6.导数应用之极值点偏移
导数的极值点偏移问题
导数极值点偏移问题如上图所示,0x 为函数的极值点,0x 处对应的曲线的切线的斜率为0极值点左移:0212x x x >+,221x x x +=处切线与x 轴不平行 极值点右移:0212x x x <+,221x x x +=处切线与x 轴不平行由上面图像可知,函数的图像分为凸函数和凹函数。
当函数图像为凸函数,且极值点左偏时,有()020'21'=<⎪⎭⎫⎝⎛+x f x x f ;当函数图像为凸函数,且极值点右偏时,有()020'21'=>⎪⎭⎫ ⎝⎛+x f x x f 。
当函数图像为凹函数,且极值点左偏时,()020'21'=>⎪⎭⎫ ⎝⎛+x f x x f ;当函数图像为凹函数,且极值点右移时,有()020'21'=<⎪⎭⎫ ⎝⎛+x f x x f 。
如图所示,上图的函数图像为凸函数,且极值点右移,1x 和2x 处对应的函数值相等,我们可以作2x 关于0x 的对称点3x ,则12032x x x x >-=,且03x x <,故()()13x f x f >,即()()1202x f x x f >-,故我们可以构造函数()()()1202x f x x f x F --=,只需要判断函数()x F 的单调性,然后根据单调性判断函数的最小值,只要满足()0min >x F ,我们就可以得到0212x x x <+。
同理,我们可以得到凸函数极值点左移以及凹函数极值点左移或右移的构造函数。
做题步骤:(1)求极值点0x ;(2)构造函数0()()(2)F x f x f x x =--; (3)判断极值点左移还是右移;(4)若是左移,求导时研究极值点左侧区间,比较()f x 和0(2)f x x -大小,然后在极值点右侧区间利用()f x 单调性,得出结论;若是右移,求导时研究极值点右侧区间,比较()f x 和0(2)f x x -大小,然后在极值点左侧区间利用()f x 单调性,得出结论;(5)若极值点求不出来,由'0()0f x =,使用替换的思想,简化计算步骤.经典题型:1.已知函数()2ln f x x ax =-,其中a R ∈(1)若函数()f x 有两个零点,求a 的取值范围; (2)若函数()f x 有极大值为12-,且方程()f x m =的两根为12,x x ,且12x x <,证明:124x x a +>.2.已知函数()()xf x e ax a a R =-+∈,其中e 为自然对数的底数.(1)讨论函数()y f x =的单调性;(2)若函数()f x 有两个零点12,x x ,证明:122ln x x a +<.(1)试讨论函数()f x 的单调性;(2)如果0a >且关于x 的方程()f x m =有两解1x ,2x (12x x <),证明122x x a +>.(Ⅰ)求()f x 的单调区间;(Ⅱ)设()f x 极值点为0x ,若存在()12,0,x x ∈+∞,且12x x ≠,使()()12f x f x =,求证:1202.x x x +>(1)试讨论函数()f x 的单调性;(2)设()()22ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'02x x h +⎛⎫>⎪⎝⎭.6.设函数()()211ln .2f x x a x a x =--- (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若()f x b =有两个不相等的实数根12,x x ,求证120.2x x f +⎛⎫> ⎪⎝⎭'7.设函数()2ln f x x a x =-,()g x =()2a x -.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()()()F x f x g x =-有两个零点12,x x . (1)求满足条件的最小正整数a 的值; (2)求证:1202x x F +⎛⎫> ⎪⎝⎭'.8. (2016年全国卷1)已知函数()()()212-+-=x a e x x f x有两个零点(1)求a 的取值范围;(2)设21,x x 是()x f 的两个零点,证明:221<+x x9.(2018年湖北省七市州联考)已知函数()()R a x axe x f x ∈--=-,1222 (1)当4-=a 时,谈论函数()x f 的单调性;(2)当10<<a 时,求证:函数()x f 有两个不相等的零点21,x x ,且221>+x x10.(广西桂林2017年第一次联合模拟考试)已知函数()()R m x x m x f ∈-+=1ln 21的两个零点为()2121,x x x x <(1)求实数m 的取值范围;(2)求证:e x x 21121>+11.已知函数()ax e x f x -=-有两个零点(1)求实数a 的取值范围;(2)设21,x x 是函数()x f 的两个零点,证明:221-<+x x12.已知函数()k kx e x f x 21--=+(1)讨论函数()x f 的单调性;(2)当函数()x f 有两个零点21,x x 时,证明:221->+x x。
极值点偏移四种题型的解法及例题
极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
极值点偏移学生版
极值点偏移专题1、极值点偏移以函数函数2x y =为例,极值点为0,如果直线1=y 与它的图像相交,交点的横坐标为1-和1,我们简单计算:0211=+-.也就是说极值点刚好位于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(I)求a 的取值范围;(II)设21,x x 是)(x f 的两个零点,证明221<+x x .变式、(2010年天津理科21题)已知函数()()xf x xe x R -=∈(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >(Ⅲ)如果12x x ≠,且12()()f x f x =,证明122x x +>.通法提炼一般地,主元法破解极值点偏移问题思路是:第一步:根据()()()1212f x f x x x =≠建立等量关系,并结合()f x 的单调性,确定12,x x 的取值范围; 第二步:不妨设12x x <,将待证不等式进行变形,进而结合原函数或导函数的单调性等价转化.第三步:构造关于1x (或2x )的一元函数()()()()21,2i i T x f x f a x i =--=,应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.例2.(2016年绵阳二诊)3、极值点偏移问题的不等式解法(1)我们熟知平均值不等式:,a b R +∈2221122a b a b ab a b ++≤≤≤+ 即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值” 等号成立的条件是a b =.