量是 .6.在地球上的某地,温度T(℃)与海拔d(m)之间的关系可近似地用T=10-150d来表示,其中常量为 ,变量为 .7.设打字收费的标准是每一千个字收费4元,则打字费y(元)与千字数x 之间的解析式可写成y= ,其中常量是 .8.某玩具厂计划生产一种玩具小狗,每日最高产量为40只,且每日生产的产品全部售出,已知生产x 只玩具小狗的成本为R 元,售价每只为P 元,且R ,P 与x 之间的关系式分别为R=500+30x ,P=170-2x ,对于上面两个关系式,分别写出常量和变量.9.如图19-1-1所示,等腰Rt△ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一条直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合,试写出重叠部分的面积y(cm2)与MA的长度x(cm)之间的解析式,并指出其中的常量与变量.10.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h之间的关系是V=πR2h,在这个式子中常量和变量分别是什么?(2)设圆柱的高h不变,圆柱的体积V与圆柱的底面半径R之间的关系是V=πR2h,在这个式子中常量和变量分别是什么?11.一个小球由静止开始从一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.通过读表你能发现s和t之间的关系吗?在s与t的解析式中,指出哪些是常量,哪些是变量.拓展延伸1.假设汽车匀速行驶在高速公路上,那么下列各量:①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.其中变量的个数是( ) A. 1 B. 2 C. 3 D. 42.球的表面积S与半径R之间的关系是S=4πR2.对于各种大小不同的球,请指出公式S=4πR2中常量是,常量是 .3.阅读下面这段有关“龟兔赛跑”的寓言故事并指出所涉及的路程与速度中,哪些是常量,哪些是变量.有一次乌龟和兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分钟的速度跑了10分钟后,往回一看,乌龟远远地落在后面,兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢.”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分钟的速度匀速爬向终点40分钟后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30米/分钟的速度跑向终点时,它比乌龟足足晚了10分钟.函数 扎实基础1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边;②多边形的内角和与边数;③圆的面积与半径;④y=2012x+365中的y 与x. A. 1个 B. 2个 C. 3个 D. 4个2.下列说法中正确的是( ) A.变量x ,y 满足x+3y=1则y 是x 的函数 B.变量x ,y 满足y=3x 2--,则y 是x 的函数 C.变量x ,y 满足|y |=x ,则y 是x 的函数 D.变量xy 满足y 2=x ,则y 是x 的函数 3.求下列各式中自变量x 的取值范围. (1)y=3x 2-5x (2)y=2-x 2x + (3)y=x 25-+5x 2- (4)y=1x +-3-x 54.已知y=3-x 4x 2+,求:(1)当x 取1和-1时的函数值;(2)当y 等于-31和-2时的x 的值.5.当x 取何值时,函数y=x 与y=-x+1有相同的函数值?并求此时的函数值.综合提升1.下面的表格列出了一项试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下落高度d 之间的关系.下面能表示这种关系的式子是(单位:厘米)( ) A.b=d 2B.b=2dC.b=2dD.b=d-25 2.在函数y=1-2x 1x +中,自变量x 的取值范围是( ) A.x≥1 B.x≥-1且x ≠21 C.x >-1且x≠21D.x≥-13.如果两个变量x ,y 之间的函数关系如图19-1-2所示,则函数值y 的取值范围是( ) A.-3≤y≤3 B.0≤y≤2 C.1≤y≤3 D.0≤y≤34.若函数y=⎩⎨⎧≤+)()(2x x 22x 2x 2 ,则当函数值y=8时,自变量x 的值是( )A.±6B.4C.±6或4D.4或-6 5.在下列函数:①y=2x+1;②y=x 2+2x ;③y=x3;④y=-3x 中,与众不同 的一个是 (填序号),你的理由是 .6.如图19-1-3所示,根据下面的运算程序,若输入x=1,则输出的结果y= .7.(1)已知水箱中有水10m 3,每小时流出0.5m 3,则水箱中剩余水量Q(m 3)与流出时间t(h)之间的函数解析式为 ;自变量t 的取值范围为 .8.如图19-1-4所示,周长是24的凸五边形 ABCDE 被对角线BE 分为等腰三角形ABE 及矩形BCDE ,且AE=ED ,设AB=x ,CD=y ,求x ,y 之间的函数解析式.9.如图19-1-5所示,矩形ABCD 中,AB=4cm ,AD=3cm ,点P 从A 出发,以1cm/的速度移动,经过B ,C 两点向点D 移动,但不到点D ,P 从A 出发xs 后,△PAD 的面积为ycm 2,求y 与x 之间的函数解析式.10.