九年级数学工培优练习题(教师版)
初三培优数学测试卷
一、选择题(每题5分,共50分)1. 若a,b是方程x²-3x+2=0的两个根,则a+b的值为()A. 2B. 3C. 4D. 52. 下列各数中,有理数是()A. √3B. √2+√3C. πD. 3.143. 已知一元二次方程x²-5x+6=0的两个根为x₁,x₂,则(x₁+x₂)²-4x₁x₂的值为()A. 1B. 4C. 9D. 164. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 75°D. 120°5. 已知一次函数y=kx+b的图象经过点A(1,2),B(-2,3),则该函数的解析式为()A. y=2x+1B. y=3x+1C. y=2x-1D. y=3x-16. 已知函数y=2x+1在x=2时的函数值为5,则该函数的图象()A. 经过点(1,5)B. 经过点(2,5)C. 经过点(3,5)D. 经过点(4,5)7. 若a,b是方程x²-4x+4=0的两个根,则a²+b²的值为()A. 4B. 8C. 12D. 168. 在△ABC中,若a²+b²=5²,c²=4²,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 已知函数y=x²+2x+1的图象的顶点坐标为(-1,0),则该函数的对称轴为()A. x=-1B. y=-1C. x=1D. y=110. 已知一次函数y=kx+b的图象与x轴、y轴分别相交于点A、B,若OA=3,OB=2,则该函数的解析式为()A. y=2x+3B. y=3x+2C. y=2x-3D. y=3x-2二、填空题(每题5分,共50分)11. 若a,b是方程x²-4x+4=0的两个根,则a²+2ab+b²的值为______。
初三数学培优试题(含答案)
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
初三数学培优试题(含答案)
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)
北师大版九年级上册 第四章 相似三角形培优专题 (含答案)一、单选题1.如图,过点0(0,1)A 作y 轴的垂线交直线:3l y x =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A ∆,234A A A ∆,4564A A ∆,…,其面积分别记为1S ,2 S ,3 S ,…,则100S ( )A .1002⎛⎫ ⎪ ⎪⎝⎭B .100C .1994D .39522.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2A D B D=,6BC =,则线段CD 的长为( )A.B .C .D .53.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③1412DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为( )A .1B .32C .2D .45.如图,在等腰三角形ABC ∆中,AB AC =,图中所有三角形均相似,其中最小的三角形面积为1,ABC ∆的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .266.如图,矩形ABCD 中,AC 与BD 相交于点E ,:AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A .2B .3C .2D .327.如图,在平行四边形ABCD 中,E 为BC 的中点,BD ,AE 交于点O ,若随机向平行四边形ABCD 内投一粒米,则米粒落在图中阴影部分的概率为( )A .116B .112C .18D .168.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .09.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =6,BD =8,P 是对角线BD 上任意一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能大致表示y 与x 之间关系的图象为( )A .B .C .D .10.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④11.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF V V ①≌;OGE FGC V V ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( )A .①②③④B .①②③C .①②④D .③④12.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:313.矩形OABC 在平面直角坐标系中的位置如图所示,已知2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC ⊥,交x 轴于点D .下列结论:①OA BC ==②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为( )A .B .4C .D .8二、填空题 15.如图,在等腰Rt ABC ∆中, 90C =∠,15AC =,点E 在边CB 上, 2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为_____.16.如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.17.如图,平面直角坐标系中,矩形ABOC 的边,BO CO 分别在x 轴,y 轴上,A 点的坐标为(8,6)-,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE ∆∽CBO ∆,当APC ∆是等腰三角形时,P 点坐标为_____.18.如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是_____.19.如图,ABC ∆和CDE ∆都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是_______(写出所有正确结论的序号).①AM BN =;②ABF DNF ∆∆≌;③180FMC FNC ︒∠+∠=;④111A C N C EM =+20.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.21.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”. 由边长为ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q R 、分别与图2中的点E G 、重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是_____.22.如图,ABCD 的对角线,AC BD 交于点O ,CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠=︒=,连接OE .下列结论:①EO AC ⊥;②4AOD OCF S S =;③:7AC BD =;④2•FB OF DF =.其中正确的结论有__________(填写所有正确结论的序号)23.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点ADE ,则GE的长落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5为__________.参考答案1.D【解析】【分析】本题需先求出OA 1和OA 2的长,再根据题意得出OA n =2n ,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S 100.【详解】∵点0A 的坐标是(0,1),∴01OA =,∵点1A 在直线3y x =上, ∴12OA =,013A A = ∴24OA =,∴38OA =,∴416OA =,得出2n n OA =, ∴12·3n n n A A +=∴1981982OA =,19819819923A A = ∵113(41)3322S =-⋅= ∵21200199A A A A ∥,∴012198199200∆∆∽A A A A A A , ∴2198100133S S ⎛=, ∴396395332332S == 故选D .【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.2.C【解析】【分析】设2AD x =,BD x =,所以3AB x =,易证ADEABC ∆∆,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度. 【详解】解:设2AD x =,BD x =,∴3AB x =,∵//DE BC ,∴ADEABC ∆∆, ∴DE AD AE BC AB AC==, ∴263DE x x=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠,∵A A ∠=∠,∴ADEACD ∆∆, ∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=, ∴6AD =,4CD=,∴26CD=故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型. 3.A【解析】【分析】①由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE≌△ADE,就可以得出BE=DE;②在EF上取一点G,使EG=EC,连结CG,再通过条件证明△DEC≌△FGC就可以得出CE+DE=EF;③过B作BM⊥AC交于M,根据勾股定理求出AC,根据三角形的面积公式即可求出高DM,根据三角形的面积公式即可求得13412DECS∆=-;④解直角三角形求得DE,根据等边三角形性质得到CG=CE,然后通过证得△DEH∽△CGH,求得31DH DEHC CG==.【详解】证明:①∵四边形ABCD是正方形,∴AB AD=,90ABC ADC︒∠=∠=,45BAC DAC ACB ACD︒∠=∠=∠=∠=.在ABE∆和ADE∆中,AB ADBAC DACAE AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADE SAS∆≅∆,∴BE DE=,故①正确;②在EF上取一点G,使EG EC=,连结CG,∵ABE ADE∆≅∆,∴ABE ADE∠=∠.∴CBE CDE∠=∠,∵BC CF =,∴CBE F ∠=∠,∴CBE CDE F ∠=∠=∠.∵15CDE ︒∠=,∴15CBE ︒∠=,∴60CEG ︒∠=.∵CE GE =,∴CEG ∆是等边三角形.∴60CGE ︒∠=,CE GC =,∴45GCF ︒∠=,∴ECD GCF ∠=.在DEC ∆和FGC ∆中,CE GC ECD GCF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴()DEC EGC SAS ∆≅∆,∴DE GF =.∵EF EG GF =+,∴EF CE ED =+,故②正确;③过D 作DM AC ⊥交于M ,根据勾股定理求出2AC =, 由面积公式得:1122AD DC AC DM ⨯=⨯, ∴22DM =,∵45DCA ︒∠=,60AED ︒∠=, ∴22CM =,66EM =, ∴2626CE CM EM =-=- ∴1132412DEC S CE DM ∆=⨯=-,故③正确; ④在Rt DEM ∆中,623DE ME ==∵ECG ∆是等边三角形, ∴262CG CE ==- ∵60DEF EGC ︒∠=∠=,∴DE CG ∥,∴DEH CGH ∆∆∽, ∴633126DH DE HC CG ===+,故④错误; 综上,正确的结论有①②③,故选A .【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的面积,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,综合运用这些性质进行证明是解此题的关键. 4.C【解析】【分析】如图,延长FH 交AB 于点M ,由BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,证明EG//BC ,FH//AD ,进而证明△AEG ∽△ABC ,△CFH ∽△CAD ,进而证明四边形EHFG 为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH 交AB 于点M ,∵BE =2AE ,DF =2FC ,AB=AE+BE ,CD=CF+DF ,∴AE :AB=1:3,CF :CD=1:3,又∵G 、H 分别是AC 的三等分点,∴AG :AC=CH :AC=1:3,∴AE :AB=AG :AC ,CF :CD=CH :CA ,∴EG//BC ,FH//AD ,∴△AEG ∽△ABC ,△CFH ∽△CDA ,BM :AB=CF :CD=1:3,∠EMH=∠B ,∴EG :BC=AE :AB=1:3,HF :AD=CF :CD=1:3,∵四边形ABCD 是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH ,∴EG //FH ,∴四边形EHFG 为平行四边形,∴S 四边形EHFG =2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.5.D【解析】【分析】利用AFH ADE ∆~∆得到2916AHF ADE S FH S DE ∆∆⎛⎫== ⎪⎝⎭,所以9,16,AFH ADE S x S x ∆∆==则1697x x -=,解得1x =,从而得到16ADE S ∆=,然后计算两个三角形的面积差得到四边形DBCE 的面积.【详解】如图,根据题意得AFH ADE ∆~∆, ∴2239416AHF ADE S FH S DE ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 设9AFH S x ∆=,则16ADE S x ∆=,∴1697x x -=,解得1x =,∴16ADE S ∆=,∴四边形DBCE 的面积421626=-=.故选D .【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.6.B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3.解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出3,再证明3B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3B′(3,3E (03B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF ==233. 【详解】如图,设BD 与AF 交于点M .设AB=a ,3,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=3 ADAB=∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33,∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=3233a a-=,∴3∴3,AD=BC=6,3易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3B′(3,3E (03),易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-, ∴23BH CF =23 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.7.B【解析】【分析】根据E 为BC 的中点,可得12BO OE BE OD AO AD ===,根据边长的比值即可计算出图阴影部分的面积与平行四边形面积的比值,由此即可求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC//AD ,BC=AD ,∴△BOE ∽△DOA ,∴BO OE BE OD AO AD== 又∵E 为BC 的中点, ∴12BO OE BE OD AO AD ===, ∴13BO BD =, ∴BOE AOB 1S S 2=,AOB ABD 1S S 3=, ∴BOE ABD ABCD 11S S S 612==,∴米粒落在图中阴影部分的概率为112, 故选B .【点睛】 本题考查了平行四边形的性质,相似三角形的判定与性质,几何概率,熟练掌握相关知识是解题的关键.8.A【解析】【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【详解】解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=, 设,BN y AM x ==.则3,2MB x ON y =-=-, 23x x y∴=-, 即:21322y x x =+ ∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=, 此时, 70,8N ⎛⎫- ⎪⎝⎭ b 的最大值为78-. 故选:A .【点睛】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.9.A【解析】【分析】根据图形先利用平行线的性质求出△BEF ∽△BAC ,再利用相似三角形的性质得出x 的取值范围和函数解析式即可解答【详解】当0≤x ≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴BP EFBO AC=,即46x y=,解得32y x=y,同理可得,当4<x≤8时,3(8)2y x =-.故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似10.A【解析】【分析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE5得出③;作PH⊥AN于H.利用平行线的性质求出AH=24585453HN==,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,CAD CDCDE⎧⎪=⎨⎪⎩∠ADF=∠∠DAF=∠,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴24S ABM ABS FDM DF∆⎛⎫==⎪∆⎝⎭,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF =DE =AE ∵12 ×AD ×DF =12×AF ×DN , ∴DN 25 , ∴EN =355,AN =455, ∴tan ∠EAF =34EN AN =,故③正确, 作PH ⊥AN 于H .∵BE ∥AD , ∴2PA AD PE BE==, ∴P A 25 ∵PH ∥EN , ∴23AH PA AN AE ==, ∴AH =24585453HN ==, ∴2265PA AH -= ∴PN 22265PH HN +②正确, ∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故④错误.故选:A .【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质11.B【解析】【分析】根据全等三角形的判定(ASA )即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:Q ①四边形ABCD 是正方形,,OC OD AC BD ∴⊥=,45ODF OCE ∠∠︒==,90MON ∠︒Q =,COM DOF ∴∠∠=,COE DOF ASA ∴V V ≌(), 故①正确;90EOF ECF ∠∠︒Q ②==,∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC V ∽,故②正确;③COE DOF QV V ≌,COE DOF S S ∴V V =,14OCD ABCDCEOF S S S ∴==V 正方形四边形, 故③正确; COE DOF QV V ④≌,OE OF ∴=,又90EOF ∠︒Q =,EOF ∴V 是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠Q =,OEG OCE ∴V V ∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF Q =,=, 2•OG AC EF ∴=,,CE DF BC CD Q ==,BE CF ∴=,又Rt CEF Q V 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选:B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.12.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.13.D【解析】【分析】①根据矩形的性质即可得到23OA BC ==①正确;②由点D 为OA 的中点,得到132OD OA ==2222272(3)PC PD CD OC OD +==+=+=,故②正确;③如图,过点P 作PF OA ⊥于F ,FP 的延长线交BC 于E ,PE a =,则2P F E F P E a=-=-,根据三角函数的定义得到33BE PE a ==,求得2333(2)CE BC BE a a =-==-,根据相似三角形的性质得到3FD =,根据三角函数的定义得到60PDC ︒∠=,故③正确; ④当ODP ∆为等腰三角形时,Ⅰ、OD PD =,解直角三角形得到3333OD OC ==, Ⅱ、OP =OD ,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;Ⅲ、OP PD =,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;于是得到当ODP ∆为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.故④正确.【详解】解:①∵四边形OABC 是矩形,(23,2)B ,23OA BC ∴==①正确;②∵点D 为OA 的中点,132OD OA ∴==, 2222222237PC PD CD OC OD ∴+++===()=,故②正确;③如图,过点P 作PF OA ⊥ A 于F ,FP 的延长线交BC 于E ,PE BC ∴⊥,四边形OFEC 是矩形,2EF OC ∴==,设PE a =,则2PF EF PE a =﹣=﹣,在Rt BEP ∆中,PE OC 3BE BC 3tan CBO ∠===, 33BE PE a ∴==,2333(2)CE BC BE a a ∴=-==-,PD PC ⊥,90CPE FPD ︒∴∠∠=,90CPE PCE ︒∠+∠=,,FPD ECP ∴∠=∠,90CEP PFD ︒∠=∠=,CEP PFD ∴∆∆∽,PE CP FD PD∴=, 3(2)a a FD -∴=FD ∴=, tan 33PC a PDC a PD∴∠===, 60PDC ︒∴∠=,故③正确; ④(23,2)B ,四边形OABC 是矩形,3,2OA AB ∴==,3tan AB AOB OA ∠== 30AOB ︒∴∠=,当ODP ∆为等腰三角形时,Ⅰ、OD PD =,30DOP DPO ∴∠∠==, 60ODP ∴∠=, 60ODC ∴∠=, 3333OD ∴== Ⅱ、OP OD =75ODP OPD ∴∠∠==,90COD CPD ∠∠==,10590OCP ∴∠=>,故不合题意舍去;Ⅲ、OP PD =,30POD PDO ∴∠∠==, 15090OCP ∴∠=>故不合题意舍去,∴当ODP ∆为等腰三角形时,点D 的坐标为23⎫⎪⎪⎝⎭.故④正确,故选:D .【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP 和PD 是解本题的关键.14.B【解析】【分析】先证CDE CBA V :V ,利用相似三角形性质得到12DC DE BC BA ==,即12DC BD DC =+,在直角三角形ABD 中易得22BD =,从而解出DC ,得到△ABC 的高,然后利用三角形面积公式进行解题即可 【详解】AB AD DE AD ∴⊥⊥,90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V12DC DE BC BA ∴== 即12DC BD DC =+ 由题得22BD =∴解得22DC =ABC △2112422422ABC S BC ∴=⨯=⨯=V 故选B【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC 的长度15.【解析】【分析】过D 作 DH AC ⊥于H ,则∠AHD=90°由等腰直角三角形的性质可得15AC BC ==,45CAD ∠=,进而可得AH DH =,由此得CH=15-DH ,再证明~ACE DHC ∆∆,由相似三角形的对应边成比例可得DH CH AC CE=,求出CE=10,代入相关数据可求得DH=9,继而根据勾股定理即可求得AD 长.【详解】过D 作 DH AC ⊥于H ,则∠AHD=90° 在等腰Rt ABC ∆中,90C =∠,15AC =, 15AC BC ∴==,45CAD ∠=,∴∠ADH=90°-∠CAD=45°=∠CAD ,AH DH ∴=,∴CH=AC-AH=15-DH ,CF AE ⊥,90DHA DFA ∴∠=∠=,又∵∠ANH=∠DNF ,HAF HDF ∴∠=∠,~ACE DHC ∴∆∆,DH CH AC CE∴=, 2CE EB =,CE+BE=BC=15,∴10CE =, ∴151510DH DH -=, 9DH ∴=,2292AD AH DH ∴=+=, 故答案为:92.【点睛】本题考查了等腰直角三角形的性质与判定,相似三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.2.【解析】【分析】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',由此可得PM PN MN '-≤',当,,P M N '三点共线时,取“=”,此时即PM —PN 的值最大,由正方形的性质求出AC 的长,继而可得22ON ON '==62AN '=,再证明13CM CN BM AN '='=,可得PM ∥AB ∥CD ,∠CMN '=90°,判断出△N CM '为等腰直角三角形,求得N M '长即可得答案. 【详解】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',∴PM PN MN '-≤',当,,P M N '三点共线时,取“=”,∵正方形边长为8,∴282∵O 为AC 中点,∴AO=OC=2∵N 为OA 中点,∴ON=22 ∴22ON ON '== ∴62AN '=∵BM=6,∴CM=AB-BM=8-6=2, ∴13CM CN BM AN '='=, ∴PM ∥AB ∥CD ,∠CMN '=90°,∵∠N CM '=45°,∴△N CM '为等腰直角三角形,∴CM=N M '=2,故答案为:2.