平方差公式与完全平方公式知识点总结

合集下载

平方公式考点总结及练习

平方公式考点总结及练习

平方差公式及完全平方公式一、知识点讲解 (一)平方差公式:1、概念及公式推导:两数和与这两数差的积,等于它们的平方差。

()()b a b a b a 22-=-+2、公式特点:(1)左边的两个二项式中,其中一项(a )完全相同,另一项(b 和b -)互为相反数(2)右边是相同项的平方减去符号相反项的平方(3)公式中的b a ,可以是具体数字,也可以是单项式或多项式3、变形归纳:(1)位置变化 ()()()()b a b a b a a b a b 22-=-+=++-(2)符号变化 ()()()b a b a b a b a 2222-=-=--+--(3)系数变化 ()()()()yx x x y x y x 943222223232-=-=-+(4)指数变化()()()()n m n m n m n m 4622232323-=-=-+(5)增项变化 ()()()c b a c b a c b a 22-=-++++(6)增因式变化()()()()()()b a b a b a b a b a b a 2222-⎥⎦⎤⎢⎣⎡-=+-+---- (7)连用公式变化()()()()()()()()()b a b a b a b a b a b a b a b a b a b a 8844444422224422-=+-=++-=++-+例1、计算:(1)()()b a b a 2323-+ (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-21212222x x(4)()()12001200-+ (4)()()z y x z y x -+++(二)完全平方公式1、概念及公式推导:两数的和(或差)的平方,等于这两数的平方和加上(或减去)这两数的积的两倍。

()()bab a b a b ab a b a 22222222+-=++=-+2、公式特点:(1)只有一个符号不同(2)公式中的b a ,可以是数,也可以是单项式或多项式 (3)注意()b a ab 222=与(),2222b ab a b a ++=+()b a b a 222+=+(是错误的做法)3、变形归纳:(1)()ab b a b a 2222-=++(2)()ab b a b a 2222+=+-(3)()()b a b a ab 2222+-=+(4)()()b a b a ab --+=2222(5)()()ab b a b a 422+=-+ (6)()()ab b a b a 422-=+-例2、化简:(1)()b a +32(2)()y x 32+-(4)()n m --2(4)()()c b c b --+例3、已知:.3,4-==-ab b a 求(1)b a 22+ (2)()b a +2二、题型剖析题型一 平方差公式及完全平方公式的运用 例1、计算:(1)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-a b b a 313122 (2)6.94.10⨯(2)()()()3932++-x x x (4)()()a b b a ---33(5)()()z y x z y x 3232-++- (6)()c b a ++22(7)()()y x y x 323222+-题型二 利用公式简化计算 例2、计算:(1)2016220172015-⨯ (2)⎪⎭⎫ ⎝⎛601602(3)8.92 (4)29930122+题型三 推广公式的逆用 例3、计算:(1)()()z y x z x y 3232-----(2)⎪⎪⎭⎫⎝⎛-••⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2016432222211111111题型四 与完全平方公式有关的开放题例4、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是例5、(1)求代数式的322++m m 的最小值(2)求代数式4332++-m m 的最大值题型五 解决实际问题例6、某住宅小区的花园,起初被设计成边长为a m 的正方形,后应道路的原因,设计修改为北边往南平移2.5m ,而东边往东平移2.5m ,则修改后的花园面积和原先设计的花园面积相差多少?巩固提升1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )3.下列计算中,错误的有( )A .1个B .2个C .3个D .4个 ①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2; ③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. 4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5 5.(a+b -1)(a -b+1)=(_____)2-(_____)2. 6.(-2x+y )(-2x -y )=______. 7.(-3x 2+2y 2)(______)=9x 4-4y 4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.9.下列展开结果是n m mn 222--的式子是( ) A. ()n m +2B.()n m +-2B. ()n m --2D.()n m +-210.下列计算:①()b a b a 222+=+ ②()b a b a 222-=-③()b ab a b a 2222+-=- ④()bab a b a 2222+----=.其中正确的有( )A.0个B.1个C.2个D.3个11. 小明在做作业时,不小心把一滴墨水滴在一道数学题上,题目变成了x 21+x ,看不清x 前面的数字是什么,只知道这个二次三项式能配成一个完全平方式,这个被墨水污染了的数字是12.计算 (1)2023×2113. (2)(a+2)(a 2+4)(a 4+16)(a -2)(3)9.1992 (4)7655.0469.27655.02345.122⨯++(5)2012(6)(3+1)(32+1)(34+1)…(32008+1)-40163212. 已知m 2+n 2-6m+10n+34=0,求m+n 的值13. 已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

完全平方公式与平方差公式

完全平方公式与平方差公式

完全平方公式与平方差公式1.完全平方公式:其中,±表示取两个值,分别对应方程的两个解。

让我们来看一个例子:例子1:解方程x^2+6x+8=0根据完全平方公式,我们可以知道a=1,b=6,c=8根据完全平方公式,我们可以得到x=(-6±√(6^2-4*1*8))/2*1,即x=(-6±√(36-32))/2化简后,我们可以得到x=(-6±√4)/2,即x=(-6±2)/2分别求出两个解,我们可以得到x=-4和x=-2所以,方程x^2+6x+8=0的解为x=-4和x=-22.平方差公式:平方差公式是一个用于将两个平方差表示为因式积的公式。

