人教版中职数学教案-第十章--概率与统计初步[8份教案]

合集下载

人教版初中数学概率与统计教案2023

人教版初中数学概率与统计教案2023

人教版初中数学概率与统计教案2023第一章概率一、知识点概述概率是数学中的一个重要概念,它用于描述事件发生的可能性大小。

在生活中,我们经常会遇到各种各样的事件,比如掷骰子的结果、扔硬币的正反面等。

在本章中,我们将学习如何通过数学的方法,计算事件发生的概率。

二、教学目标1. 了解概率的基本概念和性质;2. 掌握事件发生概率的计算方法;3. 运用概率的知识解决实际问题。

三、教学重点1. 掌握概率的基本概念及其计算方法;2. 运用概率解决实际问题。

四、教学难点如何灵活运用概率的知识解决实际问题。

五、教学内容及活动安排1. 课前导入(5分钟)通过对学生身边发生的事件进行提问,引导学生思考事件发生的规律,并了解他们对概率的理解。

2. 讲授概念和性质(10分钟)通过示意图和具体例子,讲解概率的基本概念和性质。

帮助学生建立正确的概率概念,并理解概率是一个介于0和1之间的值。

3. 实例分析与计算(15分钟)选取生活中常见的事件,如抛硬币、掷骰子等,引导学生通过列出样本空间和事件空间,计算事件发生的概率。

4. 练习与巩固(15分钟)针对不同难度的问题,设计练习题目,让学生运用所学的概率计算方法,巩固掌握。

5. 拓展练习(10分钟)给出一些较为复杂的问题,引导学生进一步运用所学的概率知识,解决实际问题。

6. 概念总结(5分钟)总结本节课的重点内容,并与学生一起回顾所学的知识点和解题方法。

7. 作业布置(5分钟)布置一些与课堂内容相关的作业,巩固学生对概率和统计的理解。

六、板书设计概率- 基本概念和性质- 事件发生的概率计算方法七、教学反思本节课通过生动的示意图和具体的例子,帮助学生建立了正确的概率概念,并掌握了事件发生概率的计算方法。