【点睛】本题考查了正方形的性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,最值问题等,熟练掌握和灵活运用相关知识是解题的关键.17.326()55-,或(43)-, 【解析】【分析】根据题意分情况讨论:①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,根据PBE ∆∽CBO ∆求出PE ,②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,根据PBE ∆∽CBO ∆,求出PE ,BE ,则可得到OE ,故而求出点P 点坐标.【详解】解:∵点P 在矩形ABOC 的内部,且APC ∆是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示:∵PE BO ⊥,CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(8,6)-,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE ∆∽CBO ∆,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(4,3)P -;②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示:∵CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(-8,6),∴8AC BO ==,8CP =,6AB OC ==, ∴222208610BC BO C +=+=,∴2BP =,∵PBE ∆∽CBO ∆, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,; 综上所述:点P 的坐标为:326()55-,或(43)-,; 故答案为:326()55-,或(43)-,.【点睛】此题主要考查正方形的综合,解题的关键是熟知相似三角形的判定与性质、矩形的性质及圆的性质.13218【解析】【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC•EP,由此即可解决问题.【详解】如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=2∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF2∵CE=4AE,∴EC=2,AE2,∴EH=2在Rt△EFH中,EF2=EH2+FH2=(2)2+2)2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG =∠ECG =45°,∴∠ECF =∠EFP =135°,∵∠CEF =∠FEP ,∴△CEF ∽△FEP , ∴EF EC EP EF=, ∴EF 2=EC•EP ,∴EP 132242= 故答案为:1322. 【点睛】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.19.①③④【解析】【分析】①根据等边三角形性质得出AC BC =,CE CD =,60ACB ECD ︒∠=∠=,求出BCE ACD ∠=∠,根据SAS 推出两三角形全等即可;②根据60ABC BCD ︒∠==∠,求出//AB CD ,可推出ABF DNF ∆∆∽,找不出全等的条件; ③根据角的关系可以求得60AFB ︒∠=,可求得120MFN ︒=,根据60BCD ︒∠=可解题; ④根据CM CN =,60MCN ︒∠=,可求得60CNM ︒∠=,可判定//MN AE ,可求得N DN CD CN AC CD CDM -==,可解题. 【详解】明:①∵ABC ∆和CDE ∆都是等边三角形,∴AC BC =,CE CD =,60ACB ECD ︒∠=∠=,∴ACB ACE ECD ACE ∠+∠=∠+∠,即BCE ACD ∠=∠,在BCE ∆和ACD ∆中,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()BCE ACD SAS ∆∆≌,∴AD BE =,ADC BEC ∠∠=,CAD CBE ∠=∠,在DMC ∆和ENC ∆中,60MDC NEC DC BCMCD NCE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴()DMC ENC ASA ∆∆≌,∴DM EN =,CM CN =,∴AD DM BE EN -=-,即AM BN =;②∵60ABC BCD ︒∠==∠,∴//AB CD ,∴BAF CDF ∠=∠,∵AFB DFN ∠=∠,∴ABF DNF ∆∆∽,找不出全等的条件;③∵180AFB ABF BAF ︒∠+∠+∠=,FBC CAF ∠=∠,∴180AFB ABC BAC ︒∠+∠+∠=,∴60AFB ︒∠=,∴120MFN ︒∠=,∵60MCN ︒∠=,∴180FMC FNC ︒∠+∠=;④∵CM CN =,60MCN ︒∠=,∴MCN ∆是等边三角形,∴60MNC ︒∠=,∵60DCE ︒∠=,∴//MN AE ,∴MN DN CD CN AC CD CD-==, ∵CD CE =,MN CN =, ∴MN CE MN AC CE-=, ∴MN MN 1AC CE =-, 两边同时除MN 得111AC MN CE=-, ∴111MN AC CE=+. 故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.20.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.21.5【解析】【分析】如图3中,连接CE 交MN 于O ,先利用相似求出OM 、ON 的长,再利用勾股定理解决问题即可.【详解】如图3, 连结CE 交MN 于O .观察图1、图2可知, 4,8EN MN CM ===,90ENM CMN ∠=∠=︒.图3∴EON COM ∆∆∽, ∴12EN ON CN OM ==, ∴1428,3333ON MN OM MN ====. 在Rt ENO ∆中,224103OE ON EN =+= ,同理可求得103OG =, ∴2)2GF OE OG =+=,即“拼搏兔”所在正方形EFGH 的边长是5故答案为:5【点睛】本题考查正方形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.①③④【解析】【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比. ③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠, ∴1602ECB DCB ∠=∠=︒, ∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽, ∴12OE OF BC FB ==, ∴13OF OB =, ∴3AOD BOC OCF S S S ==,故②错误,设BC BE EC a ===,则2AB a =,3AC a =,22372OD OB a a ⎛⎫==+= ⎪ ⎪⎝⎭, ∴7BD a =, ∴:37217AC BD a a ==,故③正确, ∵1736OF OB a ==, ∴73BF a =, ∴22277777,99BF a OF DF a ⎫=⋅=⋅+=⎪⎪⎝⎭, ∴2BF OF DF =⋅,故④正确,故答案为①③④.【点睛】本题是一道平行四边形的综合性题目,难度系数偏大,但是是常考点的组合,应当熟练掌握. 23.4913【解析】【分析】先根据勾股定理得出AE 的长,然后根据折叠的性质可得BF 垂直平分AG ,再根据ABM ~ADE ,求出AM 的长,从而得出AG,继而得出GE 的长【详解】解:在正方形ABCD 中,∠BAD=∠D =090,∴∠BAM+∠FAM=090在Rt ADE中,2222+1DE2315=+=A ADE∵由折叠的性质可得ABF GBF≅∴AB=BG,∠FBA=∠FBG∴BF垂直平分AG,∴AM=MG,∠AMB=090∴∠BAM+∠ABM=090∴∠ABM=∠FAM∴ABM~ADE∴AM ABDE AE=,∴12513AM=∴AM=6013, ∴AG=12013∴GE=5-12049 1313=【点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键。
【教师卷】初中数学九年级数学上册第二十一章《一元二次方程》知识点总结(培优)
一、选择题1.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .11C解析:C【分析】把x=4代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.3.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.4.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程, 0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.5.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 6.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人B 解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.7.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 8.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5B 解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.9.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0C 解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意; 故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的 解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.12.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题. 13.一元二次方程2210x x -+=的一次项系数为_________.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x +1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2【分析】根据一元二次方程的一次项系数的定义即可求解.【详解】解:一元二次方程x 2 -2x +1=0一次项系数是:-2.故答案为:-2.【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键. 14.若二次式236x -的值与2x -的值相等,则x 的值为_______.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43 【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.16.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.一元二次方程x 2=2x 的解为__________0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应 解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b +=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1,∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 22.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.解析:(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.23.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元?解析:(1)2160y x =-+;(2)商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【分析】(1)用待定系数法求解即可;(2)根据总利润=每千克利润×数量列方程求解即可.【详解】解:(1)设一次函数解析式为:y kx b =+,将:()25,110;()30,100代入,得 ∴2511030100k b k b +=⎧⎨+=⎩解得:2160k b =-⎧⎨=⎩, ∴一次函数解析式为:2160y x =-+;,(2)由题意得:()()2021601000x x --+=整理得:210021000x x -+=,解得130x =,270x =(不合题意,舍去),即商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【点睛】本题考查了待定系数法求函数解析式,一元二次方程的应用,熟练掌握待定系数法是解(1)的关键,列出方程式解(2)的关键.24.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >). (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.解析:(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】(1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤,∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.解析:(1)1-2)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.28.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价? 解析:(1)580;(2)70元.【分析】(1)根据降价后销量=降价前销量+增加的销量可求得结果;(2)设定价x 元,根据每季度的总利润=每个玩具利润×降价后每天的销售数量列出方程,解方程可求得定价.【详解】(1)500240580+⨯=(个).故答案为:580.(2)设定价x 元,根据题意得:(50)[50040(80)]18000x x -+-=,解得:1272.5,70x x ==,∵尽可能让利与顾客,70x ∴=.答:应该定价70元.【点睛】本题主要考查一元二次方程的实际应用,理解题意找到题目隐含的等量关系是解决问题的关键.。
初三数学培优练习题
初三数学培优练习题一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆2. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
A. 5B. 6C. 7D. 83. 计算下列表达式的值:(2x-3)(2x+3)。
A. 4x^2 - 9B. 4x^2 + 9C. -4x^2 + 9D. -4x^2 - 94. 一个数的平方根是它本身的数是?A. 0B. 1C. -1D. 以上都是5. 将下列不等式转化为等式:2x + 3 > 5。
A. 2x = 2C. 2x = 8D. 2x = 56. 计算下列几何图形的面积:一个半径为5的圆。
A. 25πB. 50πC. 75πD. 100π7. 一个等差数列的首项是3,公差是2,求第5项的值。
A. 13B. 15C. 17D. 198. 计算下列函数的值:f(x) = x^2 - 6x + 9 在 x = 3 时。
A. 0B. 3C. 6D. 99. 已知一个三角形的内角和为180度,若其中一个角为60度,求另外两个角的和。
A. 60度B. 90度C. 120度D. 150度10. 计算下列函数的导数:y = 3x^2 - 2x + 1。
A. 6x - 2C. -6x + 2D. -6x - 2二、填空题(每题2分,共20分)1. 一个等腰三角形的底角为70度,顶角为____度。
2. 计算 (x+2)(x-2) 的结果为____。
3. 一个数的立方根是它本身的数是____。
4. 已知一个三角形的周长为18厘米,其中两边长分别为5厘米和7厘米,求第三边长。
5. 将下列不等式转化为等式:3x - 2 ≤ 7。
6. 计算下列几何图形的周长:一个边长为4的正方形。
7. 一个等比数列的首项是2,公比是3,求第4项的值。
8. 计算下列函数的值:g(x) = 2x - 5 在 x = 3 时。
9. 已知一个四边形的对角线互相垂直,且每条对角线的长度为6厘米,求四边形的面积。
《勤学早》九年级数学大培优全一册(教师用解析版)
九年级数学 大培优知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例函数与方程及不等式;4.反比例函数与神奇的几何性质;5.反比例函数与直线y =a 或x =a ;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值.ʌ板块一ɔ 反比例函数的定义和解析式方法技巧根据定义解题1.定义:一般地,形如y =k x(k 为常数,k ʂ0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.解析式:y =k x(k ʂ0)或x y =k (k ʂ0)或y =k x -1(k ʂ0).▶题型一 根据定义判断反比例函数ʌ例1ɔ 下列函数:①y =x 2;②y =2x ;③y =-2x ;④y =12x ;⑤y =1x +2;⑥y =1x-2;⑦x y =2;⑧y =2x -1,⑨y =2x2.其中y 是x的反比例函数的有 (填序号).ʌ解析ɔ ②③④⑦⑧.▶题型二 根据定义确定k 值或解析式ʌ例2ɔ (1)反比例函数y =-32x ,化为y =k x的形式,相应的k =;(2)函数y =k x中,当x =2时,y =3,则函数的解析式为 .ʌ解析ɔ (1)-32;(2)y =6x.▶题型三 根据定义确定待定系数的值ʌ例3ɔ (1)如果函数y =x 2m +1是关于x 的反比例函数,则m 的值为;(2)若函数y =(m +2)x m2-5(m 为常数)是关于x 的反比例函数,求m 的值及函数的解析式.ʌ解析ɔ (1)-1;(2)m =2,y =4x -1.第19讲反比例函数第二十六章反比例函数(官方版教学资料精品)针对练习11.下列函数中,为反比例函数的是(B)A.y=x3B.y=13xC.y=1x-3D.y=1x22.反比例函数y=-32x化为y=k x的形式后,相应的k= -32.3.若关于x的函数y=(m2-4)x m2-m-7是反比例函数,求m的值.解:3.ʌ板块二ɔ反比例函数的图象和性质方法技巧抓住反比例函数的性质并结合图象解题一般地,对于反比例函数y=kx(kʂ0),由函数图象,并结合解析式,我们可以发现:1.图象分布当k>0时,x,y同号(同号或异号),函数图象为第一㊁三象限的两支曲线;当k<0时,x,y异号(同号或异号),函数图象为第二㊁四象限的两支曲线.因此反比例函数的图象也叫做双曲线.2.对称性若点(a,b)在反比例函数的图象上,则点(b,a),(-b,-a),(-a,-b)也在此图象上,故反比例函数的图象关于直线y=x,y=-x对称,关于点(0,0)成中心对称.3.增减性当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限内,y随x的增大而增大.▶题型一反比例函数的增减性ʌ例1ɔ在反比例函数y=1-8m x的图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1>y2,则m的取值范围是()A.m>18B.m<18C.mȡ18D.mɤ18ʌ解析ɔA.根据条件x1<0<x2,y1<y2,可判断其图象位于二㊁四象限,ʑ1-8m<0,ʑm>18.ʌ例2ɔ已知反比例函数y=-6x.(1)画出这个反比例的图象;(2)当-6ɤx<-2时,y的取值范围是;(3)当|y|ȡ3时,x的取值范围是.ʌ解析ɔ(1)图略;(2)1ɤy<3;(3)-2ɤx<0或0<xɤ2.九年级数学 大培优▶题型二 反比例函数的图象的对称性ʌ例3ɔ 如图,直线y =a x (a ʂ0)与双曲线y =k x(k ʂ0)交于A ,B 两点,试说明A ,B 两点关于原点对称.ʌ解析ɔ 联立y =a x ,y =k x{,得a x 2-k =0,ʑx A +x B =0,过A ,B 两点分别作x 轴的垂线,由全等即可得O A =O B ,ʑA ,B 两点关于原点对称.▶题型三 反比例函数的图象与系数的关系ʌ例4ɔ 如图,反比例函数①y =k 1x ,②y =k 2x ,③y =k 3x ,④y =k 4x的部分图象如图所示,则k 1,k 2,k 3,k 4的大小关系是.ʌ解析ɔ k 3<k 4<k 1<k 2.|k |越大,其图象离坐标原点越远.▶题型四 反比例函数中k的几何意义如图,过双曲线上任意一点P 作x 轴,y 轴的垂线段P M ,P N ,则所得的矩形P M O N 的面积S =P M ㊃P N =|y |㊃|x |=|x y|=|k |,即在反比例函数y =k x(k ʂ0)的图象上任取一点向两坐标轴作垂线段,则两垂线段与两坐标轴所围成的矩形的面积等于|k |,且这个面积的值与取点的位置无关.特别地,S әP M O =S әP N O =12|k |.ʌ例5ɔ 如图,平行于x 轴的直线A B 与双曲线y =k 1x 和y =k 2x(k 1>k 2)在第一象限内交于A ,B 两点,若S әO A B =2,求k 1-k 2的值.ʌ解析ɔ 延长A B 交y 轴于点C ,则S әO A B =S әO A C -S әO B C =12k 1-12k 2=2,ʑk 1-k 2=4.ʌ例6ɔ 如图,直线y =-12x 与双曲线y =k x(k <0)交于A ,B 两点,且点A 的横坐标为-4.(1)求k 的值;(2)过原点的另一直线交双曲线y =k x(k <0)于P ,Q 两点,点P 在第二象限.若A ,B ,P ,Q 四点组成的四边形面积为24,求点P 的坐标.ʌ解析ɔ (1)A (-4,2),k =-8;(2)易知四边形A P B Q 是平行四边形,ʑS әA P O =14S 四边形A P B Q =6,过点A 作A D ʅx 轴于点D ,过点P 作P E ʅx 轴于点E ,S 四边形A D O P =S әA D O +S әA P O =S 四边形A D E P +S әP E O ,ȵS әA D O =S әP E O ,ʑS әA P O =S 四边形A D E P ,设P (a ,-8a ),则12㊃(2-8a)㊃(a +4)=6,ʑa 1=8,a 2=-2,ȵ点P 在第二象限,ʑa <0,ʑa =-2,ʑP (-2,4).针对练习21.对于反比例函数y =3x ,下列说法正确的是( D )A.图象经过点(1,-3)B .图象在第二㊁四象限C .y 随x 的增大而减小 D.x <0时,y 随x 增大而减小2.在同一平面直角坐标系内画出函数y =k x +1和函数y =k x(k ʂ0)的图象大致是( B )3.反比例函数y =a 2-a +1x(a 为常数)的图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y3),其中x 1<x 2<0<x 3,则y 1,y 2,y3的大小关系是 y 2<y 1<y 3 .4.如图,点A 是反比例函数y =k x(x <0)的图象上一点,过点A 作A B ʅx 轴于点B ,点P 是y 轴负半轴上一点,әA B P 的面积为1,求k 的值.解:连接A O ,ȵA B ʊy 轴,ʑS әA B P =S әA B O =1,ʑ12|k |=1,ʑk =-2.5.点A (a ,y 1),B (2a ,y2)是反比例函数y =k x(k >0)的图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A ,B 两点在一次函数y =-43x +b 位于第一象限的图象上(如图所示),分别过A ,B 两点作x 轴的垂线,垂足分别为点C ,D ,连接O A ,O B ,且S әO A B =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x,求使得m >n 的x 的取值范围.解:(1)ȵA ,B 是反比例函数y =k x(k >0)图象上的两点,ʑa ʂ0,当a >0时,点A ,B 在第一象限,由a <2a 可知,y 1>y 2,同理,a <0时,y 1<y2;(2)ȵA (a ,y 1),B (2a ,y2)在反比例函数y =k x (k >0)的图象上,ʑA C =y 1=k a ,B D =y 2=k 2a,ʑy 1=2y 2.又ȵ点A (a ,y 1),B (2a ,y 2)在一次函数y =-43x +b 的图象上,ʑy 1=-43a +b ,y2=-83a +b ,ʑ-43a +b =2(-83a +b ),ʑb =4a ,ȵS әA O C +S 梯形A C D B =S әA O B +S әB O D ,又ȵS әA O C =S әB O D ,ʑS 梯形A C D B =S әA O B ,ʑ12[(-43a +b )+(-83a +b )]×a =8,ʑa 2=4,ȵa >0,ʑa =2;(3)由(2)得,一次函数的解析式为y =-43x +8,反比例函数的解析式为y =323x,A ,B 两点的横坐标分别为2,4,且m =-43x +8,n =323x,因此使得m >n 的x 的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出或x <0.九年级数学 大培优ʌ板块三ɔ 反比例函数与方程㊁不等式方法技巧根据直线与双曲线的交点并结合图象解题▶题型一 反比例函数与方程ʌ例1ɔ 如图,直线y =-x +5与双曲线y =4x 交于A ,B 两点.(1)求A ,B 两点的坐标;(2)将直线A B 向左平移n 个单位长度,若平移后直线A B 与双曲线有唯一公共点,求n 的值.ʌ解析ɔ (1)A (1,4),B (4,1);(2)将直线A B 向左平移n 个单位长度后其解析式为y =-(x +n )+5,联立y =4x,y =-(x +n )+5{,得x 2+(n -5)x +4=0,依题意,Δ=(n -5)2-4ˑ1ˑ4=0,解得n =1或9.ʌ例2ɔ 直线y =2x +4与反比例函数y =6x的图象交于A ,B 两点,直线y =m (m >0)与直线A B 相交于点M ,与反比例函数的图象相交于N ,若MN =4,求m 的值.ʌ解析ɔ ȵ点M 在直线A B 上,ʑM (m -42,m ),ȵ点N 在反比例函数y =6x的图象上,所以N (6m ,m ),MN =x N -x M =6m -m -42=4或MN =x M -x N =m -42-6m =4,ȵm>0,ʑm =2或m =6+43.▶题型二 反比例函数与不等式ʌ例3ɔ 如图,一次函数y =-x +4与反比例函数y =m x (m >0,x >0)的图象交于A ,B 两点,与x 轴,y轴分别相交于C ,D 两点.如果点A 的横坐标为1,利用函数图象求关于x 的不等式4-x <m x的解集.ʌ解析ɔ 当x =1时,y =3,ʑA (1,3)代入y =m x ,得m =3,y =3x,联立y =4-xy =3{x,得B (3,1),ʑ原不等式的解集为0<x <1或x >3.▶题型三 反比例函数与数形结合比较大小ʌ例4ɔ 如图,直线y =2x +4与反比例函数y =k x 的图象相交于A (-3,a )和B 两点.(1)求A ,B 两点的坐标;(2)直接写出不等式k xɤ2x +4的解集.ʌ解析ɔ (1)A (-3,-2),B (1,6);(2)-3ɤx <0或x ȡ1.