(2)我们还可以引入另一个平均值:对数平均值:ln ln a ba b --那么上述平均值不等式可变为:对数平均值不等式,∀>≠a b a b ln ln 2a b a b ab a b -+-<< 以下简单给出证明:不妨设a b >,设a bx =,则原不等式变为:2(1)1,ln1x x x x -∀><<+那么例2还可以如下解答:变式1(2011辽宁理)已知函数()2ln (2)f x x ax a x =-+-.(I)讨论)(x f 的单调性;(II )设a >0,证明:当a x 10<<时,)1()1(x a f x a f ->+;(III )若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为0x ,证明:()0'0f x <.变式2.(2010天津理) 已知函数()x f x xe -= ()x R ∈.(Ⅰ)求函数)(x f 的单调区间和极值;(Ⅱ)已知函数)(x g y =的图象与函数)(x f y =的图象关于直线1=x 对称,证明当1>x 时,)()(x g x f >. (Ⅲ)如果12x x ≠,且()()12f x f x =. 证明:122x x +>.变式2.(2016年资阳二诊)练习(1)主元法破解极值点偏移问题:(2) 极值点偏移问题的不等式解法.1.(2014年江苏省南通市二模第20题)设函数()xf x e ax a =-+,其图象与轴交于()1,0A x ,()2,0B x 两点,且12x x <.(1)求的取值范围;(2)证明:0f '<(()f x '为函数()f x 的导函数);2.(2011年辽宁理科21题)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)设0a >,证明:当10x a <<时,11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭; (3)若函数()y f x =的图象与轴交于,A B 两点,线段AB 中点的横坐标为0x ,证明:0()0f x '<.3.(2013年湖南文科第21题)已知函数()211x x f x e x -=+. (1)求()f x 的单调区间;(2)证明:当()()()1212f x f x x x =≠时,120x x +<.4.函数()4343f x x x =-与直线13y a a ⎛⎫=>- ⎪⎝⎭交于12(,),(,)A x a B x a ,证明:122x x +<.5(2015长春四模题)已知函数()x f x e ax =-有两个零点12x x <,则下列说法错误的是 .A. a e >B.122x x +>C.121x x >D.有极小值点0x ,且1202x x x +<6.(2014江苏南通市二模)设函数()x f x e ax a =-+ ()a R ∈,其图象与x 轴交于()()12,0,0A x B x 两点,且12x x <.证明:0f '<(()f x '为函数()f x 的导函数).7.已知函数()ln f x x x =与直线y m =交于1122(,),(,)A x y B x y 两点. 求证:12210x x e<<。
导数之极值点的偏移
导数之极值点的偏移基础内容讲解:一、极值点偏移的含义单峰函数()x f 顶点的横坐标0x 就是极值点。
如果对定义域内的任意自变量x 都有()()x x f x f -=02成立。
说明函数()x f 的图像关于直线0x x =对称,故在0x 两侧()x f 的图像的升降走势相同。
若()x f =a 存在两个根1x 与2x ,则有2210x x x +=成立,此时极值点不偏移。
反之极值点偏移。
如果2210x x x +<,则极值点左偏;如果2210xx x +>,则极值点右偏。
二、极值点偏移的判定定理对于可导函数()x f y =在区间D 上只有一个极值点0x ,方程()0=x f 在区间D 上的解分别为21x x 、。
其中21x x < (1)、若0221>+⎪⎭⎫⎝⎛'x x f ,当2210x x x +<时,极小值点左偏,当2210x x x +>时,极大值点右偏;(2)若0221>+⎪⎭⎫⎝⎛'x x f ,当2210x x x +<时,极大值点左偏,当2210x x x +>时,极小值点右偏;三、极值点偏移的用处函数存在两个零点时关于零点间不等式的证明。
四、极值点偏移的用法例一、已知函数()x x x f ln =的图像与直线m y =交于不同的两个点()11y x A ,,()22y x B ,。
求证:2211ex x <变式练习一、已知函数()x x f ln =和()ax x g =,若存在两个不相同的实数21x x 、满足()()11x g x f =,()()22x g x f =。
求证: (1)、e x x 221>+ (2)、221e x x >例二、已知()x x x f ln -=,若存在两个不相同的正实数21x x 、满足()()21x f x f =。
求证:()()021<+x f x f ''变式练习二、已知函数()x x x f ln 2=的图像与直线m y =交于不同的两个点()11y x A ,,()22y x B ,。
极值点偏移定义及判定定理
极值点偏移定义及判定定理所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x x x +≠.如下图所示.极值点没有偏移一、极值点偏移判定方法1、极值点偏移的定义对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2) 若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏; (3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。
2、极值点偏移的判定定理判定定理: 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0)2('21>+x x f ,则021)(2x x x ><+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)0若0)2('21<+x x f ,则021)(2x x x <>+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 左(右)偏。
二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f三、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.21世纪教育网版权所有。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
极值点偏移极值点偏移定理