通过练习和实际问题的解决,培养了学生解决实际问题的能力。

但在布置作业时,需要注意题目的难度适宜,以确保学生能够独立完成。

同时,还可以引导学生运用概率知识解决更复杂的问题,提高他们的思维能力和创新意识。

中职数学(基础模块上册 语文版)教学分析:第十单元 概率与统计初步

中职数学(基础模块上册 语文版)教学分析:第十单元 概率与统计初步

第十单元概率与统计初步一教学要求1.掌握分类计数原理和分步计数原理.2.理解随机事件,频率和概率的概念.3.理解概率的简单性质.4.了解直方图与频率分布的概念.5.了解总体与样本的概念.6.了解样本的抽样方法.7.理解均值标准差的概念;会用样本均值、标准差估计总体均值、标准差.8.了解相关关系及一元线性回归分析.9.培养学生的计算工具使用技能,数据处理技能和分析与解决问题能力.二教材分析和教学建议(一)编写思路1.由浅入深,强调基础概率与统计这部分知识,对于中职的学生来讲,无论是在概念、公式的含义上,还是在解题的思路上,都有一定难度,由于他们的数学基础水平低,学习起来困难会多一些.但是概率统计作为应用知识的一部分,更是一种重要的思想方法,一种思维方式,是他们应该学习和了解的.因此,本单元概率与统计初步在编写中,遵照大纲精神,选择了概率统计中最基础最重要的知识,由浅入深,多讲实例,淡化理论,强调理解与应用.在概率部分,只介绍了随机事件和频率的概念;给出了概率的统计定义和概率的简单性质;在统计方面,则在复习初中学过的简单统计知识的基础上,只介绍了样本的概念与抽样方法,用样本估计总体的方法.2.多讲实例,淡化理论为了降低难度,便于学生理解与掌握,教材中的概念大多是通过实例引入的,对于一些公式,则略去了推导与证明,只是作了一些必要的说明,如互斥事件的概率加法公式,相互独立事件的乘法公式等.在这里,教材都通过例题讲解了公式的使用方法,强调了对公式的直接应用.3.加强计算器及计算机相关软件的使用本单元中,样本的抽取,总体的频率分布,均值与标准差,用样本估计总体的均值与标准差,回归分析等部分由于涉及的一些计算比较复杂,都需要使用计算器或计算机相关软件,从而培养学生的计算工具的使用技能,数据表格处理技能及分析,解决问题能力.教材在各相应部分安排了应用计算器和计算机相关软件解题的内容.4.重点与难点本单元的重点概念是:随机事件,频率,概率,总体,个体,样本,频率分布,均值,标准差等.重要方法是:简单随机抽样的方法,用样本估计总体的方法,回归分析的方法.重要思想是:随机思想、统计思想.本单元的难点是:概率的概念,样本对总体的估计,回归分析,用概率统计知识解决实际问题.(二)课时分配本单元教学约需16课时,分配如下(仅供参考):10.1计数原理约2课时10.2随机事件与概率约2课时10.3概率的简单性质约2课时10.4直方图与频率分布约2课时10.5总体与样本约1课时10.6抽样方法约1课时10.7均值与标准差约2课时10.8用样本估计总体约1课时10.9一元性回归约1课时归纳与总结约2课时(三)内容分析与教学建议10.1计数原理1.教材通过对两个具体实例进行分析,引进了分类计数的加法原理和分类计数的乘法原理.实际上这两个原理本身就是人们通过大量实践经验归纳抽象出来的,因此称为“基本原理”.在本单元中,它们是概率统计计算的依据.2.教学时,在给出原理之前,一定要使学生获得必要的感性认识,对引例要讲得清晰明确.(1)叙述和讲解例题时,要准确使用分类及分步等术语;(2)将分类及分步的具体内容列举出来;(3)讲过加法原理之后,在讲乘法原理的引例的时候,一定要和加法原理的引例加以比较,突出它们的区别;(4)让学生直接参与基本原理的引入,除了解答教材中提出的问题外,还可以让学生自己举出一些类似实例,以使学生由被动接受变为主动思考,然后由师生一起归纳出基本原理.3.两个原理都讨论“做一件事”,确定“完成这件事所有的不同方法的种数”但这里所指的“做一件事”是一个比较抽象的概念,它不同于学生在小学、初中解应用题时遇到的“做一件工作”、“完成一项工程”等,其含义比这要广泛得多,讲解例题时,要着重说明该题的“做一件事”究竟指的是什么.例如:(1)从甲地到乙地;(2)从甲地经乙地到丙地;(3)从三个班中任选一名三好学生;(4)从三个班中各选一名三好学生;(5)由5个数字组成没有重复数字的两位偶数.这些都是原理中所说的“做一件事”.明确了什么叫“做一件事”,才能去分析完成这件事可以采取什么方法,是分类还是分步,从而确定该题是使用分类计数的加法原理还是分类计数的乘法原理.4.教材明确指出了两个基本原理的区别,这在教学中要结合实例加以阐述和强调,同时要注意:(1)“做一件事,完成它可以有n类方式”,这里是对完成这件事的所有方式的一个分类.分类时,首先要根据问题的特点确定一个分类的标准,然后在这个确定的标准下进行分类.标准不同,分类的结果就不同.其次,分类应满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同类的两种方法都是不同的方法,只有满足这些条件,才能正确使用分类计数的加法原理.(2)“做一件事,完成它需要分成n个步骤”,这里是指完成这件事的任何一种方法,都要分成n步执行.和分类计数的加法原理一样,分步时,首先要根据问题的特点确定一个分步的标准,然后在这个确定的标准下进行分步.标准不同,分成的步骤数也可以不同.一个合理的分步还必须满足两个要求:第一,完成这件事必须而且只需连续完成这n步.这就是说,分别选自这n个步骤的n个方法,对应了完成这件事的一种做法;第二,做每一个步骤时,选用的方法和做上一个步骤时选用的方法是无关的,并且每一个步骤的完成方法种数正好是完成这个步骤所有方法的种数.只有满足这些条件,才能正确使用分步计数的乘法原理.5.例题的教学,要紧密联系基本原理,有意识地培养学生从两个基本原理出发思考问题的习惯.简单的问题,可以单独使用分类计数的加法原理或分类计数的乘法原理,有些问题常常同时要用到两个基本原理或可以分别用两个原理去做.稍复杂一些的问题,在具体“分类”和“分步”时,学生常常感到困难,因此需要多多练习,不断积累经验,逐步做到恰当分类,合理分步.10.2随机事件与概率1.本节内容包括随机现象,随机试验,随机事件,频率等基本概念及概率的统计定义.2.通过观察几个例子,教材接连给出了随机现象,随机试验,随机事件这三个概念,它们之间虽然没有概念的种属关系,但彼此是有关联的,都是在前一个概念的基础上,定义后面的概念,接下来与事件有关的概念也是这样给的,这种给出的形式密度虽显稍大,但是学生并不难理解,反而会感到前后关联,容易接受.为了便于学生理清层次,可给出下面的链式:现象→随机现象→随机试验→随机事件(含必然事件和不可能事件)→基本事件→复合事件.为了使学生更好地理解这些概念,教师可根据实际,多举一些例子.其中搞清基本事件的个数是个难点,教学中应注意培养学生这方面的能力.3.研究随机现象的规律性是通过随机试验进行的.关于随机试验,有如下严格的定义:(1)试验在相同条件下,可以重复进行;(2)每次试验的结果不止一个,而且所有可能结果事先都是明确的;(3)每次试验在其最终结果揭晓前,无法预言会发生哪一个结果.4.随机事件在一次试验中是否发生,不能事先确定,但是在大量重复试验的情况下,它的发生会呈现出一定的规律性,怎样观察和发现这种规律性呢?这种规律性是通过什么体现出来呢?通过观察事件在大量重复试验中所发生的频率,可以发现这种规律.频率是这样一个量,即该事件发生的次数与试验总次数的比值,频率随试验次数的不同而不同.这一点通过教材中的例子可以清楚地反映出来.5.频率具有稳定性.这种稳定性把随机事件发生的可能性大小客观地反映出来,利用这种稳定性,教材给出了概率的统计定义.可以认为概率是频率在理论上的期望值.例如,对一批零件进行抽查计算,得出这批零件合格品的概率是98%,那么,如果将这批零件全部装箱,其中每箱装1000个,那么可以估计平均每箱含有合格品980个,这是箱中含有合格品数的理论上的期望值.但在实际情况中,每箱的合格品数可能略多于980个也可能略少于980个.6.对于必然事件,因为每次试验中它一定发生,试验重复进行n次,它也发生n次,因此它的频率总是1;对于不可能事件,因为每次试验中它一定不发生,试验重复进行n次,它发生的次数应是0,因此它的频率总是0.7.概率的统计定义实质是给出了概率的近似值,用抛掷硬币这个传统,经典的试验,说明一个事件的频率稳定在它的概率左右,是多数教科书的编者所采取的方法,这个试验简单,做起来方便,不需要什么成本,任何人随时随地都可以做,所以教学中教师也不妨让学生做一做,亲自试验体验一下.8.事件的频率和事件的概率是两个不同的概念,随机事件的频率与试验次数有关的一个相对数量,是随着试验的不同而不同.而事件的概率反映的是随机事件的某种本质属性,是与试验次数无关而客观存在的一个确定的数.频率是概率的表现形式,概率决定着频率的变化趋势,概率才是随机现象的本质属性.9.本节教学内容的重点是随机事件等有关概念和概率的统计定义,频率的计算,概率的确定.难点是搞清基本事件的个数,确定某事件的概率及分析概率问题的思想方法,解题思路.概率问题的思考方法,学生接受起来比较困难,为此,应加强概念教学,加强对容易混淆的概念的区别与比较,来加深学生对有关概念的理解.10.3概率的简单性质1.本节内容包括概率的四个简单性质:(1)必然事件的概率等于1,不可能事件的概率等于0;(2)对于任何事件A,有0≤P(A)≤1;(3)如果A,B是互斥事件,那么P(A+B)=P(A)+P(B);(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).2.由于必然事件的频率总是1,所以它的概率等于1,由于不可能事件的频率总是0,所以它的概率等于0;根据,0≤W(A)≤1,不难得到0≤P(A)≤1,这里的事件A显然是随机事件、必然事件、不可能事件三者的统称.3.性质(3)是互斥事件的概率加法公式.互斥事件是指在一次随机试验中,不可能同时发生的两个事件,在众多事件中,辨认、识别互斥事件,举出互斥事件和非互斥事件的例子,是使学生理解并掌握这一概念的方法.教师可以学生熟悉的实例,让学生多做一些这样的练习.所谓“A+B”事件,是指在同一试验中,A或B中有一个发生它就发生的事件.教材中提到的“A或B中至少有一个发生”的事件就是指“A+B”事件.实际上,对于“A+B”事件,不论A与B是不是互斥事件,总是存在的.互斥事件的概率加法公式,教材是直接给出的,没有加以证明,教材主要是要求学生能理解其含义,掌握其使用条件,会用来计算即可.例1是互斥事件的概率加法公式的直接应用.4.对立事件是互斥事件的一部分,即其中必有一个发生的两个互斥事件叫做对立事件.这就告诉我们,对立事件首先是互斥事件,但互斥事件不都是对立事件,只有那些必有一个发生的两个互斥事件才叫做对立事件.教材给出了对立事件计算公式的一个简单证明,只需学生了解即可,例2是对立事件计算公式的直接应用.5.教材借助于实例给出了相互独立事件的描述性定义,要确切地表示它,需要涉及条件概率的概念,但是本教材没有出现条件概率的概念,因此,为了让学生能正确理解两个事件的相互独立关系,可以让学生自己举一些相互独立事件的例子,共同分析相互独立的两个事件中“一个事件的发生与否对另一个事件发生的概率没有影响”这一特征.