六年级奥数:棋盘中的数学(四)

合集下载

小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案

小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案

小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案第四讲奇妙的方格表方格表是人们最熟悉最简单的图形之一,但这个简单的图形却可以说是一个广阔的数学天地,其中包含着许许多多奇妙的数学河题,许多i可题看起来非常简单非常有趣,但却要用到许多数学方法,蕴含着许多深刻的道理.这些方法和道理在我们以后的学习中将经常用到.一.计数问题例1下图中共有多少个矩形?例2在上页的方格表中,共有几个“日二f形(含有3个小方格QP”或?的拥也可以是“匚日”或“例3在4X4的方格表中,至少放上几个“土”后,才^使这一表中不能再放下一个“田”了(不许重叠)?如果是6X6或}件的方恰表,结果如何?例3在4X4的方格表中,至少放上几个“土"后,才能使这一表中不能再放下一个“土"了(不许重登)?如果是6乂6或8X8的方格表,结果如何?二.染色方法染色方法实际上是一神分美方法,不过对有些问题来乱通过染色能使问题比较直观,解决起来更方便.例4如图是半张象棋盘,一只马能否从枫出发,跳遍半张象模盘而使每个格点只经过一次?例5正方体形的房子共分27个小房间,每相邻两个房间都有门相通(上.下两间也有门相通).每个房间里都有一块奶酪,右下角的房间有一门通向外面.一只耗子从最中间的房间出发,想走遍各个房间,且每个房间只经过一次.最后从右下角出来,这样是可否能?如果可能,该怎么走?抽JB原理三,例6能否在8乂8的方格表的每个方格中写上0.L2中的一个数,使每行、每列以及两条对角线上各数之和都互不相等?例7在5X5的方格表中,任意挖去一个方格后,是否总能用8个“匚□"形完全盖住?如果不能,请说明道理.四、分类、试验,递推-寻求规侔例Z在4X4的方格表中任意挖去一恪,是否总能用5个“日亍形差住?对于8X8或M X 16的方格表,结论如何?例9在一个6*6的方格表中,任选5个方格涂黑,然后再逐步将凡是与两个或两个以上黑裕相邻的方格涂黑,不断按这个法则做下去,证明;无论怎样选择最初的5个方格,都不可能技这样的法则将所有方格全部徐黑.答案笫四讲奇妙的方格表方格表是人们最熟悉最简单的图形之一,但这个简单的图形却可以说是一个广阔的数学天地,其中包含着许许多多奇妙的数学问题.许多问题看起来非常简单非常有趣,但却爰用到许多数学方法,蕴含着许多深刻的道理.这些方法和道理在我们以后的学习中将经常用到,一、计数何题例1下图中共有多少个矩形。

五年级奥数讲义:棋盘中的数学(含答案)

五年级奥数讲义:棋盘中的数学(含答案)

五年级奥数讲义:棋盘中的数学(含答案)1.棋盘中的图形与面积;2.棋盘中的覆盖问题:(1)概念:用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。

实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。

(2)分类:棋盘的覆盖问题可以分为三类,一是能不能覆盖的问题,二是最多能用多少种图形覆盖的问题,三是有多少种不同的覆盖方法问题。

(3)重要结论:① m×n 棋盘能被2×1 骨牌覆盖的条件是m、n中至少有一个是偶数.② 2×n 的方格棋盘能用形骨牌覆盖的条件是3|n.3、棋盘中的象棋问题:所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题。

这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题。

解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学。

1、利用卡片覆盖已知图形,掌握一是能不能覆盖的问题,二是最多能用多少种图形覆盖的问题,三是有多少种不同的覆盖方法问题;2、利用象棋知识寻找路线;例1 一种骨牌是由形如的一黑一白两个正方形组成,则下图中哪个棋盘不能用这种骨牌不重复地完全覆盖?(A)3×4 (B)3×5 (C)4×4(D)4×5 (E)6×3答案:通过试验,很容易看到,应选择答案(B).分析:这类问题,容易更加一般化,即用2×1的方格骨牌去覆盖一个m×n的方格棋盘的问题.定理1: m×n棋盘能被2×1骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数.例2 下图中的8×8棋盘被剪去左上角与右下角的两个小方格,问能否用31个2×1的骨牌将这个剪残了的棋盘盖住?答案:我们将残角棋盘黑、白相间染色(如图),62个格中有黑格 32个,白格 30个.另外,如果用2×1骨牌 31张恰能盖住这个残角棋盘,我们发现,每个骨牌必定盖住一个黑格,一个白格,31个骨牌将盖住31个黑格及31个白格.这与32个黑格数,30个白格数的事实相矛盾.所以,无论如何用这31张2×1的骨牌盖不住这个残角棋盘.分析刚一想,31个2×1骨牌恰有62个小方格,棋盘去掉两个角后也是62个格,好像很有可能盖住.但只要简单一试,便发现不可能.仔细分析,发现如果把棋盘格黑、白相间染色后,2×1骨牌一次只能盖住一个黑格与一个白格.只要发现这个基本事实立即可以找到解答.例3 在下图(1)、(2)、(3)、(4)四个图形中:答案:图形(1)和(2)中各有11个方格,11不是3的倍数,因此不能用这两种图形拼成.图形来拼.只有图形(4)可以用这两种三个方格的图形来拼,具体拼法有多种,下图仅举出一种为例.分析:这道类型题用排除法,排除图(1)与(2)的方法是很重要的.因为一个图形可以用这是“必要条件排除法”.但要注意,一个图形小方格数是3的倍数,但是呢也不表明的就是这种情况.n|3。

五年级奥数讲义:棋盘中的数学(含答案)

五年级奥数讲义:棋盘中的数学(含答案)