ʌ例5ɔ 如图,双曲线y =k x (k >0)与直线y =-12x +4相交于A ,B 两点.(1)当k =6时,求点A ,B 的坐标;(2)在双曲线y =k x (k >0)的同一支上有三点C (x 1,y 1),D (x 2,y 2),P (x 1+x 22,y0),请你借助图象,直接写出y 0与y 1+y 22的大小关系;(3)点M (x 1,y 1),N (x 2,y2)是双曲线y =6x (x >0)上任意两点,s =y 1+y 22,t =12x 1+x 2,试比较s 与t 的大小.备用图ʌ解析ɔ (1)A (2,3),B (6,1);(2)当x 1>0时,y0<y 1+y 22;当x 1<0时,y0>y 1+y 22.(3)设线段MN 的中点为Q ,则点Q 的坐标为(x 1+x 22,y 1+y 22),过点Q 作Q R ʊy 轴交双曲线于点R ,则点R 的坐标为(x 1+x 22,12x 1+x 2),观察图象可知y 1+y 22>12x 1+x 2,ʑs >t .ʌ例6ɔ 当1ɤx ɤ4时,直线y =-2x +b 与双曲线y =4x 只有一个公共点,则b 的取值范围是 b =42或6<b ɤ9 .ʌ解析ɔ ①当直线y =-2x +b 过点(1,4)时,-2+b =4,b =6;②当直线y =-2x +b 过点(4,1)时,-8+b =1,b =9;③当直线y =-2x +b 与y =4x 相切时,联立4x =-2x +b ,得2x 2-b x +4=0,Δ=b 2-4ˑ2ˑ4=0,ʑb 1=42,b 2=-42(舍),由图象可知,b =42或6<b ɤ9.九年级数学 大培优针对练习31.如图,在平面直角坐标系中,直线A B :y 1=x +m 与双曲线C :y2=k x 相交于A (2,5),B 两点.(1)求点B 的坐标;(1)当y 1>y2时,x 的取值范围是;(2)当x <2时,y2的取值范围是.解:(1)B (-5,-2);(2)x >2或-5<x <0;(3)y2<0或y 2>5.2.如图,一次函数y 1=x +1的图象与反比例函数y 2=k x (k 为常数,且k ʂ0)的图象都经过点A (m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接写出当x >0时,比较y 1和y 2的大小;(3)直接写出不等式4x -2ɤx +1的解集.解:(1)将A (m ,2)代入y 1=x +1得m =1,ʑA (1,2),将A (1,2)代入y 2=k x ,得k =2,ʑy 2=2x ;(2)当0<x <1时,y 1<y2;当x =1时,y 1=y 2;当x >1,y 1>y 2;(3)-2ɤx <2或x ȡ3.3.如图,一次函数y 1=x +5的图象与反比例函数y 2=k x 的图象交于A ,B 两点.当x >1时,y 1>y2;当0<x <1时,y 1<y2.(1)直接写出反比例函数y 2的解析式;解:ȵ当x >1时,y 1>y 2;当0<x <1时,y 1<y2,ʑA 点的横坐标是1,纵坐标为y =1+5=6,ʑA (1,6),代入y 2=k x ,可得k =x y =6,ʑy 2=6x;(2)过点D (t ,0)(t >0)作x 轴的垂线,分别交双曲线y 2=k x和直线y 1=x +5于P ,Q 两点.若P Q=备用图3P D 时,求t 的值.解:当P Q =3P D 时,直线P Q 在点A 的右侧,ȵ直线P Q 分别交双曲线y 2=k x和直线y 1=x +5于P ,Q 两点,ʑP (t ,6t ),Q (t ,t +5),ȵP Q =3P D ,ʑt +5-6t =3ˑ6t ,解得t 1=3,t 2=-8(舍去),ʑt 的值为3.ʌ板块四ɔ 反比例函数与神奇的几何性质方法技巧根据反比例函数k 的意义,结合全等㊁相似或参数思想㊁根系关系,可得出反比例函数一些重要几何性质,在解题中可运用这些重要性质,从而大大提高解题效率.性质一 如图,直线A B :y =m x +n 交x 轴于点A ,交y 于点B ,交双曲线k x于C ,D 两点.求证:A C =B D.图1图2证明:证法一:(利用根系关系得全等)过点C 作C E ʅx 轴于点E ,过点D 作D F ʅy 于点F ,联立y =m x +n ,y =k x{,得m x 2+n x -k =0,则有x C +x D =-n m .易知A (-n m,0),ʑx C +x D =O A ,可得D F =A E ,ʑәA C E ɸәD B F ,ʑA C =B D .证法二:(利用k 的意义得相似)过点C 作C E ʅx 轴于点E ,C M ʅy 轴于点M ,过点D 作D F ʅy 轴于点F ,D N ʅx 轴于点N ,ȵx D ㊃y D =x C ㊃yC =k ,ʑD F ㊃D N =C M ㊃CE ,ʑC M DF =D N C E ,ʑB C B D =A D A C ,等式两边同时减1,得C D B D =C D A C,ʑA C =B D .性质应用ʌ例1ɔ 如图,直线y =x +6交x 轴于点A ,交y 轴于点B ,交双曲线y =k x于点C ,D ,若C D =2(A C +B D ),则k 的值为.ʌ解析ɔ -5.过点C 作C E ʅx 轴于点E ,由性质可得A C =B D ,ȵC D =2(A C +B D ),ʑC D =4A C ,ʑA B =6A C ,ʑC E =16O B =16ˑ6=1,同理A E =1,ʑO E =5,ʑC (-5,1),ʑk =-5ˑ1=-5.性质二 如图1,A ,B 为双曲线y =k x上任意两点,A C ʅy 轴于点C ,B D ʅx 轴于点D ,直线AC ,BD 交于点E .求证:①A B ʊC D ; ②A C A E =B D B E.图1证明:证法一:(面积法)连接A D ,B C ,则S әA C D =S әB C D =12|k |,ʑ①A B ʊC D ;②A C A E =B DB E.证法二:(相似法)利用x A y A =x B y B =k ,可得A C ㊃D E =B D ㊃C E ,进而得A E C E =B E D E ,ʑәA B E ~әC D E ,ʑ①A B ʊC D ;②A C A E =B DB E.九年级数学 大培优变式1:如图2,A C ʅx 轴于点C ,B D ʅy 轴于点D ,A C ,B D 交于点E .求证:①A B ʊCD ; ②A C AE =B D B E.图2证明:证法同上.变式2:如图3,A ,B 为双曲线y =k x 上任意两点,A C ʅy 轴于点C ,B D ʅx 轴于点D ,直线AC ,B D交于图3点E .求证:①A B ʊC D ; ②A C A E =B D B E.证明:证法同上.ʌ例2ɔ 如图,双曲线y =k x经过矩形O A B C 边A B 的中点F ,交B C于点E ,且四边形O E B F 的面积为2,则k =.ʌ解析ɔ 过点E 作E H ʅx 轴于点H ,ȵ点F 为A B 中点,则点E 为B C 边的中点,可得S 四边形O E B F =12S 矩形O A B C =S 矩形O C E H =k ,ʑk =2.ʌ例3ɔ 如图,点P 为双曲线y =8x(x >0)上一点,P A ʅx 轴于点A ,P Bʅy 轴于点B ,P A ,P B 分别交双曲线y =k x (x >0)于C ,D 两点,若S әP C D =1,则k =.ʌ解析ɔ 设点P (a ,8a ),则点C (a ,k a ),D (a k 8,8a ),ʑS әP C D =12ˑ8-k a ˑ(a -a k 8)=(8-k )216=1,ʑk 1=4,k 2=12(舍),ʑk =4.性质三 如图,直线A B 与双曲线y =k x只有唯一公共点A ,且A B 与y 轴不平行,A B 交x 轴于点B ,连接O A .求证:O A =A B.证明:(解析法)过点A 作AH ʅx 轴于点H ,设点A a ,k ()a ,L A B :y =m (x -a )+k a.联立y =k x y =m (x -a )+k ìîíïïïïa得m x 2+k a -()a m x -k =0,依题意Δ=k a -()a m2+4m k=ka+()a m2=0,ʑm =-k a 2,ʑy =-k a2x +2k a ,ʑB (2a ,0),ʑO H =B H =a ,ʑO A =A B .性质四 如图,直线y =m x 交双曲线y =k x于A ,B 两点,点P 为双曲线上一点,直线P A ,P B 分别交x轴于M ,N 两点.求证:P M =P N .证明:(解析法)设点A a ,k ()a ,B -a ,-k ()a ,P b ,k ()b,由待定系数法可得l P A :y =-k a b x +(a +b )k a b ,l P B :y =k a b x +(a -b )k a b ,ʑx M =b +a ,x N =b -a ,ʑx M +x N =2x P ,可得P M =P N .ʌ例4ɔ (2018十堰中考)如图,直线y =-x 与反比例函数y =k x的图象交于A ,B 两点,过点B 作B Dʊx 轴,交y 轴于点D ,直线A D 交反比例函数y =k x 的图象于另一点C ,求C B C A的值.ʌ解析ɔ (解析法)过点A ,C分别作y 轴的垂线,垂足分别为点E ,F ,设点A (a ,-a ),则B (-a ,a ),D (0,a ),由待定系数法得l D A :y =-2x +a ,联立y =-2x +a y =k{x得2x 2-a x +k =0,ʑx A +x C =a 2,ȵx A =a ,ʑx C =-12a =x B +x D2,ʑ点C 在B D 的垂直平分线上,ʑC B =C D ,由面积法可得C D A D =C F A E =12aa =12,ʑC B =C D =13C A ,ʑC B C A =C D C A =13.针对练习41.如图,点A ,B 分别是双曲线y =4x 和y =2x第一象限分支上的点,且A B ʊy 轴,B C ʅy 轴于点C ,则A B ㊃B C = 2 .解:方法一:利用k的几何意义 面积法求.延长A B 交x 轴于点E ,过点A 作y 轴的垂线,垂足为F .A B ㊃B C =S 矩形A B C F =S 矩形A E O F -S 矩形B E O C =4-2=2.方法二:设点A 坐标,分别表示出点B ,C 坐标,运用参数进行计算.2.如图,直线y =-3x +b 与y 轴交于点A ,与双曲线y =k x在第一象限交于B ,C 两点,且A B ㊃A C =4,则k = 3 .解:方法提示:斜化直,线段转坐标.设直线A B 交x 轴于点D ,则由性质可得A B =C D ,ʑA C =B D ,由条件知øO A D =30ʎ,ʑA B =2x B ,A C =B D =233y B ,ʑA B ㊃A C =2x B ㊃233y B =433x B ㊃y B =4,ʑk =x B ㊃y B =3.九年级数学 大培优3.如图,әO A C 的顶点A 在双曲线y =9x上,点C 在x 轴上,O A 交双曲线y=1x 于点B ,直线A C 与双曲线y =9x只有唯一公共点,且A C 与y 轴不平行,则S әA B C =.解:设A (a ,9a ),O A 解析式为y =9a 2x ,可得B (a 3,3a ).易得直线A C 解析式为y =-9a2x +18a .可得A O =A C ,ȵS әO B CS әO A C =12O C ㊃y A12O C ㊃y B =3a 9a=13,ʑS әA B C =23S әA O C =23ˑ9=6.4.如图1,直线y =-2x +6交x 轴于点B ,交y 轴于点A ,直线A B 与双曲线y =k x(k <0)交于C ,D 两点,C E ʅx 轴于点E ,D F ʅx 轴于点F .(1)若k =-8,求C D 的长;(2)求C E -D F 的值;(3)如图2,P 是双曲线y =k x (k <0)上第二象限上一动点,P G ʅx 轴于G ,交双曲线y =k 2x(k <0)于M ,PH ʅy 轴于H ,交y =k 2x(k <0)于N ,请直接写出MN 的最小值为(用含k 的式子表示).图1 图2解:(1)ʑC (-1,8),D (4,-2),C D =55;(2)联立y =-2x +6y =k{x得2x 2-6x +k =0,x C +x D =3,ʑy C +y D =-2x C +6-2x D +6=-2ˑ3+12=6,C E =y C ,D F =-y D ,ʑC E -D F =y C +yD =6;(3)-2k 2.(提示:MN =12G H ).ʌ板块五ɔ 反比例函数与直线x =a 或y =a方法技巧此类问题一般可用a 表示相关点的坐标,从而表示出相关线段长,将几何问题坐标化.解题时注意情况不明时需分类讨论.ʌ例1ɔ 如图,在平面直角坐标系x O y 中,直线y =2x +n 与x 轴,y 轴分别交于点A ,B ,与双曲线y =4x在第一象限内交于点C (1,m ),过x 轴正半轴上的点D (a ,0)作平行于y 轴的直线l ,分别与直线和双曲线y =4x 交于点P ,Q ,且点P 不与点Q 重合.(1)求m 和n 的值;(2)当a >1,P Q =2Q D 时,求әA P Q 的面积;(3)连接C Q ,当C P =C Q 时,求a 的值.ʌ解析ɔ (1)m =4,n =2;(2)在y =2x +2中,令y =0,则x =-1,ʑA (-1,0),ȵD (a ,0),l ʊy 轴,ʑP (a ,2a +2),Q a ,4()a .ȵP Q =2Q D ,ʑ2a +2-4a =2ˑ4a,解得:a =2,a =-3.ȵP ,Q 在第一象限,ʑa =2,ʑP Q =4,又ȵA D =3,ʑS әA P Q =12ˑ4ˑ3=6;(3)过点C 作C M ʅP Q 于点M ,ȵC P =C Q ,ʑP M =M Q ,设P (a ,2a +2),Q a ,4()a ,M (a ,4).则2a +2+4a=8解得a =2或a =1(舍),针对练习51.如图,直线l :y =32x +3与双曲线y =k x 在第一象限内交于点A (a ,6).(1)求双曲线的解析式;(2)直线x =t (t >0且t ʂ2)分别交直线l ,双曲线y =k x 于C ,D 两点,连接A D ,若A C =A D ,请直接写出t 的值.解:(1)ȵ点A (a ,6)在直线y =32x +3上,ʑ32a +3=6,ʑa =2,ʑA (2,6),又A 在双曲线y =k x 上,ʑk 2=6,ʑk =12,即双曲线的解析式为y =12x.(2)t =4.理由如下:设C t ,32t ()+3,D t ,12()t ,则A C 2=(t -2)2+32t ()+3-62=134(t -2)2,A D 2=(t -2)2+12t ()-62=1+36t()2(t -2)2,由A C =A D ,有A C 2=A D 2,ʑ134(t -2)2=1+36t ()2(t -2)2,ȵt ʂ2,ʑ134=1+36t2,ʑt =4或t =-4(舍),ʑt =4.ʌ板块六ɔ 反比例函数与全等及勾股定理方法技巧利用全等㊁相似将线段关系转化为坐标关系,实现 几何问题坐标化 .▶题型一 反比例函数与全等ʌ例1ɔ 如图,点A 是双曲线y =8x在第一象限上的一动点,连接A O 并延长交另一分支于点B ,以A B为斜边作等腰R t әA B C ,随着点A 的运动,点C 的位置也不断地变化,但始终在一函数图象上运动,则这个函数的解析式为 y =-8x(x <0).ʌ解析ɔ 连接O C ,过点A ,C 分别作x 轴的垂线构造三垂直全等.ʌ例2ɔ (2018原创题)如图,点A (2,4),B 均为双曲线y =k x在第一象限上的点,且øA O B =45ʎ,求点B 的坐标.ʌ解析ɔ 过点A 作A D ʅO A 交O B 延长线于点D ,作A E ʅy 轴于点E ,D F ʅA E 于点F ,则әA D F ɸәO A E ,ʑA F =O E =4,D F =A E =2,ʑD (6,2),ʑl O D ʒy =13x ,ȵA (2,4),ʑy =8x,联立y =8x ,y =13x ìîíïïïï,得B (26,263).九年级数学 大培优▶题型二 反比例函数与勾股定理ʌ例3ɔ 如图,矩形A B C O 的顶点B (10,8),点A ,C 在坐标轴上,E 是B C 边上一点,将әA B E 沿A E 折叠,点B 刚好与O C 边上的点D 重合,过点E 的反比例函数y =k x (k >0)的图象与边A B 交于点F ,求点F 的坐标.ʌ解析ɔ 由题意知,A D =A B =10,A O =8,由勾股定理可求O D =6,则C D =4,设C E =x ,则D E =B E =8-x ,在R t әD C E 中,C D 2+C E 2=D E 2,即x 2+42=(8-x )2,解得x =3,ʑE (10,3),设F (a ,8),则10ˑ3=8a ,ʑa =154,ʑF (154,8).针对练习61.如图,A (2,3)是双曲线y =k x(x >0)上的一点,P 为x 轴正半轴上一点,将点A 绕点P 顺时针旋转90ʎ,恰好落在双曲线上的另一点B ,求点P的坐标.解:设P (t ,0),过点A 作AM ʅx 轴于点M ,过B 作B N ʅx 轴于点N ,则әA P M ɸәP B N ,ʑP N =AM =3,B N =P M =t -2,ʑB (t +3,t -2),又ȵ点A ,B 在y =k x上,ʑ(t +3)(t -2)=6,ʑt 1=-4,t 2=3,ȵt >0,ʑt =3,ʑP (3,0).2.如图,已知点A (2,2),P (0,a )是y 轴上一点,连接P A ,将线段P A 绕点P 逆时针旋转90ʎ得线段P A ᶄ,若线段P A ᶄ与反比例函数y =-3x(x <0)的图象有公共点,求a 的取值范围.解:当点A ᶄ恰好落在反比例函数y =-3x (x <0)的图象上时,过点A ᶄ作A ᶄD ʅy 轴于点D ,过点A 作A B ʅy 轴于点B ,则әA ᶄP D ɸәP A B ,ʑA ᶄD =P B =2-a ,P D =A B =2,O D =2+a ,ʑA ᶄ(a -2,a +2),ʑ(a -2)(a +2)=-3,ʑa =ʃ1,ʑ点A ᶄ的横坐标为-1或-3,均符合题意,ȵ线段P A ᶄ与反比例函数y =-3x (x <0)的图象有公共点,ʑ-1ɤa ɤ1.3.如图,直线y =3x -3交坐标轴于A ,B 两点,将әA O B 沿A B 翻折得到әA C B ,点D 在A C 的延长线上,且C D =4A C ,反比例函数y =k x的图象经过点D ,求k 的值.解:过点B 作B E ʊA C ,交x 轴于点E ,则øE B A =øB A C =øE A B ,ʑE A =E B ,易求O A =1,O B =3,设E A =E B =x ,则x 2=(x -1)2+32,解得x =5,由题意,A C =A O =1,ȵC D =4A C ,ʑA D =5A C =5,ʑA D =E B ,ʑ将线段E B 向右平移5个单位得线段A D ,ʑD (5,-3),ʑk =5ˑ(-3)=-15.ʌ板块七ɔ 反比例函数与图形变换方法技巧图形变换的本质是点的变换,解题的关键是根据变换规律,将变换后的关键点的坐标表示出来,再根据条件建立关系式.ʌ例1ɔ 平面直角坐标系中,点A (-2,0),B (0,3),点P 为第二象限内一点.(1)如图,将线段A B 绕点P 旋转180ʎ得线段C D ,点A 与点C 对应,试画出图形;(2)若(1)中得到的点C ,D 恰好在同一个反比例函数y =k x的图象上,求直线B C 的解析式;(3)若点Q (m ,n )为第四象限的一点,将线段A B 绕点Q 顺时针旋转90ʎ得到线段E F ,其中点A 与点E 对应,若点E ,F 恰好在同一个反比例函数的图象上,直接写出m ,n 之间的关系式为 m =-5n .备用图ʌ解析ɔ (1)略;(2)设P (m ,n ),则C (2+2m ,2n ),D (2m ,2n -3).ȵ点C ,D 恰好在同一个反比例函数y =k x 的图象上,ʑ2n (2+2m )=2m (2n -3),得2n =-3m ,设直线B C 的解析式为y =t x +3,将C (2+2m ,-3m )代入y =t x +3中,得(2+2m )t +3=-3m ,解得t =-32,ʑy =-32x +3;(3)由三垂直得,E (m -n ,m +n +2),F (m +3-n ,n +m ),ʑ(m -n )(m +n +2)=(m +3-n )(n +m ),整理得m =-5n .九年级数学 大培优ʌ例2ɔ 已知点A (a ,m )在双曲线y =8x 上且m <0,过点A 作x 轴的垂线,垂足为点B .(1)如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90ʎ至点C .①若t =1,直接写出点C 的坐标;②若双曲线y =8x经过点C ,求t 的值;(2)如图2,将图1中的双曲线y =8x(x >0)沿y 轴折叠得到双曲线y =-8x (x <0),将线段O A 绕点O 旋转,点A 刚好落在双曲线y =-8x(x <0)上的点D (d ,n )处,求m 和n 的数量关系.ʌ解析ɔ (1)将x A =-2代入y =8x 中得:y A =8-2=-4,ʑA (-2,-4),B (-2,0),①ȵt =1,ʑP (1,0),B P =1-(-2)=3,ȵ将点B 绕点P 顺时针旋转90ʎ至点C ,ʑx C =x P =1,P C =B P =3,ʑC (1,3);②ȵB (-2,0),P (t ,0),当t >-2时,由题意知C 的坐标为(t ,t +2),ȵC 在y =8x 上,ʑt (t +2)=8,解得t =2或-4.ȵt>-2,ʑt =2;当t <-2时,c (t ,t +2),t (t +2)=8,t =-4或t =2(舍),ʑt =2或-4;(2)过点D 作DH ʅy 轴于点H ,ʑO A =O D ,a 2+m 2=d 2+n 2,a m =8,d n =-8,(a +m )2=(d -n )2,(a -m )2=(d +n )2,又a <0,m <0,d <0,n >0,ʑa +m =d -n ,a -m =d +n 或a -m =-d -n ,a -d =-m -n a -d =m +{n 或a -d =-n -m a +d =m -{nʑm +n =0,或a =-nd ={m又a m =8,ʑ-m n =8,m n =-8,故m +n =0或m n =-8.针对练习71.在平面直角坐标系中,点A (a ,0)为x 轴上一动点,点M 的坐标为(1,-1),点N 的坐标为(3,-4),连接AM ,MN ,点N 关于直线AM 的对称点为点N ᶄ.(1)若a =2,在图1中画出线段MN 关于直线AM 的对称图形MN ᶄ(保留作图痕迹),直接写出点N ᶄ的坐标为 (-2,1) ;(2)若a >0,连接A N ,A N ᶄ,当点A 运动到øN ᶄA N =90ʎ时,点N ᶄ恰好在双曲线y =k x上(如图2),求k 的值;(3)点A 在x 轴上运动,若øN ᶄMN =90ʎ,此时a 的值为 -4或65.解:(1)N ᶄ(-2,1).提示:取点B (3,1),则B N ʅx 轴,M ㊁A ,B 三点在同一条直线上;(2)由A N ,A N ᶄ垂直且相等,可构建三垂直全等得N ᶄ(a -4,a -3),ʑk =(a -4)(a -3)=a 2-7a +12.ȵMN =MN ᶄ,由勾股定理得(a -5)2+(a -2)2=13,ʑa 2-7a +8=0,ʑ12-k =8,ʑk =4;(3)-4或65.由øN ᶄMN =90ʎ,构建三垂直全等得N ᶄ(4,1)或N ᶄ(-2,-3),ȵ直线A M 过N N ᶄ的中点C ,且点C 的坐标为(7,-3)或(1,-7),ʑ直线A M 的解析式为y =-1x -4或y =5x -6,令y =0,分别求得A (-4,0)或A (6,0).ʌ板块八ɔ 反比例函数与定值㊁最值方法技巧通过采取解析法求定值,建立二次函数模型求最值.▶题型一 反比例函数与定值ʌ例1ɔ 如图,点C (6,1),D (1,6)在双曲线y =6x的图象上.点T 在双曲线第一象限上(不同于C ,D ),直线T C ,T D分别交y 轴于E ,F ,则O F -O E 的值是 5 .ʌ解析ɔ O F -O E =5.理由如下:设点T m ,6()m,由D (1,6)得直线T D 的解析式:y =-6m x +6m +6,ʑO F =6m +6.由C (6,1)得直线T C 的解析式:y =-1m x +6m +1.ʑO E =6m+1,ʑO F -O E =5.▶题型二 反比例函数与最值ʌ例2ɔ 如图,双曲线y =2x的第一象限的分支上一动点P ,点A (-2,-2),B (2,2),则P A -P B 的值为4 .ʌ解析ɔ 方法1:设点P m ,2()m,则P A =(m +2)2+2m()+22=m +2m+2,同理P B =m +2m-2,ʑP A -P B =4.方法2:特殊位置法.ʌ例3ɔ 如图,在平面直角坐标系中,直线A B :y 1=x +m 与双曲线C :y2=k x 相交于A ,B 两点,其中点A (2,5),A C ʅy 轴于点C .(1)求直线与双曲线的解析式;(2)直接写出x <2时,反比例函数值y 2的取值范围;(3)点E 为点B 下方直线A B 上一动点,直线E F ʅA B ,分别与直线A B ,双曲线C 及y 轴交于E ,F ,G 三点,求E F ㊃F G 的最大值.ʌ解析ɔ (1)y 1=x +3,y2=10x;(2)y2<0或y 2>5;(3)作E I ʅy 轴于点I ,F J ʅy 轴于点J ,F H ʅE I 于点H ,设E (t ,t +3),易得B (-5,-2),由t <-5,F (m ,10m ),E H =H F ,则t +3-10m =m -t ,得t =5m +m 2-32,E 5m +m 2-32,m 2+5m +3()2,E F ㊃F G =2H E ㊃2H I =2(x F-x E)(-x F)=2(-x 2F+x E ㊃x F)=-2m 2+2m m 2+5m -3()2=-m 2-3m +10=-m +3()22+494,当m =-32时,E F ㊃F G 最大=494,此时t =-6712<-5,(E F ㊃F G )最大=494.九年级数学 大培优针对练习81.如图,若直线y =-x +m 与反比例函数y =4x(x >0)的图象相交于两个不同点E ,F (点E 在点F 的左边),与y 轴相交于点M.(1)m 的取值范围为;(2)求M E ㊃M F 的值.解:(1)设y =-x +m 代入y =4x 中,-x +m =4x ,整理得x 2-m x +4=0,ʑm >0Δ=m 2-16>{,解得m >4;(2)过点E ,F 分别作y 轴的垂线,垂足分别为G ,H .由y =-x +m 可知øM E G =øM F H =45ʎ,ʑM E =2G E ,M F =2H F .由y =-x +m =4x,得x 2-m x +4=0,ʑx E ㊃x F =4,ʑM E ㊃M F =2x E ㊃2x F =2x E ㊃x F =8.2.如图,已知反比例函数y =k x 和一次函数y =32x +6的图象有一个交点为P (-2,m ).(1)求反比例函数解析式;(2)若过点P 的直线l 与反比例函数y =k x的图象只有一个交点,求直线l 的解析式;(3)点Q 是双曲线在第四象限这一分支上的动点,过点Q 作直线,使其与双曲线y =k x只有一个公共点,且与x 轴,y 轴分别交于点C ,D ,直线y =32x +6与x 轴,y 轴分别交于点A ,B ,求四边形A BCD 面积的最小值.解:(1)将P (-2,m )代入y =32x +6得m =3,ʑP (-2,3),代入y =k x 得k =-2ˑ3=-6.ʑy =-6x.(2)①当l ʊx 轴时,直线l 为y =3;②当l ʊy 轴时,直线l 为x =-2;③当直线l 与坐标轴不平行时,ȵ过P (-2,3),ʑ可设解析式为y =a x +2a +3,由y =a x +2a +3y =-6{x得a x 2+(2a +3)x +6=0,依题意Δ=(2a +3)2-24a =(2a -3)2=0,ʑa =32,ʑy =32x +6.综上,直线l 为的解析式为y =3或x =-2或y =32x +6.(3)设Q t ,-6()t ,l C D :y =p x -t p -6t .由y =p x -t p -6t y =-6ìîíïïïïx得p x 2-t p +6()t x +6=0,ʑΔ=t p +6()t 2-24p =t p -6()t2=0,ʑp =6t 2,ʑl C D :y =6t2x -12t ,ʑD 0,-12()t ,C (2t ,0),ʑA C =2t +4,B D =6+12t .