同时要将“相互独立”与“互斥”两个概念加以区别,让他们在对比中理解和掌握相互独立这一概念.6.如果事件A与B是相互独立的,那么事件A与B,A与B,A与B也相互独立.这一性质很重要,例4,例5就应用了这个性质,从而使计算得到了简化.讲解时应加以强调,以引起学生重视.7.本节教材重点是互斥、对立及相互独立事件的概念及有关计算,难点是三种事件关系的区别.10.4直方图与频率分布1.本节的内容是直方图与频率分布及学习用样本频率分布来估计总体频率分布的方法、步骤.2.在获取了样本资料以后,要对样本数据进行整理.先根据样本资料列频率分布表,再画频率分布直方图,这是由样本估计总体分布的基本方法.这从理论上讲并不难,只是具体操作起来比较麻烦,教学中应结合例题把列频率分布表和画频率分布直方图的步骤、要领讲清,要让学生自己动手,通过实际操作掌握方法,要让学生知道,对样本数据的整理是统计工作的基本功,尽管麻烦但很重要,因此要多加练习,培养自己认真细致的实战作风,从而提高计算能力,提高工作能力.3.频率分布表可以清楚地反映样本数据的分布规律,列这个表需要四个步骤,即:(1)计算极差;(2)决定组距与组数;(3)确定各组分点;(4)列频率分布表.前三步是对数据的整理,决定组距与组数需要根据具体情况灵活处理,第四步列频率分布表时,需要依次计算各个频率,计算量大些,要仔细耐心,算完之后可以将所有的频率相加看是否得1,以进行检验.完成这四步之后,可以利用其结果,画频率分布直方图.4.频率分布直方图可以将频率分布表中反映出来的规律直观形象地表示出来.画频率分布直方图之前需要建立一个坐标系,横轴表示数据,将各组数据的分点标在横轴上;纵轴表示频率与组距的比值.各个小长方形的面积等于相应各组的频率,这样频率分布直方图就以图形的面积形式反映了数据落在各个小组内的频率大小.在频率分布直方图中,由于各小长方形的面积等于相应各组的频率,而各组频率的和等于1,因此各小长方形的面积的和等于1.5.利用Excel表格做直方图,培养学生数据处理能力是大纲明确提出的要求,为了便于学生掌握,教材给出了具体步骤,可让学生按照步骤来操作.6.本节教学的重点是频率分布表,频率分布直方图的绘制;难点是样本数据的整理.10.5总体与样本1.本节的内容是复习总体与样本的概念.2.关于总体与个体,不是笼统地指总体与个体本身,而是指总体与个体的某一数量指标,例如:灯泡的使用寿命,玉米的产量,学生的身高等.因此总体可以看做是某些数据的集合.3.样本是总体这个集合的一个子集.它由总体中的一部分个体组成,这部分个体的数量叫做样本的容量.4.本节教学的重点是掌握总体与样本的概念,理解二者之间的关系.10.6抽样方法1.本节的内容是样本抽取的三种方法:简单随机抽样法,系统抽样法,分层抽样法.2.在讲解每一种抽样方法时,应结合具体问题进行演示与讲解,首先要讲清简单随机抽样,系统抽样,分层抽样三种抽样方法的原理与步骤,并通过对具体问题的解决让学生进3. 统计的基本思想方法是用样本估计总体,即用局部推断整体,这就要求样本应具有良好的代表性,而这完全取决于抽样方法的客观合理性.可见,抽样是选取样本的基础,样本的选取是否恰当,对于研究总体是十分关键的.因此在教学中,要提高对抽样方法重要性的认识.4.本节只讲了具体的抽取方法,关于如何确定样本容量的内容,由于大纲没有涉及,所以本教材也没有做定量的介绍,样本容量的大小,一般取决于下面几个因素:(1)总体中每个个体的差异较大,样本容量就要大些;(2)抽样调查的力量大(人员多,财力强,时间长等),则应要求较小的误差,反之则可允许较大的误差,而误差的大小决定或影响着样本容量的大小;(3)对抽样调查结果愿意承担较小的风险,则应加大样本容量,反之则可适当减少样本容量;(4)在其他条件相似的条件下,不同的抽样方法也可影响到样本容量的大小.5.还应该提出的是,完全随机的样本,在现实中是很少的,因为每一次抽取总是要直接或间接地通过人的判断来执行.也就是说,随机抽样只是一种理想的情况,况且在实际问题中,有时考虑到一些具体因素(例如抽样的代价),也可能有意识的不采用随机抽样的方法.由样本推断总体必然会有误差,但是这种误差是我们可以掌握的,我们可以通过概率论和数理统计的理论和方法,对这些误差进行估计和适当的控制.6.本节教学的重点和难点是对三种抽样方法的掌握.10.7 均值与标准差1.本节的内容是均值与标准差的意义及计算方法.2.上一节给出了用样本频率分布来估计总体频率分布的方法,可以使我们对总体的统计规律有一个直观,完整的了解,但在很多情况下,我们并不需要知道总体的分布状况,而只需要知道它的某些特征就够了,例如,在测量某零件的长度时,由于种种偶然因素的影响,零件长度的测量值每次测量不尽相同,是一个随机变量,一般我们只关心这一零件的平均测量长度及测量结果的精确度,即要求知道测量长度的平均值与离散程度.又如,对一个射手的射击技术的评定,除了根据他多次射击的平均命中环数之外,还要看他各次射击命中的环数与平均命中环数的偏差(也就是射击的散布程度)大不大,偏差越大,表明射击命中点越分散,射击的技术越不稳定.由这些例子可以看出,我们引进一些用来表示平均值和衡量离散程度的量,这些量能够刻画随机变量的主要性质,我们称之为随机变量的数字特征,其中最重要的是均值与标准差.数字特征及其运算在概率统计中起着重要作用,利用它们可以使许多问题的解决大大简化.3.对于均值的计算,教材给出了两种情况及两个计算公式,它们是:x =1n (x 1+x 2+…+x n )=1n ∑i =1n x i ; x =x 1·f 1n +x 2·f 2n +…+x k ·f k n =∑i =1k x i ·f i n. 教学中,要让学生能根据不同情况选择不同的公式.4.对于标准差的概念,本节只是明确了它的意义,即“它可以用来衡量一组数据的波动大小,标准差越大,说明这组数据波动越大”.因此本节主要强调标准差的计算及两组标准差大小的比较.5.本节教学的重点和难点是均值与标准差的计算.10.8 用样本估计总体1.本节内容是对总体均值与标准差的估计.2.用样本的均值x 估计总体均值和用样本的标准差估计总体标准差都属于无偏估计. 所谓“无偏估计”就是使估计量符合下面三个标准:(1)无偏性.设θ^(x 1,x 2,…,x n )是总体中某参数θ的估计量,若E (θ^)=θ,则称θ^是θ的无偏估计量.我们用x =1n ∑i =1n x i 去估计总体均值E (x )=m ,因为 E (x )=E ⎝ ⎛⎭⎪⎪⎫1n ∑i =1n x i =1n ∑i =1n E (x i )=1n ·n ·m =m . 所以估计量x 是满足无偏性的.同样用样本标准差S 去估计总体标准差也具有无偏性.(2)有效性.设θ^1与θ^2都是θ的无偏估计量,若D (θ^1)<D (θ^2),则称θ1比θ2更有效.用x 和S 来估计总体的均值和标准差比其他估计量更有效.(3)一致性.我们希望,当n 越来越大,n →∞时,估计量θ^对θ的估计越精确,越一致.如果P (||θ^ (n)-θ<ε=1,则称θ^(n )是θ的一致估计量,可以证明,样本均值x 是总体均值的一致估计量,S 也是总体标准差的一致估计量.关于无偏估计的概念不必告诉学生.3.计算均值与标准差可以利用计算器和计算软件,这样可以使繁杂的计算变得简单.4.本节教学内容的重点和难点是对总体均值与标准差的无偏估计. 10.9 一元线性回归1.本节内容是一元线性回归方程的建立.2.变量之间的关系,有一种是确定性关系,如正方形的面积S 与边长x 之间的关系S =x 2就是确定性关系; 圆的周长C 与圆的半径r 之间的关系C =2πr 也是确定性关系.变量之间除了具有确定性关系之外,还存在一种非确定性关系——相关关系.例如施肥量与亩产量之间虽然不能确定出准确的函数关系式,但它们之间却具有相关性;又如,高中毕业生毕业考试成绩与高考成绩,虽然不具有确定性关系,即二者之间不可能建立精确的函数表达式,但它们的关系也非常密切,一般来说,毕业成绩好的学生高考成绩也比较好.具有相关关系的变量之间,存在着一定的统计规律性,线性回归就是研究这种规律的手段之一.3.观察散点图是求回归直线方程前非常重要的步骤.如果所有的散点大体上散布在某一条直线附近,就可以认为y 对x 的回归函数类型为直线型.通过观察散点图,可以画出不止一条直线,那么,其中哪一条直线最能代表变量y 与x 的关系呢?为了不涉及更多的线性相关的知识,可以认为在整体上与这几个点最接近的一条直线,就是所求的直线,并设为y ^=a +bx ,此处应提醒学生这个解析式不同于一次函数解析式的表示方法.4.再由y ^=a +bx 得到y ^=a ^+b ^x 时,教材没有给出a ^,b ^的求解过程,只是说“利用微积分的知识可以算得,当a ^,b ^为下列值时,所得回归直线最好” ,然后就是结论:a ^=y -b ^x ,b ^=S xy S xx, 其中,x =1n ∑i =1n x i ,y =1n ∑i =1n y i , S xy =∑i =1nx i y i -n xy ,S xy =∑i =1n x 2i -n x 2.这里,只要求学生会用这些公式计算,求出a ^,b ^即可.对于这些较复杂的计算,还是训练学生使用计算器和计算软件计算为好.5.教学中应告诉学生,回归方程y ^=a ^+b ^x 与具有函数关系的直线方程y =a +bx 不同.满足函数关系y =a +bx 的任意一点(x i ,y i )一定落在直线y =a +bx 上,而有相关关系的两个变量的任一观测点(x i ,y i )都不能保证严格地落在直线y ^=a ^+b ^x 上.6. 本节教学内容的重点是一元线性回归方程的建立,难点是方程系数a ^,b ^的计算.(四)复习建议1.学完全单元之后,学生需要对全章知识要点有一个清楚的了解,教材以填空题的形式对全单元内容作了归纳与总结,目的是让学生参加归纳与总结的过程,以达到复习的效果.2.本单元从知识结构上分为三部分:计数原理、概率与统计.计数原理部分分别介绍了分类计数的加法原理和分步计数的乘法原理;概率部分在介绍了随机事件,随机试验,基本事件,频率等基本概念之后给出了概率的统计定义,并安排了概率的简单性质等内容;统计部分在复习了总体,个体,样本等概念之后,介绍了抽取样本的三种方法,在用样本推断总体方面,给出了用样本频率分布推断总体频率分布的频率分布直方图,用样本均值推断总体均值,用样本标准差推断总体标准差的估计,最后简单介绍了相关关系及回归分析.3.在本单元的复习中,应结合专业,加强实践,做到理论能联系实际.例如:关于抽取样本的内容比较繁琐,实际操作上有许多程序,写下来颇费纸张,这部分复习时,就应以实践为主,可以找一个学生熟悉的例子,用适当的方法搞一次抽样调查,在实践中,教师和学生共同总结这部分内容.4.在本单元的复习中,应加强计算器和计算软件的使用教学,在“归纳与总结”中,特意安排了一个计算器和计算软件使用的例题,目的是希望教师能在复习中集中指导 一下计算器和计算软件的使用,提高学生使用计算工具和数据处理的能力.。

