2011年江苏高考数学试题及答案
历年高考数学真题答案
历年高考数学真题答案【篇一:新课标数学历年高考试题汇总及详细答案解析】/p> 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=() a. {1}【答案】db. {2}c. {0,1}d. {1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足。
所以选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?() a. - 5 【答案】bb.5c. - 4+ id. - 4 - iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足|a+b|a-ba?b = () a. 1 【答案】ab. 222c. 322d. 5|a+b|=,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程解得=1,故选a.4.钝角三角形abc的面积是,ab=1,,则ac=()2a. 5【答案】bb.c. 2d. 11112∴b=,使用余弦定理,b2=a2+c2-2accosb,解得b=.故选b.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()a. 0.8b. 0.75c. 0.6d. 0.45【答案】a设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()a. b. c. d.279273【答案】c7.执行右图程序框图,如果输入的x,t均为2,则输出的s= () a.4 b. 5c. 6 d. 7【答案】cx=2,t=2,变量变化情况如下: m s k 13 125 2 27 3 故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= a. 0b. 1c. 2d. 3【答案】df(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a. 10b. 8c. 3d. 2【答案】b画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y 在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选b.a.c. d.b.324 【答案】d设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形知识可得,33332m=2?+m,2n=2?-3n,解得m=(2+),n=(2-3),∴m+n=6.4422139244c.d.【答案】c0-1+4=.故选c.106f?x0m2,则m的12.设函数f?x??.若存在f?x?的极值点x0满足x02m2取值范围是()a.,?66,??b.,?44,??c.,?22,??d.,?14,?? 【答案】cf(x)=sin22mm2∴x0+[f(x0)]2+3,∴+3m2,解得|m|2.故选c.44第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.?x?a?的展开式中,x7的系数为15,则a=________.(用数字填写答案)101【答案】21137333c10xa=15x7∴c10a=15,a=.故a=.2214.函数f?x??sin?x?22sin?cos?x的最大值为_________. 【答案】115.已知偶函数f?x?在?0,单调递减,f?2??0.若f?x?1??0,则x的取值范围是__________.,-1)∪(3,+∞)【答案】(-∞偶函数y=f(x)在[0,+∞)上单增,且f(2)=0∴f(x)0的解集为|x|2.故解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).∴f(x-1)0的解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).在坐标系中画出圆o和直线y=1,其中m(x0,1)在直线上.由圆的切线相等及三角形外角知识,可得x0∈[-1,1].故x0∈[-1,1].已知数列?an?满足a1=1,an?1?3an?1.(Ⅰ)证明an?是等比数列,并求?an?的通项公式;(Ⅱ)证明:??…+?.12n【答案】(1) 无(1)(2)无a1=1,an+1=3an+1.n∈n*.111=3an+1+=3(an+). 222113∴{an+是首项为a1+=,公比为3的等比数列。
2011年高考江西省数学试卷-理科(含详细答案)
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。
2010江苏省高考数学真题(含答案)
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的......位置上.... 1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
5、设函数f(x)=x(e x +ae -x)(x ∈R)是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。
2012江苏高考数学试卷(详细答案)
2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B =U .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 3.设a b ∈R ,,117ii 12ia b −+=−(i 为虚数单位),则a b +为 .4.右图是一个算法流程图,则输出的k 的值是 . 5.函数()f x =的定义域为 .6.现有10个数,它们能构成一个以1为首项,3−等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 .(第4题)7.如图,在长方体1111ABCD A BC D −中,3cm AB AD ==,12cm AA =则四棱锥11A BB D D −的体积为 cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m −=+的离心率,则m 的值为 .9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF =uuu r uuu r AE BF uuu r uuu r的值是 .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]−,上,0111()201x x ax f x bx x <+−=+ + ≤≤≤,,,,其中a b ∈R ,.若1322f f=, 则3a b +的值为 .11.设α为锐角,若4cos 65απ += ,则sin 212απ+的值为 .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +−+=,若直线2y kx =−上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b −+−≤≤≥,,则ba的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =uuu r uuu r uuu r uuu r.(1)求证:tan 3tan B A =; (2)若cos C =求A 的值. 1 A (第7题)(第9题)16.(本小题满分14分)如图,在直三棱柱111ABC A B C −中,1111A B A C =,D E ,分别是棱1BC CC ,上的点(点D不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =−+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点已知a ,b 是实数,1和1−是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x ′=+,求()g x 的极值点;(3)设()(())h x f f x c =−,其中[22]c ∈−,,求函数()y h x =的零点个数.A1(第16题)E)19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c −,,2(0)F c ,.已知(1)e ,和2e,都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若122AF BF −=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n ∗+=∈N .(1)设11n n n b b n a ∗+=+∈N ,,求证:数列2nn b a是等差数列;(2)设1nn nb b n a ∗+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)。
2011年高考数学真题(江西.理)含详解
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n+++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0)B. (21-,0]C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini iiy y x x yyx x r 12121 第一组变量正相关,第二组变量负相关。
高考数学(理)真题专题汇编:空间立体几何
高考数学(理)真题专题汇编:空间立体几何一、选择题(本题共9道小题,每小题0分,共0分)1.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<2.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3243.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面4.【来源】2019年高考真题——理科数学(全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线5.【来源】0(08年全国卷2)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B. C. D.26.【来源】0(08年四川卷文)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )(A)(B)(C)(D)7.【来源】0(08年北京卷)如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()8.【来源】2011年高考数学理(安徽)一个空间几何体得三视图如图所示,则该几何体的表面积为(A)48+(B)32817+(C)48817(D)509.【来源】2011年高考数学理(全国新课标)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为二、填空题10.【来源】2019年高考真题——理科数学(北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.12.【来源】2019年高考真题——理科数学(天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .13.【来源】2019年高考真题——理科数学(全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________.15.【来源】(07年浙江卷文)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.16.【来源】2011年高考数学理(全国新课标)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
2011年高考试题数学圆锥曲线(理科)
2011年高考试题数学圆锥曲线(理科)解析数学一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,1=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C.6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45- 【答案】D【解析】:24(1,0)y x F = 得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得=,由抛物线的定义得2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,。
2011年江苏数学高考试卷含答案和解析