平方差公式有两种形式:(a+b)(a-b)=a^2-b^2和(a-b)(a+b)=a^2-b^2、两种形式是等价的,根据实际情况选择使用。

让我们来看一个例子:例子2:计算(3+2)(3-2)根据平方差公式,我们可以将(3+2)(3-2)展开为3^2-2^2计算后,我们可以得到(3+2)(3-2)=9-4=5所以,(3+2)(3-2)=5在解决问题时,我们还可以将完全平方公式和平方差公式结合使用。

例子3:解方程x^2-9=0观察到x^2-9是一个差的平方形式,即(x+3)(x-3)。

所以,方程x^2-9=0可以改写为(x+3)(x-3)=0。

根据乘法法则,当一个积等于0时,至少有一个因子等于0。

所以,我们得到x+3=0或x-3=0。

解得x=-3或x=3所以,方程x^2-9=0的解为x=-3或x=3通过以上的例子,我们可以看到完全平方公式和平方差公式在解决一元二次方程和计算平方差时的作用。

在实际应用中,熟练地掌握它们可以帮助我们更快地解决问题,提高数学解题的效率。

完全平方和平方差公式

完全平方和平方差公式

平方差公式和完全平方公式(一)平方差公式是先平方再减a²-b²= (a+b)(a-b)。

(二)完全平方公式是先加减最后是平方(a±b)²=a²±2ab+b²。

(三)平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差,这一公式的结构特征:(四)左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。

公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

(五)该公式需要注意:1.公式的左边是个两项式的积,有一项是完全相同的。

2.右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

3.公式中的a,b 可以是具体的数,也可以是单项式或多项式。

完全平方公式指两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

为了区别,会叫做两数和的完全平方公式,或叫做两数差的完全平方公式。

这个公式的结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内)。

公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式。

(六)该公式需要注意:1.左边是一个二项式的完全平方。

2.右边是二项平方的和,加上(或减去)这两项乘积的二倍,a和b 可是数,单项式,多项式。

3.不论是(a+b)2还是(a-b)2,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

4.不要漏下一次项。

5.切勿混淆公式。

6.运算结果中符号不要错误。

7.变式应用难,不易于掌握。

初一奥数专题讲义——完全平方公式与平方差公式

初一奥数专题讲义——完全平方公式与平方差公式

完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。

二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。

例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。

例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。

6.已知a+1a=5,则=4221a a a ++=_____。

7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。

平方差公式与完全平方公式

平方差公式与完全平方公式

知识要点1. 平方差公式:公式的结构特征:在平方差公式中,左边是两个二项式的积,在这两个二项式中有一项完全相同,另一项互为相反数,右边是完全相同项的平方减去符号相反项的平方。

2. 完全平方公式:公式的结构特征:在完全平方公式中,左边都是一个二项式的完全平方,二者仅一个“符号”不同,右边都是二次三项式,其中有两项是公式左边二项式中每一项的平方,第三项是左边二项式中两项乘积的2倍,二者也仅一个“符号”不同。

3. 注意公式的应用条件,弄清公式的变化形式(1)字母a、b既可以表示具体的数,也可以表示单项式或多项式,在应用平方差公式时,要紧扣“相同项”与“互为相反项”这两点。

(2)A. 平方差公式有八种变化形式:①位置变化②符号变化③系数变化④指数变化⑤增项变化⑥增因式变化⑦连用公式变化⑧逆用公式变化B. 完全平方公式的推广完全平方公式的变式:4. 灵活运用公式解题(1)巧妙结合:(2)巧妙分组:(3)巧妙逆用:(4)巧妙拆项:(5)巧添因式:(6)巧妙变用:已知,,求,的值。

巩固练习一. 填空1. (_________)=2.(_______)3. + _________4. ________5. (________)二. 选择1. 乘积等于的式子是()A. B.C. D.2. 下列多项式相乘,不能用平方差公式计算的是()A. B.C. D.3. 代数式的值是()A. B. 0 C. D.4. 如果是一个完全平方式,则()A. 4B. 2C. 4或-4D. 2或-25. 已知a、b是整数,则的值总是()A. 正整数B. 负整数C. 非负整数D. 4的整数倍数三. 计算1.2.3.4.四. 解答题1. 已知,,求和的值。

2. 利用公式求值:……3. 已知,求的值。

4. 已知,,求的值。

5. 不论、为什么有理数,的值总为何数?。

11.平方差公式与完全平方公式

11.平方差公式与完全平方公式

平方差公式与完全平方公式知识点一:平方差公式平方差公式:(a+b)(a-b)=a2-b2,即两个数的和与这两个数的差的积,等于这两个数的平方差。

例1.计算:(1) (-3x-2y)(2y-3x)(2)(3) (4)例2.计算(2+1)(22+1)(24+1)·……(22n+1)变式练习1、简便运算(1) (2)2、先化简,再求值:,其中x=10,y=3、先化简,再求值:.其中知识点二、完全平方公式完全平方公式:常用变形:例1.如果 是一个完全平方式,那么m 的值是____________.例2.已知a+b =6,ab =7,求下列各式的值:(1) ; ;例3.运用乘法公式计算:(1) (a-b+c )2; (2)(a+2b-3c )2;(3)(a+b+c )(a-b-c ) (4)(-2+y )(-2-y )-(y -1)(y +5)变式练习1、已知a+b =3,ab =-12,求下列各式的值。