概率统计教案

概率统计教案

概率统计教案现代教育教学注重培养学生综合素质和实际应用能力,而概率统计作为一门重要的数学学科,旨在帮助学生了解和运用概率统计知识解决实际问题。

为了更好地教授概率统计知识,设计一份全面系统的概率统计教案至关重要。

一、课程背景与目的概率统计教学通常作为高中数学课程的一部分,旨在培养学生的逻辑思维能力和数学分析能力。

通过学习概率统计,学生可以掌握事件发生的可能性、数据的收集与分析方法等,为日后的学习和工作打下坚实的基础。

二、教学内容与安排1. 概率的基本概念- 事件、样本空间、概率的定义和性质等2. 随机变量与概率分布- 随机变量的定义、离散型随机变量、连续型随机变量等3. 统计参数估计- 样本、总体、点估计、区间估计等4. 假设检验- 假设检验的基本原理、检验类型、显著性水平等5. 实际问题应用- 实际问题的建模、数据收集与处理、概率统计方法的应用等三、教学方法与手段1. 讲授与示范- 通过课堂讲授和案例示范,向学生介绍概率统计知识点,激发学生学习兴趣。

2. 实践与演练- 安排实际问题的练习和案例分析,帮助学生巩固所学知识,提高解决问题的能力。

3. 互动与讨论- 鼓励学生之间的互动和讨论,促进学生彼此之间的学习和合作,共同进步。

四、评价与考核方式1. 平时成绩- 包括课堂表现、作业完成情况等2. 期中考试- 考察学生对概率统计知识的掌握程度3. 期末大作业- 鼓励学生独立完成一份概率统计实际问题的解决方案,综合应用所学知识。

五、教学反思与展望通过概率统计教案的设计与实施,可以促进学生对概率统计理论的深入理解和应用,提高学生的数学分析和逻辑推理能力。

未来的教学中,可以进一步加强案例教学的设计和实施,培养学生分析和解决问题的能力,使学生在实际生活中更好地应用概率统计知识。

以上是关于概率统计教案的一份设计方案,希望能够对教学工作者提供一定的参考帮助,促进概率统计教学水平的提高。

概率与统计初步教学设计方案

概率与统计初步教学设计方案

概率与统计初步项目内容师生互动设计意图时间分配教学过程报志愿引入课题设置情境:一名即将中考的中学生李振面临报志愿的问题。

从8所高中里选2所填报第一志愿,再选2所填报第2志愿,请问:“共有多少种填报方法呢?”志愿学校代码学校名称第一志愿第二志愿通过学生的生活经历引出问题。

激发学生的学习兴趣,让学生带着问题进课堂,激发学生求知欲。

4分钟一分析出 发,去 上 学 形 成 原 理 ①续设情境:“中考后默默等待的他在独自彷徨,这时幸运地收到了我们职业学校的录取通知书,要计划上学路线,通过查询他得知从家到学校每天大巴有2班,中巴有3班,那请你帮李振算一下一天中从家到学校共有多少种不同的选择呢?”假使一天中还有依维柯2班,那么从家到学校有多少种不同的选择?你能把表格填起来吗?问 题 剖 析(1)(2) 他要完成一件什么事?完成这件事有几类办法?每类办法中分别有几种不同的方法?每种方法能否独立完成这件事情?完成这件事共有多少种不同的方法?教师引导学生得出分类计数原理的定义:用视频调动起学生的积极性先引导同学们积极思考,然后鼓励同学们走上讲台,结合图形得出答案。

通过小组抢答的方式自然会得出答案。

师生共同举出生活中的相关实例。

采用角色扮演法,初步落实情感目标和能力目标。

完成了由个例到初步形成原理的过程,为最终形成概念做了铺垫。

4 分 钟5 分钟二 中巴1大巴2大巴1中巴3 中巴2上 学 路 上 去 探 亲 形 成 原 理 ②做一件事,完成它可以有n 类办法在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1十m 2十…十m n 种不同的方法.情境改编:正好路过C 市去看望一下外公外婆,明天再去学校”,通过查询得知“从家到C 市每天大巴有2班,C 市到学校每天中巴有3班,请帮李振设计一下从家到学校共有多少种不同的选择呢?你能再填一个表格吗?问 题 剖 析(2) (3)他要完成一件什事?完成这件事要分几步?通过上述情境问题,引导学生舍弃具体问题,抽象概括提炼出分类计数原理的定义。

《统计与概率》(教案)

《统计与概率》(教案)

《统计与概率》(教案)教学目标:1. 掌握“统计”和“概率”两个重要的数学概念。

2. 能够理解并运用基本的概率计算公式。

3. 放学后,学生能够利用所学知识在生活中运用。

教学重点:1. 让学生理解“统计”的概念及意义。

2. 让学生理解“概率”的概念及应用。

3. 帮助学生学会利用统计数据计算比例和百分数。

教学难点:1. 让学生学会如何运用概率计算公式进行概率计算。

2. 帮助学生分析和解决有关概率问题。

教学准备:1. 教师准备教材、教具和试题。

2. 学生准备课前预习。

教学过程:第一步:导入(1)教师把一个球放在桌子上,问学生这个球是不是红色的?(2)让学生看这个球的颜色,大家都知道这个球是红色的,这是怎么知道的呢?(3)教师告诉学生这就是统计的方法,我们通过对一些事物的观察来获取一些有用的信息。

(4)然后让学生自己举一些日常生活中的例子,说明一下什么是“统计”。

第二步:概念学习(1)讲解“统计”概念及其意义,帮助学生理解。

(2)讲解“概率”概念及其应用,帮助学生理解。

第三步:基本公式(1)讲解基本的概率计算公式,例如:P(A)=m/n ,其中m表示事件A发生的次数,n表示总的试验次数。

(2)然后引入一些相关概念,例如:a、互不排斥事件与互斥事件。

b、事件的概率越大,则其发生的可能性就越大。

(3)让学生自己举一些简单的例子,理解和掌握基本公式。

第四步:实践应用(1)设计一些实际问题来让学生运用所学知识。

(2)例如,一个班有50个人,其中男生占40%,女生占60%,那么男生有多少人?女生有多少人?(3)让学生自己手工制作一份问卷,然后统计回答的结果。

第五步:总结(1)老师让学生谈谈本节课学到了什么。

(2)总结本节课教学重点和难点。

(3)带领学生进行一次小测验,检测学生掌握程度。

教学反思:本节课把统计与概率进行了了解和学习,通过课堂讲解、练习、实践等多种方式,让学生掌握了基本的概率计算公式,培养了学生的判断力、统计分析能力和运算能力。

《统计与概率》教案

《统计与概率》教案

《统计与概率》教案《统计与概率》教案作为一位杰出的教职工,总归要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?下面是小编精心整理的《统计与概率》教案,希望对大家有所帮助。

《统计与概率》教案1教学目标:1.经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。

2.在运用统计知识解决实际问题的过程中,发展统计观念。

重点难点:发展统计观念。

教学准备:投影片。

教学过程:一、回顾与交流1.收集数据,统计表。

师:我们班要和六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?学生可能回答① 姓名、性别。

② 身高、体重。

③ 兴趣爱好。

(1)调查表。

为了清楚地记录你的情况,同学们设计了一种个人情况调查表。

姓名性别身高/cm 体重/kg最喜欢的学科最喜欢的'运动项目最喜欢的图书长大后最希望做的工作最喜欢的电视节目特长① 填一填。

② 用语言描述清楚还是表格记录清楚?(2)统计表。

为了帮助整理和分析全班的数据,同学们又设计了一种统计表。

你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。

2.统计图。

(1)你学过几种统计图?分别叫做什么统计图?各有什么特征?① 条形统计图。

特征:清楚表示出各科数量的多少。

② 折线统计图。

特征:清楚表示数量的增减变化情况。

③扇形统计图。

特征:清楚表示各种数量的占有率。

(2)教学例题。

①认真观察例题中的图表。

②指出各统计图的名称。

③从图中你能得到哪些信息?如:从扇形统计图看出,男、女生占全班人数的百分率;从条形统计图看出,男、女生分别喜欢运动项目的人数。

3.平均数、中位数和众数。

(1)什么是平均数?什么是中位数?什么是众数?(2)出示例题。

身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58人数 1 3 5 10 12 6 3体重/kg 30 33 36 39 42 45 48人数 2 4 5 12 10 4 3①在上面两组数据中,平均数、中位数和众数各是多少?如果在全班学生中任意抽取一人,体重在36千克及以下可能性大还是39千克及以上可能性大?a.找出中位数和众数。