ʑS 四边形A B C D =12A C ㊃B C =12(2t +4)6+12()t =6t +4()t +24=6t -2æèçöø÷t 2+48,当t =2时,S m i n =48.第20讲实际问题与反比例函数知识导航1.根据实际问题列反比例函数关系式或确定函数图象;2.反比例函数的应用.ʌ板块一ɔ根据实际问题列反比例函数关系式或确定函数图象方法技巧解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.▶题型一坐标与距离ʌ例1ɔ某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.下图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.I=2RB.I=3RC.I=6RD.I=-6Rʌ解析ɔ C.ʌ例2ɔ某小学部课外兴趣小组的同学每人制作一个面积为1m2的矩形学具进行展示.设矩形的宽为x m,长为y m.那么这些同学所制作的矩形长y(m)与宽x(m)之间的函数关系的图象大致是()ʌ解析ɔ A.针对练习11.如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定值S时,x与y的函数关系为(C)A.y=S xB.y=S2xC.y=2S xD.y=x2S2.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R(单位:Ω)与光照度E(单位:l x)之间成反比例函数关系,部分数据如下表所示:光照度E/l x0.511.522.53光敏电阻阻值R/Ω603020151210则光敏电阻值R与光照度E的函数表达式为R=30E.九年级数学 大培优ʌ板块二ɔ 反比例函数的应用方法技巧1.根据题意,建立反比例函数模型解题;2.正确认识图象,找到关键的点,运用好数形结合的思想.ʌ例1ɔ 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y =-200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y =k x(k >0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几小时血液中的酒精含量达到最大值?最大值为多少?②当x =5时,y =45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于酒后驾驶 ,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.ʌ解析ɔ (1)①y =-200x 2+400x =-200(x -1)2+200,ʑ喝酒后1小时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②ȵ当x =5时,y =45,y =k x,ʑk =x y =45ˑ5=225;(2)不能驾车上班.理由:ȵ晚上20:00到第二天早上7:00,一共有11小时,ʑ将x =11代入y =225x ,则y =22511>20.ʑ第二天早上7:00不能驾车去上班.ʌ例2ɔ 某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为12m 2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x (m ),y (m ).①求y 关于x 的函数表达式;②当y ȡ4m 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?ʌ解析ɔ (1)①由题意x y =12,ʑy =12x x ȡ6()5;②y ȡ4时,65ɤx ɤ3;(2)当2x +12x =9.5时,整理得:4x 2-19x +24=0,ә<0,方程无实数解.当2x +12x =10.5时,整理得:4x 2-21x +24=0,ә=57>0,符合题意;ʑ小凯的说法错误,洋洋的说法正确.针对练习21.当温度不变时,某气球内的气压p (k P a )与气体体积V (m 3)的函数关系如图所示,已知当气球内的气压p >120k P a 时,气球将爆炸,为了安全起见,气球的体积V 应( C )A.不大于45m 3B .大于45m 3C .不小于45m 3 D.小于45m 32.为预防流感盛行,对教室进行 薰药消毒 .已知药物在燃烧及释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段O A 和双曲线在A 点及其右侧的部分),根据图象所示信息,解答下列问题:(1)直接写出y 与x 之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?解:(1)y =23x (0ɤx ɤ15),150x(x >15ìîíïïïï);(2)将y =2代入y =23x 得x =3;将y =2代入y =150x 得x =75;75-3=72.答:从消毒开始,师生至少在72分钟内不能进入教室.3.(2018㊃乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (ħ)与时间x (h )之间的函数关系,其中线段A B ,B C 表示恒温系统开启阶段,双曲线的一部分C D 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0ɤx ɤ24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10ħ时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)y =2x +10(0ɤx <5),20(5ɤx <10),200x(10ɤx ɤ24ìîíïïïï);(2)由(1)得恒温系统设定恒温为20ħ;(3)把y =10代入y =200x 中,解得x =20,ʑ20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.九年级数学 大培优第二十七章 相似第21讲 相似三角形的判定知识导航1.相似多边形.2.平行线分线段成比例定理.3.相似三角形的判定方法.ʌ板块一ɔ 平行线分线段成比例定理方法技巧1.在利用平行线分线段成比例定理时,注意对应线段的位置.2.由平行线+中点得线段中点,利用中位线解题.▶题型一 运用平行线分线段成比例定理探究线段关系ʌ例1ɔ 如图,已知直线A B ʊC D ʊE F ,A F 与B E 交于点G ,且A G =2,G D =1,D F =5,求B C C E的值.ʌ解析ɔ 由A B ʊC D ʊE F ,得B C C E =A D D F .又A D =A G +G D =2+1=3,D F =5,ʑB C C E =35.ʌ例2ɔ 如图,P 是▱A B C D 的边B C 的延长线上任意一点,A P 分别交B D 和C D 于点M 和N .求证:AM 2=MN ㊃MP .ʌ解析ɔ ȵA B ʊD N ,ʑәAM B ʐәNMD ,ʑAM MN =B M DM,又ȵA D ʊB P ,ʑәB M P ʐәDM A ,ʑM P AM =B M DM ,ʑAM MN =M P AM,ʑAM 2=MN ㊃M P .▶题型二 平行线等分线段定理证线段中点ʌ例3ɔ 如图,在正方形A B C D 中,点E 在对角线B D 上,连接A E ,D F ʅB D ,且D F =B E ,F B 与A C交于点M .求证:D E =2C M .ʌ解析ɔ 延长D F ,B C 交于点H ,易证øC D F =45ʎ=øD C A ,ʑDH ʊA C ,又A D ʊC H ,ʑ四边形A C HD 为平行四边形.ʑA D =C H =D C =B C ,DH =A C =B D .ȵAC //DH ,B C =AD =C H ,ʑB M =M F ,又B C =C H .ʑF H =2C M .又DH =B D ,BE =BF ,ʑDH -D F =B D -B E ,即D E =F H .ʑD E =2C M .针对练习11.如图,直线l1,l2,l3分别交直线l4于A,B,C三点,交直线l5于点D,E,F,且l1ʊl2ʊl3,已知D EʒD F =3ʒ8,A C=24.(1)求B C的长;(2)当A D=4,C F=20时,求B E的长.解:(1)B C=15;(2)连接C D交E B于点H,易得E H=38F C=152;H B=58A D=52;ʑB E=E H+H B=10.2.如图,A B是☉O的直径,C D是弦,A EʅC D,B FʅC D,垂足分别为点E,F.(1)求证:D E=C F;(2)若B F=1,A E=2,E F=4,求A B的长.解:(1)过点O作O NʅC D,垂足为点N,易证A EʊO NʊB F,ʑE N N F=A O O B=1.ʑE N=N F.ȵO NʅC D,ʑD N=N C.ʑD N-E N=N C-N F,ʑD E=C F;(2)延长A E交☉O于点M,连接B M.易证四边形E M B F为矩形.ʑE M=B F=1,B M=E F=4,ʑA B=AM2+B M2=5.3.如图,在正方形A B C D中,点E在D A的延长线上,A E=A B,点F在C D上,M为A F的中点,过点M作MNʅM C交B E于点N.求证:MN=M C.解:过点M作M PʅB C,垂足为点P,易证A BʊM PʊD C,ʑB P P C=AM M F=1.ʑB P=P C.ȵM PʅB C,ʑM B=M C.设øNM B=2x,易证øB M P=øP M C=45ʎ-x,øM B P=45ʎ+x,øA B M=45ʎ-x,øM B E=90ʎ-x,ʑøMN B=180ʎ-øNM B-øM B E=90ʎ-x.ʑøM B E=øMN B.ʑMN=M B=M C.九年级数学 大培优ʌ板块二ɔ 作平行线构造X 型相似方法技巧1.作平行线是构造三角形相似的基本方法,利用平行线对比例式进行转化.2.通常引入参数求比值或计算线段的长.▶题型一 延长平行线段构X 型相似ʌ例1ɔ 如图,▱A B C D 中,A B =2,A D =3,øA B C =60ʎ,A E ʅB C ,垂足为点E .F 为C D 的中点,D E与B F 相交于点P .(1)求E P D P 的值;(2)求B P 的长.ʌ解析ɔ (1)延长B F ,A D 交于点M ,易得B E =12A B =1,B C =A D =3,E C =2,由A D ʊB C 得DM B C =D F F C =1,E P P D =B E DM .ʑDM =B C =3,E P P D =B E DM =13;(2)过点M 作MN ʅB C 交B C 的延长线于点N .易证四边形A E NM 为矩形,ʑMN =A E =3,E N =AM =6,B M =B N 2+MN 2=213.ȵA D ʊB C ,ʑB P P M =E P P D =13.ʑB P B M =14,B P =14B M =132.▶题型二 作平行线构X 型相似,证线段关系ʌ例2ɔ 如图,在әA B C 中,A B =A C ,D 为B C 上一点,点E ,F 在A D 上,A E =E F =12B E ,øB E D =øB A C .(1)求证:A E =F C ;(2)求证:B D =2C D .ʌ解析ɔ (1)ȵA E =E F =12B E ,ʑB E =A F ,ȵøB E D =øB AC ,ʑøA B E =øC A F ,ʑәA B E ɸәC A F (S A S ),ʑA E =F C ;(2)过点C 作C M ʊB E 交A D 的延长线于点M .ȵәA B E ɸәC A F ,ʑøB E A =øA F C ,ȵøB E A +øB E D =180ʎ,øA F C +øD F C =180ʎ,ʑøB E D =øD F C .ȵB E ʊC M ,ʑøM =øB E D =øD F C .ʑF C =C M .ȵA E =F C ,A E =12B E ,ʑB E =2C M .ȵB E ʊC M ,ʑәB ED ʐәC MD .ʑB D D C =B EC M=2.ʑB D =2D C .▶题型三 作平行线构X 型相似,求比值ʌ例3ɔ 如图,øC A B =90ʎ,A C =A B ,D 是A C 的中点,A F ʅB C 分别交B D ,B C 于点E ,F .A G ʅD B交B C 于点G .求D E A G的值.ʌ解析ɔ 过点B 作B H ʊA C 交A F 的延长线于点H .易证әA C G ɸәB A E ,ʑA G =B E .易证C F =B F ,ȵB H ʊA C ,ʑB H A C =B F C F=1,ʑB H =A C ,又D 为A C 的中点,ʑB H =A C =2A D .ȵB H ʊA C ,ʑE B D E =B H A D =2.ʑE B =2D E .又A G =B E ,ʑA G =2D E ,ʑD E A G =12.ʌ另解ɔ 导角可知,әA D E ʐәB A G ,ʑD E A G =A D A B =1.。
2020年中考数学知识点过关培优训练08:四边形(教师版)
2020年中考数学知识点过关培优训练:四边形1.已知,如图,在矩形ABCD中,AB=8,BC=x(0<x≤8),点E在边CD上,且CE=CB,以AE为对角线作正方形AGEF.设正方形AGEF的面积y.(1)当点F在矩形ABCD的边上时,x=4.(2)求y与x的函数关系式及y的取值范围.(3)当矩形ABCD的一条边将正方形AGEF的面积分为1:3两部分时,直接写出x的值.【解答】解:(1)点F在矩形ABCD的边上时,AF=EF=FG=BC,∵EC=BC,∴AF=FB=4,∴BC=EC=BF=4,故答案为4.(2)y=AE2=(AD2+DE2)=[x2+(8﹣x)2]=x2﹣8x+32=(x﹣4)2+16.∵0<x≤8,∴16≤y≤32.(3)①如图1中,设CD交AG于Q,当AQ=GQ时,长方形ABCD的边CD将正方形AFEG的面积分成1:3两部分.则∵tan∠QEG=tan∠QAD,∴==,∵AD=BC=x,∴DQ=x,AQ=GQ=xEG=x,∴EQ=x,∵DQ+QE+CE=8,∴x+x+x=8,∴x=2.②如图2中,设AD交EG于Q,当GQ=EG时,长方形ABCD的边AD将正方形AFEG的面积分成1:3两部分.设DQ=m,同法可得DE=2m,QE=GQ=m,AQ=5m,∴6m=x,∴DE=,∵DE+CE=8,∴x+x=8,∴x=6,∴满足条件的x的值为2或6.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).【解答】解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).3.如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.【解答】解:(1)证明:∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.4.如图,矩形ABCD的边长AB=2,BC=4,动点P从点B出发,沿B→C→D→A的路线运动,设△ABP的面积为S,点P走过的路程为x.(1)当点P在CD边上运动时,△ABP的面积是否变化,请说明理由;(2)求S与x之间的函数关系式;(3)当S=2时,求x的值.【解答】解:(1)结论:不变化.理由:因为,所以不变化.(2)当0≤x≤4时,.当4<x≤6时,.当6<x≤10时,AP=10﹣x,.综上所述,S=.(3)当0≤x≤4时,x=2当4<x≤6时,4≠2,∴不存在(此步不写不扣分)当6<x≤10时,﹣x+10=2,解得x=8.5.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.【解答】(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠F AE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.6.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.【解答】解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠F AN=45°,在△MAN和△F AN中,,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.7.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC 至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是50.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AO=AC=5,AB=10,BO=5,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.8.如图,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一个矩形DEFG,使得点D在AB边上,EF在BC边上,点G在AC边上,设EF=x,矩形DEFG的面积为y.(1)求出y与x之间的函数关系式;(2)直接写出自变量x的取值范围0<x<6;(3)若DG=2DE,则矩形DEFG的面积为.【解答】解:(1)如图,过点A作AN⊥BC于点N,交DG于点M,∵AB=AC=5,BC=6,AN⊥BC,∴BN=CN=3,AN===4,∵DG∥BC,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,即=,∴MN=4﹣x.∴y=EF•MN=x(4﹣x)=﹣x2+4x,即y=﹣x2+4x:(2)0<x<6;故答案为:0<x<6;(3)若DG=2DE,则EF=2MN,∴x=2(4﹣x),解得:x=,当x=时,y=﹣×()2+4×=;故答案为:.9.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD =2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.【解答】解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN 是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===,∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=B C+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.10.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=7cm时,四边形CEDF是矩形;②当AE=4cm时,四边形CEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.11.如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.【解答】解:(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠FNB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t==5(s),∴v=(cm/s),②当AB=PC,CQ=PB时,PB=20﹣12=8,∴t==4(s),∴v===2(cm/s).12.已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.(1)DE的长为5.(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.【解答】解:(1)∵四边形ABCD是矩形∴AB=CD=4,AD=BC=6,CD⊥BC在Rt△DCE中,DE===5 故答案为5.(2)若△ABP与△DCE全等∴BP=CE或AP=CE当BP=CE=3时,则t==3秒当AP=CE=3时,则t==13秒∴求当t为3秒或13秒时,△ABP和△DCE全等.(3)若△PDE为等腰三角形则PD=DE或PE=DE或PD=PE当PD=DE时,∵PD=DE,DC⊥BE∴PC=CE=3∵BP=BC﹣CP=3∴t==3当PE=DE=5时,∵BP=BE﹣PE∴BP=9﹣5=4∴t==4当PD=PE时,∴PE=PC+CE=3+PC∴PD=3+PC在Rt△PDC中,DP2=CD2+PC2.∴(3+PC)2=16+PC2∴PC=∵BP=BC﹣PC∴BP=∴t==综上所述:当t=3秒或4秒或秒时,△PDE为等腰三角形.13.如图1,△ABC中,∠ACB=90°,E是AB的中点,ED平分∠BEC交BC于点D,F 在DE延长线上且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)如图2,若四边形ACEF是菱形,连接FC,BF,FC与AB交于点H,连接DH,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形.【解答】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE,∵AF=AE,∴AF=CE,∵ED平分∠BEC,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:△AFE,△AEC,△HDC,△CFB.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.【解答】(1)解:如图1中,由旋转可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)证明:如图2中,∵OC=OA,OA1=OC1,∴四边形AA1CC1是平行四边形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四边形AA1CC1是矩形.(3)如图3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四边形AA2CC2是平行四边形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四边形AA2CC2是矩形.②∵A C=A2C2=AB•cos30°=4×=6,∴AA2=A2C2•cos30°=6×=3.15.在平面直角坐标系中,A(0,1),B(5,0)将线段AB向上平移到DC,如图1,CD 交y轴于点E,D点坐标为(﹣2,a)(1)直接写出点C坐标(C的纵坐标用a表示);(2)若四边形ABCD的面积为18,求a的值;(3)如图2,F为AE延长线上一点,H为OB延长线上一点,EP平分∠CEF,BP平分∠ABH,求∠EPB的度数.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵点A向上平移a﹣1个单位,向左平移2个单位得到点D,∴点B(5,0)向上平移a﹣1个单位,向左平移2个单位得到点C,∴C(3,a﹣1).(2)如图1中,如图1中,作DH⊥x轴于H.连接CH,AH.∵S=S△CDH+S△CBH﹣S△ADH﹣S△AHB,平行四边形ABCD∴•a•5+×7•(a﹣1)﹣•a•2﹣×7×1=18,解得a=5.(3)如图2中作AM∥EP交BP于M.∵EC∥AB,∴∠FEC=∠F AB,∵PE∥AM,∴∠FEP=∠F AM,∵EP平分∠FEC,∴∠FEP=∠FEC,∴∠F AM=∠F AB,∵BP平分∠ABH,∴∠ABP=∠ABH,∴∠MAB+∠ABM=(∠F AB+∠ABH)=(∠AOB+∠ABO+∠OAB+∠AOB)=(180°+90°)=135°,∴∠AMB=180°﹣(∠MAB+∠ABM)=45°,∵AM∥PE,∴∠EPB=∠AMB=45°.。
苏科版九年级数学上册第1章 一元二次方程 实际应用同步培优专项习题(二)