五年级奥数讲义:棋盘中的数学(含答案)1.棋盘中的图形与面积;2.棋盘中的覆盖问题:(1)概念:用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题.实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题.(2)分类:棋盘的覆盖问题可以分为三类,一是能不能覆盖的问题,二是最多能用多少种图形覆盖的问题,三是有多少种不同的覆盖方法问题.(3)重要结论:① m×n 棋盘能被2×1 骨牌覆盖的条件是m、n中至少有一个是偶数.② 2×n 的方格棋盘能用形骨牌覆盖的条件是3|n.3、棋盘中的象棋问题:所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.1、利用卡片覆盖已知图形,掌握一是能不能覆盖的问题,二是最多能用多少种图形覆盖的问题,三是有多少种不同的覆盖方法问题;2、利用象棋知识寻找路线;例1 一种骨牌是由形如的一黑一白两个正方形组成,则下图中哪个棋盘不能用这种骨牌不重复地完全覆盖?(A)3×4 (B)3×5 (C)4×4(D)4×5 (E)6×3答案:通过试验,很容易看到,应选择答案(B).分析:这类问题,容易更加一般化,即用2×1的方格骨牌去覆盖一个m×n的方格棋盘的问题.定理1: m×n棋盘能被2×1骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数.例2 下图中的8×8棋盘被剪去左上角与右下角的两个小方格,问能否用31个2×1的骨牌将这个剪残了的棋盘盖住?答案:我们将残角棋盘黑、白相间染色(如图),62个格中有黑格 32个,白格 30个.另外,如果用2×1骨牌 31张恰能盖住这个残角棋盘,我们发现,每个骨牌必定盖住一个黑格,一个白格,31个骨牌将盖住31个黑格及31个白格.这与32个黑格数,30个白格数的事实相矛盾.所以,无论如何用这31张2×1的骨牌盖不住这个残角棋盘.分析刚一想,31个2×1骨牌恰有62个小方格,棋盘去掉两个角后也是62个格,好像很有可能盖住.但只要简单一试,便发现不可能.仔细分析,发现如果把棋盘格黑、白相间染色后,2×1骨牌一次只能盖住一个黑格与一个白格.只要发现这个基本事实立即可以找到解答.例3 在下图(1)、(2)、(3)、(4)四个图形中:答案:图形(1)和(2)中各有11个方格,11不是3的倍数,因此不能用这两种图形拼成.图形来拼.只有图形(4)可以用这两种三个方格的图形来拼,具体拼法有多种,下图仅举出一种为例.分析:这道类型题用排除法,排除图(1)与(2)的方法是很重要的.因为一个图形可以用这是“必要条件排除法”.但要注意,一个图形小方格数是3的倍数,但是呢也不表明的就是这种情况.n|3.答案:当3|n时,设n=3k,则2×n=2×3k=k(2×3)2×n=3×x则3|2n,但(2,3)=1,∴3|n.分析:思考方法.比如,若3|n且2|m时, m×n棋盘可分成若干个2×n棋例5、这是一个中国象棋盘,(下图中小方格都是相等的正方形,“界河”的宽等于小正方形边长).黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置.问:这三个棋子(一个黑“象”和两个红“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?答案:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形(2,10,12)或(3,10,12)的面积最大,如下图所示.分析:我们设每个小方格的边长为1单位.则小方格正方形面积为1平方单位.由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半.所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪.直观可见,只须比较(3,10,12)或(2,10,12)与(3,10,13)或(2,12,14)这两类三角形面积就可以了.顶点为(3,10,13)或(2,12,14)的三角形面积等于:所以顶点在(2,10,12)或(3,10,12)时三角形面积最大.例6、如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下(要符合象棋规则,“相”走田字,只能放在“相”所能到的位置,同样“兵”也只能放在“兵”所能到的位置.马走“日”字,“车”走直线,“炮”隔子控制等).答案:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示.分析:主要考查棋盘中的覆盖问题:完全覆盖问题.只要把每个棋的走法掌握该类型题应该没有太大问题.A档1、在4×4 的正方形中,至少要放多少个形如所示的卡片,才能使得在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)答案与提示:3 个.提示:右图是一种放法.2、能否用9 个形如的卡片覆盖6×6 的棋盘?答案与提示:不能.右图中黑、白格各18 个,每张卡片盖住的黑格数是奇数,9 张卡片盖住的黑格数之和仍是奇数,不可能盖住18 个黑格.3、有若干个边长为1、边长为2、边长为3 的小正方形,从中选出一些拼成一个边长为4 的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)答案与提示: 6 种.用小正方形拼成边长为4 的大正方形有6 种情形:(1)1 个3×3,7 个1×1;(2)1 个2×2,12 个1×1;(3)2 个2×2,8 个1×1;(4)3 个2×2,4 个1×1;(5)4 个2×2;(6)16 个1×1.B档4、要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?答案与提示:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数.经试验,不可能拼成边长为3的正方形.所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形36÷3= 12(个).5、下图的七种图形都是由4个相同的小方格组成的.现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?答案与提示:先从简单的情形开始考虑.显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1).经试验,用6种图形也可以拼成4×7的长方形(见下图).能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形.但事实上却拼不成.为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个.在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个.第(2)种图形只能覆盖3个黑格1个白格或3个白格1个黑格,因此不可能覆盖住另6种图形覆盖后剩下的2个黑格2个白格.综上所述,要拼成 4×7的长方形,最多能用上 6种图形.6、用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?答案与提示:用3个2×2正方形和2个3×3正方形可以拼成1个5×6的长方形(见左下图).用4个5×6的长方形和1 个 1×1的正方形可以拼成 1个11×11的大正形(见右下图).上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成 11×11的大正方形.那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗?将11×11的方格网每隔两行染黑一行(见下页右上图).将2×2或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个.但是,右图中的白格有11×7=77(个),是奇数,矛盾.由此得到,不用1×1的正方形不可能拼成11×11的正方形.综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形.7、用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?答案与提示:盲目无章的试验,很难搞清楚.我们采用分类讨论的方法.如下图所示,盖住A所在的小格只有两种情况,其中左下图中①②两个小长方形只能如图覆盖,其余部分有4种覆盖方法:右下图中①②③三个小长方形只能如图覆盖,其余部分有3种覆盖方法.所以,共有7种不同覆盖方法.8、有许多边长为1厘米、2厘米、3厘米的正方形硬纸片.用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)答案与提示:有一个边长3厘米纸片有如下3种拼法:有两个边长2厘米纸片的有如下4种拼法:有一个边长2厘米及11个边长1厘米纸片的有2种拼法,边长全是1 厘米纸片的有1种拼法.共有不同的拼法3+4+2+1=10(种).答:共有10种不同的拼法.C档9、小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人.他留下的四张票可以有多少种不同情况?答案与提示:25种.形如图(A)(B)(C)(D)的依次有3,10,6,6种.10、有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)答案与提示:6种.用小正方形拼成边长为4的大正方形有6种情形:(1)1个3×3,7个1×1;(2)1个2×2,12个1×1;(3)2个2×2,8个1×1;(4)3个2×2,4个1×1;(5)4个2×2;(6)16个1×1.11、能不能用9个1×4的长方形卡片拼成一个6×6的正方形?答案与提示:不能.用1,2,3,4对6×6棋盘中的小方格编号(见右图).一个1×4的矩形一次只能覆盖1,2,3,4号各一个,而1,2,3,4号数目不等,分别有9,10,9,8个.12、一种游戏机的“方块”游戏中共有如下页图所示的七种图形,每种图形都由4个面积为1的小方格组成.现用7个这样的图形拼成一个7×4的长方形(可以重复使用某些图形).那么,最多可以用上面七种图形中的几种?答案:要拼成4×7的方格,最多能用上七种“方块”中的6种图形13、由1×1、 2×2、3×3的小正方形拼成一个23×23的大正方形,在所有可能的拼法中,利用1×1的正方形最少个数是多少?试证明你的结论.答案:至少要用一个1×1的小正方形.14、如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.解:这种爬行路线是存在的.具体的设计一条,如右图所示.15、下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满.问:这堆棋子原有多少枚?解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分(如下图所示),共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和.恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子.这堆棋子总数是102+12=112枚.答:这堆棋子原有112枚.1、如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.答案:这种爬行路线是存在的.具体的设计一条,如右图所示.2、在8×8的方格棋盘中,如下图所示,填上了一些数字1,2,3,4.试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字.答案:①将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90°,180°和270°,得到另外三段划分线,如下图(1)所示.②仿照上述方法,画出所有这样的划分线,如上图(2)所示.③从最里层开始,沿着画出的划分线作设想分块,如上图(3),这个分块中要含1,2,3,4各一个,且恰为16块小方格.④将上面的阴影部分绕中心旋转180°,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图(4)所示3、要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?答案:84、一种游戏机的“方块”游戏中共有如下页图所示的七种图形,每种图形都由4个面积为1的小方格组成.现用7个这样的图形拼成一个8×4的长方形(可以重复使用某些图形).那么,最少可以用上面七种图形中的几种?答案:要拼成8×4的方格,最多能用上七种“方块”中的1种图形5、能不能用9个1×4的长方形卡片拼成一个12×3的正方形?答案与提示:能.1、要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?答案:122、一种游戏机的“方块”游戏中共有如下页图所示的七种图形,每种图形都由4个面积为1的小方格组成.现用7个这样的图形拼成一个8×4的长方形(可以重复使用某些图形).那么,最少可以用上面七种图形中的几种?答案:要拼成8×4的方格,最多能用上七种“方块”中的1种图形3、能不能用9个2×3的长方形卡片拼成一个7×8的正方形?答案与提示:不能.4、在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)答案:3个.提示:左下图是一种放法.5、答案:图(2).6、答案:不能.7、答案:5种.8、国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线所示.如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉.请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘?答案:本题是构造性的题目.用五个子管住六十四格,如上右图所示就是一种放置皇后的方案.。