教案概率初步(全章)

教案概率初步(全章)

教案概率初步(全章)教案内容:一、概率的定义与基础1.1 概率的定义:介绍概率的概念,描述随机事件的发生可能性。

1.2 样本空间与事件:解释样本空间的概念,举例说明。

介绍事件的类型,包括必然事件、不可能事件和随机事件。

1.3 概率的基本性质:讲解概率的基本性质,如概率的非负性、概率的和为1等。

1.4 条件概率与独立事件:介绍条件概率的概念,解释独立事件的含义,举例说明。

二、概率的计算方法2.1 排列组合:讲解排列组合的基本原理,包括排列和组合的计算方法。

2.2 古典概率计算:介绍古典概率的计算方法,举例说明。

2.3 几何概率计算:讲解几何概率的计算方法,举例说明。

2.4 概率的质量守恒:解释概率的质量守恒原理,即总概率为1。

三、概率分布3.1 概率质量函数:介绍概率质量函数的概念,解释概率分布的性质。

3.2 离散型随机变量:讲解离散型随机变量的概念,举例说明。

3.3 连续型随机变量:介绍连续型随机变量的概念,解释概率密度函数的含义。

3.4 随机变量的期望与方差:讲解随机变量的期望和方差的计算方四、概率论的应用4.1 抽样分布:介绍抽样分布的概念,解释中心极限定理的含义。

4.2 假设检验:讲解假设检验的基本原理,包括显著性水平和检验统计量的计算。

4.3 置信区间:解释置信区间的概念,讲解如何计算置信区间。

4.4 贝叶斯推断:介绍贝叶斯推断的基本原理,解释先验概率和后验概率的概念。

五、概率与统计软件的应用5.1 R软件简介:介绍R软件的功能和安装方法,讲解如何进行概率和统计分析。

5.2 概率分布的绘制:讲解如何使用R软件绘制概率分布图。

5.3 假设检验的实现:讲解如何使用R软件进行假设检验。

5.4 贝叶斯推断的实现:讲解如何使用R软件进行贝叶斯推断。

六、随机变量及其分布6.1 随机变量的概念:介绍随机变量的定义,区分离散随机变量和连续随机变量。

6.2 离散随机变量的概率分布:讲解离散随机变量的概率分布,包括几何分布、二项分布、泊松分布等。

人教版中职数学(基础模块)下册10.2《概率初步》

人教版中职数学(基础模块)下册10.2《概率初步》

10.2 概率初步
【教学目标】
1.正确理解古典概型的两个特点,掌握古典概率计算公式.
2.通过教学,发展学生类比、归纳、猜想等推理能力.
3.通过古典概率解决游戏问题,培养学生的数学应用能力以及科学的价值观与世界观.【教学重点】
古典概型特点,古典概率的计算公式以及简单应用.
【教学难点】
试验的基本事件个数n和随机事件包含基本事件的个数m.
【教学方法】
通过三个简单的例题让学生初步理解古典概型的特征,并由此引出样本空间和基本事件等诸多概念,教师紧扣这三个例题讲解各个概念,并由学生总结古典概率的计算公式.然后通过后面的例题巩固古典概率的求法.。

中职数学基础模块10.2概率初步教学设计教案人教版

中职数学基础模块10.2概率初步教学设计教案人教版

课时教学设计首页(试用)太原市教研科研中心研制第1页(总页)太原市教研科研中心研制第2页(总页)本事件数为m,我们就用巴来描述事件A出现n的可能性大小,并称它为事件A的概率•记作mP(A戸n •显然0< P(A)W 1,而且pg)= i, p(0)=o.练习教材P172习题5, 6.例4从含有两件正品a“a2和一件次品b i的三件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件中恰好有一件次品的概率.解样本空间是0={(a i,a2),(a i,b i),(a2,a i),(a2,b i),(b i ,a i),(b i,a2)},。

由6个基本事件组成.用A表示“取出的两件中,恰好有一件次品”这一事件,则A={ (a i,b i),(a2,b i),(b i,a i),(b i,a2)}事件A由4个基本事件组成.4 2因而P(A)= = 3.例5在例4中,把“每次取出后不放回” 这一条件换成“每次取出后放回”,其余不变,求取出的两件中恰好有一件次品的概率.解样本空间{(a i,a i), (a i,a2), (a i,b i),(a2,a i), @242), (a2,b i),(b i,a i),(b i,a2), (b i,b i)},。

由9个基本事件组成.用B表示“取出的两件中,恰好有一件次品”这一事件,贝UB={ (a i,b i),(a2,b i),(b i,a i),(b i,a2)}.事件B由4个基本事件组成.4因而P(B)= 9.小结:计算古典概率时,首先确定试验中样本空间重点讲清用列举法得出样本空间与随机事件中所包含的基本事件的个数,提醒学生列举时做到“不重不漏”.用简单的习题5强调p(A)=m以及概率值的范围.让学生明确“不放回”与“放回”的区别就在于“兀素能否重复”.与例4比较异同.第3页(总页)太原市教研科研中心研制太原市教研科研中心研制第4页(总页)课时教学设计尾页(试用)☆补充设计☆板书设计10.2概率初步1古典概型特点. 例题分析:随机试验:古典概型:样本空间:随机事件:基本事件:不可能事件:必然事件:古典概率:2 .古典概率的计算公式.作业设计教材P172习题第2〜4题教学后记太原市教研科研中心研制第5页(总页)。

人教版高中数学新教材必修第10章-概率-教辅教案

人教版高中数学新教材必修第10章-概率-教辅教案

要点释义
个非零实数,设事件 B:点 P 落在 x 轴上,则 B
= { ( - 9,0) ,( - 7,0) ,( - 5,0) ,( - 3,0) ,( - 1,
0) ,(2,0) ,( 4,0) ,( 6,0) ,( 8,0) } ,包含 9 个
样本点,也即 9 个基本事件.
答案 C
要点释义
1) 必然事件与不可能事件不具有随机
在实际应用时要注意.
三 事件的关系与运算
概念名称
定义
符号表示
Venn 图
如果事件 A 发生,则事件 B 一定发生,这
事件包含
时称事件 B 包含事件 A( 或称事件 A 包含
B⊇A( 或 A⊆B)
于事件 B)
相等事件
若 B⊇A 且 B⊆A,那么称事件 A 与事件 B
相等
A=B
若某事件发生当且仅当事件 A 或事件 B
5,6} 有 6 个样本点,是有限样本空间
二 随机事件及分类
名称
随机事件
基本事件
定义
若一个随机试验的样本空间为 Ω,则称 Ω 的
子集为随机事件,简称事件
对于随机试验 E:掷一个均匀的骰子并
只包含一个样本点的事件
记录每次掷出的点数:
Ω 作为自身的子集,包含了所有的样本点,
必然事件
在每次试验中总有一个样本点发生,所以事
合格产品中任意抽一件,测量其直径 d
C. 抛一枚硬币,观察是正面向上还是反
面向上
D. 某人射击中靶或不中靶
解析 对于选项 A,发芽与不发芽的概率
不一定相等,因此不是古典概型;对于选项 B,
概 率 第 10 章
直径 d 可能有无数种,即样本点有无限个,同