(1)2、若 , ,则 .3、已知014642222=+-+-++z y x z y x ,则z y x ++= .4、计算(3x+2)2-(3x -2)2+(3x+2)2(3x -2)2知识点三、平方差公式与完全平方公式的综合应用例4.计算: .变式练习1、计算2、当x 、y 为何值时,多项式2x 2-4xy+5y 2-12y+13有最小值,并求出这个最小值。

3、观察:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅ ……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000×2001×2002×2003+1的结果(用一个最简式子表示).4.解不等式课后练习1.下列各式中,计算结果为81﹣x2的是()A.(x+9)(x﹣9)B.(x+9)(﹣x﹣9)C.(﹣x+9)(﹣x﹣9)D.(﹣x﹣9)(x﹣9)2、(3a2-4b2)(-3a2+4b2)的运算结果是()A、-9a4-4b4B、-9a4+24a2b2-16b4C、9a4-16b4D、9a4-24a2b2+16b43、若4x2+axy+9y2是一个完全平方式,则a= ( )A、±12B、12C、-12D、±64、若4x2-20x+m2是一个完全平方式,则m= ()A、5B、-5C、±5D、255.(-2x+y)(-2x-y)=______.6.(x-y+z)(-x+y+z)=[z+()][ ]=z2-()2.7、已知4a2+16b2+12a-8b+10=0,则a+b= 。