第1章《一元二次方程》实际应用同步培优专项习题(二)1.作为巴渝文化的发源地,重庆在许多领域都首屈一指,而其中最具代表性的,当然还是它的美食,在无数美食中,最具地域特色的,非重庆火锅莫属,近年来,随着重庆市成为网红城市,许多游客到重庆来打卡麻辣鲜香的火锅,同时还会购买火锅底料作为伴手礼.11月,洪崖洞附近一特产店购进A、B两种品牌火锅底料共450袋,其中A品牌底料每袋售价20元,B品牌底料每袋售价30元,11月全部售完这批火锅底料,所得总销售额不低于11500元.(1)A品牌火锅底料最多购进多少袋?(2)为了促进销量,12月,该店开展了优惠活动,A品牌底料的售价比11月的价格优惠a%,B品牌底料的售价比11月的价格优惠a%,结果12月售出的A品牌底料数量比11月总销售额最低时售出的A品牌底料数量增加了a%,售出的B品牌底料数量比11月总销售额最低时售出的B品牌底料数量增加了a%,结果12月的总销售额比11月最低销售额增加了a%,求a的值.2.在“红五月”读书活动中,社区计划筹资16000元购买科普书籍和文艺刊物.(1)计划购买文艺刊物的资金不超过购买科普书籍资金的3倍,那么最多可用多少资金购买文艺刊物?(2)经初步了解,有160户居民自愿参与集资,那么平均每户需集资100元.经筹委会进一步宣传,自愿参加的户数在160户的基础上增加了a%,这样,平均每户的集资款在原有基础上减少了0.8a%,求a的值.3.按照中央精准扶贫的部署,市委、市政府重点扶持贫困户发展特色农业.现某区扶持一贫困户的李子园销售“金脆李”和“黄橙李”两种李子,因为“金脆李”果形奇特、口感佳,售价为30元/斤,“黄橙李”因大面积种植,售价要便宜一些,为20元/斤.(1)7月上旬,该果园一共售出300斤李子,要使销售额不低于7250元,问最多售出“黄橙李”多少斤?(2)为了提高“金脆李”的知名度,政府对“金脆李”进行广告宣传,7月中旬该果园的总销售重量为1500斤,其中售出“黄橙李”1000斤,7月下旬由于李子大量上市,该果园推出优惠方案,“金脆李”每斤降价a%,“黄橙李”售价保持不变,售后统计“金脆李”销售数量在7月中旬的基础上增加了2a%,“黄橙李”数量在7月中旬的基础上减少了a%,若总销售额与7月中旬的总销售额持平,求a的值.4.在2020年底,某农户大面积种植的改良版本地脐橙喜获丰收.故自2021年1月起,该农户通过超市和网络电商两种渠道销售脐橙.已知脐橙超市售价为10元/千克,网络售价为8元/千克.(1)2021年1月上旬脐橙的网络销量比超市销量少850千克,要使销售额不低于40000元,则1月上旬脐橙的超市销量至少为多少千克?(2)在(1)的条件下,2月上旬,受疫情影响,脐橙在超市的售价较1月上旬下降a%,网络售价下降a%,销量也呈下降趋势.因此该农户参加网络扶贫创新接力活动,借助直播,使得脐橙在网上销量比1月上旬最少量增长了a%,但脐橙在超市销量比1月上旬最少量下降了,结果2月上旬脐橙的销售额比1月上旬最低销售额减少了3400元,求a的值.(a<50)5.2021年的春节,全国多地提倡“就地过年”,以减少大规模的人口流动,为人们安全与健康提供防疫保障.我市两江融渝旅行社考虑到市民春节短期短途出行需求,推出“广阳岛一日游”和“金佛山二日游”两个旅游产品.(1)该旅行社新春除夕至正月初六接待参加“广阳岛一日游”和“金佛山二日游”的游客共1000人,其中选择“金佛山二日游”的游客不超过选择“广阳一日游”游客的,则选择“金佛山二日游”的游客至多有多少人?(2)“广阳岛一日游”和“金佛山二日游”两个旅游产品春节期间售价分别为80元/人和200元/人,随着春节假期结束,为延长上述旅游产品的销售热度,旅行社决定“广阳岛一日游”售价下降3m%,“金佛山二日游”售价下降10%促销数日.由于产品定位精准、游客体验感好、口碑传播,加之受降价刺激,节后降价数日内该旅行社又接待参加上述旅游产品的游客总人数合计700人.其中选择“金佛山二日游”人数占总人数的%,促销期间销售总金额为6.09万元,求m的值.6.三月的万州区小周镇,“三月红桔”红遍长江两岸,三月红桔主题公园每天游客更是络绎不绝.“生态果园”水果商家3月中旬购进了第一批一级“三月红桔”和二级“三月红桔”共300千克,已知一级“三月红桔”进价每千克15元,售价每千克30元,二级“三月红桔”进价每千克5元,售价每千克10元.(1)若这批一级“三月红桔”和二级“三月红桔”全部销售完获利不低于3500元,则一级“三月红桔”至少购进多少千克?(2)第一批“三月红桔”很快售完,于是商家决定购进第二批“三月红桔”,一级“三月红桔”和二级“三月红桔”的进价不变,一级“三月红桔”售价比第一批上涨a%,二级“三月红桔”售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,一级“三月红桔”的销量下降a%,二级“三月红桔”的销量保持不变,结果第二批中已经卖掉的一级“三月红桔”和二级“三月红桔”的销售总额与(1)中的最低销售总额相等,求a的值.7.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?8.知识经验我们知道,如果两个因式的积为0,那么这两个因式中至少有一个等于0;反之,如果两个因式中任何一个为0,那么它们的积也等于0.即:如果a•b=0,那么a=0,或b=0.知识迁移Ⅰ解方程:(x+1)(x+2)=0.解:(x+1)(x+2)=0.∴x+1=0,或x+2=0.∴x1=1,或x2=﹣2.Ⅱ解方程:x2+6x﹣7=0.解:x2+6x﹣7=0.∴x2+2×3x+32﹣32﹣7=0.∴(x+3)2﹣16=0∴(x+3)2﹣42=0.∴(x+3+4)(x+3﹣4)=0.∴(x+7)(x﹣1)=0∴x+7=0,或x﹣1=0.∴x1=﹣7,或x2=1.理解应用(1)解方程:x2﹣10x﹣39=0.拓展应用(2)如图,有一块长宽分别为80cm,60cm的矩形硬纸板,在它的四个角上分别剪去四个相同的小正方形,然后将四周突出的部分折起来,就可以做成底面积为1500cm2的无盖的长方体盒子.求所剪去的小正方形的边长.9.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?10.“低碳生活,绿色出行”,自行车成为人们喜爱的交通工具,某品牌共享自行车在宁波的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)若该品牌共享自行车前4个月的投放量的月平均增长率相同,则4月份投放了多少辆?(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制一批两种规格比较高档的自行车,之后投放到某高端写字楼区域,已知自行车生产厂商生产A型车的成本价为300元/辆,售价为500元/辆,生产B型车的成本价为700元/辆,售价为1000元/辆.根据定制要求,B型车的数量超过12辆,且A型车的数量不少于B 型车的2倍.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?11.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?12.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价、日销售量的几组对应值如下表:销售单价x/元85 95 105 115日销售量y/个175 125 75 m (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式及m的值.(2)该产品的成本单价是80元,当日销售利润达到1875元时,为了让利给顾客,减少库存,求销售产品单价定为多少元?13.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA 方向运动,同时动点Q从点B出发,沿BC方向运动,点P,点Q的运动速度均为1cm/s.当运动时间为多少秒时,两点相距15cm?14.某环保公司研发了甲、乙两种智能设备,可将垃圾处理变为新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且两种智能设备的单价和为140万元.(1)求甲、乙两种智能设备单价;(2)垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知每吨燃料棒的成本为100元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?15.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.。
人教版 九年级数学 27.2 相似三角形 培优训练(含答案)
人教版 九年级数学 27.2 相似三角形 培优训练一、选择题(本大题共10道小题)1. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 632. (2020·云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E是CD 的中点.则△DEO 与△BCD 的面积的比等于( )A .B .C .D .3. (2020·哈尔滨)如图,在△ABC中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =4. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)6. (2020·广西北部湾经济区)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN 的长为()A.15 B.20 C.25 D.307. (2020·铜仁)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3 B.2 C.4 D.58. (2020·营口)如图,在△ABC中,DE∥AB,且CDBD=32,则CECA的值为()A EA.3 5B.23C.45D.329. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个ABC10. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. (2020·吉林)如图,////AB CD EF.若12=ACCE,5BD=,则DF=______.12. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF的顶点都在网格线的交点上,设△ABC的周长为C1,△DEF的周长为C2,则12CC的值等于▲ .ABCD EF13. (2020·盐城)如图,//,BC DE 且,4,10BC DE AD BC AB DE <==+=,则AEAC的值为.14. (2020·郴州)在平面直角坐标系中,将AOB∆以点O 为位似中心,32为位似比作位似变换,得到11OB A ∆.已知)3,2(A ,则点1A 的坐标是 .15.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.16. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =______,BE =______.FDBE A C17. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.18. (2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.三、解答题(本大题共4道小题)19. (2020·杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设()0CEEBλλ=>. FCGEBDA(1)若2AB =,λ=1,求线段CF 的长. (2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点. ②求λ的值.20. 已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过D 点的直线交AC 于E 点,交AB 于F 点,且△AEF 为等边三角形. (1)求证:△DFB 是等腰三角形; (2)若DA =7AF ,求证CF ⊥AB.21. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1).(1)求直线AD 的解析式; (2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.22.(2020·泰州)如图,在ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为BC 边上的动点(与B 、C 不重合),//PD AB ,交AC 于点D ,连接AP ,设CP x =,ADP ∆的面积为S .(1)用含x 的代数式表示AD 的长;(2)求S 与x 的函数表达式,并求当S 随x 增大而减小时x 的取值范围.人教版 九年级数学 27.2 相似三角形 培优训练-答案一、选择题(本大题共10道小题) 1. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .2. 【答案】B .【解析】利用平行四边形的性质可得出点O 为线段BD 的中点,结合点E 是CD 的中点可得出线段OE 为△DBC 的中位线,利用三角形中位线定理可得出OE ∥BC ,OE =BC ,进而可得出△DOE ∽△DBC ,再利用相似三角形的面积比等于相似比的平分,即可求出△DEO 与△BCD 的面积的比为1:4.3. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC 的高, ∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】相似三角形的周长之比等于相似比,所以△FHB和△EAD 的相似比为30∶15=2∶1,所以FH∶EA=2∶1,即6∶EA=2∶1,解得EA=3.因此本题选A.8. 【答案】 A【解析】利用平行截割定理求CECA的值.∵DE∥AB,∴CEAE=CDBD=32,∵CE+AE=AC,∴CECA=35.9. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:ABC因此本题选A.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH =BDBA,因为D为AB中点,所以BDBA=12,所以DFAH=12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=1 2x.在R t△BDF中,由勾股定理得BD22DF BF+221()2x x+5x,所以AD5x,所以CE=AB=2AD5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE5x.在R t △ADE 中,由勾股定理得DE =22AD AE +=225()(5)2x x +=52x .因△DEF 的面积为1,所以12DE ·DF =1,即12×52x ·x =1,解得x =255,所以DE =52×255=5,因为AD =BD ,AE =CE ,所以BC =2DE =25,因此本题选D .二、填空题(本大题共8道小题) 11. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.12. 【答案】22【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:2,所以周长比为1:2.故答案为:2.13. 【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8 ,x 2=2(舍去), 824AE AC ==,此本题答案为2 .14. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).15. 【答案】1【解析】 ∵D 、E 为边AB 的三等分点, ∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.16. 【答案】2 5-1 【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.18. 【答案】326()55-,或(43)-, 【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上; ①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE △∽CBO △,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(43)P -,. ②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P , 过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴8AC BO ==,8CP =,6AB OC ==, ∴22228610BC BO OC +=+=,∴2BP =,∵PBE △∽CBO △, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,, 综上所述:点P 的坐标为:326()55-,或(43)-,, 故答案为:326()55-,或(43)-,. 三、解答题(本大题共4道小题)19. 【答案】解:(1)∵四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =2,∴∠DAF =∠F .∵AG 平分∠DAE ,∴∠DAF =∠EAF ,∴∠EAF =∠F ,∴EA =EF .∵λ=1,∴BE=EC=1.在Rt△ABE中,由勾股定理得EA=5,∴CF=EF-EC=5-1.(2)①∵EA=EF,EG⊥AF,∴AG=GF.又∵∠AGD=∠FGC,∠DAG=∠F,所以△DAG≌△CFG,∴DG=CG,∴点G为CD边的中点.②不妨设CD=2,则CG=1.由①知CF=AD=2.∵EG⊥AF,∴∠EGF=90°.∵四边形ABCD是正方形,∴∠BCD=90°,∴∠BCD=∠FCG,∠EGC+∠CGF=90°,∠EGC+∠GEC=90°,∴∠CGF=∠GEC,∴△EGC∽△GFC,∴EC CG=CG CF=12,∴EC=12,∴BE=32,∴λ=13.20. 【答案】(1)证明:∵AB为直径,∴∠ACB=90°,∵△AEF是等边三角形,∴∠EAF=∠EFA=60°,∴∠ABC=30°,∴∠FDB=∠EFA-∠B=60°-30°=30°,(2分)∴∠ABC=∠FDB,∴FB=FD,∴△BDF是等腰三角形.(3分)(2)解:设AF=a,则AD=7a,解图如解图,连接OC,则△AOC是等边三角形,由(1)得,BF=2-a=DF,∴DE=DF-EF=2-a-a=2-2a,CE=AC-AE=1-a,在Rt△ADC中,DC=(7a)2-1=7a2-1,在Rt△DCE中,tan30°=CEDC=1-a7a2-1=33,解得a=-2(舍去)或a=12,(5分)∴AF=1 2,在△CAF和△BAC中,CA AF=BAAC=2,且∠CAF=∠BAC=60°,∴△CAF∽△BAC,∴∠CFA =∠ACB =90°,即CF ⊥AB.(6分)21. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12, 解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为y =12x +1,令y =0,得x =-2,∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F , 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)22. 【答案】解: (1)∵DP ∥AB∴△DCP ∽△ACB ∴CD CP AC CB= ∴34CD x = ∴34CD x =∴AD =3-34x (2)∵△DCP ∽△ACB,且相似比为x :4. ∴S △DCP :S △ACB =x 2:16∴S △ABC =13462⨯⨯=∴S △DCP =238x ∴S △APB =13(4)22PB AC x ⨯⨯=- ∴S =S △ABC -S △ABP -S △CDP22336(6)283382x x x x =---=-+ 当2x ≥ 时,S 随x 增大而减少.。
专题01 反比例函数的图像和性质(专项培优训练)教师版
专题01 反比例函数的图像和性质(专项培优训练)满分:100分考试时间:120分钟难度系数:0.46试卷说明:本套试卷结合人教版数学九年级下册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)(2023秋•香坊区校级期中)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k≥3D.k<3解:∵在反比例函数的图象的每一条曲线上,y都随x的增大而减小,∴3﹣k>0,∴k<3.故选:D.2.(2分)(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.3.(2分)(2023•任丘市二模)如图,把函数和函数的图象画在同一平面直角坐标系中,则坐标系的原点可能是( )A.点M B.点N C.点P D.点Q解:在函数和函数的中,∵1>0,﹣2<0,∴函数的图象在第三象限,函数的图象在第二象限,∵|﹣2|>|1|,∴当x取相同的值时,的图象更靠近坐标轴,∴坐标系的原点可能是Q.故选:D.4.(2分)(2023春•德化县期中)对于反比例函数,下列说法不正确的是( )A.点(﹣2,1)在它的图象上B.它的图象在第二,第四象限C.图象关于原点对称D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2解:反比例函数的关系式为:y=﹣,即xy=﹣2,点(﹣2,1)坐标满足关系式,因此A选项不符合题意;由于k=﹣2,因此图象位于第二,第四象限,因此B不符合题意;根据反比例函数的对称性,图象关于原点对称,因此C选项不符合题意;若点A(x1,y1),B(x2,y2)不在同一象限,由x1<x2,得出y1>y2,因此D选项符合题意.故选:D.5.(2分)(2023•长兴县二模)运用你学习函数的经验,判断下列哪个函数的图象如图所示( )A.B.y=C.D.解:选项A中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项A不符合题意;选项B中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项B不符合题意;选项C中的函数y=的图象与题干中的图象相符,故选项C符合题意;选项D中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项D不符合题意;故选:C.6.(2分)(2023•武汉)关于反比例函数,下列结论正确的是( )A.图象位于第二、四象限B.图象与坐标轴有公共点C.图象所在的每一个象限内,y随x的增大而减小D.图象经过点(a,a+2),则a=1解:反比例函数,图象在第一、三象限,与坐标轴没有交点,故A选项错误,B选项错误;反比例函数,在每一个象限内,y随着x的增大而减小,故C选项正确;反比例函数图象经过点(a,a+2),∴a(a+2)=3,解得a=1或a=﹣3,故D选项错误,故选:C.7.(2分)(2023•奉贤区二模)下列函数图象中,可能是反比例函数的图象的是( )A.B.C .D .解:∵中,k =6>0,∴该函数图象在第一、第三象限,故选:C .8.(2分)(2022秋•梁山县期末)如图,A (0,1),B (1,5)曲线BC 是双曲线的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线“.若点P (2025,m ),Q (x ,n )在该“波浪线上,则m 的值及n 的最大值为( )A .m =1,n =1B .m =5,n =1C .m =1,n =5D .m =1,n =4解:∵B (1,5)在y =的图象上.∴k =1×5=5.当x =5时,y ==1.∴C (5,1).又因为2025÷5=405.∴m =1.∵Q (x ,n )在该“波浪线”上.∴n 的最大值是5.故选:C .9.(2分)(2023秋•洪江市校级月考)下列反比例函数图象一定在二、四象限的是( )A .B .C .D .解:A.反比例函数中﹣k不一定小于零,故A选项不符合题意;B.反比例函数中﹣(k+1)不一定小于零,故B选项不符合题意;C.反比例函数中﹣(k2+1)一定小于零,故C选项符合题意;D.反比例函数中﹣(k﹣1)不一定小于零,故D选项不符合题意;故选:C.10.(2分)(2021秋•房县期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.二、填空题:本大题共10小题,每小题2分,共20分.11.(2分)(2023•北京二模)反比例函数y=(k≠0)在第一象限的图象如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值 2(答案不唯一) .解:假设点A(3,1)在反比例函数第一象限的图象上,则,∴k=3,但是点A在反比例函数(k≠0)第一象限的图象上方,∴0<k<3,∴满足条件的k的值可以是2.故答案为:2(答案不唯一).12.(2分)(2023春•姑苏区校级期末)若反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,则m的值为 ﹣2 .解:∵反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,∴m+1<0且3﹣m2=﹣1,解得m=﹣2.故答案为:﹣2.13.(2分)(2023•武功县模拟)已知反比例函数的图象在每个象限内y随x的增大而增大,且当1≤x≤3时,函数y的最大值和最小值之差为4,则k的值为 ﹣6 .解:∵反比例函数的图象在每个象限内y随x的增大而增大,∴k<0,∵当1≤x≤3时,函数y的最大值和最小值之差为4,∴,解得:k=﹣6.故答案为:﹣6.14.(2分)(2023秋•洪江市校级月考)若反比例函数y=的图象不经过第一象限,则k的取值范围是 k> .解:∵反比例函数y=的图象不经过第一象限,∴反比例函数y=的图象经过第二、四象限,∴1﹣3k<0,∴k>,故答案为:k>.15.(2分)(2023春•广陵区月考)已知反比例函数y=图象位于一、三象限,则m的取值范围是 m>﹣6 .解:∵反比例函数图象位于一、三象限,∴m+6>0,解得:m>﹣6.故答案为:m>﹣6.16.(2分)(2023•开阳县模拟)反比例函数y=的图象分布情况如图所示,则k的值可以是 0(答案不唯一) .(写出一个符合条件的k值即可)解:由反比例函数y=的图象位于第二,四象限可知,k﹣1<0,∴k<1,∴k的值可以是0,故答案为:0(答案不唯一).17.(2分)(2022秋•鹤山市期末)已知反比例函数y=的图象在第二、第四象限,则m的取值范围是 m <﹣7 .解:∵反比例函数y=的图象在第二、第四象限,∴m+7<0,即m<﹣7.故答案为:m<﹣7.18.(2分)(2022秋•永丰县期末)反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,则m的取值范围是 m>1 .解:∵反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.19.(2分)(2023春•灌云县期末)若反比例函数的图象在第一、三象限,则m的取值范围是 m > .解:∵反比例函数y=的图象在第一、第三象限,∴2m﹣3>0,解得m>.故答案为:m>.20.(2分)(2022•衢州二模)如图,点B在x轴正半轴上,点A在第一象限,AO=AB,函数y=(x>0)的图象分别交AO,AB于点C,D,若OC=3,BD=1,则OA的长为 5 ;当OD⊥AB时,k的值为 .解:如图,过点C作CE⊥OB于E,过点D作DF⊥OB于F,过点A作AG⊥OB于点G,设OB=m,∴CE ∥DF ∥AG ,OG =BG =m .∴∠OEC =∠BFD =90°,∵AO =AB ,∴∠AOB =∠ABO ,∴△COE ∽△DBF ,∴===3.设C (a ,b ),∴OE =a ,CE =b ,∴BF =a ,DF =b ,∴D (m ﹣a ,b ),∵反比例函数y =(x >0)的图象分别交边AO ,AB 于点C ,D ,∴k =ab =(m ﹣a )•b ,解得a =m ,∴EG =m ﹣m =m ,BF =a =m ,∴OF =m ﹣m =m .∵CE ∥AG ,∴OC :OA =CE :AG =OE :OG ,即3:OA =m :m ,∴OA =5.若OD ⊥AB ,则∠ODB =90°.由射影定理可得DF 2=OF •BF .∴b 2=m •m =m 2,即b =m ,在Rt△OCE中,由勾股定理可得,OE2+CE2=OC2,∴(m)2+(m)2=32,整理得m2=10.∴k=ab=m2=.故答案为:5;.三、解答题:本大题共8小题,21-22题每小题6分,23-28题每小题8分,共60分.21.(6分)(2022秋•顺德区期末)反比例函数.(1)画出反比例函数的图象;(2)观察图象,当y≥﹣1时,写出x的取值范围.解:(1)反比例函数.列表:x⋯﹣4﹣2﹣1124⋯y⋯﹣1﹣2﹣4421描点、连线,反比例函数的图象如图,;(2)由图象可知,当y≥﹣1时,自变量x的取值范围是x≤﹣4或x>0.22.(6分)(2023秋•利津县月考)已知反比例函数y=(m为常数)(1)若函数图象经过点A(﹣1,6),求m的值;(2)若函数图象在二、四象限,求m的取值范围;(3)若x>0时,y随x的增大而减小,求m的取值范围.解:(1)∵函数图象经过点A(﹣1,6),∴m﹣8=xy=﹣1×6=﹣6,解得:m=2,∴m的值是2;(2)∵函数图象在二、四象限,∴m﹣8<0,解得:m<8,∴m的取值范围是m<8;(3)∵若x>0时,y随x的增大而减小,∴m﹣8>0,解得:m>8,∴m的取值范围是m>8;23.(8分)(2020春•江都区期末)在函数的学习中,我们经历了“确定函数表达式﹣﹣画函数图象﹣﹣利用函数图象研究函数性质﹣﹣利用图象解决问题”的学习过程.我们可以借鉴这种方法探究函数y=的图象性质.(1)补充表格,并画出函数的图象.①列表:x…﹣3﹣10235…y…﹣1﹣2﹣441…②描点并连线,画图.(2)观察图象,写出该函数图象的一个增减性特征: 当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小 ;(3)函数y=的图象是由函数y=的图象如何平移得到的?其对称中心的坐标为 (1,0) ;(4)根据上述经验,猜一猜函数y=+2的图象大致位置,结合图象直接写出y≥3时,x的取值范围 1<x≤5 .解:(1)①x=3时,y==2.②图象如图所示:(2)当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.故答案为:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.(3)函数y=的图象是由函数y=的图象向右平移1个单位得到.y=的对称中心为(1,0).故答案为(1,0)(4)数y=+2的图象是由y=的图象向上平移2个得到,y≥3时,1<x≤5.故答案为1<x≤5.24.(8分)(2019春•长春期中)已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)点C不在这个函数的图象上,理由如下:∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.25.(8分)(2017•商水县二模)数学李老师给学生出了这样一个问题:探究函数y=的图象与性质,小斌根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:(1)函数y=的自变量x的取值范围是: x≠﹣1 (2)列出y与x的几组对应值,请直接写出m的值,m= 3 .x…﹣5﹣4﹣3﹣2﹣﹣012m45…y… 2 3﹣10…(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数y=的一条性质.解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数y=在x<﹣1和x>﹣1上均单调递增.26.(8分)(2016春•怀柔区期末)有这样一个问题,探究函数y=的图象和性质.小强根据学习一次函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 x≠2 ;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的一部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是:在第一象限的部分,y随x的增大而 减小 ;(4)结合函数图象,写出该函数图象的另外一条性质.解:(1)由已知得:x﹣2≠0,解得:x≠2.故答案为:x≠2.(2)补出函数图象的另一部分,如图.(3)∵在y=中k=3>0,∴该函数在第一象限的部分,y随x的增大而减小.故答案为:减小.(4)在第三、四象限的部分,y随x的增大而减小.27.(8分)(2016春•延庆县期末)有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是 x≠1 ;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣﹣1﹣﹣3m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): 该函数没有最大值,也没有最小值 .解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.28.(8分)(2022春•镇平县期中)已知反比例函数y=的图象经过A(2,﹣4).①求k的值.②这个函数的图象在哪几个象限?y随x的增大怎样变化?③画出函数的图象.④点B(﹣2,4),C(﹣1,5)在这个函数的图象上吗?解:①∵反比例函数y=的图象经过点A(2,﹣4),∴1﹣k=2×(﹣4)=﹣8;解得:k=9;②∵k=﹣8<0,∴图象位于二、四象限,在每个象限内y随x的增大而增大;③图象为:④∵﹣2×4=﹣8、﹣1×5=﹣5≠﹣8,∴B(﹣2,4)在反比例函数的图象上,C(﹣1,5)不在反比例函数的图象上。