《棋盘中的数学》

《棋盘中的数学》

棋盘中的数学————封闭图形中的植树问题清水塘小学江滨校区张凌云教学内容:人教版小学数学第八册第八单元《数学广角》P120例3内容分析1.教学主要内容理解封闭图形的植树问题中棵数(点数)与间隔数(段数)之间的关系2.教材编写特点:植树问题是“奥数”中的经典问题,新教材将其编入《数学广角》单元,目的让学生是通过生活中的简单事例,初步体会解决植树问题的思想方法和它在解决实际问题中的应用。

培养学生在解决问题的分析、思考过程中,逐步发现隐含于不同的情形中的规律,找出解决问题的有效方法的能力。

让学生经历抽取出数学模型的过程。

本单元共有3个例题,例1、例2教学了一条线段中的植树问题(在线段的两端都栽、两端都不栽或只栽一端的情况下,棵数与间隔数的关系),例3是借助围棋盘来探讨封闭曲线中的植树问题。

3.教学内容的数学核心思想:将“复杂的问题简单化”、“一一对应”是本课的数学核心思想。

教学目标:知识与技能:让学生用多种方法解决围棋盘中的数学问题,展示方法的多样化;并引导学生解决封闭图形中的植树问题,理解封闭图形的植树问题中点数与段数之间的关系。

过程与方法:让学生经历提问、猜想、验证、得出结论等数学探索的过程,初步培养学生从实际问题中探索规律,找出解决较复杂问题的有效方法的能力,同时能将这种规律应用到解决类似的问题之中。