2011年江苏数学高考试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)已知,则的值为_________.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ 长的最小值是_________.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=_________.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为_________.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为_________.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_________.13.(5分)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_________.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是_________.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.2011年江苏数学高考试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B={﹣1,2}.考点:交集及其运算.专题:计算题.分析:根据已知中集合A={﹣1,1,2,4},B={﹣1,0,2},根据集合交集运算法则我们易给出A∩B 解答:解:∵集合A={﹣1,1,2,4},B={﹣1,0,2},∴A∩B={﹣1,2}故答案为:{﹣1,2}点评:本题考查的知识点是集合交集及其运算,这是一道简单题,利用交集运算的定义即可得到答案.2.(5分)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解答:解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)点评:本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R 的错解.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是1.考点:复数代数形式的混合运算.专题:计算题.分析:复数方程两边同乘i,化简后移项可得复数z,然后求出它的实部.解答:解:因为i(z+1)=﹣3+2i,所以i•i(z+1)=﹣3i+2i•i,所以z+1=3i+2,z=1+3i它的实部为:1;故答案为:1点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为3.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,代入a=2,b=3,即可得到答案.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,∵a=2<b=3,∴m=3故答案为:3点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:根据题意,首先用列举法列举从1,2,3,4这四个数中一次随机取两个数的全部情况,可得其情况数目,进而可得其中一个数是另一个的两倍的情况数目,由古典概型的公式,计算可得答案.解答:解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.点评:本题考查古典概型的计算,解本题时,用列举法,注意按一定的顺序,做到不重不漏.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2= 3.2.考点:极差、方差与标准差.专题:计算题.分析:首先根据所给的这组数据求出这组数据的平均数,再利用求方差的公式,代入数据求出这组数据的方差,得到结果.解答:解:∵收到信件数分别是10,6,8,5,6,∴收到信件数的平均数是=7,∴该组数据的方差是,故答案为:3.2点评:本题考查求一组数据的方差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,方差分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.7.(5分)已知,则的值为.考点:二倍角的正切;两角和与差的正切函数.专题:计算题;方程思想.分析:先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得.解答:解:∵,∴=2,解得tanx=;∴tan2x===∴==故答案为点评:本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是个基础题.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ 长的最小值是4.考点:两点间距离公式的应用.专题:计算题.分析:由题意和函数的图象关于原点对称知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,写出直线的方程,求出直线与函数的交点坐标,利用两点之间的距离公式得到结果.解答:解:由题意知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,而y=x与y=的两个交点的坐标是(,)(﹣,﹣),∴根据两点之间的距离公式得到|PQ|===4,故答案为:4点评:本题考查反比例函数的图形的特点,考查直线与双曲线之间的交点坐标的求法,考查两点之间的距离公式,是一个综合题目.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;数形结合.分析:根据已知的函数图象,我们根据函数图象过(,0),(,﹣)点,我们易结合A>0,w>0求出满足条件的A、ω、φ的值,进而求出满足条件的函数f(x)的解析式,将x=0代入即可得到f(0)的值.解答:解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)点故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:点评:本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,其中利用已知函数的图象求出满足条件的A、ω、φ的值,是解答本题的关键.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.考点:平面向量数量积的运算.专题:计算题.分析:利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k.解答:解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:点评:本题考查向量的数量积公式、考查向量的运算律、考查向量模的平方等于向量的平方.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为.考点:函数的值;分段函数的应用.专题:计算题.分析:对a分类讨论判断出1﹣a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.解答:解:当a>0时,1﹣a<1,1+a>1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=故答案为点评:本题考查分段函数的函数值的求法:关键是判断出自变量所在的范围.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.解答:解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t=[(2﹣m)e m+me﹣m]t'=[﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的最值问题,属于中档题.13.(5分)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.考点:等差数列与等比数列的综合.专题:计算题;压轴题.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7;a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即基本量法.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是[,2+].考点:直线与圆的位置关系.专题:计算题;压轴题.分析:根据题意可把问题转换为圆与直线有交点,即圆心到直线的距离小于或等于半径,进而联立不等式组求得m的范围.解答:解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥当m≤0时,有||>﹣m且||>﹣m;则有﹣m>﹣m,﹣m>﹣m,又由m≤0,则2>2m+1,可得A∩B=∅,当m≥时,有||≤m或||≤m,解可得:2﹣≤m≤2+,1﹣≤m≤1+,又由m≥,则m的范围是[,2+];综合可得m的范围是[,2+];故答案为[,2+].点评:本题主要考查了直线与圆的位置关系.一般是利用数形结合的方法,通过圆心到直线的距离来判断.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.考点:正弦定理;两角和与差的正弦函数.专题:计算题.分析:(1)利用两角和的正弦函数化简,求出tanA,然后求出A的值即可.(2)利用余弦定理以及b=3c,求出a与c 的关系式,利用正弦定理求出sinC的值.解答:解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=点评:本题是基础题,考查正弦定理的应用,两角和的正弦函数的应用,余弦定理的应用,考查计算能力,常考题型.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD 即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.解答:证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.点评:本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点:函数模型的选择与应用.专题:应用题.分析:(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.解答:解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.点评:考查函数模型的选择与应用,考查函数、导数等基础知识,考查运算求解能力、空间想象能力、数学建模能力.属于基础题.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.考点:直线与圆锥曲线的综合问题.专题:计算题;证明题;压轴题;数形结合;分类讨论;转化思想.分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.解答:解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.点评:此题是个难题.考查椭圆的标准方程和简单的几何性质,以及直线斜率的求法,以及直线与椭圆的位置关系,体现了方程的思想和数形结合思想,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.考点:利用导数研究函数的单调性.专题:计算题.分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f'(x)g'(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.解答:解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题得f'(x)g'(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f'(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(﹣∝,﹣)时,f'(x)>0.因此,当x∈(﹣∝,﹣)时,f'(x)g'(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b<0,因此|a﹣b|≤,且当a=﹣,b=0时等号成立,又当a=﹣,b=0时,f'(x)g'(x)=6x(x2﹣),从而当x∈(﹣,0)时f'(x)g'(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.考点:数列递推式;数列与函数的综合.专题:综合题.分析:(1)由集合M的元素只有一个1,得到k=1,所以当n大于1即n大于等于2时,S n+1+S n=2(S n+S1)都成立,变形后,利用S n+1﹣S n=a n+1,及a1=1化简,得到当n大于等于﹣12时,此数列除去首项后为一个等差数列,根据第2项的值和确定出的等差写出等差数列的通项公式,因为5大于2,所以把n=5代入通项公式即可求出第5项的值;(2)当n大于k时,根据题意可得S n+k+S n﹣k=2(S n+S k),记作①,把n换为n+1,得到一个关系式记作②,②﹣①后,移项变形后,又k等于3或4得到当n大于等于8时此数列每隔3项或4项成等差数列,即a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,根据等差数列的性质得到一个关系式,记作(*),且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,又根据等差数列的性质得到另外一个关系式,等量代换得到a n+2﹣a n=a n﹣a n﹣2,得到当n大于等于9时,每隔两项成等差数列,设出等差数列的四项,根据等差数列的性质化简变形,设d=a n﹣a n﹣1,从而得到当n大于等于2小于等于8时,n+6大于等于8,把n+6代入(*)中,得到一个关系式,同时把n+7也代入(*)得到另外一个关系式,两者相减后根据设出的d=a n﹣a n﹣1,经过计算后,得到n大于等于2时,d=a n﹣a n﹣1都成立,从而把k=3和k=4代入到已知的等式中,化简后得到d与前3项的和及d与前4项和的关系式,两关系式相减即可表示出第4项的值,根据d=a n﹣a n﹣1,同理表示出第3项,第2项及第1项,得到此数列为等差数列,由首项等于1即可求出d的值,根据首项和等差写出数列的通项公式即可.解答:解:(1)由M={1},根据题意可知k=1,所以n≥2时,S n+1+S n﹣1=2(S n+S1),即(S n+1﹣S n)﹣(S n﹣S n﹣1)=2S1,又a1=1,则a n+1﹣a n=2a1=2,又a2=2,所以数列{a n}除去首项后,是以2为首项,2为公差的等差数列,故当n≥2时,a n=a2+2(n﹣2)=2n﹣2,所以a5=8;(2)根据题意可知当k∈M={3,4},且n>k时,S n+k+S n﹣k=2(S n+S k)①,且S n+1+k+S n+1﹣k=2(S n+1+S k)②,②﹣①得:(S n+1+k﹣S n+k)+(S n+1﹣k﹣S n﹣k)=2(S n+1﹣S n),即a n+1+k+a n+1﹣k=2a n+1,可化为:a n+1+k﹣a n+1=a n+1﹣a n+1﹣k所以n≥8时,a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,从而当n≥8时,2a n=a n﹣3+a n+3=a n﹣6+a n+6,(*)且a n﹣2+a n+2=a n﹣6+a n+6,所以当n≥8时,2a n=a n﹣2+a n+2,即a n+2﹣a n=a n﹣a n﹣2,于是得到当n≥9时,a n﹣3,a n﹣1,a n+1,a n+3成等差数列,从而a n﹣3+a n+3=a n﹣1+a n+1,由(*)式可知:2a n=a n﹣1+a n+1,即a n+1﹣a n=a n﹣a n﹣1,当n≥9时,设d=a n﹣a n﹣1,则当2≤n≤8时,得到n+6≥8,从而由(*)可知,2a n+6=a n+a n+12,得到2a n+7=a n+1+a n+13,两式相减得:2(a n+7﹣a n+6)=a n+1﹣a n+(a n+13﹣a n+12),则a n+1﹣a n=2d﹣d=d,因此,a n﹣a n﹣1=d对任意n≥2都成立,又由S n+k+S n﹣k﹣2S n=2S k,可化为:(S n+k﹣S n)﹣(S n﹣S n﹣k)=2S k,当k=3时,(S n+3﹣S n)﹣(S n﹣S n﹣3)=9d=2S3;同理当k=4时,得到16d=2S4,两式相减得:2(S4﹣S3)=2a4=16d﹣9d=7d,解得a4=d,因为a4﹣a3=d,解得a3=d,同理a2=d,a1=,则数列{a n}为等差数列,由a1=1可知d=2,所以数列{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1.