精心整理极值点偏移1-2---极值点偏移判定定理一、极值点偏移的判定定理对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21,x x ,且b x x a <<<21,0x ,二、运用判定定理判定极值点偏移的方法 1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=; (3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1(2(3(0x f 得出)(x F (4 02x -.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221xx +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心; (2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题. 三、对点详析,利器显锋芒 ★已知函数)()(R x xe x f x ∈=-. (1)求函数)(x f 的单调区间和极值;(2)若21x x ≠,且)()(21x f x f =,证明:221>+x x .∵12>x ,∴122<-x ,)(x f 在)1,(-∞上单调递增,∴212x x ->,∴221>+x x .★函数3434)(x x x f -=与直线)31(->=a a y 交于),(1a x A 、),(2a x B 两点.证明:221<+x x .★已知函数2()ln f x x x=+,若1x ≠2x ,且)()(21x f x f =,证明:421>+x x .【解析】由函数2()ln f x x x=+单调性可知:若)()(21x f x f =,则必有212x x <<,。
6.导数应用之极值点偏移
导数应用之极值点偏移1.(1)设不同的两点1122(,),(,)A x y B x y 均在二次函数2()f x ax bx c =++(0abc ≠)的图像上,记直线AB 的斜率为k ,求证:12'()2x x k f +=; (2)设不同的两点1122(,),(,)A x y B x y 均在“伪二次函数”2()ln g x ax bx c x =++(0abc ≠)的图像上,记直线AB 的斜率为k ,试问:12'()2x x k g +=还成立吗? 2.设函数2()(12)ln ()f x ax a x x a =+--∈R .(1)当0a >时,求函数()f x 的单调递增区间;(2)记函数()y f x =的图像为曲线C ,设11(,)A x y ,22(,)B x y 是曲线C 上不同的两点,M 为线段AB 的中点,过点M 作x 轴的垂线交曲线C 于点N .试问:曲线C 在点N 处的切线是否平行于直线AB ?3.设函数2()(2)ln f x x a x a x =---.(1)求函数()f x 的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a 的值;(3)若方程()f x c =有两个不等实根12,x x ,求证:12()02x x f +'>. 4.设函数2ln 2)(x mx x x f -+=.(1)若曲线)(x f y =在点))1(,1(f 处的切线方程为n x y +=2,求实数n m ,的值;(2)若4->m ,求证:当0>>b a 时,有2)()(22->--ba b f a f ; (3)若函数()f x 有两个零点21,x x )(21x x <,且0x 是21,x x 的等差中项,求证:0)('0<x f .5.设函数()ln f x x ax =-有两个零点1x ,2x ,求证:212x x e >.6.设函数()x f x e ax a =-+的两个零点为1x ,2x ,求证:2121x x x x +<.7.设函数()x f x e ax =-,其中a e >,(1)求证:函数()f x 有且仅有两个零点1x ,2x ,且1201x x <<<;(2)对于(1)中的1x ,2x ,求证:12'()'()0f x f x +>.8.设函数()x f x e mx =+的图像在点(0,(0))P f 处的切线方程为210x y -+=,求证:对满足a b c <<的实数,,a b c ,都有()()()()f b f a f c f b b a c b --<--成立.。
极值点偏移问题的典型方法剖析
2023年11月上半月㊀解法探究㊀㊀㊀㊀极值点偏移问题的典型方法剖析◉深圳市福田区红岭中学高中部㊀蔡晓纯㊀㊀摘要:所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图象没有出现对称性.此类问题是导数题型中的热点问题,常以压轴题的形式出现.本文中从一道例题出发,分析学生在解极值点偏移问题时常犯的典型错误,并给出该类问题的常见解法.关键词:极值点偏移问题;解法探究;方法总结㊀㊀极值点偏移问题是高考中常出现的一类导数问题,难度大,技巧性较强,学生在解决此类问题时经常出现不求甚解地构造函数所造成的解题错误[1].下面结合一道例题,对解题中需要注意的事项进行剖析.1例题呈现已知f (x )=x l n x -12m x 2-x ,m ɪR .若f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:x 1x 2>e 2(e 为自然对数的底数).简析:f ᶄ(x )=l n x -m x ,记g (x )=l n x -m x ,由题意知x 1,x 2是f (x )的两个极值点,故x 1,x 2是g (x )的两个零点.由g ᶄ(x )=1x -m ,令g ᶄ(x )=0,可得x 0=1m,且x 1<1m<x 2.(若m ɤ0,则g (x )单调递增,不合题意.)当x ɪ(0,1m)时,gᶄ(x )>0,可得g (x )在(0,1m )上单调递增;当x ɪ(1m,+ɕ)时,gᶄ(x )<0,可得g (x )在(1m,+ɕ)上单调递减.此时g (x )m a x =g(1m )=l n 1m -m ˑ1m>0,故1m >e ;又g (e )=l ne -m e >0,进而x 1<e <1m<x 2.2学生常见的解题思维受阻分析2.1不明确极值点要证x 1x 2>e 2,即证x 1>e2x 2.又e 2x 2<1m 2x 2<1m ,x 1<1m ,且g (x )在(0,1m)上单调递增,因此只需要证明g (x 1)>g (e2x 2).又g (x 1)=g (x 2),即证g (x 2)>g (e2x 2).令G (x )=g (x )-g(e2x ),x ɪ(e ,+ɕ),则G ᶄ(x )=g ᶄ(x )-[g (e 2x )]ᶄ=1x -m +(xe2-m )e 2x 2=m (x m -x 2+x m-e 2)x2,此时,x m -e 2>0,但x m-x 2无法判断其正负符号,思路受阻.(1)受阻原因我们知道,若要证明x 1+x 2>2x 0,可根据极值点构造对称函数G (x )=g (x )-g (2x 0-x );若要证明x 1x 2>x 20,可根据极值点构造对称函数G (x )=g (x )-g (x 20x).那么,为什么由上述构造的对称函数证不出结论呢?回顾解题过程不难发现,函数g (x )的极值点是1m,而不是e ,那么e 是哪个函数(同时x 1,x 2又是该函数的零点)的极值点呢?