阅读下面材料,再回答问题:一般地,如果函数y=f(x)对于自变量取值范围内的任意x ,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x ,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.例如:f(x)=x 3+x ,当x 取任意实数时,f(-x)=(-x)3+(-x)=-x 3-x=-(x 3+x),即f(-x)=-f(x),所以f(x)=x 3+x 为奇函数.又如f(x)=|x|,当x 取任意实数时,f(-x)=|-x|=|x|=f(x),即f(-x)=f(x),所以f(x)=|x|是偶函数.(1)下列函数中:①y=x 4;②y=x 2+1;③y=3x 1;④y=1x +;⑤y=x+x 1. 是奇函数, 是偶函数(只填序号);(2)请你再分别写出一个奇函数和一个偶函数.11.研究发现,学生对概念的接受能力y 与提出概念所用的时间x(分钟)之间有如下关系(0≤x≤20):根据信息,回答下列问题:(1)表中描述的变化过程中,自变量是什么?(2)当提出概念所用的时间为10分钟时,学生对概念的接受能力约是多少?(3)当提出概念所用的时间为多少分钟时,学生对概念的接受能力最强?(4)什么时间范围内,学生对概念的接受能力在逐渐增强?什么时间范围内,学生对概念的接受能力在逐渐减弱?拓展延伸1.下列各曲线中表示y 是x 的函数的是( )2.如图19-1-6所示,根据流程图中的程序当输出数值y=5时,输 入的数值x 是( ) A.71 B.-31 C.71或-31 D.71或-71 3.若2)1(1-x 在实数范围内有意义,则x 的取值范围是( ) A.x >1 B.x ≥1 C.x≠1 D.x >-1函数的图像 扎实基础1.下列各点中,在函数y=21x-1的图象上的是( ) A.(-3,2) B.(-4,-3) C.(32,41) D.(5,21) 2.如图19-1-7所示的是一辆汽车行驶的速度随时间变化的图象,那么这一辆汽车3h 行驶的路程是 .3.小亮因感冒发烧住院治疗,护士为了直观地了解小亮这天24小时的体温和时间的关系,比较好的方式应该是选择( ) A.列表法 B.图象法 C.解析式法 D.以上三种方法均可4.如图,在某次实验中,测得两个变量m 和v 之间的关系最接近于下列各解析式中的( )A.v=2m-2B.v=m 2-1 C.v=3m-3 D.v=m+15.已知正方形的周长为x(cm),则正方形的面积y(cm 2)关于x 的函数是 .6.如图19-1-8所示,甲记录了一位疑似甲型H7N9流感病人的体温变化图,这位病人在16时的体温约是( ) A.37.8℃ B.38℃ C.38.7℃ D.39.1℃7.小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用时间与路程如图19-1-9所示,如果返回时,上下坡速度保持不变,那么他从学校回到家需要的时间是( ) A.8.6min B.9min C.12min D.16min综合提升1.下列各点中,既在函数y=x 2-2x+3的图象上,又在函数y=x+43的图象上的是( ) A.(41,1) B.(21,49) C.(23,49) D.( 21,45) 2.已知点M(-2,m)在函数y=2x+1的图象上,则m 的值是( ) A.-1 B.1 C.-3 D.-233.在一次自行车越野赛中,甲、乙两名选手行驶的路程y(km)随时间x(min)变化的图象(全程)如图19-1-10所示,根据图象判定下列结论不正确的是( ) A.甲先到达终点 B.前30min ,甲在乙的前面 C.第48min 时,两人第一次相遇 D.这次比赛的全程是28km4.如图19-1-11所示,在△ABC 中,已知BC=16,高AD=10,动点C ′由点C 沿CB 向点B 移动(不与点B 重合).设C ′C 的长为x ,△ABC ′的面积为S ,则S 与x 之间的函数解析式为( ) A.S=80-5x B.S=5x C.S=1Ox D.S=5x+805.图19-1-12是小明从学校到家的路程s(m)与时间t(min)的函数关系图象观察图象,从中得到如下信息:①学校离小明家1000m ;②小明用了20min 到家;③小明前10min 走了路程的一半;④小明后10min 比前10min 走得快.其中正确的有 (填序号).6.观察下表,则y 与x 之间的函数解析式为 .7.小明画了一个边长为2cm 的正方形,如果将正方形的边长增加xcm ,那么面积的增加值y(cm 2)与边长的增加值x(cm)的函数解析式为 .8.已知等腰三角形周长为12cm,若底边长为ycm,腰长为xcm.(1)写出y与x的函数解析式;(2)确定x的取值范围;(3)画出函数图象.9.图19-1-13表示了相距5km的P站和Q站间,从7时到8时的列车的运行情况.(1)7时15分从Q站出发的列车与从P站出发的列车相会是在7时几分?(2)A于7时从P站出发,以每小时15km的速度骑自行车沿道路向Q 站行进.①在图19-1-13中画出A的行进状况图;②当A到达Q站时,已经和从Q站出发的列车相遇了几次?10.