情感、态度、价值观:让学生感受数学在日常生活中的广泛应用,使学生感受到数学的价值,激发学生学习数学的兴趣。

(课堂实录)教学过程:一、谜语引入猜谜:黑白两对手,不在格中走。

有眼看不见,无眼难活久。

(打一棋类名称)谈话:同学们喜欢下棋吗?下过围棋吗?围棋是一项培养思维能力的活动,围棋的棋盘里还蕴含了有趣的数学问题。

今天我们一起来探究围棋棋盘中的数学问题。

(板书:棋盘中的数学)二、复习铺垫1、出示围棋棋盘图:围棋盘最外边是正方形,棋子下在两条线交叉的地方(动画演示两颗棋子)问:棋盘最外层的边长为54厘米,每相邻两颗棋子间的距离3厘米,一条边可以摆多少颗棋子?生:54÷3+1﹦19(个)段数师:为什么要加1?生:这就是一个植树问题,是属于两端都要栽的情况。

高斯小学奥数六年级上册含答案第04讲对应计数

高斯小学奥数六年级上册含答案第04讲对应计数

第四讲对应计数有9个球排成一行:OOOO OO O传说电尤利曲斯在界眩了独韻的波吕輩1®塘后,离幵了独眼巨人的丄地一血那个可怜的戶人毎入早展都坐在詞穴人口的附近,帚让一只博羊从洞里出来,就从一堆卵石中捡趾哄来一等到了黄昏爲羊回兀的时慎.他每放进一只羊*就放下一块卵石” 就这样・如果早晨捲起的弟石都放完了,他就知道他所冇的羊状回来了.我们往其中插入两块(相同的)木板,就能够把这9个球分成三堆,例如:O ODO O O ODO O O O OOQO ODO O O O OOOOOOODODO可以看到,插入两块木板把9个球分成三堆的方法很多,那么到底有多少种插入木板的方法呢?每相邻两个小球之间有一个空隙,一共有8个空隙.插入的两块木板要把小球分成三堆,说明两块木板要放在两个不同的空隙之中. 8个空隙选两个,共有2C s 28种方法.如果要把三堆小球分别装入颜色为红、 黄、蓝的三个袋子里,又有多少种装法呢?其实,所谓装入红、黄、蓝三个袋子,就是把球分成三堆,因此答案也是28 •这样我们就把“小球装袋”问题转化成“小球插板”问题来求解了,这种方法我们称之为“插 “插板法”是一种特殊的对应技巧,能够帮我们解决很多计数问题.例1. 把20个苹果分给3个小朋友,每个小朋友至少分1个,共有多少种分苹果的方法?第二问允许有的“小朋友没有分到苹果” ,还能不能用“插板法”呢? 练习1、龟丞相把7个顶级乌龟壳分给4只小乌龟.如果每只小乌龟至少分一 个,共有多少种分法?如果可以有的小乌龟没有分到乌龟壳,共有多少种方 法?例2.某班40名学生参加了一项关于“超市是否应该提供免费塑料袋”的调查,每人均在“应该提供”、“不应该提供”和“无所谓”三个选项中做出了选择•请问:三个选项的统计数字共有多少种不同的可能?「分析」题目只关心三个选项的统计数字,需要具体考虑每个学生所作的选择吗?练习2、8名同学做同一道单选题,它有 A 、B 、C 、D 四个选项,每个同学都选了其中如何用“插板法”求解呢?放入红色放入黄色 放入蓝色如果可以有小朋友没有分到苹果,共有多少种分法?一个选项.老师为了调查同学们的做题情况,把选择各个选项的人数都做了统计,则有多少种可能的统计结果?最早的计数方法一一对应法] 我们这一讲学习对应的计数方法,这种计数方法有很强的技巧性,很考验思维能力. 也/::许你觉得这种对应法不是那么容易掌握,但它其实是非常有用,而且历史悠久的.人类最早使用的计数方法不是枚举,不是排列组合,也不是递推,而是对应!y!■对应法最早的应用是结绳计数. 最早期的时候,人类还没有发明数字. 因而用枚举等其他方法来记录数量的多少是不可能办到的. 这时,人们的计数方法是在绳子上打结或者在树;;上刻痕•用绳子上的结的数目或者树上划痕的道数来记录补获了多少猎物,采集了多少花:果.这个时期持续了很长时间,因为人类的历史已经有几百万年,而数字的发明距今还不到::1万年,在人类历史上的大部分时间,使用的计数方法是对应法一一结绳计数.i; 结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来•宋朝:人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火.”这是用结草来调发军马,传达要调的人数呢!其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法•中央民族大学就收藏着一副高山族的结:绳,由两条绳组成:每条上有两个结,再把两条绳结在一起.「:有趣的是,结绳计数不止在我们中国古代用过,在国外也有很多结绳计数的记载. 传说古波斯王有一次打仗,命令手下兵马守一座桥,要守60天.为了让将士们不少守一天:也不多守一天,波斯王用一根长长的皮条,把上面系了60个扣.他对守桥的官兵们说:\“我走后你们一天解一个扣,什么时候解完了,你们就可以回家了.”: 对应是最原始的计数方法,充分蕴含着人类的智慧.例3.在8 8的方格棋盘中,一共可以数出多少个如下图所示的由4个单位小正方形组成的“L ” 型? ”型放入8 8的方格棋盘的方格盘中,按照放的方向分,可以有情形,那么是不是需要对每一个方向的“ L ”型分别进行计数呢?例4. ( 1) 一只青蛙沿着一条直线跳跃 4次后回到起点•如果它每一次跳跃的长度都是 1分米,那么这只青蛙共有多少种可能的跳法?(2)如果这只青蛙在一个方格边长为 1分米的方格纸上沿格线跳跃 4次后回到起点,每次跳跃的长度仍是 1分米,那么这只青蛙共有多少种可能的跳法?「分析」(1)青蛙在直线上跳跃 4次后要回到起点,如果一直往一个方向跳,显然是不 行的•那么青蛙应该怎么跳呢?( 2)青蛙在方格表上跳跃 4 次后要回到起点,现在青蛙有哪些跳跃的方向,每个方向 上各应该跳跃多少次呢?练习3、在6 6的方格棋盘中, 一共可以数出多少个如下图所示的由 3个单位小正方形练习4、一只青蛙沿着一条直线跳跃6 次后回到起点.如果它每一次跳跃的长度都是1分米,那么这只青蛙共有多少种可能的跳法?对应法是一种很巧的计数方法,但如何建立对应关系,是其中的难点.之前几道题,对应关系的建立相对比较直接,而有些问题,则需要通过大量的分析,才能找出隐藏的对应关系.例5.常昊与古力两人进行围棋“棋圣”冠军争霸赛,谁先胜4 局即获得比赛的胜利. 请问: 比赛过程一共有多少种不同的方式?「分析」由对称性,只需求出常昊获胜的比赛过程有多少种.比赛最多进行7 场,其中常昊一定胜4场.如果我们按比赛先后顺序给每场比赛编号,那么常昊胜的4 场比赛编号,就决定了整个比赛流程.而常昊获胜的比赛可以是哪 4 场呢?例6.海淀大街上一共有18 盏路灯,区政府为了节约用电,打算熄灭其中的7 盏.但为了行路安全,任意相邻的两盏灯不能同时被熄灭,请问:一共有多少种熄灯方案?分析」你能用插板法求解这道题吗?