(2)修正后的方法方法一:设h (x )=l n x x -m ,则h ᶄ(x )=1-l n xx 2,容易发现e 是函数h (x )的极值点,且x 1,x 2是该函数的零点.下面构造对称函数H (x )=h (x )-h(e2x),x ɪ(0,e),则H ᶄ(x )=h ᶄ(x )-h (e 2x )éëêêùûúúᶄ=1-l n x x 2+1-l n e 2x (e 2x)2ˑe 2x 2=(1-l n x )(1x 2-1e2).又x ɪ(0,e ),故H ᶄ(x )>0,H (x )在(0,e)上单调递增,H (x )<H (e )=0.又x 1ɪ(0,e ),故H (x 1)=h (x 1)-h (e2x 1)<0;又h (x 1)=h (x 2),故h (x 2)<h (e 2x 1);又x 2>e ,e2x 1>e ,易知h (x )在(e ,+ɕ)单调96解法探究2023年11月上半月㊀㊀㊀递减,故x 2>e 2x 1,即x 1x 2>e 2.2.2未明确偏移方向注意到1m >e ,要证x 1x 2>e 2,只需要证x 1x 2>1m 2.令T (x )=g (x )-g (1m 2x),x ɪ(1m ,+ɕ),则T ᶄ(x )=g ᶄ(x )-g (1m 2x )éëêêùûúúᶄ=1x -m +(m 2x -m )1m 2x 2=(1-m x )ˑ1x2(x -1m ).又因为x ɪ(1m,+ɕ),所以T ᶄ(x )<0,T (x )在(1m ,+ɕ)单调递减,T (x )<T (1m)=0.又x 2ɪ(1m,+ɕ),所以T (x 2)=g (x 2)-g (1m 2x 2)<0,即g (x 2)<g (1m 2x 2).又g (x 1)=g (x 2),故g (x 1)<g (1m 2x 2);又x 1<1m ,1m 2x 2<1m ,g (x )在(0,1m)上单调递增,故x 1<1m 2x 2,即x 1x 2<1m2.学生反复检查推导过程,并没有发现错误.那么,为什么会出现与要证明的x 1x 2>1m2符号相反呢?学生思路受阻.(1)受阻原因事实上,在1m >e 的前提条件下,x 1x 2>1m2是x 1x 2>e2的充分不必要条件,并非等价条件.函数图象在极值点左侧比右侧陡峭,则极值点左偏;函数图象在极值点右侧比左侧陡峭,则极值点右偏.由本题中的g ᶄ(x )=1x -m 可知,当x ɪ(0,1m)时,随着x 的增大,g ᶄ(x )>0且|gᶄ(x )|急剧减小,图象上升相对陡峭;当x ɪ(1m,+ɕ)时,随着x 的增大,g ᶄ(x )<0且|gᶄ(x )|缓慢变大,图象下降相对平缓.故g (x )的极值点左偏.因此有x 1+x 22>1m =x 1-x 2l n x 1-l n x 2>x 1x 2(对数均值不等式).故上述学生的解答出现了未明确极值点偏移的方向,未明确是否为等价命题而盲目往下求解的错误.回顾解答过程,1m是g (x )的极值点,能否等价转化目标不等式x 1x 2>e 2,使之成为与极值点1m 直接有关的不等式呢?(2)修正后的方法方法二:注意到要证x 1x 2>e 2,即证l n x 1+l n x 2>2,又l n x 1=m x 1,l n x 2=m x 2,l n x 1+l n x 2=m (x 1+x 2),所以即证m (x 1+x 2)>2,也即证x 1+x 2>2m.令S (x )=g (x )-g (2m -x ),x ɪ(0,1m),则S ᶄ(x )=g ᶄ(x )-g (2m -x )éëêêùûúúᶄ=1x -m +12m-x -m =2(m x -1)2x (2-m x ).又x ɪ(0,1m ),故S ᶄ(x )>0,S (x )在(0,1m)单调递增,S (x )<S (1m )=0.又x 1ɪ(0,1m ),故g (x 1)-g (2m-x 1)<0.又g (x 1)=g (x 2),故g (x 2)<g (2m-x 1).又x 2>1m ,2m -x 1>1m ,g (x )在(1m,+ɕ)上单调递减,故x 2>2m -x 1,即x 1+x 2>2m.评注:方法一和方法二均是利用构造的新函数来达到消元的目的,本质上是为了将双变元不等式转化为单变元不等式.事实上,还可以通过构造新变元,将两个旧变元都换成新变元来表示,从而达到消元的目的.3另外两种方法欣赏方法三:注意到l n x 2l n x 1=x 2x 1,不妨设x 2x 1=t ,则t >1,l n x 1=l n t t -1.要证l n x 1+l n x 2>2,即证l n tt -1+t ˑl n tt -1>2,即证l n t +t l n t -2(t -1)>0.令h (t )=l n t +t l n t -2(t -1)(t >1),则h ᶄ(t )=1t+l n t -1>0,故h (t )在(1,+ɕ)上单调递增,h (t )>h (1)=0得证.方法四:运用对数均值不等式,即当x 1ʂx 2时,x 1x 2<x 1-x 2l n x 1-l n x 2<x 1+x 22(用构造新变元可以证明[2]),注意到l n x 1=m x 1,l n x 2=m x 2,故x 1-x 2l n x 1-l n x 2=1m ,进而1m =x 1-x 2l n x 1-l n x 2<x 1+x 22,即x 1+x 2>2m,得证.参考文献:[1]荣兵.探讨极值点偏移问题[J ].高考,2021(30):150G151.[2]李荣.解答函数极值点偏移问题的两种方法[J ].语数外学习(高中版下旬),2022(1):56.Z07。
极值点偏移教师版
极值点偏移专题1、极值点偏移以函数函数2x y =为例,极值点为0,如果直线1=y 与它的图像相交,交点的横坐标为1-和1,我们简单计算:0211=+-.也就是说极值点刚好位于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数错误!未找到引用源。
有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是()f x 错误!未找到引用源。