端午节小明来到奥体中心观看足球比赛进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图19-1-14所示,线段AB,OB分别表示父子俩送票、取票过程中,离奥体中心的距离s(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发分钟后与小明相遇;(2)求出爸爸与小明相遇时离奥体中心的距离;(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.拓展延伸1.某班学生在参加做豆花的实践活动中,计划磨完一定量的黄豆,在磨了一部分黄豆后,大家中途休息并交流磨黄豆的体会,之后加快速度磨完了剩下的黄豆,设从开始磨黄豆所经过的时间为t,剩下的黄豆量为s,下面能反映s与t之间的函数关系的大致图象是( )2.由于干旱,某水库的蓄水量附时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱时间t(天)的关系如图19-1-15所示,则下列说法正确的是( )A.干旱第50天时,蓄水量为1200万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱开始后,蓄水量平均每天减少20万米33.如图19-1-16是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4s行驶的路程为48mB.在0到8s内甲的速度每秒增加4m正比例函数 扎实基础1.下列y 关于x 的函数中,是正比例函数的为( ) A.y=x 2B.y=x 2C.y=2xD.y=21x + 2.若y=(m-1)2m x是正比例函数,则m 的值为( ) A.±1 B.1 C.-1 D.不存在3.学校购买一批图书,每册定价为30元,并且享受八折优惠,则购买图书金额y(元)与购买数x(册)之间的函数解析式为 .4.写出下列各题中x 与y 之间的函数解析式,并判断y 是不是x 的正比例函数.(1)汽车以60km/h 的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的函数解析式;(2)某种储蓄的月利率是0.2%,存人100元本金后,利息y(元)与所存月数x 之间的函数解析式; (3)某中学的校办工厂现在年产值是15万元,计划今后每年增加2万元,年产值y 万元)与年数x 的函数解析式.5.正比例函数y=2x 的大致图象是( )6.正比例函数y=(2k-3)x 的图象经过点(-3,5),则k 的 值为( ) A.-95 B.37 C.35 D.32 7.正比例函数y=-3x 的图象经过第 象限,y 随x 的增大而 .8.写出一个正比例函数,使其图象经过第一、三象限: . 综合提升1.下列函数图象经过第二、四象限的有( ) ①y=2x ;②y=-3x ;③y=27-x ;④y=πx ;⑤y=(3.14-π)x. A.2个 B.3个 C.4个 D.5个2.已知正比例函数y=(m+1)x 的图象上有两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,y 1>y 2,那么m 的取值范围 是( ) A.m <1 B.m >-1 C.m <-1 D.m >03.当x >0时,y 与x 的函数解析式为y=2x ,当x≤0时,y 与x 的函数解析式为y=-2x ,则函数在同一直角 坐标系中的图象大致为( )4.正比例函数y=kx(k≠0)的图象如图19-2-1所示,则在下列选项中,k 的值可能是( )A.1 B.2 C.3 D.45.正比例函数y=kx ,y=mx ,y=mx 在同一平面直角坐标系中的图象如图19-2-2所示,则正比例函数中k ,m ,n 的大小关系是 .6.已知正比例函数图象上的点到x 轴的距离与到y 轴的距离的比为2:3,则函数的解析式为 .7.已知y=(2m-1)3m2x-是正比例函数,且y 随x 的增大而增大,则m 的值为 . 8.如果函数y=(m-3)x+m 2-9是正比例函数,则该函数的图象经过第 象限. 9.已知y+2与x 成正比,且x=-3时,y=6,求当x=2时y 的值.10.在函数y=-3x的图象上取一点P,过点P作PA⊥x轴,已知P点的横坐标为-2,求△POA的面积(O为坐标原点).1l.已知y+5与3x+4成正比,且当x=1时,y=2.(1)求y与x的函数解析式;(2)求当x=-1时的函数值;(3)如果y的取值范围为0≤y≤5,那么x的取值范围为多少?12.已知y=y1+y2,y1与x成正比,y2与x2成正比,当x=1时,y=6,当x=3时,y=8,求y关于x的解析式.拓展延伸1.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 (写出一个即可).2.已知正比例函数y=2x的图象过点(x1,y1),(x2,y2),若x2-x1=1,则y2-y1= .3.如图19-2-3放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,点A在x轴上,点O,B1,B2,B3…都在正比例函数y=kx的图象上,则点B2017的坐标是 .4.已知正比例函数y=kx的图象经过点(3,-6).求:(1)这个函数的解析式;(2)在图19-2-4中画出这个函数的图象;(3)判断点A(4,-2),点B(-1.5,3)是否在这个函数的图象上;(4)在函数图象上有两点C(x1,y1),D(x2,y2),如果x1>x2,试比较y1,y2的大小.一次函数(1) 扎实基础1.下列函数:①y=2x ;②y=21x ;③y=2x+1;④y=2x 2+1;⑤y=-x1.其中次函数的个数是( ) A.4 B.3 C.2 D.12.