中职数学教学:第10章-概率与统计初步PPT课件

中职数学教学:第10章-概率与统计初步PPT课件
N 2 62 05 2 0 (种).
即共有520种选法.
-
9
运用知识 强化练习
1.书架上有7本数学书,6本语文书,4本英语书.如果从 书架上任取一本,共有多少种不同取法?
2.旅游中专1401班的同学分为三个小组,甲组有10人,乙组 有11人,丙组有9人.现要选派1人参加学校的技能竞赛活动,有多少种不 同的方法?
解 分成三个步骤,每个步骤投一封信,分别均有4种方法.
应用分步计数原理,投法共有
4446投入邮筒, 共有多少种投法?
-
12
理论升华 整体建构
说出分类计数原理和分步计数原理的区别?
分类计数原理的特点:各类办法间相互独立,各类办法中 的每种办法都能独立完成这件事(一步到位).
Nk1•k2• k • n(种).
上面的计数原理叫做分步计数原理.
-
7
巩固知识 典型例题
例1 三个袋子里分别装有9个红色球2,8个蓝色球和10个 白色球.任取出一个球,共有多少种取法?
解 取出一个球,可能是红色球、蓝色球或白色球. 第一类:取红色球,从9个红色球中任意取出一个,有 k 1 9 种方法; 第二类:取蓝色球,从8个蓝色球中任意取出一个,有 k 2 8 种方法; 第三类:取白色球,从10个白色球中任意取出一个,有 k3 10 种方法.
分步计数原理的特点:一步不能完成,依次完成各步才能 完成这件事(一步不到位).
确定适用分类计数原理还是分步计数原理的关键是判断能 否一次完成 .
-
13
自我反思 目标检测
双色球一等奖的概率?
(双色球玩法:从33个红球不重复选择6个球,从16个篮球选一个,都选中为一等奖)
-
14
10.2 概率

中职数学随机事件与概率》教案

中职数学随机事件与概率》教案

教学参考及教具(含多媒体教学设备): 《单招教学大纲》 、课件
授课执行情况及分析:
板书设计或授课提纲
1、三大现象
必然现象 随机现象 不可能现象
2、三大事件
必然事件 随机事件 不可能事件
§10.2 随机事件及概率
3.频率与概率
4.概率随机事件的概率 必然事件的概率 随机事件的概率 不可能事件的概率
教 学 内 容 、方 法 和 过 程
(1) 导体通电时发热; (2) 某人射击一次,中靶; (3) 抛一石块,下落; (4) 在常温下,焊锡融化; (5) 抛一枚硬币,正面朝上; (6) 在标准大气压下且温度大于 00 时,冰融化.
◆◆课堂学习 一、复习引入
1、复习加法原理和乘法原理
2、举例引入新课
二、课堂活动 【例 1】判断下列现象是确定性还是随机现象. (1)地球不停地转动; (2)木柴燃烧,产生能量; (3)在常温下,石头风化; (4)某人射击一次,中靶; (5)掷一枚硬币,出现正面; (6)在标准大气压下且温度低于 0℃时,雪融化.
【例 3】 在相同条件下对某种棉花种子进行发芽试验,结果如下表所 示: 每 批 试 验 粒 10 60 140 310 750 1600 2000 数 发芽的粒数 9 55 125 282 683 1369 1803 发芽的频率 求:(1)棉花种子发芽的频率;(2)棉花种子发芽的概率是多少?
南通工贸技师学院
D 是随机事件,E 是必然事件
关键
【 举一反三】 抛掷两枚骰子,下列哪些事件是必然事件?哪些不可能事件?哪些
是随机事件? A={两枚骰子点数之和等于 1} ;B={两枚骰子点数之和等于 3};C={两 枚骰子点数之和大于 12};D={两枚骰子都是 4 点};E={一枚骰子是 5 点,一枚骰子是 4 点}

《统计与概率》教案(精选12篇)

《统计与概率》教案(精选12篇)

《统计与概率》教案(精选12篇)《统计与概率》篇1一、教学目标1.知识与技能目标:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。