平方差公式和完全平方公式

平方差公式和完全平方公式

第三讲 平方差公式和完全平方公式【名言警句】细节决定成败!【知识点归纳讲解】(一)平方差公式:(a+b)(a-b)=a 2-b 2 两数和与这两数差的积,等于它们的平方差. 特征:①左边:二项式乘以二项式,两数(a 与b )的和与它们差的乘积. ②右边:这两数的平方差. 平方差公式的常见变形:①位置变化:如()()()()22a b b a b a b a b a +-=+-=-②符号变化:如()()()()()2222a b a b b a b a b a b a ---=---+=--=-⎡⎤⎡⎤⎣⎦⎣⎦或()()()()()2222a b a b a b a b a b a b ---=-+-=--=-+ ③系数变化:如()()()()()22ma mb a b m a b a b m a b +-=+-=-(二)完全平方公式()()22222222a b a ab b a b a ab b+=++-=-+ 完全平方公式常见变形:① 符号变化:如()()22222a b a b a ab b --=+=++ ()()22222a b a b a ab b -+=-=-+②移项变化:()()22222222a b a ab b a b a ab b +=++-=-+⇒()()22222222a b a b ab a b a b ab+=+-+=-+⇒()()224a b a b ab +--=【经典例题讲解】(一)平方差公式例1:计算:()()()()2244a b b a b a b a ---+-例2:计算:①(2x+y )(2x-y) ②(y x 3121+)(y x 3121-)③(-x+3y)(-x-3y) ④(2a+b)(2a-b)(4)22b a +.【同步演练】应用平方差公式计算(1)()()a a 2121+- (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+3121312122x x (3)()()y x y x 3232+---例3:某初级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形少6米,比原来的长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?(二)完全平方公式例1:已知2291822a b ab a b +==+,,求的值例2:利用完全平方公式计算:(1)1022 (2)1972【同步演练】利用完全平方公式计算:(1)982 (2)2032例3:计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x【同步演练】)3)(3(+---b a b a例4:若22)2(4+=++x k x x ,则k =若k x x ++22是完全平方式,则k =例:5:完全平方公式的推广()2222222a b c a b c ab ac bc ++=+++++()222222222a b c d a b c d ab bc cd ad +++=+++++++附加题:若实数222,,9,a b c a b c ++=满足()()()222a b b c c a -+-+-则代数式的最大值是多少?【课堂检测】 (一)平方差公式 一、填空题1、=--+-)2)(2(y y _______.2、=-+)2)(2(y x y x ______.3、=-+)3121)(3121(b a b a ______. 4、=---))((22x a x a _______. 5、=++-))()((22b a b a b a _______. 6、=-+-))((y x y x _______. 7、=+-----+))(())((y x y x y x y x _______. 8、+xy (_______)-xy (_______)81122-=y x . 二、选择题9、下列各式中,能直接用平方差公式计算的是( ) (A ))22)(2(b a b a +--; (B ))2)(2(a b b a +-; (C ))2)(2(b a b a +--; (D ))2)(2(b a a b ++-.10、下列各式中,运算结果是223625y x -的是( ) (A ))56)(56(x y x y --+- ; (B ))56)(65(x y y x +-; (C ))56)(56(x y x y ++- ; (D ))65)(65(y x y x +--. 三、解答题11.计算)2)(2())((n m n m n m n m -+-+-.12.先化简后求值2),2)(2()2)(2(22-=-+--+x x x x x .13.解方程4)2()1)(1(2=---+x x x x .(二)完全平方公式 一、填空题1、=-+)2)(2(b a b a _______.2、)5(x +-_______225x -=. 用平方差公式计算并填空3、)218(5.75.8+=⨯__ ___4363=. 4、=⨯95105_______.5、=-+22)2()2(y x y x (_______)2. 二、选择题6、=+----))((y x y x _______.( )(A )22y x +-;(B )22y x -;(C )22y x --;(D )22y x +.7、如果16)(2-=+a m a p ,则( )(A )4),4(=+=m a p ; (B )4),4(-=-=m a p (C )4),4(-=+=m a p ; (D )4,4=+-=m a p . 三、解答题8、解不等式x x x x x 3)6()3)(3(>+-+-.9、解方程)1)(1(2)3)(12(+-=+-x x x x .10、先化简后求值)5)(5(2)4)(3(-+-+-x x x x ,其中10-=x11、一个梯形上底是)(b a +㎝,下底是)(b a -㎝,高为)2(b a +㎝,求梯形的面积,若2,215==b a ,求这个梯形的面积.【课后作业】一、填空题(每题2分,共28分)1.(34=⋅a a ____()⨯____34)+=a ; 2.=-⋅-54)()(x y y x _________; 3.()(23=m _____)(_____23)⨯=m ; 4.=-⋅--535)(])([a a _________; 5.=⨯3)87(_________3387⨯=; 6.(8164=y x ______2); 7.已知长方形的长是m 4,它的面积是nm 20,则它的宽是_________;8.=⋅+-222483)41(6y x x y x xy _________;9.=⋅+n m 2)7(_________;10.=+--)()(b a a a b b _________; 11.=++))((t z y x _________; 12.=+++-))()()((4422b a b a b a b a _________; 13.=++-+-))((c b a c b a _________; 14.=--+22)()(b a b a _________. 二、选择题(每题3分,共12分)15.下列各式中正确的是( )(A )222)(b a b a -=-; (B )2222)2(b ab a b a ++=+; (C )222)(b a b a +=+; (D )2222)(b ab a b a +-=+-.16.计算)102.2()105.3(53⨯⨯⨯的结果并用科学记数法表示,正确的结果是( ) (A )770000000;(B )71077⨯;(C )8107.7⨯;(D )7107.7⨯.17.20072006)32()23(⋅-的计算结果是( )(A )23-;(B )32-;(C )32;(D )23.18.下列计算正确的是( )(A )1262432a a a a a =⋅+⋅; (B )252212)2(3bc a c a ab =⋅;(C )322322+=⋅⋅+⋅n n a a a a a a ; (D )432222)21()2(y x y x xy -=-⋅-.三、简答题:(每题6分,共30分)19.计算:4453)()(a a a a -+-20.结果用)(y x -的幂的形式表示62323)(2])[(])[(y x x y y x -+-+-.21.用简便方法计算63720052006)2()81()125.0()8(⨯+-⨯-22.计算453210)2()(b a ab b a +⋅- .23.计算)1()1(22++-++x x x x x . 24.计算))()((22b a b a b a -+-.四、解答题(每题5分,共20分)25.解方程)2(2)2()1(-=++-x x x x x x26.化简并求值31,3),3)(3(==--b a a b b a 其中.27.化简并求值2,)1()12(22-=-++x x x 其中.28.计算2)(c b a --29.综合题(10分,每小题5分)(1)已知一个圆的半径若增加2厘米,则它的面积就增加39平方厘米,求这个圆的直径.(用π的代数式表示这个圆的直径)(2)阅读:若一家商店的销售额10月比9月份增长(减少)10%,则设这家商店9月10月份销售额的增长率为0.1(-0.1);理解:甲、乙两店9月份的销售额均为a万元,在10月到11月这两个月中,甲,问到商店的销售额的平均每月增长率为x,乙商店的销售额平均每月的增长率为x11月底时,甲商店的销售额比乙商店的销售额多多少万元(用a和x的代数式表示结果).【课后作业】家长意见及建议:家长签字:日期:年月日。

(完整版)平方差公式与完全平方公式知识点总结

(完整版)平方差公式与完全平方公式知识点总结

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。

这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。

例 1.已知a b 2 , ab 1,求a2b2的值。

例 2.已知a b 8, ab2,求 (a b)2的值。

解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。

解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。

平方差与完全平方公式

平方差与完全平方公式


C.a=2,b=错误!未找
A.2ab
B.-2ab
C.-4ab
D. 4ab
3.若 x2+y2=(x-y)2+p=(x+y)2-Q,则 P,Q 分别为(

A.P=2xy,Q=-2xy B. P=-2xy,Q=2xy C. P=2xy,Q=2xy D. P=-2xy,Q=2xy
4.若 m≠n,下列等式中:(m-n)2=(n-m)2, (m+n)(m-n)=(-m-n)(-m+n), (m-n)2=-(n-m)2, (-m-n)2=-(m-n)2,
例 8.解方程: 5x 63x 2 2 3x 54 x 1 x 1 2
3 3
3
【题型六】逆用平方差公式
例 9.已知 x 2 y 2 6, x y 2 0 ,求 x y 5 的值.
【创新题】 例 10.观察下列算式:
32 1 8 8 1,52 32 16 8 2,72 52 24 8 3,92 72 32 8 4,,
A.-15
B.-2
C.-6
D.6
11.已知 x2 2ax 16 是一个完全平方式,则 a 的值等于( )
A.8
B.4
C.±4 D.±8
12.乘积 (1 1 )(1 1 ) (1 1 )(1 1 )等于
22
32
92
102
A. 5 12
B. 1 2
C. 11 20
() D. 7 10
13.已知 x, y 满足 x2 y 2 5 2x y,求代数式 xy 的值。
其中错误的有(