课堂内外 -------------------------------------------------最早的密码战公元前405年,雅典和斯巴达之间的伯罗奔尼撒战争已进入尾声. 斯巴达军队逐渐占据了优势地位,准备对雅典发动最后一击.这时,原来站在斯巴达一边的波斯帝国突然改变态度,停止了对斯巴达的援助,意图是使雅典和斯巴达在持续的战争中两败俱伤,以便从中渔禾U.在这种情况下,斯巴达急需摸清波斯帝国的具体行动计划,以便采取新的战略方针•正在这时,斯巴达军队捕获了一名从波斯帝国回雅典送信的雅典信使. 斯巴达士兵仔细搜查这名信使,可搜查了好大一阵,除了从他身上搜出一条布满杂乱无章的希腊字母的普通腰带外,别无他获.情报究竟藏在什么地方呢?斯巴达军队统帅莱桑德把注意力集中到了那条腰带上,情报一定就在那些杂乱的字母之中. 他反复琢磨研究这些天书似的文字,把腰带上的字母用各种方法重新排列组合,怎么也解不出来.最后,莱桑德失去了信心,他一边摆弄着那条腰带,一边思考着弄到情报的其他途径. 当他无意中把腰带呈螺旋形缠绕在手中的剑鞘上时,奇迹出现了.原来腰带上那些杂乱无章的字母,竟组成了一段文字.这便是雅典间谍送回的一份情报,它告诉雅典,波斯军队准备在斯巴达军队发起最后攻击时,突然对斯巴达军队进行袭击.斯巴达军队根据这份情报马上改变了作战计划,先以迅雷不及掩耳之势攻击毫无防备的波斯军队,并一举将它击溃,解除了后顾之忧.随后,斯巴达军队回师征伐雅典,终于取得了战争的最后胜利.公元前405年,雅典和斯巴达之间的伯罗奔尼撒战争已进入尾声. 斯巴达军队逐渐占据了优势地位,准备对雅典发动最后一击.这时,原来站在斯巴达一边的波斯帝国突然改变态度,停止了对斯巴达的援助,意图是使雅典和斯巴达在持续的战争中两败俱伤,以便从中渔禾U.在这种情况下,斯巴达急需摸清波斯帝国的具体行动计划,以便采取新的战略方针.正在这时,斯巴达军队捕获了一名从波斯帝国回雅典送信的雅典信使. 斯巴达士兵仔细搜查这名信使,可搜查了好大一阵,除了从他身上搜出一条布满杂乱无章的希腊字母的普通腰带外,别无他获.情报究竟藏在什么地方呢?斯巴达军队统帅莱桑德把注意力集中到了那条腰带5. 作业1. 一部电视连续剧共 8集,电视台要在周一到周四这 4天内按顺序播完,其中可以有若干 天不播,共有多少种安排播出的方法?2. 现在有12道竞赛题,卡莉娅要在今天、明天、后天这三天内按顺序做完,但每一天可以做很多道题也可以一道不做•共有多少种安排做题的方案?3. 阿呆在玩PSP 格斗游戏,游戏采用的是五局三胜制(阿呆VS 电脑),谁先胜三场谁就 获得胜利.如果最后阿呆获胜,那么一共有多少种可能的比赛过程?(只考虑每场比赛的胜负) 4. 在6 6的方格棋盘中,一共可以数出多少个如图所示的由5个单位小正方形组成的“凹”字形?(注:这8个鸡蛋看作完全相同)(1)有8个鸡蛋,每天至少吃 1个,一共吃了 5天,有多少种不同的吃法?(2)有8个鸡蛋,每天至少吃2个,一共吃了 3天,有多少种不同的吃法?例题:例题1.答案:171 ; 231详解:第一问用课文里所说的“插板法”即可解决.20个苹果,共有19个空隙,分给3个小朋友需要3 1 2块隔板,将2块隔板插入19个空隙中的某两个中,就是从2 19个空隙中挑出两个用来插板子,方法有C 19 171 ;第二问同样用插板法,仍然是 20个苹果和2块隔板•但此时隔板不一定要放在 19个空隙中,也可以放在所有苹果 的最左端或者最右端,而且它们也不一定插入两个不同的空隙,插入同一个空隙也是可以的.因此,我们只要把20个苹果和2块隔板随意排成一行即可. 这20 2 22个 对象排成一行会占 22个位置,从这22个位置中挑出2个来放隔板,剩余的 20个位 置自然就是放苹果,因此共有 C ;2 231种不同的方法.例题2.答案:861详解:本题相当于把 40个苹果放入3个盘子里,每个盘子都允许为空•因此共有 40 个苹果和2块隔板.方法数等于 C 42 861 .可以分为两类情形:第一类,1、2、3、4各一个,共有A 4种方法;第二类,只有21、2或者只有3、4,共有2 C 4种方法.两者相加共 36种. 例题5.答案:70 详解:由对称性,只需求出常昊获胜的比赛过程有多少种,再乘以 2即可.比赛最多进行7场,其中常昊一定胜 4场,而且比赛一定是在常昊获得第 4场胜利时结束的, 因此常昊获胜的那 4场比赛的编号就决定了整个比赛流程. 第四讲对应计数例题4.答案: (1)(1) 6; (2) 36详解:青蛙要能够回到起点, 必须向左跳两次, 右,右),(左,右,右,左)等.不难看出,只要从 外两步自然向右,所以只要确定哪两步是向左跳,就确定了哪两步是向右跳.因 此跳跃的方法数为C : 6种;(2) 详解:现在青蛙需要朝四个方向跳,我们记四个方向为 示).如果想要跳回原地,必须保证四步之内向右跳两次. 4步中挑出1、2、3、4 (如图所1和2 一样多,3和4 一样多.于是 例题3.答案:336个 详解:如右图所示,每个2 此只要求出图中有几个 册第 2 6 29讲)的知识不难得知,7 84个,所以共有“例如(左,左,2步来向左,另例题6.答案:C:792详解:本题从题面上看,是要从18盏灯中选出7盏来熄灭•但实际解决的时候,需要换一个角度:如何把灭掉的7盏灯,插入另外11盏亮着的灯之间.如下图所示,在11盏亮灯之间插入熄灭的灯时,每个空隙最多插1盏,否则灭灯就相邻了,因此必须挑7个空隙,每个空隙插一盏,而可供插入的空隙有12个(两端也可),因此答案为C:792 •d’A ifhJLxr w. A<> <> <> <> <> <> <> <> <> <>A A A R* * r* 八练习:1. 答案:C B 20 ;C;o 120简答:用插板法即可解决,具体过程略.32. 答案:C11 165简答:相当于把8个球放入4个篮子,每个篮子都可以为空.3. 答案:100简答:每个田字格都可以找到4个“L”型•共有5 5 25个田字格,所以共4 25 100 个“L”型.4. 答案:20简答:6次跳远中,一定3次向左,3次向右,因此共有C;20种不同的跳法.作业1.答案:165简答: 4 1 3C8 4 1 C111652.答案:91简答:C1^3 1 G4913.答案:10简答:C s 10 •4.答案:80简答:每个2 3的方格内都有2个“凹”字形,一共有40个2 3的方格,因此共有80 个“凹”字形.5. 答案:(1)35;(2)6简答:(1)用插板法,8个鸡蛋之间有7个“空”,用4个“板”隔成5部分,有C; 35种方法;(2)每天预先吃掉一个鸡蛋,问题相当于是3天吃8 3 5个鸡蛋,每天至少2吃一个,有C42 6 种吃法.。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