已知y=(m-3)2m x+1是一次函数,则m 的值是( ) A.3 B.3 C.±3 D.±23.水池中有水465m 3,每小时排水15m 3,排水th 后,水池中还有水ym 3,则y 与t 之间的函数解析式是 ,它是一个 函数.4.如图,若kb >0,则y=kx+b 的图象可能是( )5.一次函数y=2x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.如果函数y=ax+b(a <0,b <0)和y=kx(k >0)的图象交于点P ,那么点P 应该位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7已知一次函数y=kx+3经过点(2,1),则一次函数的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 8.一次函数y=kx+b 中,y 随x 的增大而增大,b <0,则这个函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 综合提升1.如下图,直线y=ax+b 与直线y=bx+a 在同一直角坐标系中的图象大致是( )2.已知一次函数y=(3a-1)x+5图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,y 1>y 2,那么a 的取值范围是( ) A.a >0 B.a <0 C.a >31 D.a <31 3.在平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a),(-1,b),(c ,-1)都在直线l 上,则下列判断正确的是( ) A.a <b B.a <3 C.b <3 D.c <-24.如图19-2-5所示,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线y=0.5x+b 与△ABC 有交点时,b 的取值范围是( ) A.-1≤b≤1 B.-0.5≤b≤1 C.-0.5≤b≤0.5 D.-1≤b≤0.55.如图19-2-6所示,梯形的上底长x ,下底长15,高为8,则该梯形的面积y 与上底x 的解析式为 , 当x 每增加1时,y 的变化情况为 .6.一次函数y=mx+n 的图象如图19-2-7所示,则代数式|m+n|-|m-n|化简后的结果为 .7.已知直线y=2x+(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是 . 8.图19-2-8表示一骑自行车者和一骑摩托车者沿相同的路线由甲地到乙地的行驶路程与时间的函数关系图象(分别为正比例函数和一次函数).甲、乙两地间的距离是80km ,请你根据图象解决下面的问题:(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示骑自行车者和骑摩托车者行驶路程与时间的函数解析式(不要求写出自变量的取值范围).9.已知函数y=0.5x+3和点A(2,0),在直线y=0.5x+3上找一点P,使S△AOP=4,求点P的坐标.10.已知y关于x的一次函数y=(2m2-32)x3-(n-3)x2+(m-n)x+m+n,(1)若该一次函数的y值随x值的增大而增大,求该一次函数的解析式,并在如图19-2-9所示的平面直角坐标系中画出该一次函数的图象;(2)若该一次函数的图象经过点(-2,13),求该函数的图象与坐标轴围成的三角形的面积.拓展延伸1.若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=-x-1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A.x1<x2<x3B. x1<x3<x2C.x2<x1<x3D.x3<x2<x1k+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是( )2.若式子1-3.请你任意写出一个经过点(0,3),且y随x的增大而减小的一次函数的解析式: (写出一个即可).4.若一次函数y=-2x+b(b为常数)的图象经过第二、三四象限,则b的值可以是 (写出一个即可).5.已知一次函数y=(2m+4)x+(3-n).求:(1)当m是什么数时,y随x的增大而增大?(2)当n为何值时,函数图象一次函数(2)扎实基础1.某正比例函数的图象经过点P(2,3),则此正比例函数的解析式为;若该直线向上平移3个单位长度,则平移后所得直线的解析式为 .2.在平面直角坐标系中,将直线y=-2x+1向下平移4个单位长度后,所得直线的解析式为 .3.若直线y=kx+b与直线y=2x+1平行,且过点(-2,4),则它的解析式是 .4.一次函数y=kx+b的图象如图19-2-10所示,则k与b的值分别为( )A.k=2,b=-2B.k=-2,b=-2C.k=0.5,b=-2D.k=-0.5,b=-25.点M(x,5)在连接点A(0,2)和点B(-2,0)所成的直线上,则x= .6.一个y关于x的一次函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x的增大而减小,这个函数的解析式为 (写出一个即可).综合提升1.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( )A.将l1向右平移3个单位长度B.