的两个零点,证明:122x x +<. (1)解析:详细解答⑴方法一:由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+①若0a =,那么()()0202x f x x e x =⇔-=⇔=,()f x 只有唯一的零点2x =,不合题意; ②若0a >,那么20x x e a e +>>,所以当1x >时,()'0f x >,()f x 单调递增当1x <时,()'0f x <,()f x 单调递减,即:故()f x 在()1,+∞上至多一个零点,在(),1-∞上至多一个零点 由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则()0f x =的两根11t +,21t =+, 12t t <,因为0a >,故当1x t <或2x t >时,()()2110a x e x e -+-->因此,当1x <且1x t <时,()0f x >又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.③ 若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 210x a -<--<,()ln 2220a x e a e a -+<+=,即()()()'120x f x x e a =-+>,()f x 单调递增; 当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()'120x f x x e a =-+<,()f x 单调递减;当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.即:而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -⎡⎤⎣⎦,那么()()ln 20f x f a -<⎡⎤⎣⎦≤恒成立,即()0f x =无解而当1x >时,()f x 单调递增,至多一个零点,此时()f x 在R 上至多一个零点,不合题意.④ 若2ea =-,那么()ln 21a -=当()1ln 2x a <=-时,10x -<,()ln 2220a x e a ea -+<+=,即()'0f x >,()f x 单调递增 当()1ln 2x a >=-时,10x ->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.⑤ 若2ea <-,则()ln 21a ->当1x <时,10x -<,()ln 212220a x e a e a ea -+<+<+=,即()'0f x >,()f x 单调递增 当()1ln 2x a <<-时,10x ->,()ln 2220a x e a ea -+<+=,即()'0f x <,()f x 单调递减当()ln 2x a >-时,()1ln 210x a ->-->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增,即:故当()ln 2x a -≤时,()f x 在1x =处取到最大值()1f e =-,那么()0f x e -<≤恒成立,即()0f x =无解 当()ln 2x a >-时,()f x 单调递增,至多一个零点,此时()f x 在R 上至多一个零点,不合题意. 综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+∞.简要解析(Ⅰ)方法二:'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2ea <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.⑵ 方法一:由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211x x x e x e a x x ---==--设()()()221x x e g x x -=-,则()()12g x g x =,那么()()()2321'1x x g x e x -+=-, 当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增. 设0m >,构造代数式: ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111mm h m e m -=++,0m > 则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=.因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x << 令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦ 而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔-> 整理得:122x x +<.(2)方法二:不妨设12x x <,由(1)知,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞,()f x 在(),1-∞上单调递减,所以122x x +<等价于()()122f x f x >-,即()()222f x f x >-. 由于()()22222221x f x x ea x --=-+-,而()()()2222221x f x x e a x =-+-,所以()()()222222222x x f x f x x e x e ---=---.令()()22xx g x xex e -=---,则()()()21x x g x x e e -'=--,所以当1x >时,()0g x '<,而()10g =,故当1x >时,()()10g x g <=.从而()()2220g x f x =-<,故122x x +<. (二)对解析的分析本问待证是两个变量的不等式,官方解析的变形是122x x <-,借助于函数的特性及其单调性,构造以2x 为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为212x x <-,同理构造以1x 为主元的函数来处理.此法与官方解析正是极值点偏移问题的处理的通法.不妨设12x x <,由(1)知,()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞,()f x 在()1,+∞上单调递增,所以122x x +<等价于()()212f x f x <-,即()()1120f x f x --<.令()()()()()2221xx u x f x f x xex e x -=--=--<,则()()()210x x u x x e e -'=-->,所以()()10u x u <=,即()()()21f x f x x <-<, 所以()()()1212f x f x f x =<-; 所以212x x <-,即122x x +<.变式、(2010年天津理科21题)已知函数()()x f x xe x R -=∈ (Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x > (Ⅲ)如果12x x ≠,且12()()f x f x =,证明122x x +>.解:(21)本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分(Ⅰ)解:f ′()(1)x x x e -=-,令f ′(x )=0,解得x =1 当x 变化时,f ′(x ),f (x )的变化情况如下表所以f (x )在(,1-∞)内是增函数,在(1,+∞)内是减函数。
导数极值点偏移的相关问题分析
龙源期刊网 导数极值点偏移的相关问题分析作者:张德勇来源:《理科爱好者(教育教学版)》2019年第04期【摘要】随着年级的递增,学生所接受到知识的难度也在逐渐增长。