【教师卷】初中九年级数学上册第二十一章《一元二次方程》复习题(课后培优)(1)
一、选择题1.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x2﹣6x=3,方程两边同时加上一次项系数一半的平方得:x2﹣6x+9=12,配方得;(x﹣3)2=12.故选:D.【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.若关于x的方程kx²+4x-1=0有实数根,则k的取值范围是()A.k-4且k≠0B.k≥-4 C.k>-4且k≠0D.k>-4B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m的一元一次不等式,解不等式即可得出k的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14,∴k=0符合题意;当k≠0时,∵方程kx2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k的取值范围是k≥-4.故选:B.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.4.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=C 解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:22 23x x-=-,方程两边加上1得:22 2113x x-+=-+,所以()2113x-=.故选:C.【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+65x-350=0 B.x2+130x-1400=0 C.x2-130x-1400=0 D.x2-65x-350=0A解析:A【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x-1400=0,即x2+65x-350=0.故选:A.【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.6.已知2x2+x﹣1=0的两根为x1、x2,则x1•x2的值为()A.1 B.﹣1 C.12D.12-D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x2+x﹣1=0的两根为x1、x2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >-B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.8.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4B .1C .﹣1D .﹣4C 解析:C【分析】据一元二次方程的根与系数的关系得到两根之和即可.【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2,∴x 1∙x 2=-1.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a. 9.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x +=D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.12.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 13.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.14.一元二次方程(x +2)(x ﹣3)=0的解是:_____.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).15.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键.16.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.18.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】 解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.19.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.解析:(1)125544x x +-==;(2)12175,3x x == 【分析】 (1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,1255,44x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.22.先阅读理解下面的例题,再按要求解答下面的问题:例题:说明代数式m 2+2m+4的值一定是正数.解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数.(2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 解析:(1)见解析;(2)S 1>S 2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a ﹣3)2﹣1,可判断其值为负数; (2)用a 分别表示出S 1与S 2,再作差比较即可.【详解】解:(1)﹣a 2+6a ﹣10=﹣(a 2﹣6a+9)﹣1=﹣(a ﹣3)2﹣1,∵(a ﹣3)2≥0,∴﹣(a ﹣3)2≤0,∴﹣(a ﹣3)2﹣1<0,∴代数式﹣a 2+6a ﹣10的值一定是负数;(2)S 1>S 2,理由是:∵S 1=a 2,S 2=4(a ﹣3),∴S 1﹣S 2=a 2﹣4(a ﹣3)=a 2﹣4a+12=a 2﹣4a+4+8=(a ﹣2)2+8,∵(a ﹣2)2≥0,∴(a ﹣2)2+8≥8,∴S 1﹣S 2>0,∴S 1>S 2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.23.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)172x +=,272x -=;(2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:172x +=,272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 24.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.解析:(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解. 25.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.26.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)14x =,24x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=417x -=±, 1417x =+,2417x =-;(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键. 27.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高. 解析:(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y ,根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为99x x x x +≥⋅ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴99x x x x+≥⋅又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥, ∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
九年级数学培优题含详细答案
九年级培优竞赛1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)求点C 的坐标;(2)若抛物线y =-14x 2+ax +4经过点C . ①求抛物线的解析式;②在抛物线上是否存在点P(点C 除外)使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】C 的坐标为(3,﹣1);(2)①抛物线的解析式为y=﹣12x 2+12x+2; ②存在点P ,△ABP 是以AB 为直角边的等腰直角三角形,符合条件的点有P 1(﹣1,1),P 2(﹣2,﹣1)两点.【解析】试题分析:(1)过点C 作CD 垂直于x 轴,由线段AB 绕点A 按逆时针方向旋转90°至AC ,根据旋转的旋转得到AB=AC ,且∠BAC 为直角,可得∠OAB 与∠CAD 互余,由∠AOB 为直角,可得∠OAB 与∠ABO 互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA 可证明三角形ACD 与三角形AOB 全等,根据全等三角形的对应边相等可得AD=OB ,CD=OA ,由A 和B 的坐标及位置特点求出OA 及OB 的长,可得出OD 及CD 的长,根据C 在第四象限得出C 的坐标;(2)①由已知的抛物线经过点C ,把第一问求出C 的坐标代入抛物线解析式,列出关于a 的方程,求出方程的解得到a 的值,确定出抛物线的解析式;②假设存在点P 使△ABP 是以AB 为直角边的等腰直角三角形,分三种情况考虑:(i )A 为直角顶点,过A 作AP 1垂直于AB ,且AP 1=AB ,过P 1作P 1M 垂直于x 轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1,利用AAS 可证明三角形AP 1M 与三角形ACD 全等,得出AP 1与P 1M 的长,再由P 1为第二象限的点,得出此时P 1的坐标,代入抛物线解析式中检验满足;(ii )当B 为直角顶点,过B 作BP 2垂直于BA ,且BP 2=BA ,过P 2作P 2N 垂直于y 轴,如图所示,同理证明三角形BP 2N 与三角形AOB 全等,得出P 2N 与BN 的长,由P 2为第三象限的点,写出P 2的坐标,代入抛物线解析式中检验满足;(iii )当B 为直角顶点,过B 作BP 3垂直于BA ,且BP 3=BA ,如图所示,过P 3作P 3H 垂直于y 轴,同理可证明三角形P 3BH 全等于三角形AOB ,可得出P 3H 与BH 的长,由P 3为第四象限的点,写出P 3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P 的坐标. 试题解析:(1)过C 作CD ⊥x 轴,垂足为D ,∵BA⊥AC,∴∠OAB+∠CAD=90°,又∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,∴△AOB≌△CDA,又A(1,0),B(0,﹣2),∴OA=CD=1,OB=AD=2,∴OD=OA+AD=3,又C为第四象限的点,∴C的坐标为(3,﹣1);(2)①∵抛物线y=﹣12x2+ax+2经过点C,且C(3,﹣1),∴把C的坐标代入得:﹣1=﹣92+3a+2,解得:a=12,则抛物线的解析式为y=﹣12x2+12x+2;②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,∴△AMP1≌△ADC,∴AM=AD=2,P1M=CD=1,∴P1(﹣1,1),经检验点P1在抛物线y=﹣12x2+12x+2上;(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,同理可证△BP2N≌△ABO,∴NP2=OB=2,BN=OA=1,∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣12x2+12x+2上;(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,同理可证△BP3H≌△BAO,∴HP3=OB=2,BH=OA=1,∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣12x2+12x+2上;则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.2.在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD 沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=2CD;(2)设DE交AC于G,若53PEEF=,CD=6,求FG的长【答案】(1)证明见解析;(2)FG的长为152 14.【解析】试题分析:.(1)连接CE,根据三角形的角边关系可以得到∠FCE=∠FEC,从而FC=FE,△PCF的周长=2CD;(2) 由.(1)结论CP+PF+CF=2CD,和PF5EF3=,CD=6,求出CF=EF=322,作GK⊥EF于点K,易得FG的长为152 14.试题解析:.(1)连接CE,∵CA=CB,D 为AB 中点,∴∠BCD=∠ACD=45°,由翻折可知∠B=∠DEP=45°,∴∠DCF=∠DEF=45°,CD=BD=DE ,∴∠DCE=∠DEC ,∴∠DCE-∠DCA=∠DEC-∠DEF ,即∠FCE=∠FEC ,∴FC=FE ,∴CF+PF=PE=BP ,∴,∴△PCF;(2)∴设PF=5x,EF=CF=3x ,在Rt △FCP 中,PF 2=CP 2+CF 2,∴CP=4x ,∵,∴作GK ⊥EF 于点K ,∵tan ∠GFE=tan ∠ 设GK=4a,FK=3a,EK=4a , G F D AB PC KFDAB PC∴EF=7a=322, a=3214, FG=5a=15214, ∴FG 的长为15214. 考点:三角形综合.3.如图,抛物线y=-x 2+4x+5交x 轴于A 、B (以A 左B 右)两点,交y 轴于点C.(1)求直线BC 的解析式;(2)点P 为抛物线第一象限函数图象上一点,设P 点的横坐标为m ,△PBC 的面积为S ,求S 与m 的函数关系式;(3)在(2)的条件下,连接AP ,抛物线上是否存在这样的点P ,使得线段PA 被BC 平分,如果不存在,请说明理由;如果存在,求点P 的坐标.【答案】(1) y=5x -+ (2) S=252522m m -+ (3)存在,P(2,9)或P(3,8) 【解析】试题分析:(1)令y=0,解关于x 的一元二次方程即可得到点A 、B 的坐标,再令x=0求出点C 的坐标,设直线BC 解析式为y=kx+b (k≠0),利用待定系数法求一次函数解析式解答;(2)过点P 作PH ⊥x 轴于H ,交BC 于F ,根据抛物线和直线BC 的解析式表示出PF ,再根据S △PBC =S △PCF +S △PBF 整理即可得解;(3)设AP 、BC 的交点为E ,过点E 作EG ⊥x 轴于G ,根据垂直于同一直线的两直线平行可得EG ∥PH ,然后判断出△AGE 和△AHP 相似,根据相似三角形对应边成比例可表示出EG 、HG ,然后表示出BG ,根据OB=OC 可得∠OCB=∠OBC=45°,再根据等角对等边可得EG=BG ,然后列出方程求出m 的值,再根据抛物线解析式求出点P 的纵坐标,即可得解.试题解析:(1)当y=0时,x 1=5,x 2=-1,∵A 左B 右,∴A(-1,0),B(5,O)当x=0时,y=5,∴C (0,5),设直线BC 解析式为y=kx+b,∴5005k b k b +=⎧⎨⨯+=⎩ ∴15k b =-⎧⎨=⎩∴直线BC 解析式为:y=5x -+;(2)作PH ⊥x 轴于H ,交BC 于点F ,P(m ,-m 2+4m+5),F(m,-m+5)PF=-m 2+5m ,S △PBC =S △PCF +S △PBF(3)存在点P ,作EG ⊥AB 于G,PH ⊥AB 于H ,∴EG ∥PH ,∴△AGE ∽△AHP ,∵P(m ,-m +4m+5),AH=m-(-1)=m+1,HB=5-m ,GB=152mm ++-,∵OC=OB=5,∴∠OCB=∠OBC=45°,∴EG=BG,∴2452m m-++=152mm++-,∴m1=2m2=3,当m=2时,P(2,9),当m=3时,P(3,8),∴存在这样的点P, 使得线段PA被BC平分,P(2,9)或P(3,8).考点:二次函数综合题.4.如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.(1)求证:BE=CF;(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.【答案】(1)证明见解析;(2)⊙O的半径为5.【解析】试题分析:(1)连接DE,DF,由AB=AC,且AD为BC边上的高,利用三线合一得到D为BC的中点,AD为顶角平分线,再由AD为圆O的直径,利用直角所对的角为直角得到一对直角相等,利用AAS得到三角形EBD与三角形FCD全等,由全等三角形的对应边相等得到BE=CF,得证;(2)由EB=CF,AB=AC,得出AE=AF,确定出AE:AB=AF:AC,且夹角相等,得到三角形AEF与三角形ABC相似,由相似三角形的对应边成比例得到AG:AD=8:10,设AG=8x,AD=10x,连接OE,在直角三角形OEG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆O的半径.试题解析:(1)连接DE、DF,∵AB=AC,AD⊥BC,∴∠B=∠C,BD=CD,∵AD为⊙O的直径,∴∠DEA=∠DFA=90°,∴△DBE≌△DCF,∴BE=CF;(2)∵BE=CF,∴AE=AF,AE AFAB AC=且∠BAC=∠BAC,∴△AEF∽△ABC,∴设AG=8x,AD=10x,连接EO,在Rt△OEG中,∴OE2=OG2+EG2,∴(5x)2=(3x)2+42,x=1,∴5x=5,∴⊙O的半径为5.考点:1.相似三角形的判定与性质,2.全等三角形的判定与性质,3.勾股定理,4.圆周角定理.5.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(1)见解析(2)见解析【解析】思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.6.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(-4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF .90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.【答案】(1)y=-x+4 (2)①见解析x (3)存在,点P的坐标为(2,2)或(8,-4)【解析】解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=-1,则直线AB的函数解析式为y=-x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BDO≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②如图,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,第11页,总68页∵DF 是⊙Q 的直径, ∴∠DEF=90°,∴△DEF 是等腰直角三角形, ∴DE ,即x ; (3)当BD :BF=2:1时,如图,过点F 作FH ⊥OB 于点H ,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°, ∴∠DBO=∠BFH ,又∵∠DOB=∠BHF=90°, ∴△BOD ∽△FHB , ∴=2, ∴FH=2,OD=2BH ,∵∠FHO=∠EOH=∠OEF=90°, ∴四边形OEFH 是矩形, ∴OE=FH=2, ∴EF=OH=4-OD , ∵DE=EF , ∴2+OD=4-OD , 解得:OD=,∴点D 的坐标为(0,), ∴直线CD 的解析式为y=x+, 由,得:, 则点P 的坐标为(2,2); 当时, 连结EB ,同(2)①可得:∠ADB=∠EDP ,OB OD BDHF HB FB==12124343134314334y x y x ⎧=+⎪⎨⎪=-+⎩22x y =⎧⎨=⎩12BD BF =试卷第12页,总68页而∠ADB=∠DEB+∠DBE ,∠EDP=∠DAP+∠DPA , ∵∠DEP=∠DPA ,∴∠DBE=∠DAP=45°,∴△DEF 是等腰直角三角形, 如图,过点F 作FG ⊥OB 于点G ,同理可得:△BOD ∽△FGB , ∴, ∴FG=8,OD=BG , ∵∠FGO=∠GOE=∠OEF=90°, ∴四边形OEFG 是矩形, ∴OE=FG=8, ∴EF=OG=4+2OD , ∵DE=EF ,∴8-OD=4+2OD , OD=, ∴点D 的坐标为(0,-), 直线CD 的解析式为:, 由,得:, ∴点P 的坐标为(8,-4),综上所述,点P 的坐标为(2,2)或(8,-4).7.如图,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm .点D 、E 、F 分别是边AB ,BC ,AC 的中点,连接DE ,DF ,动点P ,Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,点P 沿AFD 的方向运动到点D 停止;点Q 沿BC 的方向运动,当点P 停止运动时,点Q 也停止运动.在运动过程中,过点Q 作BC 的垂线交AB 于点M ,以点P ,M ,Q 为顶点作12OB OD BD GF GB FB ===1243431433y x =--14334y x y x ⎧=--⎪⎨⎪=-+⎩84x y =⎧⎨=-⎩第13页,总68页平行四边形PMQN .设平行四边形边形PMQN 与矩形FDEC 重叠部分的面积为y (cm 2)(这里规定线段是面积为0有几何图形),点P 运动的时间为x (s )(1)当点P 运动到点F 时,CQ= cm ;(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式. 【答案】(1)5 (2)(cm ) (3)当3≤x<4时,y=-x 2+x 当4≤x<时,y=-6x+33 当≤x≤7时,y=6x-33 【解析】 解:(1)当点P 运动到点F 时, ∵F 为AC 的中点,AC=6cm , ∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s , ∴BQ=AF=3cm ,∴CQ=8cm-3cm=5cm , 故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t-3=8, t=, 11234214112112112试卷第14页,总68页BQ 的长度为×1=(cm ); (3)∵D 、E 、F 分别是AB 、BC 、AC 的中点, ∴DE=AC=×6=3, DF=BC=×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°, ∵∠QBM=∠CBA , ∴△MBQ ∽△ABC , ∴, ∴, MQ=x , 分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD =x (7-x ) 即y=-x 2+x ; ②当4≤x<时,重叠部分为矩形,如图3, 11211212121212BQ MQBC AC =86x MQ =343434214112第15页,总68页y=3[(8-X )-(X-3))] 即y=-6x+33; ③当≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x )] 即y=6x-33.8.已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平行四边形ABCD 的内部作Rt △AED ,∠EAD=30°,∠AED=90°.(1)求△AED 的周长;(2)若△AED 以每秒2个单位长度的速度沿DC 向右平行移动,得到△A 0E 0D 0,当A 0D 0与BC 重合时停止移动,设运动时间为t 秒,△A 0E 0D 0与△BDC 重叠的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围;(3)如图②,在(2)中,当△AED 停止移动后得到△BEC ,将△BEC 绕点C 按顺时针方向旋转α(0°<α<180°),在旋转过程中,B 的对应点为B 1,E 的对应点为E 1,设直线B 1E 1与直线BE 交于点P 、与直线CB 交于点Q .是否存在这样的α,使△BPQ 为等腰三角形?若存在,求出α的度数;若不存在,请说明理由. 【答案】(1)(2)S 与t 之间的函数关系式为:112试卷第16页,总68页S= (3)存在,α=75°【解析】 解:(1)∵四边形ABCD 是平行四边形, ∴AD=BC=6.在Rt △ADE 中,AD=6,∠EAD=30°,∴AE=AD•cos30°=3,DE=AD•sin30°=3, ∴△AED 的周长为:6+3+3=9+3.