将l l向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度2.一次函数图象经过点A(5,3),且与直线y=2x-3无交点,则这个一次函数的解析式为( )A.y=2x-7B.y=2x+7C.y=-2x-7D.无法确定3.如图19-2-11所示,在平面直角坐标系中,把直线y=3x沿y轴向下平移后得到直线AB,如果点N(m,n)是直线AB上的一点,且3m-n=2,那么直线AB的函数解析式为 .4.如图19-2-12所示,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C,点D,若DB=DC,则直线CD的函数解析式为 .5.若直线y=kx+6与两坐标轴所围成的三角形的面积是24,求常数k的值.6.为缓解用电紧张的矛盾,某电力公司制定了新的用电收费标准,每月用电量x(千瓦时)与应付电费y元的关系如图19-2-13所示,根据图象求y与x的函数解析式.7.如图19-2-14所示,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过点B作直线BP与x轴相交于点P,且使OP=20A,求△ABP的面积.8.如图19-2-15所示,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.9.“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图19-2-16所示,其中从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C 点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?拓展延伸1.将直线y=0.5x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是( )A.0.5,1B.-0.5,1C. -0.5,-1D.0.5,-12.含45°角的直角三角板如图19-2-17放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为 .3.如图19-2-18所示,在平面直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的解析式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.4.如图19-2-19所示,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y=0.5x-2.(1)将直线l向上平移m个单位长度,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.一次函数与方程、不等式 扎实基础1.若函数y=kx+b 的图象过(0,-2)和(3,0)两点,则方程kx+b=0的解为( ) A.x=-2 B.x=3 C.x=0 D.不能确定2.一次函数y=-0.6x+2的图象与x 轴的交点坐标为( ) A.(0,2) B.(310,0) C.(-310,0) D.(2,0)3.一次函数y=kx+b 的图象如图19-2-20所示,则方程kx+b=0的解为( ) A.x=2 B.y=2 C.x=-1 D.y=-14.如果一次函数y=x+4的自变量x 的取值范围是1<x <4,则y 的取值范围是( ) A.-8≤y<3 B.5<y <8 C.0≤y≤3 D.5≤y≤85.已知函数y=2x+4,若-2≤y≤2,则x 相应的取值范围是( ) A.-2≤x≤2 B.-3≤x≤-1 C.1≤x≤3 D.-1≤x≤36.一次函数y=kx+b 的图象与y 轴交于点(0,4),且y 随x 的增大而增大,则不等式kx+b-4>0的解集为 .7.直线y=-0.5x-3和直线y=2x+2的交点坐标是( ) A.(2,-2) B.(-2,2) C.(2,2) D.(-2,-2)8.已知⎪⎪⎩⎪⎪⎨⎧==3534y x 是方程组⎪⎩⎪⎨⎧=-=+1213x y y x 的解,那么一次函数y=3-x 和y=0.5x+1的图象的交点坐标是 . 综合提升1.关于x 的一元一次方程ax+b=c 的解是x=x 0,又知一次函数y=-ax-b+c 的图象与x 轴交点的横坐标为x1,则x0与x 1之间的关系为( ) A.x 0=x 1 B.x 0>x 1 C.x 0<x 1 D.x 0≠x 12.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点坐标是( ) A.(1,0) B.(1,3) C.(-1,-1) D.(-1,5)3.如图19-2-21所示,已知直线y 1=x+m 与y 2=kx-1相交于点P(-1,1),则关于x 的不等式x+m>kx-1的解集在数轴上表示正确的是( )4.如图19-2-22所示,经过点B(-2,0)的直线y 1=kx+b 与直线y 2=4x+2相交于点A(-1,-2),则一元一次不等式组⎩⎨⎧+++024 b kx bkx x 的解集为 . 5.当m= 时,直线y=3x+m 与直线y=4-2x 的交点在x 轴上. 6.如图19-2-23所示函数y=kx 和y=-43x+3的图象相交于点A(a,2),则不等式kx <-43x+3的解集为 . 7.