六年级下册奥数第四讲-奇妙的方格表 例题 习题 -通用版(例题含答案)

六年级下册奥数第四讲-奇妙的方格表    例题 习题 -通用版(例题含答案)

第四讲奇妙的方格表方格表是人们最熟悉最简单的图形之一,但这个简单的图形却可以说是一个广阔的数学天地,其中包含着许许多多奇妙的数学问题.许多问题看起来非常简单非常有趣,但却要用到许多数学方法,蕴含着许多深刻的道理.这些方法和道理在我们以后的学习中将经常用到.一、计数问题例1下图中共有多少个矩形?分析如果直接数,很容易遗漏或者重复.为了避免遗漏或重复,可以将图形中的各种矩形按形状大小分类,分别计数后再相加.在分类计数中如果能发现规律,那就更简单了.解法1:在已知的方格表中,“□”共有5×3=15个,“□□”共有4×3=12个,“□□□”共有3×3=9个,…如此进行下去,把各类矩形的个数相加,可得矩形总数为90个.解法2:将各类矩形列出表来(如下图),分析各类矩形个数的算式,很容易发现规律,于是可得矩形总个数为:(1+2+3+4+5)×(3+2+1)=90个.格组成的正方形中都含有4个L形.因此为了求L形的个数,只需先求“田”字形的个数.解:在上页的方格表的第1、2行中含有“田”字形 4个,第2、3行中也含4个,共有“田”字形8个,每个“田”字形对应4个L形,因此共有L形4×8=32个.说明:计数最基本的方法是分类讨论.如果在分类讨论中发现规律,就可以改进算法.例2中的计数方法利用了对应的思想.当直接计算某一事物的个数有困难时,往往可以先转化成计算另一事物的个数,然后再研究这两个数,可以先计算2×3的矩形共有多少个,然后由每个2×3的矩形中都10×4=40个.在例1中计算矩形个数还有一些更高明的方法,这些方法将在中学里学到.8×8的方格表,结果如何?解:如图,在4×4的方格表中放下3个L形,即不能再放下一个L形了.如果只放了两个L形,那么可以证明总还能再放下一个L形.因为每个“田”字形内至少盖住两格后才不再能放下L形,而4×4的方格表中共有4个不相重叠的“田”字形,至少应盖住2×4=8格后,才不再能放一个L形,如果只放了两个L形,仅仅盖住6格,所以总还能再放一个L 形.从以上两步,可以看出4×4的方格表中至少放上3个L形后,才能使这一表中不再能放下一个L形.在6×6的方格表中有9个不相重叠的“田”字形,每个“田”字形至少盖住两格,才不再能放下一个L形,这样至少应盖住18格,也就是至少要放上6个L形.如右图,已放了6个L形,确实已不能再放下一个L形了,因此6个是最少的数目.用同样的方法可以得到在8×8的方格表中至少放上11个L形后,就不再能放下一个L形了.二、染色方法染色方法实际上是一种分类方法,不过对有些问题来说,通过染色能使问题比较直观,解决起来更方便.例4如图是半张象棋盘,一只马能否从A处出发,跳遍半张象棋盘而使每个格点只经过一次?解:把半张象棋盘的格点(共45个)相间地涂上黑、白两色(黑色用“×”表示,如图共有22个黑点,23个白点.按照马走步的规则,每步走“日”字的对角线,不论马在何处也不论往哪个方向跳,起点和终点的颜色总是不同的.由于A处是黑格点,如果马从A处出发跳遍每个格点且每个格点只经过一次,那么需经过21个黑点,23个白点,黑、白格点数相差2,故这样的走法是不可能的.例5正方体形的房子共分27个小房间,每相邻两个房间都有门相通(上、下两间也有门相通).每个房间里都有一块奶酪,右下角的房间有一门通向外面.一只耗子从最中间的房间出发,想走遍各个房间,且每个房间只经过一次,最后从右下角出来,这样是可否能?如果可能,该怎么走?解:将27个小正方体相间染成黑、白两色(如图),共13个房黑间,14个白房间,中间房间是黑色.如果从中间房间出发,每个房间经过一次,共需经过12个黑房间(除中间房间外)、14个白房间.但是与黑房间相邻的都是白房间,与白房间相邻的都是黑房间,路线只能是:黑—白—黑—白…这是不可能实现的.如果改从任一个(不是右下角的)白房间出发,就能达到目的.请自己设计路线.三、抽屉原理例6能否在8×8的方格表的每个方格中写上0、1、2中的一个数,使每行、每列以及两条对角线上各数之和都互不相等?解:8行、8列及两条对角线共有18个和数,将这18个和数作为“苹果”.8个数(每个数是0、1、2中的一个)的和最小是0,最大是16,共有17种不同的和,将这17个不同的和作为“抽屉”.根据抽屉原理,必有一个“抽屉”中存在2个或2个以上的“苹果”,这就是说,在18个和数中至少有2个相等,不可能都互不相等.