(2)在△AED 向右平移的过程中:(I )当0≤t≤1.5时,如答图1所示,此时重叠部分为△D 0NK .∵DD 0=2t ,∴ND 0=DD 0•sin30°=t,NK=ND 0•tan30°=t ,∴S=S △D0NK =ND 0•NK=t•t=t 2;(II )当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D 0E 0KN .∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t , ∴A 0N=A 0B=6-t ,NK=A 06-t ).∴S=S 四边形D0E0KN =S △ADE -S △A0NK =×(6-t )×(6-t )=-t 2;(III )当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D 0IJKN .222(0 1.5) 4.5)--6)6t S t t ≤≤⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩333312123321231231233363332第17页,总68页∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t=D 0C , ∴A 0N=A 0B=6-t ,D 0N=6-(6-t )=t ,BN=A 0B•cos30°=(6-t ); 易知CI=BJ=A 0B=D 0C=12-2t ,∴BI=BC-CI=2t-6, S=S 梯形BND0I -S △BKJ =[t+(2t-6)]• (6-t )-•(12-2t )•(12-2t )=-t 2+20t-42.综上所述,S 与t 之间的函数关系式为:S=. (3)存在α,使△BPQ 为等腰三角形.理由如下:经探究,得△BPQ ∽△B 1QC ,故当△BPQ 为等腰三角形时,△B 1QC 也为等腰三角形. (I )当QB=QP 时(如答图4),则QB 1=QC ,∴∠B 1CQ=∠B 1=30°, 即∠BCB 1=30°, ∴α=30°;(II )当BQ=BP 时,则B 1Q=B 1C ,若点Q 在线段B 1E 1的延长线上时(如答图5),∵∠B 1=30°,∴∠B 1CQ=∠B 1QC=75°,12312312331336332223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t t S t t t t t t ⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩试卷第18页,总68页即∠BCB 1=75°, ∴α=75°.9.如图1,已知直线y=x+3与x 轴交于点A ,与y 轴交于点B ,抛物线y=-x 2+bx+c 经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)求抛物线的解析式;(2)在第三象限内,F 为抛物线上一点,以A 、E 、F 为顶点的三角形面积为3,求点F 的坐标;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.【答案】(1)y=-x 2-2x+3;(2)(3212--,3212--) (3)当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形 【解析】 试题分析:(1)先由直线AB 的解析式为y=x+3,求出它与x 轴的交点A 、与y 轴的交点B 的坐标,再将A 、B 两点的坐标代入y=-x 2+bx+c ,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F 的坐标为(m ,-m 2-2m+3),运用配方法求出抛物线的对称轴及顶点D 的坐标,再设抛物线的对称轴与x 轴交于点G ,连接FG ,根据S △AEF =S △AEG +S △AFG -S △EFG =3,列出关于m 的方程,解方程求出m 的值,进而得出点F 的坐标;(3)设P 点坐标为(-1,n ).先由B 、C 两点坐标,运用勾股定理求出BC 2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB 2+BC 2=PC 2,据此列出关于n 的方程,求出n 的值,再计算出PD 的长度,然后根据时间=路程÷速度,即可求出此时对应的t 值;②∠BPC=90°,同①可求出对应的t 值;③∠BCP=90°,同①可求出对应的t 值.试题解析:(1)∵y=x+3与x 轴交于点A ,与y 轴交于点B , ∴当y=0时,x=-3,即A 点坐标为(-3,0), 当x=0时,y=3,即B 点坐标为(0,3),将A (-3,0),B (0,3)代入y=-x 2+bx+c ,得930c 3b c --+==⎧⎨⎩, 解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为y=-x 2-2x+3; (2)如图1,设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.∵y=-x2-2x+3=-(x+1)2+4,∴对称轴为直线x=-1,顶点D的坐标为(-1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=-1时,y=-1+3=2,∴E点坐标为(-1,2).∵S△AEF=S △AEG+S△AFG-S△EFG=12×2×2+12×2×(m2+2m-3)-12×2×(-1-m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得:1321 2m--=,23212m-+=(舍去),当3212m--=时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=3212--,∴点F的坐标为(3212--,3212--);(3)设P点坐标为(-1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,第19页,总68页化简整理得6n=16,解得n=83,∴P点坐标为(-1,83),∵顶点D的坐标为(-1,4),∴PD=4-83=43,∵点P的速度为每秒1个单位长度,∴t1=43;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,化简整理得n2-3n+2=0,解得n=2或1,∴P点坐标为(-1,2)或(-1,1),∵顶点D的坐标为(-1,4),∴PD=4-2=2或PD=4-1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,化简整理得6n=-4,解得n=-23,∴P点坐标为(-1,-23),试卷第20页,总68页第21页,总68页 ∵顶点D 的坐标为(-1,4), ∴PD=4+23=143, ∵点P 的速度为每秒1个单位长度,∴t 4=143; 综上可知,当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形.考点: 二次函数综合题.10.如图,在正方形ABCD 中,2AB =,点P 是边BC 上的任意一点,E 是BC 延长线上一点,联结AP ,作PF AP ⊥交DCE ∠的平分线CF 上一点F ,联结AF 交边CD 于点G .(1)求证:AP PF =;(2)设点P 到点B 的距离为x ,线段DG 的长为y ,试求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.【答案】(1)证明见解析;(2)()42022x y x x -=≤≤+;(3)改变,()24>22x y x x -=+. 【解析】试题分析:(1)欲证AP PF =利用原图无法证明,需构建三角形且使之全等,因此在边AB 上截取线段AH ,使AH PC =,连接PH ,证明AHP ∆与PCF ∆全等即可.(2)由APM ∆∽GAN ∆列式化简即可得.(3)在AD 延长线上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===+ .同理,2,2PM x AM x ==- ,∵45,45APM PAM NAG PMA ANG ∠=︒+∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y yx -=+. 整理,得()24>22x y x x -=+.试卷第22页,总68页 试题解析:(1)在边AB 上截取线段AH ,使AH PC =,连接PH ,由正方形ABCD ,得90B BCD D AB BC AD ∠=∠=∠=︒==,,∵90APF ∠=︒,∴APF B ∠=∠.∵APC B BAP APF FPC ∠=∠+∠=∠+∠,∴PAH FPC ∠=∠.又∵90BCD DCE ∠=∠=︒,CF 平分DCE ∠,∴45FCE ∠=︒.∴135PCF ∠=︒. 又∵AB BC AH PC ==,,∴BH BP =,即得45BPH BHP ∠=∠=︒.∴135AHP ∠=︒,即得AHP PCF ∠=∠.在AHP ∆和PCF ∆中,PAH FPC AH PC AHP PCF ∠=∠=∠=∠,,,∴AHP ∆≌PCF ∆,∴AP PF =.(2)在AD 上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===- .同理,2,2PM x AM x ==- ,∵45,135APM PAM NAG PMA ANG ∠=︒-∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y y x-=-. 整理,得()42022x y x x -=≤≤+. (3)改变,()24>22x y x x -=+. 考点:1.正方形的性质;2. 等腰直角三角形的判定和性质;3.全等三角形的判定与性质;4.由实际问题列函数关系式.11.如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、C 两点,抛物线y=-2x 2+bx+c(a ≠0)经过点A 、C.(1)求抛物线的解析式;(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.【答案】(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)-4)或-4);(3)存在,点F坐标为(0M,点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).【解析】试题分析:1)根据直线y=-2x+4求出点A、C的坐标,再利用待定系数法求二次函数解析式解答即可;(2)根据抛物线解析式求出点P的坐标,过点P作PD⊥y轴于D,根据点P、C的坐标求出PD、CD,然后根据S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面积,再根据抛物线解析式求出点B的坐标,从而得到AB的长度,然后利用三角形的面积公式求出△ABQ 的点Q的纵坐标的值,然后代入抛物线求解即可得到点Q的坐标;(3)根据点E在x轴上,根据点M在直线y=-2x+4上,设点M的坐标为(a,-2a+4),然后分①∠EMF=90°时,利用点M到坐标轴的距离相等列式求解即可;②∠MFE=90°时,根据等腰直角三角形的性质,点M的横坐标的长度等于纵坐标长度的一半,然后列式进行计算即可得解.试题解析:(1)令x=0,则y=4,令y=0,则-2x+4=0,解得x=2,所以,点A(2,0),C(0,4),∵抛物线y=-2x2+bx+c经过点A、C,∴24204b cc-⨯++=⎧⎨⎩=,解得24bc=⎧⎨=⎩,∴抛物线的解析式为:y=-2x2+2x+4;(2)∵y=-2x2+2x+4=-2(2第23页,总68页∴点P的坐标为(12,92),如图,过点P作PD⊥y轴于D,又∵C(0,4),∴PD=12,CD=91422-=,∴S△APC=S梯形APDO-S△AOC-S△PCD,=12×(12+2)×92-12×2×4-12×12×12=4514 88--=32,令y=0,则-2x2+2x+4=0,解得x1=-1,x2=2,∴点B的坐标为(-1,0),∴AB=2-(-1)=3,设△ABQ的边AB上的高为h,∵△ABQ的面积等于△APC面积的4倍,∴12×3h=4×32,解得h=4,∵4<92,∴点Q可以在x轴的上方也可以在x轴的下方,即点Q的纵坐标为4或-4,当点Q的纵坐标为4时,-2x2+2x+4=4,解得x1=0,x2=1,此时,点Q的坐标为(0,4)或(1,4),当点Q的纵坐标为-4时,-2x2+2x+4=-4,解得x1=1172+,x2=1172-,试卷第24页,总68页此时点Q的坐标为(1172+,-4)或(1172-,-4)综上所述,存在点Q(0,4)或(1,4)或(1172+,-4)或(1172-,-4);(3)存在.理由如下:如图,∵点M在直线y=-2x+4上,∴设点M的坐标为(a,-2a+4),①∠EMF=90°时,∵△MEF是等腰直角三角形,∴|a|=|-2a+4|,即a=-2a+4或a=-(-2a+4),解得a=43或a=4,∴点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);②∠MFE=90°时,∵△MEF是等腰直角三角形,∴|a|=12|-2a+4|,即a=12(-2a+4),解得a=1,-2a+4=2×1=2,此时,点F坐标为(0,1),点M的坐标为(1,2),或a=12-(-2a+4),此时无解,综上所述,点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).考点: 二次函数综合题.12.已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个第25页,总68页试卷第26页,总68页单位的速度向点B 运动;点N 从点C 出发,沿C →D →A 方向,以每秒1个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t 秒,过点N 作NQ ⊥CD 交AC 于点Q . (1)设△AMQ 的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.(2)在梯形ABCD 的对称轴上是否存在点P ,使△PAD 为直角三角形?若存在,求点P 到AB 的距离;若不存在,说明理由.(3)在点M 、N 运动过程中,是否存在t 值,使△AMQ 为等腰三角形?若存在,求出t 值;若不存在,说明理由.【答案】(1)233=-62S t t +(0<t ≤2),233=-123S t t +(2≤t <4);(2)233;(3)t=65,12-63,2. 【解析】试题分析:(1)求出t 的临界点t=2,分别求出当0<t ≤2时和2≤t <4时,S 与t 的函数关系式即可,(2)作梯形对称轴交CD 于K ,交AB 于L ,分3种情况进行讨论,①取AD 的中点G ,②以D 为直角顶点,③以A 为直角顶点,(3)当0<t ≤2时,若△AMQ 为等腰三角形,则MA=MQ 或者AQ=AM ,分别求出t 的值,然后判断t 是否符合题意.试题解析:(1)当0<t ≤2时,如图:过点Q 作QF ⊥AB 于F ,过点C 作CE ⊥AB 于E ,∵AB ∥CD ,∴QF ⊥CD ,∵NQ ⊥CD ,∴N ,Q ,F 共线,∴△CQN ∽△AFQ ,∴ CN NQ AF QF=, ∵CN=t ,AF=AE-CN=3-t ,∵NF=3,∴QF=33t 3-,第27页,总68页 13(323t - 23362t + 当2≤t <4时,如图:△FQC ∽△PQA ,∵DN=t-2,∴FD=DN •cos ∠FDN=DN •t-2), ∴t-2) ∴FQ=FC •tan ∠FCQ=FC •tan30°=t+2), ∴ 13[326t -23=-123t + (2)作梯形对称轴交CD 于K ,交AB 于L ,情况一:取AD 的中点G ,GD=1,过G 作GH ⊥对称轴于H ,GH=1.5,∵1.5>1,∴以P 为直角顶点的Rt △PAD 不存在,情况二:以D 为直角顶点:KP1 ∴P 1情况三:以A 为直角顶点,LP 2综上:P 到AB PAD 为Rt △, (3)0<t ≤2时, 若MA=MQ ,∴试卷第28页,总68页若AQ=AM ,则t=23233t -, 解得t=12-63, 若QA=QM ,则∠QMA=30°而0<t ≤2时,∠QMA >90°,∴QA=QM 不存在;2≤t <4(图中)若QA=QM ,AP :AD=3:2,∴t=2,若AQ=AM ,23-33(t+2)=t , ∴t=23-2,∵23-2<2,∴此情况不存在若MA=MQ ,则∠AQM=30°,而∠AQM >60°不存在.综上:t=65,12-63,2时,△AMQ 是等腰三角形. 考点: 1.等腰梯形的性质;2.等腰三角形的判定;3.直角三角形的性质. 13.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,3-)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP’C,那么是否存在点P ,使四边形POP’C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】(1)y=x 2﹣2x ﹣3;(2)存在,(2102+,32-);(3)(32,-154),758. 【解析】试题分析:(1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;第29页,总68页(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;(3) 由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析 式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.试题解析:(1)将B 、C 两点的坐标代入得 9303b c c ++=-⎧⎨⎩=解得:23b c =-⎧⎨=-⎩; 所以二次函数的表达式为:y=x 2﹣2x ﹣3.(2)存在点P ,使四边形POPC 为菱形;设P 点坐标为(x ,x 2﹣2x ﹣3),PP′交CO 于E若四边形POP′C 是菱形,则有PC=PO ;连接PP′,则PE ⊥CO 于E ,∴OE=EC=32∴y=32-; ∴x 2﹣2x ﹣3=32- 解得:12102x +=,22102x -=(不合题意,舍去) ∴P 点的坐标为(2102+,32-) (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣2x ﹣3),易得,直线BC 的解析式为y=x ﹣3则Q 点的坐标为(x ,x ﹣3);S 四边形ABPC=S △ABC+S △BPQ+S △CPQ=12AB•OC+12QP•OF+12QP•BF 21143(3)322x x =⨯⨯+-+⨯试卷第30页,总68页 23375()228x =--+ 当32x =时,四边形ABPC 的面积最大 此时P 点坐标为(32,-154)四边形ABPC 的面积的最大值为758. 考点: 二次函数综合题.14.如图,直角坐标系中Rt △ABO ,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O 逆时针旋转90°,得到Rt △A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.【答案】(1)y=-x 2+x+2;(2)P (1,2);(4)四边形PB′A′B 为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等.【解析】试题分析:(1)利用旋转的性质得出A ′(-1,0),B ′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可;(3)利用P 点坐标以及B 点坐标即可得出四边形PB′A′B 为等腰梯形,利用等腰梯形性质得出答案即可.试题解析:(1)(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的, 又A (0,1),B (2,0),O (0,0),∴A′(-1,0),B′(0,2)设抛物线的解析式为:y=ax 2+bx+c (a≠0),∵抛物线经过点A′、B′、B ,∴0=2=c 042a b c a b c ⎧-+=++⎪⎨⎪⎩,解得:112a b c =-⎧⎪=⎨⎪=⎩,∴满足条件的抛物线的解析式为y=-x 2+x+2.(2)∵P 为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,12×1×2+1212-x2+x+2)+1=-x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=-x2+2x+3,即x2-2x+1=0,解得:x1=x2=1,此时y=-12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.考点: 二次函数综合题.15.已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。
初中九年级数学培优试卷
一、选择题(每题5分,共20分)1. 若方程x²-5x+6=0的解为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -62. 下列函数中,在其定义域内是奇函数的是()A. y=x²B. y=|x|C. y=x³D. y=2x3. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 若a、b、c是等差数列的前三项,且a+b+c=9,则b的值为()A. 3B. 4C. 5D. 65. 下列图形中,是圆的内接四边形的是()A. 正方形B. 矩形C. 菱形D. 梯形二、填空题(每题5分,共20分)6. 若∠ABC=45°,∠ACB=90°,则∠BAC的度数为______。
7. 若等差数列的前三项分别为2,5,8,则该数列的公差为______。
8. 若函数f(x)=2x-3在x=2时的函数值为1,则k的值为______。
9. 若a,b,c是等比数列的前三项,且a+b+c=27,则b的值为______。
10. 若直角三角形的三边长分别为3,4,5,则该三角形的面积为______。
三、解答题(每题10分,共30分)11. (1)解方程:x²-6x+9=0。
(2)已知等差数列的前三项分别为2,5,8,求该数列的通项公式。
12. (1)若函数f(x)=2x-3在x=2时的函数值为1,求k的值。
(2)已知函数f(x)=kx²+2x+1在x=1时的函数值为0,求k的值。
13. (1)在直角坐标系中,已知点A(-2,3),点B(2,-3),求线段AB的中点坐标。
(2)已知正方形的对角线长为10,求正方形的面积。
四、综合题(每题10分,共20分)14. 已知等差数列的前三项分别为2,5,8,求:(1)该数列的通项公式;(2)该数列的前10项之和。
15. 在直角坐标系中,已知点A(2,3),点B(-3,4),点C(-2,1),求:(1)线段AB的长度;(2)三角形ABC的面积。
《第1章特殊平行四边形》专题培优提升训练2021-2022学年北师大版九年级数学上册
2021年北师大版九年级数学上册《第1章特殊平行四边形》专题培优提升训练(附答案)1.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,求∠DAE的度数;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.2.如图,O是正方形ABCD对角线AC,BD的交点,AF平分∠BAC,交BD于点M,DE ⊥AF于点H,分别交AB,AC于点E,G.(1)证明△AED≌△BF A;(2)△ADM是等腰三角形吗?请说明理由;(3)若OG的长为1,求BE的长度.3.已知:如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F.(1)求证:CE=FE;(2)若FD=5,CE=1,求矩形的面积.4.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.5.如图,在矩形ABCD的BC边上取一点E,连接AE,使得AE=EC,在AD边上取一点F,使得DF=BE,连接CF.过点D作DG⊥AE于G.(1)求证:四边形AECF是菱形;(2)若AB=4,BE=3,求DG的长.6.如图,在正方形ABCD和正方形CEFG中,点D在CG上,H是AF的中点.(1)求证:CH=AF;(2)若BC=1,CE=3,求CH的长.7.四边形ABCD是正方形,点M在边BC上(不与端点B、C重合),点N在对角线AC上,且MN⊥AC,连接AM,点G是AM的中点,连接DN、NG.(1)若AB=10,BM=2,求NG的长;(2)求证:DN=NG.8.如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,求证EB=GD;(2)如图2,若点E在线段DG上,AB=5,AG=3,求BE的长.9.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.10.已知:如图所示的一张矩形纸片ABCD(AD>AB),O是对角线AC的中点,过点O的直线EF⊥AC交AD边于E,交BC边于F.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.11.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.12.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.13.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.14.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF ∥BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若ED=6,AE=10,则菱形AECF的面积是多少?15.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.16.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.17.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE =EN,连接CN、CE.(1)求证:△CAN为直角三角形.(2)若AN=4,正方形的边长为6,求BE的长.18.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.19.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.20.探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果:;(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.21.如图,正方形ABCD的对角线交于点O,点E是线段OD上一点,连接EC,作BF⊥CE于点F,交OC于点G.(1)求证:BG=CE;(2)若AB=4,BF是∠DBC的角平分线,求OG的长.参考答案1.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DA=DE,∴∠DAE=∠DEA=×(180°﹣70°)=55°.(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).2.