已知关于x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图象的交点坐标为(1,-1),则a= ,b= .8.如图19-2-24所示,直线l 1的解析式为y=-3x+3,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1,l 2交于点C.(1)求点D 的坐标;(2)求直线l 2的解析式;(3)求△ADC 的面积9.b取什么整数时,直线y=3x+b+2与直线y=-x+2b的交点在第二象限?10.画出函数y1=2x-4与y2=-2x+8的图象,并通过观察图象回答下列问题.(1)x取何值时2x-4>0?(2)x为取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)你能求出函数y=2x-4,y=-2x+8的图象与x轴所围成的三角形的面积吗?若能,请写出过程.1l.如图19-2-25所示,过点(0,-2)的直线l1:y1=kx+b(k≠0)与直线l2;y2=x+1交于点P(2,m).(1)写出使得y1<y2时x的取值范围;(2)求点P的坐标和直线l1的解析式.拓展延伸1.在同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图19-2-26所示,则满足y1≥y2的x的取值范围是( ) A.x≤-2 B.x≥-2 C.x<-2 D.x>-22.如图19-2-27所示,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-33.如图19-2-28所示,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(-1,0)和B(3,0)两点,则不等式k1x+b >k2x+b>0的解集为 .4.如图19-2-29所示,在平面直角坐标系中,直线l1:y=-0.5x+6分别与x轴,y轴交于点B,C,且与直线l2:y=0.5x交于点A.(1)分别求出点A,B,C的坐标;(2)直接写出关于x的不等式-0.5x+6>0.5x的解集;(3)若D 是线段OA上的点,且△COD的面积为12,求直线CD的函数解析式.课题学习一选择方案扎实基础1.为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A,B两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价如下表.设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.(1)试写出y与x的函数解析式;(2)农机公司有哪几种购进收割机的方案可供择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?2.为了保护环境,某企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表.经预算,该企业购买设备的资金不能高于105万元.(1)求购买设备的资金y万元与购买A型设备x 台的函数解析式,并设计企业有几种购买方案;(2)若该企业每月生产的污水量为2040吨,假设A,B两种型号的设备的年消耗费用相等,利用函数的知识说明,为节约资金应选择哪种方案.综合提升1.某运输公司根据实际需要计划购买大、中型客车共10辆,大型客车每辆价格为25万元,中型客车每辆价格为15万元.(1)设购买大型客车x(辆),购车总费用为y(万元),求y与x之间的函数解析式;(2)若购车资金为180万元至200万元(含180万元和200万元),那么有几种购车方案?在确保交通安全的前提下,根据客流量调査,大型客车不能少于4辆,此时如何确定购车方案可使该运输公司购车费用最少?2.东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制订了甲、乙两种优惠方法.甲:买1支毛笔就赠送1本书法练习本.乙:按购买金额打9折付款.某校书法兴趣小组打算购买这种毛笔10支,这种书法练习本x(x≥10)本.(1)分别写出按甲、乙两种优惠方法实际付款金额y甲(元)、y乙(元)与x之间的函数解析式;(2)比较购买不同数量的书法练习本时,按哪种优惠方法付款较省钱;(3)如果商场允许既可以选择一种优惠方法购买,也可以用两种优惠方法购买,请你就购买这种毛笔10支和这种书法练习本60本设计一种最省钱的购买方案.。
(最新整理)一次函数(含参考答案)
(完整)一次函数(含参考答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)一次函数(含参考答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)一次函数(含参考答案)的全部内容。
一次函数专题【基础知识回顾】一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y 叫x 的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(—b k,0)的一条 , 正比例函数y= kx 的同象是经过点 和 的一条直线.【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx (k≠0),当k 〉0时,其同象过 、 象限,此时时y 随x 的增大而 ;当k 〈0时,其同象过 、 象限,时y 随x 的增大而 。