例7在5×5的方格表中,任意挖去一个方格后,是否总能用8个解法1:如右图,将5×5的方格表挖去一格(阴影)后,剩下的24住a格,需要用一个L形盖住a、d、e或a、b、c三格,由于两边对称,不妨设盖住a、b、c三格,这样,x格就不可能被任何一个L形盖住(否则就重叠了),所以这24格不可能被完全盖住.解法 2:如图,标上“×”的格共有 9个,如果挖去的一格不是标上“×”的格,那么剩下的24格不可能被8个L形盖住.这是因为任意两个“×”格不可能被同一个L形盖住,这9个“×”格若都能被盖住,至少需要9个L形,因此不能用8个L形盖住剩下的24格.说明:解法1虽然很简单,但要想到这种解法,需要做多次试验(当挖去的一格在某些位置时,题目的要求是可以成立的).解法2实际上用了抽屉原理,“×”格看作“苹果”,8个L形看成“抽屉”.用抽屉原理的关键是要设计好“抽屉”和“苹果”.四、分类、试验、递推、寻求规律例8在4×4的方格表中任意挖去一格,是否总能用5个分析对于4×4的方格表,由挖去一格的位置不同,可分三种情况讨论.这种分类讨论的方法,对于4×4的方格表来说,由于试验次数较少,还比较容易得到结论.但对于8×8的方格表,需要分10种情况,分别去试验;对于16×16的方格表,则需要分36种情况.对于每种情况,由于表格较大,试验起来也很繁琐.如果运用数学上称为“递推”的方法,问题就简单得多了,不仅能轻易地解决8×8、16×16的方格表的问题,还能解决 32×32、64×64、…等方格表中的类似问题.解法1:对于4×4的方格表,由挖去一格的不同位置,可分三种情况,每种情况都能运用5个L形盖住,因此在4×4的方格表中任意挖去一格,总能用5个L形盖住(如下图).对于8×8及16×16的方格表,由于分类情况较多,这里从略.解法2:先考虑2×2的方格表,任意挖去一格,剩下3格总是恰好能用1个L形盖住.对于4×4的方格表,挖去的一格总在某个角上的2×2小方格表内,不妨设在左上角,那么左上角的2×2小方格表中剩下3格能用1个L形盖住.在右上、右下、左下的3个2×2方格表中,先各挖去靠中间的一格(如图),剩下的各能用1个L形盖住,而挖去的3格也恰能用1个L 形盖住.对于8×8的方格表,挖去的一格总在某个角上的4×4方格表内,不妨设在左上角,那么左上角剩下的部分总能用5个L形盖住.在右上、右下、左下的3个4×4方格表中,先各挖去靠中央的一格(如右图),由上述结论,各4×4方格表中剩下部分总能分别用5个L形盖住.而挖去的3格也恰能用1个L形盖住,所以,8×8方格表中任意挖去一格,总能用21个L形完全盖住.同样,对于16×16的方格表,任意挖去一格后,总可以用85个L形完全盖住.例9在一个6×6的方格表中,任选5个方格涂黑,然后再逐步将凡是与两个或两个以上黑格相邻的方格涂黑,不断按这个法则做下去,证明:无论怎样选择最初的5个方格,都不可能按这样的法则将所有方格全部涂黑.分析先试验一下,在上图的方格表中选5格涂黑,然后按给定法则涂黑另一些格,直到上图(4),已无法再将其余的方格涂黑.如果改变最初5格的位置,虽然最后涂黑的部分会不同,但都不能将所有方格全部涂黑.为了证明这一结论,如果将最初5格的不同位置一一列举出来,再逐个证明,当然也是可以的(这种方法叫枚举法),不过过于繁琐.因此,应该在试验中寻求规律,不被表面现象迷惑.证明:考虑涂黑过程中黑色区域的周界总长度.设小方格的边长为1,则开始有5个黑格,黑色区域总长度不大于20.按照题设的涂黑法则,每格在涂黑前后,黑色区域的周界不会变长(此方格至少有两边是原来黑色区域的周界,当此格涂黑后,这两边已不再是边界,而另两边可能成为边界).如果能将所有方格都涂黑,那么黑色边界的总长度应为24,由以上分析,这是不可能的,因此,无论怎样选择最初的5个方格,都不可能按照题设的法则将全部方格涂黑.习题四1.在3×5的方格表中共有多少个正方形?共有多少个2.在例5中,是否从任意一个(不是右下角的)白房间出发,都能走遍各个房间后从右下角出来?3.在例 7中,如果挖去一个“×”格,剩下的方格表是否总能用8个L形完全盖住?4.①在4×4的方格表中的任意5个格中各放一枚棋子,是否总可选出2行2列,使这5个棋子都在这2行2列中?如果放6个棋子(每个棋子占一格),结果如何?放7个棋子,结果如何?②在6×6的方格表中最多放几个棋子(每个棋子占一格),不论如何放,使得总能选出3行3列,使这些棋子都在这3行3列中?5.在4×4的方格表中除一格写上“—”外,其余都写上“+”.现允许任选一行,或一列,或一条平行于对角线的斜线(特殊情况,可以是角上一格,或整条对角线),将它们每格中符号变成相反的.不断施行这种变换,是否能使整个方格表的所有格内都是“+”号?若改为5×5的方格表,结论如何?。