在以往的数学教学中,函数的讲解仅仅围绕着未知数的个数以及相关图形走向去开展。
但是函数的难度不仅限于此,随着导数的引入,函数的内容和角度逐渐的丰满起来。
不过,根据笔者多年的教学经验,导数的一些基础概念还是比较简单的,唯一会出现问题的地方在极值的求取这方面[1]。
随着导数学习的不断深入,极值的求取不仅仅只是简单的数字替换和图形结合的问题,还会进一步拓展难度,增加极值的偏移问题。
有难度就一定有问题的出现,根据历年的教学情况来看,学生对于极值的偏移往往会抓不住重点,总结不出完善的解决方法,所以本文详细分析导数极值偏移的相关问题。
【关键词】极值点偏移;概念;分类;处理【中图分类号】G633.6; 【文献标识码】A; 【文章编号】1671-8437(2019)22-0101-02在历年的考试中,导数的偏移问题往往会作为压轴问题出现。
因此,在日常的数学讲授过程,导数极值点偏移问题的讲解往往会占用大量的时间。
究其原因在于学生对于导数极值点偏移的概念不熟、没有完整的分类以及没有完善的解题步骤。
所以接下来,本文从这三个方面去进一步讲解相关的知识。
1; ;极值点偏移的概念对于极值点的偏移的讲解,一定要从极值的概念说起。
在函数不断推广的过程中,会逐渐的把公式和图形结合起来,而相对应的在函数图形凸起的部位会出现极值。
其书上的大致定义为:函数f(x)在x0附近的所有点都有f(x)<f(x0),就说这个点是该函数的极大值点,而相对应的f(x0)为该函数的极大值。
反之,就是极小值点和极小值。
那么,极值又是如何与导数联系在一起的呢?根据相关的性质可知,可导函数中,只要该点是极值点,那么所对应的导数就为零。
一般在解决相关极值点问题的时候,常常会采用这条性质。
上面讲解了一下极值的概念,那么什么叫做极值的偏移呢?在数学上通俗的讲,函数f (x)的顶点就是极值点,假如f(x)=c的两个函数的根的中点是x1+x2/2,刚好等于极值点,也就是说极值点恰好处于函数两根的中间位置,就说极值点没有偏移。
导数处理极值点偏移问题
第二讲 导数应用-------极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索! 【问题特征】2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.虽然大多学生理解其题意,但对于极值点偏移的本质理解的深度欠佳,面对此类问题大多感到“似懂非懂”或“云里雾里”.一、试题再现及解析 (一)题目(2016年全国I 卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.本题第(1)小题含有参数的函数()f x 有两个零点,自然想到研究其单调性,结合零点存在性定理求得a 的取值范围是()0,+∞.第(2)小题是典型的极值点偏移的问题,如何证明呢?(二)官方解析(2)不妨设12x x <,由(1)知,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞,()f x 在(),1-∞上单调递减,所以122x x +<等价于()()122f x f x >-,即()()222f x f x >-.由于()()22222221x f x x ea x --=-+-,而()()()2222221x f x x e a x =-+-,所以()()()222222222x x f x f x x e x e ---=---.令()()22x x g x xe x e -=---,则()()()21x x g x x e e -'=--,所以当1x >时,()0g x '<,而()10g =, 故当1x >时,()()10g x g <=.从而()()2220g x f x =-<,故122x x +<. 二、对解析的分析本问待证是两个变量的不等式,官方解析的变形是122x x <-,借助于函数的特性及其单调性,构造以2x 为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为212x x <-,同理构造以1x 为主元的函数来处理.此法与官方解析正是极值点偏移问题的处理的通法.不妨设12x x <,由(1)知,()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞,()f x 在()1,+∞上单调递增,所以122x x +<等价于()()212f x f x <-,即()()1120f x f x --<.令()()()()()2221xx u x f x f x xex e x -=--=--<,则()()()210x x u x x e e -'=-->,所以()()10u x u <=,即()()()21f x f x x <-<,所以()()()1212f x f x f x =<-;所以212x x <-,即122x x +<.极值点偏移问题的处理策略: 【处理策略一】主元法所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.作为一线的教育教学工作者,笔者尝试用主元法破解函数的极值点偏移问题,理性的对此类进行剖析、探究,旨在为今后的高考命题和高考复习教学提供一点参考.一般地,主元法破解极值点偏移问题思路是:第一步:根据()()()1212f x f x x x =≠建立等量关系,并结合()f x 的单调性,确定12,x x 的取值范围; 第二步:不妨设12x x <,将待证不等式进行变形,进而结合原函数或导函数的单调性等价转化. 第三步:构造关于1x (或2x )的一元函数()()()()21,2i i T x f x f a x i =--=,应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.题型一:不含参数的问题.例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<,欲证122x x +>,即证212x x >-,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x xH x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法二:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10te ->,等价于证明:2(2)(1)0tt t e +-->…②,构造函数()2(2)(1),(0)t G t t t e t =+-->,则()(1)1,()0t tG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法三:由法二中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x xx x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上三种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一利用构造新的函数来达到消元的目的,方法二、三则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例2.