3、 一次函数y= kx+b ,图象及函数性质①、k 〉0 b >0过 象限②、k >0 b 〈0过 象限③、k<0 b >0过 象限④、k<0 b >0过 象限4、若直线l1:y= k1x+ b1与l1:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,y 随x 的增大而 y 随x 的增大而只改变的值的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b中的字母与的值步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
(完整版)第十四章一次函数单元测试题含答案
4、 若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是(11 1(A ) kv 1(B )」<k<1(C ) k>1 (D ) k>1 或 kv 13335、 若把一次函数y=2x — 5,向上平移5个单位长度,得到图象解析式是 (A)y=2x (B) y=2x — 10 (C ) y=5x — 3 ( D ) y= — x — 36、 正确反映,龟兔赛跑的图象是()7、直线y=-2x+6与两坐标轴围成的三角形的面积是((A ) 6(B ) 8(C 9(D ) 18&当-1 <x <2时,函数y=ax+6满足y<10,则常数a 的取值范围是((A ) -4<a<0 (B ) 0<a<2 (C ) -4<a<2 且 a ^ 0( D ) -4<a<29、已知直线y=(k - 2)x+k 不经过第三象限,则k 的取值范围是( )A.〜2B. k>2C. 0<k<2D. 0< k<210、 已知y 与x+4成正比例,并且x=2时,y=12,那么y 与x 之间的函数关系式为()(A ) y=6x ( B ) y=2x+8(C ) y=8x+6(D ) y=8x+4一次函数单元测试题一、选择题(每题3分,共36分) 1、下列各曲线中不能表示y 是x 的函数是( B 、 (1.5 , 0) )0 oC (8, 20)D (0.5 , 0.5 ) A (0,— 2)3、若直线y=kx+b 经过一、二、四象限,则直线 y=bx+k 不经过第()象限.(A ) (B )(C ) (D )四 D)•11、无论m为何实数,直线y=x+2m与y=-x+6的交点不可能在(12、y=kx+k 的大致图象是( ) 二、填空题(每题4分,共24分)13、若函数y= — 2x m+2是正比例函数,贝U m 的值是14、已知点A (a , - 2) , B (b , - 4)在直线y= - x+6上,贝U a 、b 的大小关系是a _____ b15、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收118、____________________________________________________________ 若直线y=kx+b 平行直线y=5x+3,且过点(2,-1 ),则k= _____________________________ ,b= ______ . 三、解答题(共60分)19、 (6分)知一次函数图象经过(3, 5)和(一4,— 9)两点,①求此一次函数的解析式; ②若点(a ,2)在函数图象上,求a 的值。
新北师大版八年级上册一次函数单元测试试题以及答案
八年级上册一次函数练习试题1、一次函数的图象过点M(3,2),N(—1,—6)两点.(1)求函数的表达式;⑵画出该函数的图象•(3)与x、y交点坐标分别是多少?(4)与坐标轴围成三角形面积是多少?2、在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.3、已知一次函数的图象过点A(2,—1)和点B,其中点B是另一条直线y=—x+3与y轴的交点,求这个一次函数的表达式4、已知直线I与直线y=2x+1的交点的横坐标为2,与直线y=—x+8的交点的纵坐标为—7,求直线的表达式。
5、某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)(2)当x>2时,求y与x之间的函数关系式;((3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?7、已知y与x+1成正比例关系,当x=2时,y=1,求当x=-3时y的值?8、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.9、某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?10、已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.11、已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=﹣x?(4)k为何值时,y随x的增大而减小?12、判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.13、一次函数y=kx+b的自变量x的取值范围是﹣3≤x≤6,相应函数值的取值范围是﹣5≤y≤﹣2,确定这个函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。