2.过程与方法目标:通过体验探索扇形统计图的特点和应用,发展学生推理能力,提升学生的抽象思维能力。

3.情感态度与价值观目标:在活动中体会数学的特点,了解数学的价值。

二、教学重难点重点:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。

难点:在活动中体会数学的特点,了解数学的价值。

三、教学过程(一)创设情境,激趣导入通过案例呈现扇形统计图运用的情境,导入课题。

(二)探究体验,构建新知1.学生动手实践:分析一个扇形统计图,说明从中可以获取什么信息。

2.引导抽象概括:设置小组讨论,探讨扇形统计图的特点和应用。

3.知识拓展延伸:通过进一步讨论不同扇形统计图的信息表现方式(三)课末总结,梳理提升1.学生自主总结,教师启发点拨重难点。

2.同学们今天有什么收获呢?3.扇形统计图的特点是什么呢?四、布置作业运用扇形统计图分析生活中的事件。

《统计与概率》教案篇2教学内容:教材P45~46例2、例3及练习十一第5、8题。

教学目标:知识与技能:让学生知道事件发生的可能性是有大小的。

过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。

情感、态度与价值观:培养学生的动手操作、归纳和判断能力。

教学重点:会比较两种结果事件的可能性大小。

教学难点:能根据可能性的大小逆向思考比较事件数量的多少。

教学方法:游戏教学法;自主探索、合作交流。

教学准备:多媒体、盒子、彩色棋子。

教学过程一、复习引入1.出示:(1)用合适的语言描述下面事件发生的可能性。

①太阳( )从东边落下。

②明天( )考试。

③冬天( )会下雪。

④掷一枚硬币( )正面朝上。

(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。

教学重点:集合的概念,集合的表示方法。

教学难点:理解集合的相等性和包含性。

教学准备:教材、黑板、粉笔。

教学过程:引入集合的概念,讲解集合的表示方法,举例说明。

1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。

教学重点:集合之间的关系,集合的并、交、补运算。

教学难点:理解集合的运算法则。

教学准备:教材、黑板、粉笔。

教学过程:讲解集合之间的关系,举例说明并、交、补运算。

二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。

教学重点:函数的概念,函数的表示方法。

教学难点:理解函数的定义域和值域。

教学准备:教材、黑板、粉笔。

教学过程:引入函数的概念,讲解函数的表示方法,举例说明。

2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。

教学重点:函数的性质,函数的单调性、奇偶性、周期性。

教学难点:理解函数的性质。

教学准备:教材、黑板、粉笔。

教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。

三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。

教学重点:实数的概念,实数的分类。

教学难点:理解实数的性质。

教学准备:教材、黑板、粉笔。

教学过程:引入实数的概念,讲解实数的分类,举例说明。

3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。

教学重点:不等式的解法,不等式的解法技巧。

教学难点:理解不等式的解法。

教学准备:教材、黑板、粉笔。

教学过程:讲解不等式的解法,举例说明解法技巧。

四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。

教学重点:点、线、面的关系,直线、平面的方程。

教学难点:理解点、线、面的关系。

中职数学基础模块下册第十单元《概率与统计初步》word教案

中职数学基础模块下册第十单元《概率与统计初步》word教案

第十单元概率与统计初步教学设计课题1 频率与概率【教学目标】1.了解什么是随机现象的统计规律性;2.理解频率与概率的概念;3.了解频率与概率两个概念之间的异同;4.培养学生参与试验的热情和动手实验的能力.【教学重点】频率与概率的概念.【教学难点】频率与概率的概念.【教学过程】(一)复习提问1.什么叫随机现象?2.什么叫随机试验?3.什么叫随机事件?(二)讲解新课1.随机现象的统计规律性随机现象具有不确定性,但是它的发生是否就无规律可言呢?人们通过长期研究发现,观察一、两次随机现象,它的结果确实无法预料,也看不出什么规律.对同类现象做大量重复观察后,往往可归纳出一定的规律.这种规律叫做统计规律性.2.两个随机试验(1(mn的值由同学算出) 历史上有很多数学家利用抛掷一枚均匀硬币的方法做试验,这是几个比较著名的试验结果.观察结论:尽管每轮试验次数各不相同,但出现正面的次数与试验次数的比值mn 却呈现一定的规律性,就是它总在0. 5上下波动.(mn的值由同学算出) 这是对某品种大豆进行发芽试验.观察结论:尽管每批试验的种子数不同,发芽数也有变化,但发芽率mn 却呈现一定的规律性,就是它总稳定在0. 9左右.3.频率一般地,我们把事件A 发生的次数与试验次数的比值mn,叫做事件A 发生的频率,记做W (A )=mn ,其中m 叫做事件A 发生的频数. 显然,0≤W (A )≤1. 4.概率在大量重复试验时,事件A 发生的频率mn 总是接近某个常数,并在其附近摆动.我们就称这个常数为事件A 的概率,记做P (A ).这就是概率的统计定义.概率刻划了事件A 发生的可能性的大小. 5.频率与概率的区别频率和概率是两个不同的概念,随机事件的频率与试验次数有关,而概率与试验次数无关,因为事件发生的可能性的大小是客观存在的.在实际应用中,当试验次数足够大时,常常用频率近似代替概率,例如产品的合格率,人口的出生率,射击的命中率等.6.例题例(1)计算表中各次击中靶心的频率;(2)这个射手射击一次,击中靶心的概率是多少?解:(1)利用W (A )=mn 计算,结果如下:0. 5,0. 45,0. 46,0. 51,0. 49,0. 494.(2)这个射手射击一次,击中靶心的概率是0. 5. 7.练习教材 练习1—3.(三)作业学生学习指导用书 10. 2 随机事件与概率(二) 【教学设计说明】本课时的教学内容是概率学的开篇与入门部分.教材在前一节学习了随机现象,随机事件等基本概念的基础上,从学习频率与概率的概念入手,通过频率与概率的概念的学习,使学生逐步认识随机现象的统计规律性.从而为概率论的进一步学习打下基础,基于此,本教案确定了明确的教学目标,即让学生在理解频率与概率的概念的基础上,了解什么是随机现象的统计规律性.为了调动了学生学习的积极性,激发了他们的学习热情,教案设计了诸多环节,让学生参与教学过程,以确保良好的教学效果.从教学目标中,可以清楚地看出本节课的重点与难点是频率与概率的概念本身,因此本教案围绕这一点设置了例题,练习及习题,层层分析与阐述这两个概念,以突出重点,化解难点.课题2 概率的简单性质(4)【教学目标】1.了解相互独立事件的概念; 2.了解概率的性质(4); 3.了解概率的性质(4)的应用.【教学重点】概率的性质(4).【教学难点】概率的性质(4)的应用.【教学过程】(一)复习提问1.前一节课学习的概率的三个性质是什么?2.什么样的两个事件是互斥事件?3.什么样的两个事件是对立事件?(二)讲解新课1.相互独立事件如果一个事件的发生与否对另一个事件发生与否没有影响,那么我们把这样的两个事件叫做相互独立事件.例如,甲,乙二人同时射击,甲是否击中目标对乙是否击中目标没有影响,同样,乙是否击中目标对甲是否击中目标也没有影响,这样,“甲击中目标”和“乙击中目标”这两个事件就是相互独立事件.两个事件是否相互独立事件,一般要根据问题本身的性质由经验来判断.2.两个事件同时发生我们把事件A与事件B同时发生,记做事件“A·B”发生.P(A·B)表示事件A与B 同时发生的概率.3.概率的性质(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).4.例题例甲,乙二人各进行一次射击,如果甲击中目标的概率是0. 6,乙击中目标的概率是0. 7,求二人都击中目标的概率.分析:甲,乙二人各进行一次射击,他们当中不管谁击中与否,对另一个人击中目标与否都没有影响.因此,可以断定“甲射击一次,击中目标”与“乙射击一次,击中目标”是两个相互独立事件,可以利用性质(4)求出它们同时发生的概率.解:记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“二人都击中目标”为事件A·B,由题意可知,事件A与B相互独立,所以P(A·B)=P(A)·P(B)=0. 6×0. 7=0. 42.答:二人都击中目标的概率为0. 42.5.如果事件A与事件B相互独立,那么事件A与B,A与B,A与B也相互独立.6.练习教材练习(三)作业学生学习指导用书10. 3 概率的简单性质(二)【教学设计说明】本教案是教材中“概率的简单性质”一节的第二课时的教案.为了对比教学,教案首先安排了互斥事件及对立事件的概念的复习,以便在讲述独立事件的概念时加以区别与对照.教案中的两个例题是本节课的核心内容,通过对这两个例题的详细分析讲解,要使学生对简单性质(4)有清楚的理解与认识,并能了解这个性质的用法.考虑到对教材难度的控制,教案没有对该性质加以推广,以保证学生对性质(4)基本内容的掌握.课堂练习的安排,是让学生参与教学过程的必要环节,也是学生对本节课内容掌握与否的一个自我检测.课题3 用样本估计总体【教学目标】1.了解用样本均值对总体均值做估计的方法;2.了解用样本标准差对总体标准差做估计的方法;3.掌握计算器的使用方法.【教学重点】用样本估计总体的方法.【教学难点】用样本标准差对总体标准差做估计的方法.【教学过程】(一)复习提问1.什么叫样本均值,如何计算?2.什么叫样本标准差,如何计算?(二)讲解新课由于总体的庞大与复杂,对它直接进行研究,认识与掌握其数据的变化规律和数字特征,往往不便进行,在实际工作中,常常借助于样本进行研究,并利用对样本的研究所得到的信息,作出关于总体的推断与估计.1.对总体均值的估计例如为了了解全市初三学生的数学学习情况,对一次统测中的1000份试卷进行了统计,算得其均值为76分,那么我们就可以认为全市的初三学生的这次统测平均分大约为76分.2.对总体标准差的估计为了对总体标准差作估计常常利用样本标准差 S =1n -1i =1n(x i -x )2 作为总体标准差的估计值. 3.例题例 某厂生产螺母,从一天的产品中随机抽取8件,量得内径尺寸如下(单位:毫米): 15. 3,14. 9,15. 2,15. 1,14. 8,14. 6,15. 1,14. 7试估计该厂这天生产的全部螺母内径的均值及标准差.解:x =18(15. 3+14. 9+15. 2+15. 1+14. 8+14. 6+15. 1+14. 7)≈14. 96.S 2=17[(15. 3-14. 96)2+(14. 9-14. 96)2+(15. 2-14. 96)2+(15. 1-14. 96)2+(14. 8-14. 96)2+(14. 6-14. 96)2+(15. 1-14. 96)2+(14. 7-14. 96)2] ≈0. 0627.S =0.0627≈0. 2504.答:这些螺母内径的均值约为14. 96毫米,其标准差约为0. 2504. 4.用计算器计算均值及修正标准差 上例使用计算器的计算步骤如下: 第一步MODE 21;第二步15. 3 = 14. 9 =…15. 1 = 14. 7 =; 第三步 按AC 键;第四步SHIFT 152 =到此即可求得均值; 第五步SHIFT 1 54 =到此即可求得标准差. 5.练习在一批零件中随机抽取10个,其尺寸与规定尺寸的偏差如下(单位:微米):+2 +1 -2 +3 +2 +4 -2 +5 +3 +4 试对这批零件的尺寸偏差的均值与标准差作出估计.(三)作业作业册 10. 8用样本估计总体 【教学设计说明】本节课是在前一节课学习了均值与标准差的概念的基础上安排的.内容是如何利用样本的均值与标准差对总体的均值与标准差做估计.通过例题的计算及计算器的使用要注意对学生计算能力的训练与培养.至于教材中的计算软件的应用,教师可根据教学条件及实际情况安排处理.。

概率与统计_初中课程教案

概率与统计_初中课程教案

教案:概率与统计教学目标:1. 了解概率与统计的基本概念和原理。

2. 学会使用概率方法解决实际问题。

3. 学会使用统计方法对数据进行分析和处理。

4. 培养学生的逻辑思维能力和数据分析能力。

教学重点:1. 概率的基本原理和计算方法。

2. 统计的基本概念和数据分析方法。

教学难点:1. 概率的计算和应用。

2. 统计数据分析的原理和方法。

教学准备:1. 教学PPT。

2. 练习题和案例。

教学过程:一、导入(5分钟)1. 引入概率与统计的概念,让学生初步了解这两个数学分支。

2. 举例说明概率与统计在实际生活中的应用,激发学生的学习兴趣。

二、概率的基本概念(15分钟)1. 讲解概率的定义,即事件发生的可能性。

2. 介绍概率的取值范围,0到1之间。

3. 讲解必然事件、不可能事件和随机事件的概念。

4. 举例说明如何计算事件的概率。

三、概率的计算方法(20分钟)1. 讲解排列组合的方法计算概率。

2. 讲解条件概率和独立事件的概念。

3. 讲解如何利用树状图和列表法计算概率。

4. 举例说明如何应用概率计算方法解决实际问题。

四、统计的基本概念(15分钟)1. 讲解统计学的定义,即数据的收集、整理、分析和解释。

2. 介绍统计学的基本概念,如总体、样本、平均数、中位数等。

3. 讲解如何收集和整理数据,包括调查问卷、实验设计等。

五、统计数据分析方法(20分钟)1. 讲解描述性统计分析方法,如条形图、折线图、饼图等。

2. 讲解推断性统计分析方法,如概率分布、置信区间、假设检验等。

3. 举例说明如何应用统计分析方法解决实际问题。

六、综合应用(10分钟)1. 提供几个实际案例,让学生应用所学的概率与统计方法进行分析和解决。

2. 鼓励学生分享自己的解题过程和结果,进行交流和讨论。

七、总结与作业(5分钟)1. 总结本节课所学的概率与统计的基本概念和应用方法。

2. 布置作业,让学生进一步巩固所学的知识,并能够应用到实际问题中。

教学反思:本节课通过讲解概率与统计的基本概念和原理,让学生了解这两个数学分支的基本内容。

[精品]人教版中职数学教案-第十章--概率与统计初步[8份教案]