点评:此题考查学生灵活运用数列的递推式化简求值,掌握确定数列为等差数列的方法,会根据等差数列的首项和等差写出数列的通项公式,是一道中档题.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.考点:椭圆的参数方程.专题:数形结合;转化思想.分析:A、如图,利用EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.B、设向量=,由A2=,利用矩阵的运算法则,用待定系数法可得x 和y 的值,从而求得向量.C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式求得所求直线的方程.D、原不等式可化为,或,分别解出这两个不等式组的解集,再把解集取并集.解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2为定值.B、A2==,设向量=,由A2=可得=,∴,解得x=﹣1,y=2,∴向量=.C、椭圆(φ为参数)的普通方程为+=1,右焦点为(4,0),直线(t为参数)即x﹣2 y+2=0,斜率等于,故所求的直线方程为y﹣0=(x﹣4),即x﹣2 y﹣4=0.D、原不等式可化为,或,解得≤x<,或﹣2<x<,故不等式的解集为{x|﹣2<x<}.点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.考点:向量在几何中的应用.专题:综合题;压轴题;转化思想.分析:(1)建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长.(2)利用cos=以及,求出CM 的长.解答:解:建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),则各点的坐标为A(1,0,0),A1(1,0,2),N(,1,0),M(0,1,t);所以=(,1,0).=(1,0,2),=(0,1,t)设平面DMN的法向量为=(x1,y1,z1),则,,即x1+2y1=0,y1+tz1=0,令z1=1,则y1=﹣t,x1=2t所以=(2t,﹣t,1),设平面A1DN的法向量为=(x2,y2,z2),则,,即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=﹣2所以=(﹣2,1,1),(1)因为θ=90°,所以解得t=从而M(0,1,),所以AM=(2)因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和(1)的结论,可知t=,从而CM的长为.点评:本题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.考点:数列递推式.专题:综合题;压轴题;转化思想.分析:(1)A n为满足a﹣b=3 的点P 的个数,显然P(a,b)的坐标的差值,与A n中元素个数有关,直接写出A n的表达式即可.(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,讨论f n(k)≥1的情形,推出f n(k)=n﹣3k,根据k的范围,说明n﹣1是3的倍数和余数,然后求出B n.解答:解:(1)点P的坐标中,满足条件:1≤b=a﹣3≤n﹣3,所以A n=n﹣3;(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,只要讨论f n(k)≥1的情形,由1≤b=a﹣3k≤n﹣3k,知f n(k)=n﹣3k且,设n﹣1=3m+r,其中m∈N+,r∈{0,1,2},则k≤m,所以B n===mn﹣=将m=代入上式,化简得B n=所以B n=点评:本题是难题,考查数列通项公式的求法,数列求和的方法,考查发现问题解决问题的能力,解题中注意整除知识的应用,转化思想的应用.。
江苏省高考数学一轮复习 试题选编27 概率 苏教版
江苏省2014届一轮复习数学试题选编27:概率(教师版)填空题 1 .(南京市、盐城市2013届高三年级第一次模拟考试数学试题)袋中装有2个红球, 2个白球, 除颜色外其余均相同, 现从中任意摸出2个小球, 则摸出的两球颜色不同的概率为 .【答案】232 .(江苏省徐州市2013届高三考前模拟数学试题)在集合{|,1,2,,10}6n M x x n π===中任取一个元素, 所取元素恰好满足方程1cos 2x =的概率是________. 【答案】0.2 3 .(南京市、淮安市2013届高三第二次模拟考试数学试卷)盒子中有大小相同的3只白球、2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是______.【答案】254 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,另一件不合格的概率为________.【答案】355 .(2011年高考(江苏卷))从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 【答案】【命题立意】本题主要考查了古典概型的概念以及古典概型概率的求法.31【解析】从四个数中随机取两个数,共有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),12个基本事件,一个数是另一个数的两倍包括(1,2)(2,1)(2,4)(4,2)这四个基本事件,因此所求概率为13. 6 .(常州市2013届高三教学期末调研测试数学试题)已知某拍卖行组织拍卖的10幅名画中,有2幅是膺品.某人在这次拍卖中随机买入了一幅画,则此人买入的这幅画是膺品的事件的概率为______.【答案】8157 .(2012年江苏理)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是____.【答案】∵以1为首项,3-为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,∴从这10个数中随机抽取一个数,它小于8的概率是63=105. 8 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)有5个数成公差不为零的等差数列,这5个数的和为15,若从这5个数中随机抽取一个数,则它小于3的概率是_______.9 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))在4次独立重复试验中,随机事件A 恰好发生l 次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是___________________. 【答案】0.41P ≤< 10.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知数字发生器每次等可能地输出数字1或2中的一个数字,则连续输出的4个数字之和能被3整除的概率是___.【答案】38;11.(2009高考(江苏))现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为___★___. 【答案】【答案】0.2 【解析】略12.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)如图,ABCD 是4⨯5的方格纸,向此四边形ABCD 内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为_______________【答案】0.2 13.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,则露在外面的6个数字恰好是2,0,1,3,0,3的概率为________.【答案】1814.(江苏省徐州市2013届高三上学期模底考试数学试题)在大小相同的4个小球中,2个是红球,2个是白球,若从中随机抽取2个球,则所抽取的球中至少有一个红球的概率是________.【答案】132815.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)从集合{}1 2 3 4 5 6 7 8 9,,,,,,,,中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为______. 【答案】11216.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修物理))已知一组抛物线2y ax bx c =++,其中a 为1、3、5、7中任取的一个数,b 为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线12x =交点处的切线相互平行的概率是_________________.17.(江苏省苏南四校2013届高三12月月考试数学试题)一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)骰子四个面上分别标有1,2,3,4这四个数字,抛掷这颗正四面体骰子,观察抛掷后能看到的数字.若连续抛掷两次,两次朝下面上的数字之积大于6的概率是______.【答案】3818.(2013江苏高考数学)现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为____________.【答案】【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 19.(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是_____.【答案】5920.(江苏省2013届高三高考压轴数学试题)从集合{-1,1,2,3}中随机选取一个数记为m,从集合{-1,1,2}中随机选取一个数记为n,则方程22x y m n+=1表示双曲线的概率为________. 【答案】51221.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)已知某一组数据8,9,11,12,x ,若这组数据的平均数为10,则其方差为______.若以连续掷两次骰子得到的点数n m ,分别作为点P 的横、纵坐标,则点P 在直线4x y +=上的概率为______.【答案】2 22.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)在数字1、2、3、4四个数中,任取两个不同的数,其和大于积的概率是___.【答案】12;23.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)两次,则出现向上点数之和大于9的概率是___________.【答案】6124.(江苏省南京市四区县2013届高三12月联考数学试题 )若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为6的概率是____【答案】53625.(江苏省盐城市2013届高三10月摸底考试数学试题)已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的概率是________.【答案】1226.(江苏省徐州市2013届高三期中模拟数学试题)在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是_______________.【答案】8727.(江苏省南京市2013届高三9月学情调研试题(数学)WORD 版)有3个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为_______.【答案】1328.(苏州市第一中学2013届高三“三模”数学试卷及解答)有一个容量为66的样本,数据的分组及各组的频数如下:【答案】11629.(扬州市2012-2013学年度第一学期期末检测高三数学试题)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x ,y ,则x y 2=的概率为_____. 【答案】121; 30.(2013江苏高考数学)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:【答案】【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 31.(江苏省2013届高三高考模拟卷(二)(数学) )在一个袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为5的概率是_______.【答案】1332.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)在不等式组031y x x y x ⎧⎪≤⎪<≤⎨⎪⎪>⎩所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为______. 【答案】91033.(江苏省南通市、泰州市、扬州市、宿迁市2013届高三第二次调研(3月)测试数学试题)设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为 ▲ . 【答案】【答案】1434.(2010年高考(江苏))盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是____【答案】1235.(南京市、盐城市2013届高三第三次模拟考试数学试卷)在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是________.【答案】71036.(苏北老四所县中2013届高三新学期调研考试)当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45︒的概率是___________【答案】 .3737.(江苏省无锡市2013届高三上学期期中考试数学试题)某学校有两个食堂,甲,乙,丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为___________.【答案】14解答题 38.(2010年高考(江苏))某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%.生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元.设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x 的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 【答案】解:(1)(2)依题意,至少需要生产3件一等品33440.80.20.80.8192P C =⨯⨯+=39.(2012年江苏理)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱, ∴共有238C 对相交棱.