已知()ln f x x x =的图像上有,A B 两点,其横坐标为1201x x <<<,且12()()f x f x =.(1)证明:1221x x e <+<;(2)证明:1<<. 【解析】(1)证明:由()ln ,()ln 1f x x x f x x '==+,令()0f x '=,得1x e=, 故12101x x e <<<<,构造函数21()()(),(0),F x f x f x x e e=--<< 则2221()ln ln()2ln ()2ln 20F x x x x x e e e '=+-+=-+<+=,故()F x 在1(0,)e上单调递减,即1()()0F x F e >=,∴2()()f x f x e >-,令1x x =,则2112()()()f x f x f x e =>-,再由2121,(,1)x x e e -∈,且()f x 在1(,1)e 上单调递增,故212x x e >-,即证:122x x e+>. 又构造函数:1()()(1),(0)2g x f x f x x =--<<,则1112()ln ln(1)2,()01(1)x g x x x g x x x x x -'''=+-+=-=>--,故()g x '在1(0,)2上单调递增,由于0x →时,()g x '→-∞,且1()ln(1)0g e e '=->,故必存在01(0,)x e ∈,使得0()0g x '=,故()g x 在0(0,)x 上单调递减,在01(,)2x 上单调递增,又0x →时,()0g x →,且1()02g =,故()0g x <在1(0,)2x ∈上恒成立,也即()(1)f x f x <-在1(0,)2x ∈上恒成立,令1x x =,有121()()(1)f x f x f x =<-,再由211,1(,1)x x e -∈,且()f x 在1(,1)e 上单调递增,故211x x <-,即证:121x x +<成立.综上:即证1221x x e<+<成立.(2)令12t t =则22112212,,,(0,1)x t x t t t ==∈,且212()2ln ,()(),()2(2ln 1)h t t t h t h t h t t t '===+,令()0h t '=,得t =, 故1201t t <<<<.构造函数()()),(0H t h t h t t =-<<,则 ()()),()())H t h t h t H t h t h t'''''''''=+-=-,由于4()0h t t '''=>,则()h t ''在上单调递增,因为t t <-,故()0H t ''<,()H t '在上单调递减,故()0H t H ''>=,即()H t在上单调递增,即()0H t H <=,即())h t h t <-,同理得出:12t t +<; 再构造1()()(1),(0)2G x h t h t t =--<<,同样求导利用单调性可得出1()()02G t G >=,从而()(1)h t h t >-对1(0,)2t ∈恒成立,同理得出:121t t +>.综上:即证121t t <+<成立,也即原不等式1<<成立.练习1:已知函数2()ln f x x x x =++,正实数12,x x 满足1212()()0f x f x x x ++=,证明:12x x +≥. 【解析】由1212()()0f x f x x x ++=,得2211122212ln ln 0x x x x x x x x ++++++= 从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,构造函数()ln t t t ϕ=-,得11()1t t t tϕ-'=-=,可知()t ϕ在(0,1)上单调递减,在(1,)+∞上单调递增,所以()(1)1t ϕϕ≥=,也即21212()()1x x x x +++≥,解得:12x x +≥.练习2(2013年湖南文科第21题)已知函数()211xx f x e x-=+. (1)求()f x 的单调区间;(2)证明:当()()()1212f x f x x x =≠时,120x x +<.解: (1) ()f x 在(),0-∞上单调递增,在()0,+∞上单调递减;(2)由(1)知当1x <时,()0f x >. 不妨设12x x <,因为()()12f x f x =,即121222121111x x x x e e x x --=++,则1201x x <<<, 要证明120x x +<,即120x x <-<,只需证明()()12f x f x <-,即()()22f x f x <-.而22()()f x f x <-等价于2222(1)10x x e x ---<,令()2()(1)10xg x x ex x =--->,则2'()(12)1x g x x e =--,令2()(12)1xh x x e=--,则2()40x h x xe '=-<,所以()h x 单调递减,()()00h x h <=,即()0g x '<,所以()g x 单调递减, 所以()()00g x g <=,得证.题型二:含参数的问题例3.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x , 所以⎩⎨⎧==)2()1(2121x x ae x ae x ,由)2()1(+得:)(2121xx e e a x x +=+,要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e -=-,即证:121212()2x x xx e e x x e e+->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-, 则0,1tt e >>, 因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三极值点偏移题型是上一篇所讲述的双变量题型的一种重要分型。
2016年高考I卷的压轴大题就考了这种题型。
这类题型的特点鲜明,解题思路通用性强。
本文通过原创的一张图来直观、简明地揭示极值点偏移问题的基本原理(未见第二家如此系统地阐述它的原理)。
相信每一位同学学会后,再遇到此类题型就有底气而不会再发怵了,真正做到举一反三。
1. 导数(应用)压轴大题之不等式有关问题的极值点偏移题型及典型例题例1(2016国I) 已知函数f(x) = (x-2)e^x +a(x-1)^2有两个零点。
(1) 求a的取值范围;(2) 设x1, x2是f(x)的两个零点,证明:x1+x2<2。
(提示:这题在上一篇中已给出详细解答,这里不再赘述。
作为2016年的压轴题,第(2)问算是极值点偏移题型中的一个难度适中的题目,因此刚好可用来清晰地揭示极值点偏移题型的基本原理与通用解题思路。