A.1 个
B. 2 个
C.3 个
D.4 个
5.如果 a+错误!未找到引用源。=3,则 a2+错误!未找到引用源。=(

平方差公式与完全平方公式知识点总结材料

平方差公式与完全平方公式知识点总结材料

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。

平方差完全平方公式

平方差完全平方公式

【知识点】一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。

1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定 ①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2或-a 2-2ab-b 2或 -a 2+2ab-b 2探索练习:1、计算下列各式: (1)()()22-+x x (2)()()a a 3131-+ (3)()()y x y x 55-+2、观察以上算式及其运算结果,你发现了什么规律?3、猜一猜:()()=-+b a b a -平方差公式1、平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。

2、其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

随堂练习:1、下列各式中哪些可以运用平方差公式计算 (1)()()c a b a -+ (2)()()x y y x +-+ (3)()()ab x x ab ---33 (4)()()n m n m +--2、判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算下列各式:(1)()()b a b a 7474+- (2)()()n m n m ---22 (3)()()33221221--+-+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-x x x x4、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+5、求()()()22y x y x y x +-+的值,其中2,5==y x6、计算:(1)()()c b a c b a --+- (2)()()()()()42212122224++---+-x x x x x x【例】运用平方差公式计算:102×98; 59.8×60.2;运用平方差公式计算:完全平方公式探索:一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。

平方差公式完全平方公式

平方差公式完全平方公式

平方差公式完全平方公式a^2-b^2=(a+b)(a-b)完全平方公式是指将一个二次多项式写成一个平方的形式,即:a^2 + 2ab + b^2 = (a + b)^2这两个公式在代数中非常重要,可以帮助我们简化计算、理解代数式的结构和性质。

下面,我们分别详细介绍这两个公式。

一、平方差公式我们先来看一个具体的例子:要将25-16表示为两个数的积。

根据平方差公式:25-16=(5+4)(5-4)=9通过平方差公式,我们将25-16这个差值分解为两个数的积,即5+4和5-4相乘得到9、这种分解可以帮助我们更方便地计算。

假设a和b是两个实数,并且a>b。

我们要求a^2-b^2的值。

根据乘法公式,a^2-b^2可以改写为(a-b)(a+b)。

我们可以将a-b视为一个因式,在它的后面添加括号(a+b)。

这样,我们得到了一个完整的乘法运算式:(a-b)(a+b)。

我们可以再次应用乘法公式,将这个式子展开,得到a^2 + ab - ab - b^2我们可以看到,中间的两项ab和-b^2可以合并为0,最终得到a^2 - b^2总结一下,平方差公式的表达式为:a^2-b^2=(a+b)(a-b)这个公式可以帮助我们处理二次差值的问题,简化计算。

完全平方公式是指将一个二次多项式写成一个平方的形式,即:a^2 + 2ab + b^2 = (a + b)^2我们来看一个具体的例子:要将x^2+6x+9表示为一个平方。

根据完全平方公式:x^2+6x+9=(x+3)^2通过完全平方公式,我们将x^2+6x+9这个二次多项式写成了(x+3)^2的形式。

这种形式更简洁,也更容易理解。

完全平方公式的推导如下:我们假设a和b是两个实数,并且a>b。

我们要求a^2 + 2ab + b^2的值。

根据平方差公式的推导过程,我们可以将a^2 + 2ab + b^2写成一个完整的乘法运算式(a + b)(a + b)。

我们可以再次应用乘法公式,将这个式子展开,得到a^2 + 2ab + b^2我们可以看到,中间的两项2ab和b^2可以合并为2ab + b^2,最终得到了原来的二次多项式。

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结一、平方差公式(a+b)(a-b)=a2-b2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x+y)(-y+x)=x2-y2② 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③ 指数变化,(x2+y2)(x2-y2)=x4-y4④ 系数变化,(2a+b)(2a-b)=4a2-b2⑤ 换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥ 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦ 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x-y+z)2-(x+y-z)2 =[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)] =2x(-2y+2z)=-4xy+4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1、已知,,求的值。