∴ 232128834(0)=6611C P C ξ⨯===.(2)若两条棱平行,则它们的距离为1的共有6对,∴ 212661(6611P C ξ===,416(1)=1(0)(=111111P P P ξξξ=-=---. ∴随机变量ξ的分布列是:ξ 01()P ξ411 611 111∴其数学期望61()=11111E ξ⨯+40.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)(1)山水城市镇江有“三山”——金山、焦山、北固山,一位游客游览这三个景点的概率都是0.5,且该游客是否游览这三个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望; (2)某城市有n (n 为奇数,3n ≥)个景点,一位游客游览每个景点的概率都是0.5,且该游客是否游览这n 个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望.【答案】41.(苏北老四所县中2013届高三新学期调研考试)如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求1()2P X ;(2)求E(X)【答案】解:⑴从六点中任取三个不同的点共有36C 20=个基本事件, 事件“12X ≥”所含基本事件有2317⨯+=,从而17()220P X =≥.⑵X 的分布列为:X0 14 12P320 1020 620 120则311016113()01204202202040E X =⨯+⨯+⨯+⨯=. 答:17()220P X =≥,13()40E X =.…………………………………………10分 42.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)设10件同类型的零件中有2件不合格品,从所有零件中依次不放回地取出3件,以X 表示取出的3件中不合格品的件数. (1)求“第一次取得正品且第二次取得次品”的概率;(2)求X 的概率分布和数学期望()E X . 【答案】43.(江苏省南京市2013届高三9月学情调研试题(数学)WORD 版)在一个盒子中有大小一样的7个球,球上分别标有数字1,1,2,2,2,3,3.现从盒子中同时摸出3个球,设随机变量X 为摸出的3个球上的数字和.(1)求概率P (X ≥7);(2)求X 的概率分布列,并求其数学期望E (X ).2013届高三学情调研卷【答案】解(1)P (X =7)=C 23C 12 + C 22C 12C 37=835,P (X =8)=C 22C 13C 37=335. 所以P(X≥7)=1135(2)P (X =6)=C 12C 13C 12 + C 33C 37=1335,P (X =5)=C 22C 12 + C 23C 12C 37=835,P (X =4)=C 22C 13C 37=335. 所以随机变量X 的概率分布列为X 4 5 6 7 8 P3358351335835335所以E (X )=4×335+5×835+6×1335+7×835+8×335=644.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;(2)若考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.【答案】解:(Ⅰ)设考生甲正确完成实验操作的题数分别为X ,则~(3,4,6)X H ,所以34236()k k C C P X k C -==,1,2,3k = 所以考生甲正确完成实验操作的题数的概率分布列为131()1232555E X =⨯+⨯+⨯=;(Ⅱ)设考生乙正确完成实验操作的题数为Y ,则2~(3,)3Y B ,所以3321()()()33k k k P Y k C -==,0,1,2,3k =12820(2)272727P Y ≥=+= 又314(2),555P X ≥=+=且(2)(2)P X P Y ≥>≥,从至少正确完成2题的概率考察,甲通过的可能性大, 因此可以判断甲的实验操作能力较强 45.(江苏省无锡市2013届高三上学期期末考试数学试卷)某银行的一个营业窗口可办理四类业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟,经统计以往100位顾客办理业务所需的时间(t),结果如下:注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率.(Ⅰ)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;(Ⅱ)用X 表示至第4分钟末已办理完业务的顾客人数,求X 的分布列及数学期望. 【答案】46.(2009高考(江苏))对于正整数n ≥2,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈(a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈(a 和b 可以相等),记n P 为关于x 的一元二次方程220x ax b ++=有实数根的概率。
2011年高考数学江苏卷理科(word完美解析版)
2011年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高试卷总分200 试卷时间 150一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上)1.已知集合A ={-1,1,2,4},B ={-1,0,2},则A∩B=________.【答案】{-1,2}【解析】由交集的定义知A∩B={-1,1,2,4}∩{-1,0,2}={-1,2}. 【失分警示】把“∩”,“∪”意义混淆,导致求解结果错误. 【评析】本题主要考查“∩”的含义的理解及运算能力,正确识读“∩”符号的含义是解答本题的关键,属容易题. 2.函数的单调增区间是________.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
h ttp://【答案】1,2⎛⎫-+∞ ⎪⎝⎭【解析】要使有意义,则2x+1>0,即x>-12,而y =为(0,+∞)上的增函数,当x>-12时,u =2x+1也为R 上的增函数,故原函数的单调增区间是1,2⎛⎫-+∞ ⎪⎝⎭. 【失分警示】忽视2x+1>0这一约束条件是失分的主要原因. 【评析】本题主要考查复合函数单调性的判断方法及定义域的求解,考查学生逻辑推理及运算求解能力,属中等难度试题.3.设复数z 满足i(z+1)=-3+2i(i 为虚数单位),则z 的实部是________. 【答案】1【解析】解法一:∵i(z+1)=-3+2i , ∴z=32i i -+-1=-(-3i-2)-1=1+3i , 故z 的实部是1.解法二:令z =a+bi(a ,b∈R),由i(z+1)=-3+2i 得i[(a+1)+bi]=-3+2i , -b+(a+1)i =-3+2i ,∴b=3,a =1, 故z 的实部是1.【失分警示】误区一:误认为i 2=1;误区二:忽视复数相等的条件,运算失误导致求解结果错误.【评析】本题考查复数的有关概念及运算,将复数问题实数化是解决此类问题的关键,属容易题.4.根据如图所示的伪代码,当输入a ,b 分别为2,3时,最后输出的m 的值为________.【答案】3【解析】由已知可知,m 为a ,b 中的最大值,故最后输出的m 值为3.【失分警示】读不懂程序语句,导致求解结果错误.【评析】本题主要考查程序语句,对程序中条件语句的正确理解是解答本题的关键,属容易题.5.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.【答案】13【解析】从1,2,3,4这四个数中一次随机地取两个数的种数为24C =6(种),其中一个数是另一个数的两倍的数对为1,2和2,4.故符合条件的概率为26=13.【失分警示】把24C 误认为24A 是导致本题失分的主要原因.【评析】本题主要考查组合知识和古典概型,考查学生逻辑能力和分析问题、解决问题的能力,属容易题.6.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.【答案】165【解析】记星期一到星期五收到的信件数分别为x 1,x 2,x 3,x 4,x 5,则X =∴s 2=15[(x 1-X )2+(x 2-X )2+(x 3-X )2+(x 4-X )2+(x 5-X )2]=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165.【失分警示】误区一:X 求解错误.误区二:方差公式记忆错误导致s 2求解结果错误.【评析】本题主要考查方差的公式,考查学生的运算求解能力.公式记忆准确,运算无误是解答本题的关键,属中等难度试题.7.已知tan 4x π⎛⎫+⎪⎝⎭=2,则tan tan 2x x的值为________. 【答案】49【解析】【失分警示】两角和或差的正切公式记忆错误是学生丢分的主要原因.【评析】本题主要考查两角和或差的正切公式的应用,考查学生的运算求解能力,本题中由tan 4⎛⎫+ ⎪⎝⎭x π=2正确求得tanx =13是解答本题的关键,属中等难度试题.8.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f(x)=2x的图象交于P ,Q 两点,则线段PQ 长的最小值是________. 【答案】4【解析】假设直线与函数f(x)=2x的图象在第一象限内的交点为P ,在第三象限内的交点为Q ,由题意知线段PQ 的长为OP 长的2倍. 假设P 点的坐标为002,x x ⎛⎫ ⎪⎝⎭,则|PQ|=2|OP|=≥4.当且仅当20x =204x ,即x 0=2时,取“=”.【失分警示】误区一:将线段PQ 的长误认为是|PQ|2. 误区二:将|OP|最小值误认为是所求线段PQ 长的最小值.【评析】本题考查两点间距离公式及均值定理等相关知识,考查学生分析问题、解决问题的能力,将最值问题转化为均值定理来求解是解答本题的关键,属中等难度试题.9.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是________.【答案】62【解析】由图可知A =2,,∴T=π.又2πω=T ,∴ω=2ππ=2. 根据函数图象的对应关系得2×3π+φ=kπ(k∈Z),∴φ=kπ-23π(k∈Z).取φ=3π,则f(x)223x π⎛⎫+ ⎪⎝⎭,∴f(0)=23π6【失分警示】误区一:误将2π作为函数的周期,导致求ω出错. 误区二:不能根据题意正确求得φ的值,进而导致函数解析式求错,从而求错f(0)的值. 【评析】本题主要考查y =Asin(ωx+φ)的图象与性质以及三角函数周期公式T =2πω(ω>0)的求法,属理解层次,由图象准确确定φ的值是解答本题的关键.10.已知1e ,2e 是夹角为23π的两个单位向量,a =1e -22e ,b =k 1e +2e .若a ·b=0,则实数k 的值为________. 【答案】54【解析】由题意a ·b =0即有(1e -22e )·(k 1e +2e )=0,∴k 21e +(1-2k) 1e ·2e -222e =0.又|1e |=|2e |=1,〈1e ,2e 〉=23π,∴k -2+(1-2k)·cos23π=0,∴k -2=122k -,∴k=54. 【失分警示】误区一:向量内积的定义理解不到位; 误区二:运算失误,例如将cos23π误认为是12导致求解结果错误.【评析】本题主要考查向量内积的运算,考查学生的运算求解能力.属中等难度试题.11.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a 的值为________. 【答案】-34【解析】分类讨论:(1)当a>0时,1-a<1,1+a>1. 这时f(1-a)=2(1-a)+a =2-a ; f(1+a)=-(1+a)-2a =-1-3a.由f(1-a)=f(1+a)得2-a =-1-3a ,解得a =-32, 不符合题意,舍去.(2)当a<0时,1-a>1,1+a<1, 这时f(1-a)=-(1-a)-2a =-1-a ; f(1+a)=2(1+a)+a =2+3a ,由f(1-a)=f(1+a)得-1-a =2+3a ,解得a =-34.综合(1),(2)知a 的值为-34【失分警示】由f(1-a)=f(1+a),误认为函数f(x)的周期为1,导致求解结果错误. 【评析】本题主要考查分段函数的相关知识,能根据题目要求对a 进行分类讨论是解答此题的关键,属中等难度试题.12.在平面直角坐标系xOy 中,已知P 是函数f(x)=e x(x>0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M.过点P 作l 的垂线交y 轴于点N.设线段MN 的中点的纵坐标为t ,则t 的最大值是________. 【答案】2e +12e【解析】设P(x 0,0x e)(x 0>0), f ′(x)=(e x )′=e x,∴点P 处的切线l ,其斜率为f ′(x 0)=0x e ,过点P 作l 的垂线l′,其斜率为-0x 1e .∴直线l 的方程为,令x =0得直线l′的方程为,令x =0得由题意令∴当x0<1时,g ′(x0)>0,函数g(x0)为增函数.当x0>1时,g ′(x0)<0,函数g(x0)为减函数.∴g(x0)在x0=1处取极大值,亦即x0>0时t的最大值.【失分警示】误区一:导数的几何意义掌握不到位,不能求出y M,y N.误区二:求得函数关系t=g(x0)后,不能利用导数求t的最值.【评析】本题考查导数的几何意义、直线方程、导数的应用等相关知识,知识点较多,难度偏大,考查学生的运算求解能力、分析问题解决问题的综合能力.13.设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是________.33【解析】∵a1,a3,a5,a7成公比为q的等比数列,又a1=1,∴a3=q,a5=q2,a7=q3,又a2,a4,a6成公差为1的等差数列,∴a4=a2+1,a6=a2+2.由1=a1≤a2≤a3≤…≤a7,即有解得33≤q≤3,故q 的最小值为33.【失分警示】不理解题意,无法获得相应的不等关系是学生失分的主要原因.【评析】本题主要考查等差、等比数列的通项公式,考查学生的逻辑思维能力和分析问题、解决问题的能力,属中等难度试题. 14.设集合,B ={(x ,y)|2m≤x+y≤2m+1,x ,y∈R}.若A∩B≠∅,则实数m 的取值范围是________.【答案】【解析】由A≠∅可知m 2≥2m ,解得m≤0或m≥12.由题意知,若A∩B≠∅, 则有(1)当2m+1<2,即m<12时,圆心(2,0)到直线x+y =2m+1的距离为d 1=≤|m|,化简得2m 2-4m+1≤0, 解得1-22≤m≤1+22,所以1-22≤m<12.(2)当2m≤2≤2m+1,即12≤m≤1时,A∩B≠∅恒成立.(3)当2m>2,即m>1时,圆心(2,0)到直线x+y =2m 的距离为d 2=≤|m|,化简得m 2-4m+2≤0, 解得2-2≤m≤2+2, 所以1<m≤2+2.综上可知:满足题意的m 的取值范围为.【失分警示】读不懂题意,分析不彻底是解答本题失分的主要原因.