解:(1)∵四边形ABCD为正方形,∴∠DAE=∠ABF=90°,AD=AB,∵DE⊥AF,∴∠DAH+∠ADE=90°,∵∠DAH+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BF A中,,∴△AED≌△BF A(ASA).(2)△ADM是等腰三角形,理由如下:∵∠BAC=45°,AF平分∠BAC,∴∠BAF=∠CAF=∠BAC=22.5°,∴∠DAM=∠DAC+∠CAF=67.5°,∴∠DMA=180°﹣∠DAM﹣∠ADM=180°﹣67.5°﹣45°=67.5°,∴∠DAM=∠DMA,∴△ADM是等腰三角形.(3)∵∠ADE=∠BAF=22.5°,∴∠CDG=∠ADC﹣∠ADE=67.5°,∴∠DGC=180°﹣∠GCD﹣∠CDG=67.5°,∴CG=CB,∵AE∥CD,∴∠AEG=∠CDG=67.5°,∴AE=AG,如图,作FK⊥AC于点K,设AG=AE=x,∵AO=AG+OG=x+1,∴AB=BC=AO=(x+1),AC=2AO=2(x+1),∵△AED≌△BF A,∴BF=AE=x,∵AF平分∠BAC,∴FK=BF=x,∵S△ABF=AB•BF,S△ACF=AC•FK,∴==,又∵=,∴==,即=,解得x=,∴BE=AB﹣AE=(x+1)﹣x=2.解法二:BF=x之后,可以直接AB=(x+1),BC=x+x,由AB=BC,可以直接解出x.3.解:(1)连结DE,如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DF A中,,△ABE≌△DF A(AAS),∴AB=CD=DF,在Rt△DFE和Rt△DCE中,,∴Rt△DFE≌Rt△DCE(HL).∴CE=FE.(2)∵△DEF≌△DEC,∴FE=CE=1,DC=DF=5,设AD=x,则AF=AE﹣EF=AD﹣1=x﹣1,在Rt△AFD中,由勾股定理得:AF2+DF2=AD2,∴(x﹣1)2+52=x2,∴x=13,即AD=13,∴S矩形ABCD=AD•DC=65.4.(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)解:过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.5.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AF=FC,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,在Rt△ABE中,AB=4,BE=3,根据勾股定理,得AE===5,∵四边形AECF是菱形,∴EC=AE=5,∴AD=BC=BE+EC=3+5=8,∵AD∥BC,∴∠EAD=∠AEB,∵DG⊥AE,∴∠DGA=∠B=90°,∴DG=.6.(1)证明:如图,延长AD交EF于M,连接AC,CF,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴;(2)解:方法一:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,在Rt△AMF中,由勾股定理得:=,∴.方法二:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,∴AC=,CF=3,∴AF==,∴.7.解:(1)∵∠B=90°,AB=10,BM=2∴AM=∵MN⊥AC,点G是AM的中点∴GN=(2)证明:过点D作DE⊥AC于点E∵四边形ABCD是正方形∴DE=∵AC为正方形对角线∴∠ACB=45°∵MN⊥AC∴MN=NC设MN=NC=a,AN=b∴由勾股定理AM=∵MN⊥AC,点G是AM的中点∴GN=∵AC=a+b∴DE=EC=∴EN=EC﹣NC=DN=∴DN=NG8.(1)证明:∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD,AG=AE,∠BAD=∠GAE=90°,∴∠BAE=∠DAG,在△AGD和△AEB中,,∴△AGD≌△AEB(SAS),∴EB=GD;(2)解:作AH⊥DG于H,∵四边形ABCD和四边形BEFG都是正方形,∴AD=AB=5,AE=AG=3.∴由勾股定理得:EG==6,AH=GH=EG=3(直角三角形斜边上的中线等于斜边的一半),∴DH==4,∴BE=DG=DH+GH=3+4=7.9.解:(1)结论:PB=PQ,理由:如图①中,过P作PE⊥BC,PF⊥CD,垂足分别为E,F.∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形.∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)结论:PB=PQ.理由:如图②,过P作PE⊥BC,PF⊥CD,垂足分别为E,F,∵P为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,在△PQF和△PBE中,,∴Rt△PQF≌Rt△PBE,∴PB=PQ.10.(1)证明:∵O是对角线AC的中点,∴AO=CO,∵矩形ABCD的边AD∥BC,∴∠ACB=∠CAD,∵EF⊥AC,∴∠AOE=∠COF=90°,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形;(2)解:∵AE=10cm,四边形AFCE是菱形,∴AF=AE=10cm,设AB=x,∵△ABF的面积为24cm2,∴BF=,在Rt△ABF中,根据勾股定理,AB2+BF2=AF2,即x2+()2=102,x4﹣100x2+2304=0,解得,x1=6,x2=8,∴BF==8cm,BF==6cm,所以,△ABF的周长=6+8+10=24cm.11.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.12.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.13.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.14.(1)证明:∵PQ为线段AC的垂直平分线,,∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,∴△AED≌△CFD(AAS);(2)证明:∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=F A,∴EC=EA=FC=F A,∴四边形AECF为菱形;(3)解:∵四边形AECF是菱形,∴AC⊥EF,∵ED=6,AE=10,∴EF=2ED=12,AD==8.∴AC=2AD=16,∴菱形AECF的面积=AC•EF=×16×12=96.15.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.16.解:(1)∵MN∥BC,∴∠3=∠2,又∵CF平分∠GCO,∴∠1=∠2,∴∠1=∠3,∴FO=CO,同理:EO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,由(1)可知,FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∴∠AOE=∠ACB∵∠ACB=90°,∴∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.17.解:(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(2)∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.18.证明:(1)∵AF∥BC,∴∠AFC=∠FCD.在△AFE和△DCE中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形;(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.19.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.20.解:(1)如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,∵∠EAF=45°,∴∠EAF′=∠EAF=45°,在△AEF和△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又EF′=BE+BF′=BE+DF,∴EF=BE+DF;(2)结论EF=BE+DF仍然成立.理由如下:如图2,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF′,则△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,∠ABF′=∠D,又∵∠EAF=∠BAD,∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,∴∠EAF=∠EAF′,又∵∠ABC+∠D=180°,∴∠ABF′+∠ABE=180°,∴F′、B、E三点共线,在△AEF与△AEF′中,,∴△AEF≌△AEF′(SAS),∴EF=EF′,又∵EF′=BE+BF′,∴EF=BE+DF;(3)发生变化.EF、BE、DF之间的关系是EF=BE﹣DF.理由如下:如图3,将△ADF绕点A顺时针旋转,使AD与AB重合,点F落在BC上点F′处,得到△ABF′,∴△ADF≌△ABF′,∴∠BAF′=∠DAF,AF′=AF,BF′=DF,又∵∠EAF=∠BAD,且∠BAF′=∠DAF,∴∠F′AE=∠BAD﹣(∠BAF′+∠EAD)=∠BAD﹣(∠DAF+∠EAD)=∠BAD﹣∠F AE=∠F AE,即∠F′AE=∠F AE,在△F′AE与△F AE中,,∴△F′AE≌△F AE(SAS),∴EF=EF′,又∵BE=BF′+EF′,∴EF′=BE﹣BF′,即EF=BE﹣DF.21.(1)证明:∵正方形ABCD中,AC、BD相交于O,∴BO=CO,BO⊥CO,∵BF⊥EC,∴∠5=∠6=∠7=90°,∵∠3=∠4,∴∠1=∠2,∴△BOG≌△CEO,(AAS)∴BG=CE.(2)解:∵BF是∠DBC的角平分线,∴∠1=∠8,∵BF=BF,∠9=∠6=90°,∴△BEF≌△BCF(ASA),∴BE=BC=4,∵四边形BCD是正方形∴∠AOB=90°,AO=BO设AO为x,由勾股定理,得2x2=42解得x=2∵△BOG≌△COE∴OG=OE∵OE=BE﹣BO=4﹣2,∴OG=4﹣2.。
初三数学培优试题及答案
初三数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 22/7答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 8答案:B3. 已知函数y=2x+3,当x=2时,y的值是多少?A. 7B. 5C. 4D. 3答案:A4. 一个圆的半径为4,那么这个圆的面积是多少?A. 16πB. 32πC. 64πD. 100π答案:C5. 下列哪个是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^3+bx^2+cx+dC. y=ax+bD. y=a(x-h)^2+k答案:A6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. 以上都有可能答案:D8. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 1/8答案:A9. 一个数的平方根是3,那么这个数是多少?A. 9B. 3C. -3D. 6答案:A10. 一个数的倒数是1/3,那么这个数是多少?A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______。
答案:±52. 一个数的立方是-8,那么这个数是______。
答案:-23. 一个角的补角是120°,那么这个角是______。
答案:60°4. 一个角的余角是30°,那么这个角是______。
答案:60°5. 一个等腰三角形的顶角是100°,那么它的底角是______。
答案:40°6. 一个直角三角形的两个锐角的度数之和是______。
答案:90°7. 一个等差数列的首项是3,公差是2,那么第5项是______。
九年级数学反比例函数的专项培优练习题(含答案)附详细答案
九年级数学反比例函数的专项培优练习题(含答案)附详细答案一、反比例函数1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.3.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.4.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【答案】(1)6;-6;(﹣,4)(2)解:①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t= 或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【解析】【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。
北师大版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练(含答案)
北师版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是()2. 如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°3. 如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )A.58°B.60°C.64°D.68°4. 如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°5.如图,经过原点O的⊙P与x,y轴分别交于A,B两点,点C是劣弧OB上一点,则∠ACB的度数是( )A.80°B.100°C.90°D.无法确定6.如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°7.如图,⊙C 过原点,且与两坐标轴分别交于点A ,B ,点A 的坐标为(0,3),M 是第三象限内OB ︵上一点,∠BMO =120°,则⊙C 的半径长为( )A .6B .5C .3D .3 28. 如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°9. 如图,已知⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD =120°,AB =AD =2,则⊙O 的半径长为( )A .322B .62C .32D .23310.如图,点P 是等边三角形ABC 外接圆⊙O 上的点.在下列判断中,不正确的是( )A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二.填空题(共8小题,3*8=24)11. 如图,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC=____________.12.如图所示,四边形ABCD为⊙O内接四边形,若∠BOD=100°,∠BAD=___________,∠BCD =___________.13.如图,在⊙O中,弦CD垂直直径AB于点E,若∠BAD=30°,且BE=2,则CD=__________.14.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是____________.15. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为________.16. 如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.17. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.若∠D=80°,则∠EAC的度数为________.18. 如图,四边形ABCD 是⊙O 的内接四边形,AD 与BC 的延长线交于点E ,BA 与CD 的延长线交于点F ,∠DCE =80°,∠F =25°,则∠E 的度数为________.三.解答题(共7小题,46分)19.(6分)如图,已知∠EAD 是圆内接四边形ABCD 的一个外角,并且BD ︵=DC ︵.20.(6分) 如图,四边形ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P .求证:AD·DC =PA·BC.21.(6分) 如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,求AE 得值.22.(6分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB.延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.23.(6分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB 于点D,若△OBD是直角三角形,求弦BC的长.24.(8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.25.(8分) 如图,四边形APBC 是⊙O 的内接四边形,AB =AC ,点P 是AB ︵的中点,连接PA ,PB ,PC.(1)如图①,若∠BPC =60°,求证:AC =3AP ;(2)如图②,若sin ∠BPC =2425,求tan ∠PAB 的值.参考答案:1-5CDABC 6-10 BCBDC11. 70°12. 50°,130° 13. 4 314. 平行15. 52°16. n17.30°18.45°19. 解:∵四边形ABCD 是圆内接四边形,∴∠EAD =∠DCB.又∵BD ︵=DC ︵,∴∠DAC =∠DCB.∴∠EAD =∠DAC ,∴AD 平分∠EAC20. 证明:连接BD.∵DP ∥AC ,∴∠PDA =∠DAC.∵∠DAC =∠DBC ,∴∠PDA =∠DBC.∵四边形ABCD 是⊙O 的内接四边形,∴∠DAP =∠DCB.∴△PAD ∽△DCB.∴PA ∶DC =AD ∶BC ,即AD·DC =PA·BC21. 解:如图,连接AC.∵BA 平分∠DBE ,∴∠1=∠2.∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA. ∴AC =AD =5.∵AE ⊥CB ,∴∠AEC =90°.∴AE =AC 2-CE 2=52-(13)2=2 3.22. 解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴AC ⊥BC.∵CD =CB ,∴AD =AB ,∴∠B =∠D(2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去).∵∠B =∠E ,∴∠D =∠E ,∴CD =CE.∵CD =CB ,∴CE =CB =1+723. 解:如图①,当∠ODB =90°,即CD ⊥AB 时,可得AD =BD ,∴AC =BC.又∵AB =AC ,∴△ABC 是等边三角形.∴∠DBO =30°.∵OB =5,∴BD =32OB =532. ∴BC =AB =2BD =5 3. 如图②,当∠DOB =90°时,可得∠BOC =90°,∴△BOC 是等腰直角三角形.∴BC =2OB =5 2.综上所述,弦BC 的长为53或5224. (1)证明:∵AB 是直径,∴∠AEB =90°,∴AE ⊥BC ,∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形,∵AC =AB ,∴四边形ABFC 是菱形(2)解:设CD =x.连接BD.∵AB 是直径,∴∠ADB =∠BDC =90°,∴AB 2-AD 2=CB 2-CD 2,∴(7+x)2-72=42-x 2,解得x =1或x =-8(舍弃),∴AC =8,BD =82-72=15,∴S 菱形ABFC =815,S 半圆=12·π·42=8π 25. 解:(1)∵BC ︵=BC ︵,∴∠BAC =∠BPC =60°,又∵AB =AC ,∴△ABC 为等边三角形,∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴∠PAC =90°,在Rt △PAC 中,∠ACP =30°,∴AC =3AP(2)如图,连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC. ∵AB =AC ,∴AF ⊥BC ,BF =CF.∵点P 是AB ︵的中点,∴∠ACP =∠PCB ,∴EG =EF.∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC =2425. 设FC =24a ,则OC =OA =25a.∴OF =7a ,AF =32a ,在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a ,在Rt △AGE 和Rt △AFC 中,sin ∠FAC =EG AE =FC AC, ∴EG 32a -EG =24a 40a,∴EG =12a. ∴tan ∠PAB =tan ∠PCB =EF CF =12a 24a =12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【板块一】 反比例函数的定义和解析式
方法技巧
根据定义解题 1.定义:一般地,形如y=xk (k 为常数,k≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变 量x 的取值范围是不等于0的一切实数. 2.解析式:y=xk (k≠0)或xy=k(k≠0)或y=kx-1(k≠0).
▶题型一 根据定义判断反比例函数
▶题型二 反比例函数的图象的对称性
【例3】 如图,直线y=ax(a≠0)与双曲线y=xk(k≠0)交于 A,B 两点,试说明 A,B 两点关于原点对称.
{y=ax,
【解 析 】
联立
y=xk
得ax2 ,
-k=0,∴xA
+xB
=0,过
A,B
两
点
分
别
作x
轴的垂线,
由全等即可得 OA=OB,∴A,B 两点关于原点对称.
;
(2)函数y=xk 中,当x=2时,y=3,则函数的解析式为.源自【解 析 】(1)-
3 2
;(2)y=
6 x
.
▶题型三 根据定义确定待定系数的值
【例3】 (1)如果函数y=x2m+1是关于x 的反比例函数,则 m 的值为
;
(2)若函数y=(m+2)xm2-5(m 为常数)是关于x 的反比例函数,求 m 的值及函数的解析式.
【例1】 下列函数:①y=x2;②y=x2;③y=- x2;④y=21x;⑤y=x1+2;⑥y=x1 -2;⑦xy=2;⑧y=
2x-1,⑨y=x22.其中y 是x 的反比例函数的有
(填 序 号 ).
【解析】 ②③④⑦⑧.
▶题型二 根据定义确定k 值或解析式
【例2】 (1)反比例函数y=-23x,化为y=xk 的形式,相应的k=
如图,过双 曲 线 上 任 意 一 点 P 作x 轴,y 轴 的 垂 线 段PM ,PN,则 所 得 的 矩 形 PMON 的面积S=PM·PN=|y|·|x|=|xy|=|k|,即 在 反 比 例 函 数y=
k x
(k≠0)的 图
象上
任
取
一
点
向
两
坐
标
轴
作
垂
线
段
,则
两
垂
线
段
与
两
坐
标
轴
所
围
成 的 矩 形 的 面 积 等 于|k|,且 这 个 面 积 的 值 与 取 点 的 位 置 无 关 .
▶题型一 反比例函数的增减性
【例1】 在反比例函数y=1-x8m的图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1>y2,则 m 的 取值范围是( )
A.m> 1 8
B.m<
1 8
C.m≥
1 8
D.m≤
1 8
【解 析 】
A.根
据
条
件
x1
<0<x2
,y1
<y2
,可
判
断
其
图
象
位
于
二
(2)易 知 四 边 形 APBQ 是 平 行 四 边 形 ,∴S△APO = 14S四边形APBQ =6,过 点 A 作AD ⊥x 轴
于 点 D,过 点 P 作 PE ⊥x 轴 于 点 E,S四边形ADOP =S△ADO +S△APO S = 四边形ADEP +S△PEO ,
【解析】 (1)-1;
(2)m=2,y=4x-1.
췍117췍
针对练习1
1.下列函数中,为反比例函数的是( B )
A.y=x3
B.y=31x
C.y=x1-3
2.反比例函数y=-23x化为y=xk 的形式后,相应的k=
-
3 2
.
3.若关于x 的函数y=(m2-4)xm2-m-7是反比例函数,求 m 的值.
特别地,S△PMO =S△PNO =1 2|k|.
【例5】 如图,平行于x 轴的直线AB 与 双 曲 线y=kx1 和y=kx2 (k1>k2)在 第一象限内交于 A,B 两点,若S△OAB =2,求k1-k2的值.
【解 析】 延长 AB 交y 轴于点C,则S△OAB =S△OAC -S△OBC = 12k1- 12k2=2,∴k1-k2=4.
【例6】 如图,直线y=-1 2x 与双曲线y=xk (k<0)交于 A,B 两点,且点 A 的横坐标为-4.
(1)求k 的值;
(2)过原点的另一直线交双曲线y=xk (k<0)于 P,Q 两点,点 P 在第二象限.若 A,B,P,Q 四点组成的
四边形面积为24,求点 P 的坐标.
【解析】 (1)A(-4,2),k=-8;
九年级数学 大培优
第二十六章 反比例函数
第19讲 反比例函数
知识导航
1.反 比 例 函 数 的 定 义 和 解 析 式 ; 3.反 比 例 函 数 与 方 程 及 不 等 式 ; 5.反比例函数与直线y=a 或x=a; 7.反 比 例 函 数 与 图 形 变 换 ;
2.反 比 例 函 数 的 图 象 和 性 质 ; 4.反 比 例 函 数 与 神 奇 的 几 何 性 质 ; 6.反 比 例 函 数 与 全 等 相 似 ; 8.反 比 例 函 数 与 定 值 及 最 值 .
、四
象
限
,∴1-8m<0,∴m>
1 8
.
【例2】 已知反比例函数y=-x6.
(1)画 出 这 个 反 比 例 的 图 象 ;
(2)当-6≤x<-2时,y 的取值范围是
;
(3)当|y|≥3时,x 的取值范围是
.
【解析】 (1)图略;(2)1≤y<3;(3)-2≤x<0或0<x≤2.
췍118췍
九年级数学 大培优
▶题型三 反比例函数的图象与系数的关系
【例4】 如图,反比例函数①y=kx1,②y=kx2,③y=kx3,④y=kx4 的 部 分 图 象
如 图 所 示 ,则k1,k2 ,k3,k4 的 大 小 关 系 是
.
【解析】 k3<k4<k1<k2.|k|越大,其图象离坐标原点越远.
▶题型四 反比例函数中k 的几何意义
解 :3.
D.y=x12
【板块二】 反比例函数的图象和性质
方法技巧
抓住反比例函数的性质并结合图象解题
一般地,对于反比例函数y=xk (k≠0),由函数图象,并结合解析式,我们可以发现: 1.图 象 分 布 当k>0时,x,y 同号 (同号或异号),函数图象为第 一、三 象限的两支曲线; 当k<0时,x,y 异号 (同号或异号),函数图象为第 二、四 象限的两支 曲 线.因 此 反 比 例 函 数 的 图 象也叫做双曲线. 2.对 称 性 若点(a,b)在 反 比 例 函 数 的 图 象 上,则 点 (b,a) , (-b,-a) , (-a,-b) 也 在 此 图 象 上,故 反 比 例函数的图象关于直线 y=x , y=-x 对称,关于点 (0,0) 成中心对称. 3.增 减 性 当k>0时,在每一个象限内,y 随x 的增大而 减小 ; 当k<0时,在每一个象限内,y 随x 的增大而 增大 .