例2、已知,,求的值。

解:∵ ∴ ∴=∵,∴ 例3 已知,求的值。

解:三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”、例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b、例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b、(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5)、分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式、例5 计算(2+1)(22+1)(24+1)(28+1)、分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简、(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc、可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍、例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+22xy+22x(-3)+2y(-3)=4x2+y2+9+4xy-12x-6y、(四)、注意公式的变换,灵活运用变形公式例7 已知:x+2y=7,xy=6,求(x-2y)2的值、例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便、四、怎样熟练运用公式:熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点、常见的几种变化是:1、位置变化如(3x+5y)(5y-3x)交换3x和5y的位置后即可用平方差公式计算了、2、符号变化如(-2m-7n)(2m-7n)变为-(2m+7n)(2m-7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化如98102,992,912等分别变为(100-2)(100+2),(100-1)2,(90+1)2后就能够用乘法公式加以解答了、4、系数变化如(4m+)(2m-)变为2(2m+)(2m-)后即可用平方差公式进行计算了、(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便、如计算(a2+1)2(a2-1)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便、即原式=[(a2+1)(a2-1)]2=(a4-1)2=a8-2a4+1、对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用、如计算(1-)(1-)(1-)…(1-)(1-),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错、若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题、即原式=(1-)(1+)(1-)(1+)…(1-)(1+)=… ==、有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab等、用这些变式解有关问题常能收到事半功倍之效、如已知m+n=7,mn=-18,求m2+n2,m2-mn+ n2的值、面对这样的问题就可用上述变式来解,即m2+n2=(m+n)2-2mn=72-2(-18)=49+36=85,m2-mn+ n2= (m+n)2-3mn=72-3(-18)=103、下列各题,难不倒你吧?!1、若a+=5,求(1)a2+,(2)(a-)2的值、2、求(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)+1的末位数字、(答案:1、(1)23;(2)21、2、6 )五、乘法公式应用的五个层次乘法公式:(a+b)(a-b)=a2-b2,(ab)=a22ab+b2,(ab)(a2ab+b2)=a3b3、第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用、例1计算 (-2x-y)(2x-y)、、第二层次──逆用,即将这些公式反过来进行逆向使用、例2计算第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式、例3化简:(2+1)(22+1)(24+1)(28+1)+1、分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解、解原式=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=216、第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=(a+b)2-2ab,a3+b3=(a +b)3-3ab(a+b)等,则求解分简单、明快、例5已知a+b=9,ab=14,求2a2+2b2的值、解:∵a+b=9,ab=14,∴2a2+2b2=2[(a+b)2-2ab]=2(92-214)=106,第五层次──综合后用:将(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2综合,可得 (a+b)2+(a-b)2=2(a2+b2);(a+b)2-(a-b)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷、例6计算:(2x+y-z+5)(2x-y+z+5)、解:原式=[(2x+y-z+5)+(2x-y+z+5)]2-[(2x+y-z+5)-(2x-y+z+5)]2=(2x+5)2-(y-z)2=4x2+20x+25-y2+2yz-z2乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。

平方差公式与完全平方公式

平方差公式与完全平方公式

平方差公式与完全平方公式一、 公式透析平方差公式:22))((b a b a b a -=-+特点是相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。

所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。

完全平方公式:2222)(b ab a b a +±=±注意不要漏掉2ab 项二、 典例解析例1:下列各式可以用平方差公式的是( ))4)(4.(c a c a A -+- )2)(2.(y x y x B +- )31)(13.(a a C --- )21)(21.(y x y x D +--例2:如何用公式计算2))(1(y x --例3:已知22124,10n m mn n m +==+),求( 2))(2(n m -三、 双基过关A 组.)213)(213)(1(22n m n m -+ )46)(46)(2(n m n m ++-B 组2)21)(3(b a - (4)2)3(b a --.4184371.4._____1,51.3.____,2).(2.____ 124___,4.12222222⨯=+=+=++=+-=++=++)用简便方法计算(则则式,则是一个完全平方是完全平方公式,则xx x x M y xy x M y x m m xy x a ax x222222221295969798991002-⋅⋅⋅⋅⋅+-+-+-)(C 组)3)(31-+++b a b a )(( )3)(3)(2(c b a c b a --+-22)331()331)(3(b a b a --+ 2)43)(4(--y x(5))7)(7()3(+---a a a a四、 综合应用1.按图中所示的方式分割正方形,你能得到什么结论2.观察下列各式,你会发现什么规律,用只含一个字母n 的式子表示出来. 1121431311163575141553222-==⨯⋅⋅⋅⋅⋅⋅-==⨯-==⨯3).1)13()13)(13(232423++⋅⋅⋅++。

平方差与完全平方公式知识点与习题

平方差与完全平方公式知识点与习题

平方差与完全平方式一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。

1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()c a b a -+ (2)()()x y y x +-+(3)()()ab x x ab ---33 (4)()()n m n m +--2.判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x ( )(3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算:(1))4)(1()3)(3(+---+a a a a (2)22)1()1(--+xy xy(3))4)(12(3)32(2+--+a a a (4))3)(3(+---b a b a(5)22)3(x x -+ (6)22)(y x y +-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5⑵[]x y y x y x y x 25)3)(()2(22÷--+-+,其中21,2=-=y x(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。