【评析】本题主要考查圆与直线的位置关系,考查学生综合运用所学知识分析问题、解决问题的能力.能根据圆心与直线的位置关系分类讨论是解答本题的关键,本题属较难题目.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.(Ⅰ)若sin 6A π⎛⎫+ ⎪⎝⎭=2cos A ,求A 的值;(Ⅱ)若cos A =13,b =3c ,求sin C 的值. 【解析】(Ⅰ)由题设知sin Acos 6π+cos Asin 6π=2cos A.从而sin A =3cos A ,所以cosA≠0,tan A =3.因为0<A<π,所以A =3π.(Ⅱ)由cos A =13,b =3c 及a 2=b 2+c 2-2bccos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =2π.所以sin C =cos A =13.【失分警示】由余弦定理及b =3c ,求得a =22c 后,方向不明确,思维受阻.事实上有两个方向均可,一是注意到a 2+c 2=9c 2=(3c)2=b 2,出现直角三角形,二是利用正弦定理,并由a =22c>c ,直接求解.当然方法二要注意到a>c ,角C 不可能是钝角,不需要分类讨论. 【评析】本题考查同角三角函数的关系,两角和公式,正弦定理,余弦定理,对运算能力有较高要求,对解题程序设计能力考查较为深入,不同的思路运算量差别较大.16.(本小题满分14分)如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD ,AB =AD ,∠BAD=60°,E ,F 分别是AP ,AD 的中点.求证:(Ⅰ)直线EF∥平面PCD ; (Ⅱ)平面BEF⊥平面PAD.【解析】(Ⅰ)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(Ⅱ)连结BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.【失分警示】证明过程中关键步骤省略或遗漏常导致无谓失分,此外学生对如何证面与面垂直认识模糊、思路不清也是失分的原因之一.【评析】本题考查直线与平面、平面与平面的位置关系的判定、性质,对考生的文字或符号表达能力、空间想象能力、推理论证能力均有较高要求,难度中等偏难.17.(本小题满分14分)请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).(Ⅰ)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(Ⅱ)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【解析】设包装盒的高为h(cm),底面边长为a(cm).由已知得a=2x,h=6022x-=2 (30-x),0<x<30.(Ⅰ)S=4ah=8x(30-x)=-8(x-15)2+1 800,所以当x=15时,S取得最大值.(Ⅱ)V=a 2h =22(-x 3+30x 2),V′=62x(20-x). 由V′=0得x =0(舍)或x =20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.【失分警示】应用问题的难点是建立适当的数学模型.对变量取值范围的限制不准确常常导致失分.对实际问题求最值时,也易犯经验主义错误,想当然地认为正方体时取最值.【评析】本题考查函数的概念、导数求法等基础知识,考查数学建模能力、空间想象能力、数学阅读能力、运算能力及解决实际问题的能力等,要求高,难度较大,易错点颇多.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,M ,N 分别是椭圆24x +22y =1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限.过P 作x 轴的垂线,垂足为C.连结AC ,并延长交椭圆于点B.设直线PA 的斜率为k.(Ⅰ)若直线PA 平分线段MN ,求k 的值; (Ⅱ)当k =2时,求点P 到直线AB 的距离d ; (Ⅲ)对任意的k>0,求证:PA⊥PB.【解析】(Ⅰ)由题设知,a =2,b =2,故M(-2,0),N(0,-2),所以线段MN 中点的坐标为21,2⎛⎫-- ⎪⎝⎭.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k =221--=22. (Ⅱ)直线PA 的方程为y =2x ,代入椭圆方程得24x +242x =1,解得x =±23,因此P 24,33⎛⎫ ⎪⎝⎭,A 24,33⎛⎫--⎪⎝⎭.于是C 2,03⎛⎫- ⎪⎝⎭,直线AC 的斜率为=1,故直线AB 的方程为x-y-23=0.因此,.(Ⅲ)解法一:将直线PA 的方程y =kx 代入24x +22y =1,解得x =±.记μ=,则P(μ,μk),A(-μ,-μk).于是C(μ,0).故直线AB 的斜率为,其方程为y =2k(x-μ),代入椭圆方程得(2+k 2)x 2-2μk 2x-μ2(3k 2+2)=0,解得或x =-μ.因此.于是直线PB 的斜率因此k 1k =-1,所以PA⊥PB.解法二:设P(x 1,y 1),B(x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A(-x 1,-y 1),C(x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB 上,所以从而k 1k+1=2k 1k 2+1=2因此k 1k =-1,所以PA⊥PB.【失分警示】第(Ⅰ)小问常见错误是联解直线AP 与直线MN 的方程组.求出交点坐标(用k 表示),再由中点坐标公式构建关于k 的方程求k.运算复杂,步骤较多,易造成计算错误或耗时失分.处理第(Ⅱ)小问思维受阻后,如果利用第(Ⅲ)小问的结论通过面积法求点P 到直线AB 的距离,事实上并不太容易,需要联解方程组,当然利用k PB =-12可较快求出B 点坐标.【评析】本题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,是解析几何的经典题型.对考生的运算能力有较高的要求,对考生的心理素质的要求也较高,属难题.19.(本小题满分16分)已知a ,b 是实数,函数f(x)=x 3+ax ,g(x)=x 2+bx, f ′(x)和g′(x)分别是f(x)和g(x)的导函数.若f ′(x)g′(x)≥0在区间I 上恒成立,则称f(x)和g(x)在区间I 上单调性一致.(Ⅰ)设a>0.若f(x)和g(x)在区间[-1,+∞)上单调性一致,求b 的取值范围; (Ⅱ)设a<0且a≠b.若f(x)和g(x)在以a ,b 为端点的开区间上单调性一致,求|a-b|的最大值. 【解析】f ′(x)=3x 2+a ,g′(x)=2x+b.(Ⅰ)由题意知f ′(x)g′(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x 2+a>0,进而2x+b≥0,即b≥-2x 在区间[-1,+∞)上恒成立, 所以b≥2.因此b 的取值范围是[2,+∞).(Ⅱ)令f ′(x)=0,解得x 3a -若b>0,由a<0得0∈(a,b).又因为f ′(0)g′(0)=ab<0,所以函数f(x)和g(x)在(a ,b)上不是单调性一致的.因此b≤0.现设b≤0.当x∈(-∞,0)时,g′(x)<0; 当x∈,3a ⎛-∞-- ⎝时, f ′(x)>0.因此,当x∈,3a ⎛-∞-- ⎝时, f ′(x)g′(x)<0. 故由题设得a≥3a -b≥3a -从而-13≤a<0,于是-13≤b≤0.因此|a-b|≤13,且当a =-13,b =0时等号成立.又当a =-13,b =0时,f ′(x)g′(x)=6x 219x ⎛⎫-⎪⎝⎭,从而当x∈1,03⎛⎫- ⎪⎝⎭时f ′(x)g ′(x)>0,故函数f(x)和g(x)在1,03⎛⎫- ⎪⎝⎭上单调性一致.因此|a-b|的最大值为13.【失分警示】当a<0时,由于f ′(x)的符号不确定,容易误认为先对a进行分类讨论,其次再对b进行分类讨论时,分类标准难以确定,导致分类混乱,也是常见的失分原因. 【评析】本题考查函数的概念、性质及导数等基础知识,对数形结合思想、函数与方程思想均有考查,对分类讨论思想的考查要求很高,要求考生具备较强的综合思维能力和运算能力,属难题.20.(本小题满分16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项的和为S n,已知对任意的整数k∈M,当整数n>k时,S n+k+S n-k=2(S n+S k)都成立.(Ⅰ)设M={1},a2=2,求a5的值;(Ⅱ)设M={3,4},求数列{a n}的通项公式.【解析】(Ⅰ)由题设知,当n≥2时,S n+1+S n-1=2(S n+S1),即(S n+1-S n)-(S n-S n-1)=2S1.从而a n+1-a n =2a1=2.又a2=2,故当n≥2时,a n=a2+2(n-2)=2n-2.所以a5的值为8.(Ⅱ)由题设知,当k∈M={3,4}且n>k时,S n+k+S n-k=2S n+2S k且S n+1+k+S n+1-k=2S n+1+2S k,两式相减得a n+1+k+a n+1-k=2a n+1,即a n+1+k-a n+1=a n+1-a n+1-k.所以当n≥8时,a n-6,a n-3,a n,a n+3,a n+6成等差数列,且a n-6,a n-2,a n+2,a n+6也成等差数列.从而当n≥8时,2a n=a n+3+a n-3=a n+6+a n-6,(*)且a n+6+a n-6=a n+2+a n-2.所以当n≥8时,2a n=a n+2+a n-2,即a n+2-a n=a n-a n-2.于是当n≥9时,a n-3,a n-1,a n+1,a n+3成等差数列,从而a n+3+a n-3=a n+1+a n-1,故由(*)式知2a n=a n+1+a n-1,即a n+1-a n=a n-a n-1.当n≥9时,设d=a n-a n-1.当2≤m≤8时,m+6≥8,从而由(*)式知2a m+6=a m+a m+12,故2a m+7=a m+1+a m+13.从而2(a m+7-a m+6)=a m+1-a m+(a m+13-a m+12),于是a m+1-a m=2d-d=d.因此,a n+1-a n=d对任意n≥2都成立.又由S n+k+S n-k-2S n=2S k(k∈{3,4})可知(S n+k-S n)-(S n-S n-k)=2S k,故9d=2S3且16d=2S4.解得a4=72d,从而a2=32d,a1=2d.因此,数列{a n}为等差数列.由a1=1知d=2.所以数列{a n}的通项公式为a n=2n-1.【失分警示】使用S n与a n之间的关系式时,易忽略n≥2的条件.此外,对题意的理解困难导致思维受阻也是本题的失分之处.【评析】本题考查数列的概念,数列的通项与前n项和之间的关系,以及等差数列、等比数列的基础知识,对考生的分析探究能力、运算能力、逻辑推理能力均有较高要求.数学II (附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定...其中两题,并在答题卡指定............区域内作答.....,若多做,则按作答的前两题评分。
2011江苏省高考数学真题(含答案)
2011江苏省高考数学真题(含答案)2011江苏高考数学试卷注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:(1)样本数据x 1 ,x 2 ,…,x n 的方差s 2=ni=11n ∑(x i -x )2,其中ni i=11x n ∑.(2)(2)直棱柱的侧面积S=ch ,其中c 为底面积,h 为高.(3)棱柱的体积V= Sh ,其中S 为底面积,h 为高.一.填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
.......... 1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A 2、函数)12(log)(5+=x x f 的单调增区间是__________3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ Read a ,b If a >b Then m ←a Else m ←b End If Print m5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s7、已知,2)4tan(=+πx 则x x2tan tan 的值为__________ 8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f3ππ12710、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________2-13、设7211a a a≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________14、设集合},,)2(2|),{(222R y x m y x m y x A ∈≤+-≤=,},,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。
2010江苏省高考数学真题(含答案)
Sn 是公差
为 d 的等差数列。
(1)求数列 a n 的通项公式(用 n, d 表示);
( 2) 设 c 为 实 数 , 对 满 足 m n 3k且m n 的 任 意 正 整 数 m, n, k , 不 等 式
Sm
Sn
cS
k
都成立。求证:
c
的最大值为
9 2
。
20、(本小题满分 16分)
设 f (x) 是定义在区间 (1, ) 上的函数,其导函数为 f '(x) 。如果存在实数 a 和函 数 h(x) ,其中 h(x) 对任意的 x (1, ) 都有 h(x) >0,使得 f '( x) h(x)(x 2 ax 1) ,则称函数 f (x) 具有性质 P(a) 。 (1)设函数 f (x) ln x bx 12 (x 1) ,其中b 为实数。
(2)设实数 t 满足( ABLeabharlann tOC )·OC =0,求 t 的值。
16、(本小题满分 14分) 如图,在四棱锥 P-ABCD中,PD⊥平面 ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1)求证:PC⊥BC; (2)求点 A 到平面 PBC的距离。
17、(本小题满分 14分) 某兴趣小组测量电视塔 AE的高度 H(单位:m),如示意图,垂直放置的标杆 BC的高度 h=4m,仰角∠ABE= ,∠ADE= 。 (1)该小组已经测得一组 、 的值,tan =1.24,tan =1.20,请据此算出 H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距 离 d(单位:m),使 与 之差较大,可以提高测量精确度。若电视 塔的实际高度为 125m,试问 d 为多少时, - 最大?