[精品]人教版中职数学教案-第十章--概率与统计初步[8份教案]
10.1 计数原理
【教学目标】 1.理解分类计数原理与分步计数原理,会利用两个原理解决实际问题. 2.培养学生利用数学思想方法分析、解决实际问题的能力. 3.通过教学,让学生感受生活中的数学思想,提高数学的应用意识. 【教学重点】 两个计数原理的理解与应用. 【教学难点】 分类计数原理与分步计数原理的区别. 【教学方法】 本节课主要采用问题教学法. 教师创设问题情景, 引导学生观察发现分类计数原理与分 步计数原理.并通过例题讲解,使学生进一步深化对定理的理解.最后通过对比实例,明确 两个定理的联系和区别. 【教学过程】 环节 教学内容 看图 1 和图 2,数一数从甲地到乙地 有多少种不同的走法? 火车 甲地 导 入 乙地 师生互动 教师提出问题,学生独立思考或 小组讨论. 师:生活中常见的计数问题蕴含 着什么原理呢? 设计意图
结合图示,教 师通过问题 引导学生一 步步分析解 题思路.
新 课
分步计数原理 完成一件事,需要分 成 n 个步骤,做第 1 步有 m1 种不同的方 法,做第 2 步有 m2 种不同的方法„„做 第 n 步有 mn 种不同的方法,那么完成这 件事共有 N=m1×m2ׄ×mn 种不同的方法. 例 3 书架上层有不同的数学书 15 本, 中层有不同的语文书 18 本,下层有不同 的物理书 7 本.现从中取出数学、语文、 物理书各一本,问有多少种不同的取法? 解 利用分步计数原理得 N=15×18×7=1 890 种 不同的取法.
第一步: 由 A 地到 B 地, 有 种 不同的走法; 第二步:由 B 地到 C 地,有 种不同的走法. 完成这件事有多少种不同的方 法?
通过问 题 2 引出分步 计数原理.
应用分步计数原理分析,例 3,例 4,例 5 要完成一件什么事?分为几个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1计数原理
【教学目标】
1.理解分类计数原理与分步计数原理,会利用两个原理解决实际问题.
2.培养学生利用数学思想方法分析、解决实际问题的能力.
3.通过教学,让学生感受生活中的数学思想,提高数学的应用意识.
【教学重点】
两个计数原理的理解与应用.
【教学难点】
分类计数原理与分步计数原理的区别.
【教学方法】
本节课主要采用问题教学法.教师创设问题情景,引导学生观察发现分类计数原理与分步计数原理.并通过例题讲解,使学生进一步深化对定理的理解.最后通过对比实例,明确两个定理的联系和区别.
10.2概率初步
【教学目标】
1.正确理解古典概型的两个特点,掌握古典概率计算公式.
2.通过教学,发展学生类比、归纳、猜想等推理能力.
3.通过古典概率解决游戏问题,培养学生的数学应用能力以及科学的价值观与世界观.【教学重点】
古典概型特点,古典概率的计算公式以及简单应用.
【教学难点】
试验的基本事件个数n和随机事件包含基本事件的个数m.
【教学方法】
通过三个简单的例题让学生初步理解古典概型的特征,并由此引出样本空间和基本事件等诸多概念,教师紧扣这三个例题讲解各个概念,并由学生总结古典概率的计算公式.然后通过后面的例题巩固古典概率的求法.
【教学过程】
10.3.1总体、样本和抽样方法(一)
【教学目标】
1.理解总体、样本和随机抽样的概念,掌握简单随机抽样的两种方法.
2.通过实例,体验简单随机抽样的科学性及可靠性,培养学生分析问题、解决问题的能力.
3.通过对现实生活和其他学科中统计问题的提出,体会数学知识在实际生活中的重要应用.
【教学重点】
正确理解简单随机抽样的概念,掌握抽签法及随机数表法的步骤.
【教学难点】
能灵活应用抽签法或随机数表法从总体中抽取样本.
【教学方法】
这节课主要采取启发引导和讲练结合的教学方法.引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识,同时通过例题、练习和课后作业,启发学生从书本知识回到社会实践,学以致用.
10.3.1 总体、样本和抽样方法(二)
【教学目标】
1.理解系统抽样的概念,掌握系统抽样的一般步骤.
2.通过实例的分析、解决,培养学生分析问题、解决问题的能力.
3.通过数学活动,感受数学在实际生活中的应用,体会现实世界和数学知识的联系.【教学重点】
掌握系统抽样的步骤.
【教学难点】
能够灵活应用系统抽样的方法解决统计问题.
【教学方法】
本节课采用启发引导和讲练结合的教学方法.教学中教师带领学生从系统抽样的定义分析得出系统抽样的方法和步骤,然后结合例题及其变式练习巩固系统抽样的步骤.
10.3.1 总体、样本和抽样方法(三)
【教学目标】
1.正确理解分层抽样的概念,掌握分层抽样的一般步骤.
2.区分简单随机抽样、系统抽样和分层抽样,能灵活选择适当的方法进行抽样.
3.通过数学活动,感受数学在实际生活中的应用,体会现实世界和数学知识的联系.【教学重点】
分层抽样的定义和步骤.
【教学难点】
利用分层抽样的方法解决现实问题.
【教学方法】
这节课主要采取启发引导和讲练结合的教学方法.教学中教师带领学生从分层抽样的定义分析得出分层抽样的方法和步骤,然后结合例题及课后练习巩固分层抽样的步骤.【教学过程】
10.3.2频率分布直方图
【教学目标】
1.掌握列频率分布表、画频率分布直方图的步骤,会用样本频率分布直方图估计总体分布.
2.培养学生利用数学方法分析数据、解决实际问题的能力.
3.通过画频率分布直方图的过程,培养学生耐心细致,严谨认真的科学态度.
【教学重点】
绘制频率直方图.
【教学难点】
列出频率分布表.
【教学方法】
本节主要采用例题教学法.通过一个具体的题目,讲解极差、频率等概念,教师带领学生一步步列出例题的频率分布表,画出频率分布直方图.随着教师的讲解,学生分步练习,真正掌握画频率分布直方图的各个步骤.
【教学过程】
10.3.3 用样本估计总体
【教学目标】
1.理解样本平均数和总体平均数,会用样本平均数估计总体平均数.
2.理解样本标准差的意义和作用,学会计算样本标准差,并能用样本标准差估计总体标准差.
3.通过实例,让学生体会从特殊到一般的数学思想方法,通过感性认识帮助学生理解统计在社会生活中的重要作用.
【教学重点】
理解样本平均数,样本标准差的意义和作用,学会计算样本平均数和样本标准差.【教学难点】
理解样本平均数及样本标准差的意义和作用.
【教学方法】
采用支架式教学方法.教师提供研究的材料和问题,即向上攀登的支架,从学生的认知规律出发,通过大量实例,引导学生自主探索解决问题的方法,通过合作讨论互相学习,取长补短,并归纳总结成一般规律,使得原有的认知结构得到进一步补充和完善.
10.3.4 一元线性回归
【教学目标】
1. 了解相关关系、回归分析、散点图、回归直线方程的概念.
2. 掌握散点图的画法,掌握回归直线方程的求解方法,会求回归直线方程.
3. 让学生参与回归直线的探求,结合身边的实例,发现散点图的线性特征,主动构建线性回归直线方程的模型.
【教学重点】
散点图的画法,回归直线方程的求解方法.
【教学难点】
回归直线方程的求解方法.
【教学方法】
这节课主要采取启发引导和讲练结合的教学方法.通过创设情境、设置问题等手段对学生进行了启发、诱导,结合讨论法、讲授法组织学生自主探究.然后结合例题及课后练习巩固求回归直线方程的步骤.
【教学过程】。

相关文档
最新文档