华东师大版八年级上册12.3.平方差公式和完全平方公式知识点总结

华东师大版八年级上册12.3.平方差公式和完全平方公式知识点总结

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。

完全平方公式及平方差公式

完全平方公式及平方差公式

乘法公式1.平方差公式(1)平方差公式的推导:因为 (a+ b)(a -b)= a2- ab+ ab- b2= a2-b 2,所以 (a+ b)(a -b)= a2- b2.【例 1】利用平方差公式计算.(1)(2a+ 3b)(- 2a+ 3b);(2)503 × 497.2.完好平方公式(1)两数和的完好平方公式:(a+ b)2= a2+ 2ab+ b2;两数差的完好平方公式:(a- b)2= a2- 2ab+ b2.析规律完好平方公式的特色完好平方公式总结口诀为:首平方,尾平方,首尾二倍积,加减在中央.【例 2】计算:(1)(4m+ n)2;1(3)(- a- b)2;(4)( -2a+1b)2.(2)(y- )2;2 23.添括号法规法规:添括号时,若是括号前面是正号,括到括号里的各项都不变符号;若是括号前面是负号,括到括号里的各项都改变符号.警误区添括号法规的易错点添括号时,若是括号前面是负号,括到括号里面的各项都改变符号,不能只改变部分项的符号,如:a- b+ c= a- (b+ c),这样添括号时可是改变了第一项的符号,而第二项的符号没有改变,所以这样添括号是错误的.【例 3】填空: (1)(x- y+ z)(x+y- z)=[x- ()][x+ ()];(2)(x+ y+ z)(x- y-z)=[x+ ()] [x-()].【例 4 】如,在 a 的正方形中剪去一个 b 的小正方形 (a> b),把剩下的部分拼成一个梯形,分算两个形阴影部分的面,了公式__________.【例 6】察以下各式的律:12+ (1 ×2)+ 22= (1 ×2+1)2;222= (2 ×3+1)2;2+ (2 ×3)+ 332+ (3 ×4)2+ 42= (3 ×4+1)2;⋯写出第 n 行的式子,并明你的.型一:巧用乘法公式型二:平方差与完好平方公式混用计算: 4x2114x2计算:a b c a b c 22种类三:完好平方公式在三角形中的运用例 3、已知△ ABC的三边长a,b,c 满足a2b2c2ab bc ac 0,试判断△ABC的形状种类四:利用乘法公式解方程(组 )2y 2x y x y例 4:解方程组x 24x3y2种类五:多项式的证明例 5:证明无论a,b 为何值,多项式a2b22a 6b12的值恒为正种类六:灵便运用乘法公式解题例 6、计算1-11-11-1K 1111 224292102 23拓展:三项完好平方公式: a b c 2a2b2c22ab 2ac2bc 二次三项式:x a x+b x2 a b x ab立方和公式:a3b3 a b a2ab b2立方差公式:a3-b3a b a2+ab b21、若x 3 x 4x2px+q, 那么 p, q的值分别是2、若ax b x 2x2b 4,则 ab3、如x m 与 x 3 的乘积中不含 x的一次项,则 m的值为4、已知a2 a 5 0,则 a 3 a+2 的值是5、已知实数a,b满足 a b 21, a b 225,则a2b2ab6、将代数式x26x 2化成x p 2q的形式为7、若x2+2ax16是一个完好平方张开式,则a的值是________-8、已知x216x k是个完好平方式,则常数k的值为_______9、若x y 5xy 62则 x2 y2 = ___________-0,111210、已知x4,求 x2和 x的值x x2x11、知实数 a,b 满足a b 2 1, a b 2 25,则a 2 b 2 ab课后练习1.以下各式中,相等关系必然成立的是()A.(x - y) 2=(y - x)2- 6) = 2-6B.(x+6)(x xC.(x+y)2= x 2+y 2+2xy 2-y 2=(x+y)22.以下运算正确的选项是()2 21 2 12 2 2A.(a+3) =a +9B.( x -y) =6x -3xy+y32=1-2m+m 22- y2- = 4- y 4C.(1- m)D.(x)(x+y)(x y) x3.将面积为 a 2的正方形边长增加 2,则正方形的面积增加了()+4+44.以下多项式乘法中,不能够用平方差公式计算的是()A.(a+1)(2a -2)B.(2x -3)(-2x+3)C.(2y - 1 )( 1+2y)D.(3m -2n)(- 3m - 2n)3 35.不等式 (2x -1)2-(1-3x)2< 5(1-x)(x+1)的解集是()>-<- > <6.计算: (1)- 5 y)(- 5y -;(2)15 2 ×(-14 1);7 73 3(3)[2x 2-(x+y)(x -y)][(z -x)(x+z)+(y - z)(y+z)]; (4)(a - 2b+3c)(a+2b - 3c).7.(1)已知 x+y=6,xy=4,求①x2+y2,②(x -y)2,③x2+xy+y2的值 .(2)已知 a(a- 3)-(a2-3b)=9,求a2b2- ab 的值 .21.计算:(1)(a2+1)(a2- 1)-(-a2) ·a2;(2)(2a- b)(2a+b)-(-3a- b)(- 3a+b);(3)x2-(4-x)2;(4)(3x- 2y)2-4(2x- y)(x-y).2.已知 (a+b)2=7,(a- b)2= 4,求 a2+b2和 ab 的值 .3.已知△ABC的三边 a、b、c 满足 a2+b2+c2- ab-bc-ac=0,试判断△ ABC的形状 .4.解方程:(1)9x(4x-7)-(6x+5)(6x- 5)+38=0;(2)(y2-3y+2)(y2 +3y- 2)=y2(y+3)(y-3).。