扎根课堂变革 突出学科本质——以2011年江苏卷为例谈高考数学命题给我们的启示
运算 , 4小题考 查算 法初 步 中伪代 码和 i语 句 , 5 第 f 第
小题 考查 古典 概 型 , 6 7 1 、 6 1 第 、 、 5 1 、 7题 都考 查 了 数 学 中最基 础 的知识 和一些 最 常 用 的方 法 . 即使是 考 生 感 到难度 比较 大 的题 , 1 、 3 1 如 2 1 、 4题 考 查 的 思 想 和
分析
本题 主 要 考 查 直 线 方 程 与 导 数 的几 何 意
义, 在点 P 处 的导 数 就 是 切 线 z的斜 率 , 由点 斜 式 再 写 出切 线 z 的方程 及切线 z的垂 线 的方程 , z = 令 = 0分 =
■ 一 ,_
学素养 的培 养 2 1 年 江苏数 学卷 对数 学知识 、 学方 法和 技 能 01 数 的考查 是 基于 最 基 本 的通 性 、 法 , 1题 考 查 的 是 通 第 集合 的基本 运算 中 的交集 , 2题 以对 数 为载 体 考 查 第 复合 函数 的单 调性 , 3小题 考 查 复数 的定 义及 基 本 第
◇
江苏
董 荣 森
纵 观近 年来 江苏省 高 考数 学 试 题 , 我们 不 难 发现 试 题基 本摒 弃 了对纯粹 记 忆性 知 识 的 考查 , 多 的是 更 以学科 的主体 内容 、 心 知识 为 载体 , 数 学 “ 基 ” 核 将 三 放在 真实 、 动 、 体 的 情 景下 进行 考查 .2 1 生 具 0 1年 江
鬈 2 ( 1 例 第 3题)已知 1 2 。 a ≤ ≤a ≤a ≤口 ≤
口 ≤口 ≤口 , 1 a , 5 a 5 6 7 口 , 3 a , 7成 等 比数 列 , 比为 q a , 公 , 2 口 , 成 等 差 数 列 ,公 差 为 1 则 q 的 最 小 值 a ,
20.三角函数的化简求值
1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。
2012年江苏高考数学试题及答案
2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh,其中S 为底面积,h 为高.一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A ,,,{246}B ,,,则A B ▲.2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取▲名学生.3.设a b R ,,117ii 12i a b(i 为虚数单位),则a b的值为▲.4.右图是一个算法流程图,则输出的k 的值是▲.5.函数()f x 的定义域为▲.6.现有10个数,它们能构成一个以1为首项,3 为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是▲.7.如图,在长方体1111ABCD A BCD 中,3cm AB AD ,12cm AA ,则四棱锥11A BB D D 的体积为▲cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m 的离心率的值为▲.9ABCD 中,2AB BC ,点E 为BC 的中点,开始k ←1k 2-5k +4>0k ←k +1NY 输出k 结束(第4题)DA B C1C 1D 1A 1B (第7题)点F 在边CD上,若AB AF AE BF 的值是▲.10.设()f x 是定义在R 上且周期为2的函数,在区间[11] ,上,0111()201x x ax f x bx x≤≤≤,,,,其中a b R ,.若1322f f,则3a b 的值为▲.11.设 为锐角,若4cos 65 ,则sin 212的值为▲.12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x ,若直线2y kx 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是▲.13.已知函数2()()f x x ax b a b R ,的值域为[0) ,,若关于x 的不等式()f x c 的解集为(6)m m ,,则实数c 的值为▲.14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b ≤≤≥,,则b a 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC 中,已知3AB AC BA BC.(1)求证:tan 3tan B A ;(2)若cos 5C,求A 的值.16.(本小题满分14分)如图,在直三棱柱111ABC A B C 中,1111A B A C ,D E ,分别是棱1BC CC ,上的点(第9题)(点D 不同于点C ),且AD DE F ,为11B C 的中点.求证:(1)平面ADE 平面11BCC B ;(2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x 在x =x 0取得极大值或者极小值则x =x 0是()y f x 的极值点已知a ,b 是实数,1和1 是函数32()f x x ax bx 的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x,求()g x 的极值点;(3)设()(())h x f f x c ,其中[22]c ,,求函数()y h x 的零点个数.FECADB(第16题)x (千米)y (千米)O(第17题)19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b 的左、右焦点分别为1(0)F c ,,2(0)F c ,.已知(1)e ,和2e ,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若122AF BF,求直线1AF 的斜率;(ii )求证:12PF PF 是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a nN .(1)设11n n n b b n a N ,,求证:数列2n n b a是等差数列;(2)设1n n nbb n aN ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)D,E为圆上位于AB异侧的两点,连结BD并延长至点C,AC,AE,DE..注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共2页,均为非选择题(第21题~第23题)。
2010年江苏省高考数学试卷答案与解析
2010年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2010•江苏)设集合A={﹣1,1,3},B={a+2,a2+4},A∩B={3},则实数a=1.【考点】交集及其运算.【专题】集合.【分析】根据交集的概念,知道元素3在集合B中,进而求a即可.【解答】解:∵A∩B={3}∴3∈B,又∵a2+4≠3∴a+2=3 即a=1故答案为1【点评】本题属于以集合的交集为载体,考查集合的运算推理,求集合中元素的基础题,也是高考常会考的题型.2.(5分)(2010•江苏)设复数z满足z(2﹣3i)=6+4i(其中i为虚数单位),则z的模为2.【考点】复数代数形式的乘除运算;复数求模.【专题】数系的扩充和复数.【分析】直接对复数方程两边求模,利用|2﹣3i|=|3+2i|,求出z的模.【解答】解:z(2﹣3i)=2(3+2i),|z||(2﹣3i)|=2|(3+2i)|,|2﹣3i|=|3+2i|,z的模为2.故答案为:2【点评】本题考查复数运算、模的性质,是基础题.3.(5分)(2010•江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】算出基本事件的总个数n=C42=6,再算出事件A中包含的基本事件的个数m=C31=3,算出事件A的概率,即P(A)=即可.【解答】解:考查古典概型知识.∵总个数n=C42=6,∵事件A中包含的基本事件的个数m=C31=3∴故填:.【点评】本题考查古典概型及其概率计算公式,其算法是:(1)算出基本事件的总个数n;(2)算出事件A中包含的基本事件的个数m;(3)算出事件A的概率,即P(A)=.4.(5分)(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有30根在棉花纤维的长度小于20mm.【考点】频率分布直方图.【专题】概率与统计.【分析】由图分析可得:易得棉花纤维的长度小于20mm段的频率,根据频率与频数的关系可得频数.【解答】解:由图可知,棉花纤维的长度小于20mm段的频率为0.01+0.01+0.04,则频数为100×(0.01+0.01+0.04)×5=30.故填:30.【点评】本题考查频率分布直方图的知识.考查读图的能力,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5.(5分)(2010•江苏)设函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,则实数a=﹣1.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由函数是偶函数,直接用特殊值求解即可【解答】解:因为函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,所以g(x)=e x+ae﹣x为奇函数由g(0)=0,得a=﹣1.故答案是﹣1【点评】考查函数的奇偶性的应用及填空题的解法.6.(5分)(2010•江苏)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是4.【考点】双曲线的定义.【专题】圆锥曲线的定义、性质与方程.【分析】d为点M到右准线x=1的距离,根据题意可求得d,进而先根据双曲线的第二定义可知=e,求得MF.答案可得.【解答】解:=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故答案为4【点评】本题主要考查双曲线的定义.属基础题.7.(5分)(2010•江苏)如图是一个算法的流程图,则输出S的值是63.【考点】设计程序框图解决实际问题.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值,并输出.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值∵S=1+2+22+23+24=31<33,不满足条件.S=1+2+22+23+24+25=63≥33,满足条件故输出的S值为:63.故答案为:63【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)(2010•江苏)函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=21.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先求出函数y=x2在点(a k,a k2)处的切线方程,然后令y=0代入求出x的值,再结合a1的值得到数列的通项公式,再得到a1+a3+a5的值.【解答】解:在点(a k,a k2)处的切线方程为:y﹣a k2=2a k(x﹣a k),当y=0时,解得,所以.故答案为:21.【点评】考查函数的切线方程、数列的通项.9.(5分)(2010•江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是(﹣13,13).【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心,求出半径,圆心到直线的距离小于1即可.【解答】解:圆半径为2,圆心(0,0)到直线12x﹣5y+c=0的距离小于1,即,c的取值范围是(﹣13,13).【点评】考查圆与直线的位置关系.(圆心到直线的距离小于1,此时4个,等于3个,等于1,大于1是2个.)是有难度的基础题.10.(5分)(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.【考点】余弦函数的图象;正切函数的图象.【专题】三角函数的图像与性质.【分析】先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx的值,从而得到答案.【解答】解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,即6cosx=,化为6sin2x+5sinx﹣6=0,解得sinx=.线段P1P2的长为故答案为.