不熟悉这类题型的同学应先把该题学透,再继续学习其它例题)例2 已知函数f(x) = xlnx,g(x) = 1/2×mx^2+x。
(1) 若函数f(x)与g(x)的图像上存在关于原点对称的点,求实数m 的取值范围;(2) 设F(x) = f(x) – g(x),已知F(x)在(0, +∞)上存在两个极值点x1、x2,且x1<x2,求证:x1x2 > e^2 (其中e为自然对数的底数)。
解:依题意,x>0,讲解:①从极值点偏移题型角度看,本题(2)问稍有变化(可视作常规题型的变式——出题人常以类似的方式改题或增加难度):(a) 分析的函数对象为‘导函数’及其两个零点——即两个等值点。
但这些变化对以极值点偏移的思路进行解题并无太大差别,仅仅是对象不同而已。
(b) 已知函数的定义域受限——x>0;处理时不要忘了其约束。
(c) 从所求证的‘x1x2 > e^2’看不出与极值点偏移问题相关,但只需利用已知推出可知条件“x1=lnx1/m和x2=lnx2/m”,即可把所求证问题转化为需知问题(或称需知条件)“x2+x1>2/m”——此为极值点偏移的标准形态。
2023届高考数学导数满分通关:极值点偏移问题概述
专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,。
极值点偏移的基本解题方法
极值点偏移的基本解题方法
极值点偏移是数学中重要的一个概念,也是很多数学中曲线求解问题的基础。
它在计算函数极值点的位置,以及函数曲线的图像中有着重要的作用。
下面介绍极值点偏移的基本解题方法。
首先,极值点偏移是一种积分法,可以用来求解函数极值点,它的定义是:在函数在某一极值点处的导数不存在的情况下,如果另外一极值点存在,可以将函数在两个极值点处的导数相加,然后再乘以极值点之间的距离,这样就可以得到函数极值点的位置。
其次,通过极值点偏移可以知道函数图像的局部特征,因为函数的极值点是它的局部最大值或最小值的位置,所以经过极值点偏移就可以确定函数图像的局部特征。
接着,极值点偏移也可以用来解决一些统计学中的问题,因为极值点偏移可以定位函数的极值点,所以可以用来求解函数的极大值或极小值,进而可以用来求解统计学中的问题,如方差、标准差等。
最后,极值点偏移是一种经典的数学解题方法,它可以用来解决很多数学中曲线求解的问题,能够精确地定位函数的局部极值点,从而能够更加准确的解决给定数学曲线及函数极值点的问题。
总之,极值点偏移是一种积分法,可以用来定位函数极值点和函数图像的局部特征,也可以用来解决一些统计学中的问题,是一种非常实用的数学解题方法。
它的实用性可以从求解函数极值点的位置、函数曲线图像的局部特征、求解统计学中的问题等方面体现出来。
在数学解题中,利用极值点偏移的方法就可以有效的求解函数的极值点
和其他特性,从而有效解决很多数学问题。
导数极值点偏移
极值点偏移一、题组导语①x x x f 2)(2+=②x x x f ln )(=③x x x f 1ln)(2= ④x e x x f =)(注:极值点会偏向变化速度快的一侧一、题组突破例1、设函数)0(ln )(>=a ax x x f —,且实数m 使得方程m x f =)(有两个不等实根1x ,2x ,其中21x x <.(1)求证:2110x a x <<<;(2)求证:a x x 1221>+.例2、设函数2)1()2()(——x a e x x f x +=有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是)(x f 的两个零点,证明221<+x x .例3、设函数xx x f ln )(=,且实数m 使得方程m x f =)(有两个不等实根1x ,2x ,其中21x x <. (1)求证:210x e x <<<;(2)求证:e x x >+221;(3)求证:e x x 21121>+.例4、设函数ax e x f x —=)(,其中e a >.(1)求证:函数)(x f 有且仅有两个零点1x ,2x ,且2110x x <<<;(2)对于(1)中的1x ,2x ,求证:0)(')('21>+x f x f二、题组点睛极值点偏移问题的证明实质上时双变元的不等式的证明1、基本方法用消元法将问题转化为单元的不等式证明问题,通过构造函数,利用函数单调性进行证明。
2. 消元方式:利用)(x f 的单调性和)()(21x f x f =来消元。
3. 思想方法:消元法得方向 分析法找思路 构造函数证明4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数应用之极值点偏移
1.(1)设不同的两点1122(,),(,)A x y B x y 均在二次函数2()f x ax bx c =++(0abc ≠)的图像上,记直线AB 的斜率为k ,求证:12'()2
x x k f +=; (2)设不同的两点1122(,),(,)A x y B x y 均在“伪二次函数”2()ln g x ax bx c x =++(0abc ≠)的图像上,记直线AB 的斜率为k ,试问:12'()2
x x k g +=还成立吗? 2.设函数2()(12)ln ()f x ax a x x a =+--∈R .
(1)当0a >时,求函数()f x 的单调递增区间;
(2)记函数()y f x =的图像为曲线C ,设11(,)A x y ,22(,)B x y 是曲线C 上不同的两点,M 为线段AB 的中点,过点M 作x 轴的垂线交曲线C 于点N .试问:曲线C 在点N 处的切线是否平行于直线AB ?
3.设函数2()(2)ln f x x a x a x =---.
(1)求函数()f x 的单调区间;
(2)若函数有两个零点,求满足条件的最小正整数a 的值;
(3)若方程()f x c =有两个不等实根12,x x ,求证:12(
)02x x f +'>. 4.设函数2ln 2)(x mx x x f -+=.
(1)若曲线)(x f y =在点))1(,1(f 处的切线方程为n x y +=2,求实数n m ,的值;
(2)若4->m ,求证:当0>>b a 时,有2)()(22->--b
a b f a f ; (3)若函数()f x 有两个零点21,x x )(21x x <,且0x 是21,x x 的等差中项,求证:0)('0<x f .
5.设函数()ln f x x ax =-有两个零点1x ,2x ,求证:212x x e >.
6.设函数()x f x e ax a =-+的两个零点为1x ,2x ,求证:2121x x x x +<.
7.设函数()x f x e ax =-,其中a e >,
(1)求证:函数()f x 有且仅有两个零点1x ,2x ,且1201x x <<<;
(2)对于(1)中的1x ,2x ,求证:12'()'()0f x f x +>.
8.设函数()x f x e mx =+的图像在点(0,(0))P f 处的切线方程为210x y -+=,求证:对满足a b c <<的实数,,a b c ,都有
()()()()f b f a f c f b b a c b --<--成立.。