八年级数学平方差公式和完全平方公示记忆

八年级数学平方差公式和完全平方公示记忆

八年级数学平方差公式和完全平方公示记忆平方差公式:
平方差公式是一个用于求两个数的平方之差的公式。

对于任意实数a和b,平方差公式可以表示为:(a + b)(a - b) = a^2 - b^2。

完全平方公式:
完全平方公式是一个用于将一个二次多项式进行因式分解的公式。

对于任意实数a和b,完全平方公式可以表示为:a^2 + 2ab +
b^2 = (a + b)^2。

拓展:
除了这两个公式,数学中还有其他常见的公式和定理,比如勾股
定理、二次根式公式、等幂法则等等。

记住这些公式和定理可以帮助
我们更快地解决数学问题和证明。

此外,了解这些公式的推导过程和
应用场景也是很有意义的,可以深入理解数学的本质和逻辑。

所以在
学习数学的过程中,要注重记忆公式,同时也要注重理解公式的推导和应用。

平方和与平方差知识点

平方和与平方差知识点

平方和与平方差知识点
一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。

即:(a+b)(a-b)=相同符号项的平方-相反符号项的平方2、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

3、能否运用平方差公式的判定
①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)
②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)
③有两数的平方差即:a2-b2或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
2、能否运用完全平方式的判定
②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。

解:()a b a b ab 2222242526+=-+=+⨯=三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”. 例1 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .例2 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、注意为使用公式创造条件例3 计算(2x +y -z +5)(2x -y +z +5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.例5 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.(四)、注意公式的变换,灵活运用变形公式例7 已知:x+2y=7,xy=6,求(x-2y)2的值.例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.四、怎样熟练运用公式:熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如(3x +5y )(5y -3x )交换3x 和5y 的位置后即可用平方差公式计算了.2、符号变化 如(-2m -7n )(2m -7n )变为-(2m +7n )(2m -7n )后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化 如98×102,992,912等分别变为(100-2)(100+2),(100-1)2,(90+1)2后就能够用乘法公式加以解答了.4、系数变化 如(4m +2n )(2m -4n )变为2(2m +4n )(2m -4n )后即可用平方差公式进行计算了.(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算(a 2+1)2·(a 2-1)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=[(a 2+1)(a 2-1)]2=(a 4-1)2=a 8-2a 4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-221)(1-231)(1-241)…(1-291)(1-2101),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题.即原式=(1-21)(1+21)(1-31)(1+31)×…×(1-101)(1+101)=21×23×32×34×…×109×1011 =21×1011=2011. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2+b 2=(a +b )2-2ab ,a 2+b 2=(a -b )2+2ab等.用这些变式解有关问题常能收到事半功倍之效.如已知m +n =7,mn =-18,求m 2+n 2,m 2-mn + n 2的值.面对这样的问题就可用上述变式来解,即m 2+n 2=(m +n )2-2mn =72-2×(-18)=49+36=85,m 2-mn + n 2= (m +n )2-3mn =72-3×(-18)=103.下列各题,难不倒你吧?!1、若a +a 1=5,求(1)a 2+21a ,(2)(a -a 1)2的值. 2、求(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)+1的末位数字.(答案:1.(1)23;(2)21.2. 6 )五、乘法公式应用的五个层次乘法公式:(a +b)(a -b)=a 2-b 2,(a ±b)=a 2±2ab +b 2,(a ±b)(a 2±ab +b 2)=a 3±b 3.第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用. 例1计算(-2x -y)(2x -y)..第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:(2+1)(22+1)(24+1)(28+1)+1.分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=216.第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=(a+b)2-2ab,a3+b3=(a+b)3-3ab(a +b)等,则求解十分简单、明快.例5已知a+b=9,ab=14,求2a2+2b2的值.解:∵a+b=9,ab=14,∴2a2+2b2=2[(a+b)2-2ab]=2(92-2·14)=106,第五层次──综合后用:将(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2综合,可得 (a+b)2+(a-b)2=2(a2+b2);(a+b)2-(a-b)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:(2x +y -z +5)(2x -y +z +5).解:原式=14[(2x+y-z+5)+(2x-y+z+5)]2-14[(2x+y-z+5)-(2x-y+z+5)]2=(2x +5)2-(y -z)2=4x 2+20x +25-y 2+2yz -z 2乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。

例1、 运用乘法公式计算:(1)(-1+3x)(-1-3x); (2)(-2m-1)2②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:(1)(13a-14b )(-14b -a 3); (2)(x-1/2)(x 2+1/4)(x+1/2)③逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2-b 2 = (a+b)(a-b),逆用积的乘方公式,得a n b n =(ab)n ,等等,在解题时常会收到事半功倍的效果。

例3、 计算:(1)(x/2+5)2-(x/2-5)2 ; (2)(a-1/2)2(a 2+1/4) 2(a+1/2)2 ④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算。

计算:(1)(x+y+1)(1-x-y); (2)(2x+y-z+5)(2x-y+z+5).先提公因式,再用公式例2. 计算:8244x y x y +⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪ 简析:通过观察、比较,不难发现,两个多项式中的x 的系数成倍数,y 的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为244x y +⎛⎝ ⎫⎭⎪,则可利用乘法公式。

三. 先分项,再用公式例3. 计算:()()232236x y x y ++-+简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x 的系数相同,y 的系数互为相反数,符合乘法公式。

相关文档
最新文档