【点评】考查三角函数的图象、数形结合思想.11.(5分)(2010•江苏)已知函数,则满足不等式f(1﹣x2)>f(2x)的x的范围是(﹣1,﹣1).【考点】分段函数的解析式求法及其图象的作法;其他不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】由题意f(x)在[0,+∞)上是增函数,而x<0时,f(x)=1,故满足不等式f(1﹣x2)>f(2x)的x需满足,解出x即可.【解答】解:由题意,可得故答案为:【点评】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力.12.(5分)(2010•江苏)设实数x,y满足3≤xy2≤8,4≤≤9,则的最大值是27.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】首先分析题目由实数x,y满足条件3≤xy2≤8,4≤≤9.求的最大值的问题.根据不等式的等价转换思想可得到:,,代入求解最大值即可得到答案.【解答】解:因为实数x,y满足3≤xy2≤8,4≤≤9,则有:,,再根据,即当且仅当x=3,y=1取得等号,即有的最大值是27.故答案为:27.【点评】此题主要考查不等式的基本性质和等价转化思想,等价转换思想在考试中应用不是很广泛,但是对于特殊题目能使解答更简便,也需要注意,属于中档题.13.(5分)(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是4.【考点】正弦定理的应用;三角函数的恒等变换及化简求值.【专题】三角函数的求值;解三角形.【分析】由+=6cosC,结合余弦定理可得,,而化简+==,代入可求【解答】解:∵+=6cosC,由余弦定理可得,∴则+=======故答案为:4【点评】本题主要考查了三角形的正弦定理与余弦定理的综合应用求解三角函数值,属于基本公式的综合应用.14.(5分)(2010•江苏)将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.【考点】利用导数求闭区间上函数的最值.【专题】函数的性质及应用;导数的概念及应用.【分析】先设剪成的小正三角形的边长为x表示出S的解析式,然后求S的最小值,方法一:对函数S进行求导,令导函数等于0求出x的值,根据导函数的正负判断函数的单调性进而确定最小值;方法二:令3﹣x=t,代入整理根据一元二次函数的性质得到最小值.【解答】解:设剪成的小正三角形的边长为x,则:(方法一)利用导数求函数最小值.,=,当时,S′(x)<0,递减;当时,S′(x)>0,递增;故当时,S的最小值是.(方法二)利用函数的方法求最小值.令,则:故当时,S的最小值是.【点评】考查函数中的建模应用,等价转化思想.一题多解.二、解答题(共9小题,满分110分)15.(14分)(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值.【考点】平面向量数量积的运算;向量在几何中的应用.【专题】平面向量及应用.【分析】(1)(方法一)由题设知,则.从而得:.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:由E是AC,BD的中点,易得D(1,4)从而得:BC=、AD=;(2)由题设知:=(﹣2,﹣1),.由()•=0,得:(3+2t,5+t)•(﹣2,﹣1)=0,从而得:.或者由,,得:【解答】解:(1)(方法一)由题设知,则.所以.故所求的两条对角线的长分别为、.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(﹣2,﹣1),.由()•=0,得:(3+2t,5+t)•(﹣2,﹣1)=0,从而5t=﹣11,所以.或者:,,【点评】本题考查平面向量的几何意义、线性运算、数量积,考查向量的坐标运算和基本的求解能力.16.(14分)(2010•江苏)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.【考点】点、线、面间的距离计算;空间中直线与平面之间的位置关系.【专题】空间位置关系与距离;立体几何.【分析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E 到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;方法二,等体积法:连接AC,则三棱锥P﹣ACB与三棱锥A﹣PBC体积相等,而三棱锥P ﹣ACB体积易求,三棱锥A﹣PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.【解答】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V A﹣PBC=V P﹣ABC,,得,故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.17.(14分)(2010•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?【考点】解三角形的实际应用.【专题】解三角形.【分析】(1)在Rt△ABE中可得AD=,在Rt△ADE中可得AB=,BD=,再根据AD﹣AB=DB即可得到H.(2)先用d分别表示出tanα和tanβ,再根据两角和公式,求得tan(α﹣β)=,再根据均值不等式可知当d===55时,tan(α﹣β)有最大值即α﹣β有最大值,得到答案.【解答】解:(1)=tanβ⇒AD=,同理:AB=,BD=.AD﹣AB=DB,故得﹣=,得:H===124.因此,算出的电视塔的高度H是124m.(2)由题设知d=AB,得tanα=,tanβ===,tan(α﹣β)====d+≥2,(当且仅当d===55时,取等号)故当d=55时,tan(α﹣β)最大.因为0<β<α<,则0<α﹣β<,所以当d=55时,α﹣β最大.故所求的d是55m.【点评】本题主要考查解三角形的知识、两角差的正切及不等式的应用.当涉及最值问题时,可考虑用不等式的性质来解决.18.(16分)(2010•江苏)在平面直角坐标系xoy中,如图,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2﹣PB2=4,求点P的轨迹;(2)设x1=2,x2=,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(1)设点P(x,y),由两点距离公式将PF2﹣PB2=4,变成坐标表示式,整理即得点P的轨迹方程.(2)将分别代入椭圆方程,解出点M与点N的坐标由两点式写出直线AM与直线BN的方程联立解出交点T的坐标.(3)方法一求出直线方程的参数表达式,然后求出其与x的交点的坐标,得到其横坐标为一个常数,从而说明直线过x轴上的定点.方法二根据特殊情况即直线与x轴垂直时的情况求出定点,然后证明不垂直于x轴时两线DM与DN斜率相等,说明直线MN过该定点.【解答】解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(﹣3,0).由PF2﹣PB2=4,得(x﹣2)2+y2﹣[(x﹣3)2+y2]=4,化简得.故所求点P的轨迹为直线.(2)将分别代入椭圆方程,以及y1>0,y2<0,得M(2,)、N(,)直线MTA方程为:,即,直线NTB方程为:,即.联立方程组,解得:,所以点T的坐标为.(3)点T的坐标为(9,m)直线MTA方程为:,即,直线NTB方程为:,即.分别与椭圆联立方程组,同时考虑到x1≠﹣3,x2≠3,解得:、.(方法一)当x1≠x2时,直线MN方程为:令y=0,解得:x=1.此时必过点D(1,0);当x1=x2时,直线MN方程为:x=1,与x轴交点为D(1,0).所以直线MN必过x轴上的一定点D(1,0).(方法二)若x1=x2,则由及m>0,得,此时直线MN的方程为x=1,过点D(1,0).若x1≠x2,则,直线MD的斜率,直线ND的斜率,得k MD=k ND,所以直线MN过D点.因此,直线MN必过x轴上的点(1,0).【点评】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识.考查运算求解能力和探究问题的能力19.(16分)(2010•江苏)设各项均为正数的数列{a n}的前n项和为S n,已知2a2=a1+a3,数列是公差为d的等差数列.(1)求数列{a n}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式S m+S n>cS k都成立.求证:c的最大值为.【考点】等差数列的性质;归纳推理.【专题】等差数列与等比数列.【分析】(1)根据等差数列的通项公式,结合已知,列出关于a1、d的方程,求出a1,进而推出s n,再利用a n与s n的关系求出a n.(2)利用(1)的结论,对S m+S n>cS k进行化简,转化为基本不等式问题求解;或求出c 的最大值的范围,利用夹逼法求出a的值.【解答】解:(1)由题意知:d>0,=+(n﹣1)d=+(n﹣1)d,∵2a2=a1+a3,∴3a2=S3,即3(S2﹣S1)=S3,∴,化简,得:,当n≥2时,a n=S n﹣S n﹣1=n2d2﹣(n﹣1)2d2=(2n﹣1)d2,适合n=1情形.故所求a n=(2n﹣1)d2(2)(方法一)S m+S n>cS k⇒m2d2+n2d2>c•k2d2⇒m2+n2>c•k2,恒成立.又m+n=3k且m≠n,,故,即c的最大值为.(方法二)由及,得d>0,S n=n2d2.于是,对满足题设的m,n,k,m≠n,有.所以c的最大值.另一方面,任取实数.设k为偶数,令,则m,n,k符合条件,且.于是,只要9k2+4<2ak2,即当时,.所以满足条件的,从而.因此c的最大值为.【点评】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.20.(16分)(2010•江苏)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2﹣ax+1),则称函数f(x)具有性质P(a),设函数f(x)=,其中b为实数.(1)①求证:函数f(x)具有性质P(b);②求函数f(x)的单调区间.(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,α>1,β>1,若|g(α)﹣g(β)|<|g(x1)﹣g(x2)|,求m的取值范围.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(1)①先求出函数f(x)的导函数f′(x),然后将其配凑成f′(x)=h(x)(x2﹣bx+1)这种形式,再说明h(x)对任意的x∈(1,+∞)都有h(x)>0,即可证明函数f (x)具有性质P(b);②根据第一问令φ(x)=x2﹣bx+1,讨论对称轴与2的大小,当b≤2时,对于x>1,φ(x)>0,所以f′(x)>0,可得f(x)在区间(1,+∞)上单调性,当b>2时,φ(x)图象开口向上,对称轴,可求出方程φ(x)=0的两根,判定两根的范围,从而确定φ(x)的符号,得到f′(x)的符号,最终求出单调区间.(2)先对函数g(x)求导,再m分m≤0,m≥1,0<m<1进行,同时运用函数的单调性即可得到.【解答】解:(1)①f′(x)=∵x>1时,恒成立,∴函数f(x)具有性质P(b);②当b≤2时,对于x>1,φ(x)=x2﹣bx+1≥x2﹣2x+1=(x﹣1)2>0所以f′(x)>0,故此时f(x)在区间(1,+∞)上递增;当b>2时,φ(x)图象开口向上,对称轴,方程φ(x)=0的两根为:,而当时,φ(x)<0,f′(x)<0,故此时f(x)在区间上递减;同理得:f(x)在区间上递增.综上所述,当b≤2时,f(x)的单调增区间为(1,+∞);当b>2时,f(x)的单调减区间为;f(x)的单调增区间为.(2)由题设知:g(x)的导函数g′(x)=h(x)(x2﹣2x+1),其中函数h(x)>0对于任意的x∈(1,+∞)都成立,所以,当x>1时,g′(x)=h(x)(x﹣1)2>0,从而g(x)在区间(1,+∞)上单调递增.①当m∈(0,1)时,有α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理可得β∈(x1,x2),所以由g(x)的单调性知g(α),g(β)∈(g(x1),g(x2)),从而有|g(α)﹣g(β)|<|g(x1)﹣g(x2)|,符合题设;②当m≤0时,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,于是由α>1,β>1及g(x)的单调性知g(β)≤g(x1)<g(x2)≤g(α),所以|g(α)﹣g(β)|≥|g(x1)﹣g(x2)|,与题设不符.③当m≥1时,同理可得α≤x1,β≥x2,进而得|g(α)﹣g(β)|≥|g(x1)﹣g(x2)|,与题设不符因此,综合①、②、③得所求的m的取值范围为(0,1).【点评】本题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.21.(10分)(2010•江苏)本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.B:在平面直角坐标系xOy中,已知点A(0,0),B(﹣2,0),C(﹣2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.D:设a、b是非负实数,求证:.【考点】参数方程化成普通方程;基本不等式;直线和圆的方程的应用.【专题】不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.【分析】A、连接OD,则OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,再证明OB=BC=OD=OA,即可求解.B、由题设得,根据矩阵的运算法则进行求解.C、在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,由题意将圆和直线先化为一般方程坐标,然后再计算a值.D、利用不等式的性质进行放缩证明,然后再进行讨论求证.【解答】解:A:(方法一)证明:连接OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.(方法二)证明:连接OD、BD.因为AB是圆O的直径,所以∠ADB=90°,AB=2OB.因为DC是圆O的切线,所以∠CDO=90°.又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO.即2OB=OB+BC,得OB=BC.故AB=2BC.B满分(10分).由题设得由,可知A1(0,0)、B1(0,﹣2)、C1(k,﹣2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或﹣2.C解:ρ2=2ρcosθ,圆ρ=2cosθ的普通方程为:x2+y2=2x,(x﹣1)2+y2=1,直线3ρcosθ+4ρsinθ+a=0的普通方程为:3x+4y+a=0,又圆与直线相切,所以,解得:a=2,或a=﹣8.D(方法一)证明:==因为实数a、b≥0,所以上式≥0.即有.(方法二)证明:由a、b是非负实数,作差得==当a≥b时,,从而,得;当a<b时,,从而,得;所以.【点评】本题主要考查三角形、圆的有关知识,考查推理论证能力,及图形在矩阵对应的变换下的变化特点,考查运算求解能力还考查曲线的极坐标方程等基本知识,考查转化问题的能力.另外此题也考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.22.(2010•江苏)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式.【专题】概率与统计.【分析】(1)根据题意做出变量的可能取值是10,5,2,﹣3,结合变量对应的事件和相互独立事件同时发生的概率,写出变量的概率和分布列.(2)设出生产的4件甲产品中一等品有n件,则二等品有4﹣n件,根据生产4件甲产品所获得的利润不少于10万元,列出关于n的不等式,解不等式,根据这个数字属于整数,得到结果,根据独立重复试验写出概率.【解答】解:(1)由题设知,X的可能取值为10,5,2,﹣3,且P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,P(X=2)=0.8×0.1=0.08,P(X=﹣3)=0.2×0.1=0.02.4﹣n件.由题设知4n﹣(4﹣n)≥10,解得,又n∈N,得n=3,或n=4.所求概率为P=C43×0.83×0.2+0.84=0.8192答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.【点评】本题考查离散型随机变量的分布列和期望,考查相互独立事件同时发生的概率,考查独立重复试验的概率公式,考查互斥事件的概率,是一个基础题,这种题目可以作为高考题的解答题目出现.23.(10分)(2010•江苏)已知△ABC的三边长都是有理数.(1)求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.【考点】余弦定理的应用;数学归纳法.【专题】解三角形.【分析】(1)设出三边为a,b,c,根据三者为有理数可推断出b2+c2﹣a2是有理数,b2+c2﹣a2是有理数,进而根据有理数集对于除法的具有封闭性推断出也为有理数,根据余弦定理可知=cosA,进而可知cosA是有理数.(2)先看当n=1时,根据(1)中的结论可知cosA是有理数,当n=2时,根据余弦的二倍角推断出cos2A也是有理数,再假设n≥k(k≥2)时,结论成立,进而可知coskA、cos(k ﹣1)A均是有理数,用余弦的两角和公式分别求得cos(k+1)A,根据cosA,coskA,cos (k﹣1)A均是有理数推断出cosA,coskA,cos(k﹣1)A,即n=k+1时成立.最后综合原式得证.【解答】解:(1)证明:设三边长分别为a,b,c,,∵a,b,c是有理数,b2+c2﹣a2是有理数,分母2bc为正有理数,又有理数集对于除法的具有封闭性,∴必为有理数,∴cosA是有理数.(2)①当n=1时,显然cosA是有理数;当n=2时,∵cos2A=2cos2A﹣1,因为cosA是有理数,∴cos2A也是有理数;②假设当n=k(k≥2)时,结论成立,即coskA、cos(k﹣1)A均是有理数.当n=k+1时,cos(k+1)A=coskAcosA﹣sinkAsinA,,,解得:cos(k+1)A=2coskAcosA﹣cos(k﹣1)A∵cosA,coskA,cos(k﹣1)A均是有理数,∴2coskAcosA﹣cos(k﹣1)A是有理数,∴cosA,coskA,cos(k﹣1)A均是有理数.即当n=k+1时,结论成立.综上所述,对于任意正整数n,cosnA是有理数.【点评】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.。
历年江苏高考数学试卷(1999-2012)(含详细答案)
f x M, f b M, 则函数 gx M cosx 在a, b上
()
(A) 是增函数
(B) 是减函数
(C) 可以取得最大值 M
(D) 可以取得最小值 M
5.若 f xsin x 是周期为 的奇函数,则 f x可以是
()
(A) sin x
(B) cos x
(C) sin 2x
(D) cos 2x
DO 2 a, AC 2a, EO 2 a sec 45 a.
2
2
故 SEAC
2 a2. 2
II. 解:由题设 ABCD A1B1C1D1 是正四棱柱,得 A1 A ⊥底面 AC, A1 A ⊥AC,
又 A1 A ⊥ A1B1,
所以 A1 A 是异面直线 A1B1 与 AC 间的公垂线.
新疆 王新敞
奎屯
三、解答题:本大题共 6 小题;共 74 分,解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分 10 分)
解不等式 3loga x 2 2 loga x 1 a 0, a 1
20.(本小题满分 12 分)
设复数 z 3cos i 2sin. 求函数 y arg z0 的最大值以及对应的
x
a.
20.本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所
学数学知识解决问题的能力.
解:由 0 得 tg 0.
2
由 z 3cos i2sin 得 0 arg z 及
2
tgarg z 2 sin 2 tg.
3 cos 3
故
tgy tg arg z
2 loga x 1 0.
② ③
由①得 loga
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年江苏高考数学试题及答案
2
2011年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
(1)样本数据1
2
,,,n
x x x …的方差
()2
2
1
1n i i s x x n ==-∑,其中
1
1n
i
i x x n ==∑.
(2)直棱柱的侧面积S ch =,其中c 为底面周长,h 为高.
(3)棱柱的体积V Sh =,其中S 为底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....
位置上...
. 1.已知集合{1,1,2,4}A =-,{1,0,2}B =-,则A B =
▲ .
2.函数)12(log )(5
+=x x f 的单调增区间是 ▲ .
3
4
9.函数()sin()f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>)
的部分图象如图所示,则(0)f 的值是 ▲ . 10.已知1
e ,2
e 是夹角为π3
2的两个单位向量,12
2a e e =-,1
2
b ke e =+,若0a b ⋅=,则实数k 的值为
▲ .
11.已知实数0≠a ,函数⎩
⎨
⎧≥--<+=1
,21,2)(x a x x a x x f ,若)
1()1(a f a f +=-,则a 的值为
▲ .
12.在平面直角坐标系xOy 中,已知点P 是函数
)
0()(>=x e x f x 的图象上的动点,该图象在P 处的
切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是 ▲ . 13.设1
2
7
1a a
a =≤≤≤…,其中7
5
3
1
,,,a a a a 成公比为q 的等比
数列,6
4
2
,,a a a 成公差为1的等差数列,则q 的
5
最小值是 ▲ . 14.设集合{(,)|A x y =2
22
(2)
2
m x y m ≤-+≤,},x y R ∈,
{(,)|B x y =2m x y ≤+≤21
m +,},x y R ∈,若A B ≠∅
, 则实
数m 的取值范围是 ▲ . 二、解答题:本大题共6小题,共计90分.请
在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为c b a ,,.
(1)若sin()2cos 6A A π+=,求A 的值;(2)若1
cos 3
A =,3b c =,求C sin 的值.
16.(本小题满分14分)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,
AB AD
=,60BAD ∠=,,E F 分别是,AP AD 的中
点.求证:(1)直线//EF 平面PCD ;(2)平面BEF ⊥
P
E
F
A
B C
平面PAD.
17.(本小题满分14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x (cm).(1)某广告商要求包装盒的侧面积S (cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
6
7
第 7 页 共 12 页
18.(本小题满分16分)如图,在平面直角坐标
系xOy 中,,M N 分别是椭圆12
42
2
=+y
x 的
顶点,过坐标原点的直线交椭圆于
,P A
两点,其中点P 在第一象限,过
P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭
圆于点B .设直线PA 的斜率为k .(1)当直线PA 平分线段MN ,求k 的值;(2)当2k =时,求点P 到直线AB 的距离d ;
(3)对任意0k >,求证:PA PB ⊥.
P
8
19.(本小题满分16分)已知,a b 是实数,函数
3()f x x ax
=+,2
()g x x
bx
=+,)(x f '和)(x g '是()f x 和()g x 的导函
数.若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致.(1)设0>a ,若)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设0a <且b a ≠,若)(x f 和)(x g 在以,a b 为端点的开区间上单调性一致,求||a b -的最大值.
20.(本小题满分16分)
设M 为部分正整数组成的集合,数列}{n
a 的首
项1
1
=a
,前n 项的和为n
S ,已知对任意整数
k M
∈,当n k >时,)
(2k n k n k
n S S S S
+=+-+都成立.
(1)设{1}M =,2
2
=a
,求5a 的值;
(2)设{3,4}M =,求数列}{n
a 的通项公式.
9
10
11
12。