【六年级奥数目录】

【六年级奥数目录】

六年级目录
专题一估值计算
第一讲去尾法
第二讲放缩法
第三讲前后夹击法
专题二分数、小数四则混合运算
第一讲分数、小数四则混合运算
第二讲四则混合运算的速算与巧算
专题三工程问题
第一讲用方程解工程问题
第二讲用比例知识解工程问题
专题四分数单位一的应用题
第一讲求一个数是另一个数的几分之几
第二讲求一个数的几分之几是多少
第三讲已知一个数的几分之几求原数专题五棋盘问题
第一讲棋盘中的数学问题
第二讲棋盘中的两人对弈问题
第三讲棋盘中的覆盖问题
专题六比和比例
第一讲按比例分配的一般题型
第二讲按比例分配在几何中的应用
第三讲比和比例在行程问题中的应用
第四讲比和比例在工效问题中的应用
第五讲比和比例在浓度问题中的应用专题七离散最值问题
第一讲最多最少问题
第二讲最大最小问题
专题八浓度问题
第一讲稀释问题
第二讲加浓问题
第三讲两种溶液混合问题
专题九最短路线问题
第一讲简单的最短路线问题
第二讲较复杂的最短路线问题
第三讲最短问题的应用
专题十行程问题
第一讲发车问题
第二讲接送问题
第三讲流水行船问题
专题十一简单的立体图形
第一讲立体计数
第二讲巧算面积、体积
专题十二商业中的数学
第一讲利息问题
第二讲利润问题
第三讲其它问题
专题十三圆柱和圆锥
第一讲圆锥的表面积和体积。

华罗庚六年级上册奥数第九讲

华罗庚六年级上册奥数第九讲

棋盘中的数学(一)——什么是棋盘中的数学所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.作为开篇我们先解几道竞赛中的棋盘问题.例1 这是一个中国象棋盘,(下图中小方格都是相等的正方形,“界河”的宽等于小正方形边长).黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置.问:这三个棋子(一个黑“象”和两个红“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?解:我们设每个小方格的边长为1单位.则小方格正方形面积为1平方单位.由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半.所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪.直观可见,只须比较(3,10,12)或(2,10,12)与(3,10,13)或(2,12,14)这两类三角形面积就可以了.顶点为(3,10,13)或(2,12,14)的三角形面积等于:所以顶点在(2,10,12)或(3,10,12)时三角形面积最大.答:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形(2,10,12)或(3,10,12)的面积最大,如下图所示.说明:本题是以棋盘格点为基础组成图形计算面积.其实,这类问题所在多有,我们把m×n的方格阵称为广义棋盘,则可以设计出许多这类的问题.例2 下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满.问:这堆棋子原有多少枚?解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分(如下图所示),共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和.恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子.这堆棋子总数是102+12=112枚.答:这堆棋子原有112枚.说明:本题也可以列方程求解.设原正方阵每边m枚棋子,由题意得:(m+1)2-9=m2+12.即2m+1=21,解得 m=10.所以棋子总数为102+12=112枚.本题与围棋盘并无本质联系,问题可改述为“一堆棋子若摆成一个实心方阵,剩余12粒棋子,若改摆每边各加一枚的方阵,则差9枚棋子,问这堆棋子原有多少枚?”应用围棋盘显得更加直观、具体.例3 如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.解:这种爬行路线是存在的.具体的设计一条,如右图所示.例4 在8×8的方格棋盘中,如下图所示,填上了一些数字1,2,3,4.试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字.分析注意这个正方形的面积是8×8=64个平方单位,因此切分后的每一块的面积为16个平方单位,即由16个小方格组成.解:①将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90°,180°和270°,得到另外三段划分线,如下图(1)所示.②仿照上述方法,画出所有这样的划分线,如上图(2)所示.③从最里层开始,沿着画出的划分线作设想分块,如上图(3),这个分块中要含1,2,3,4各一个,且恰为16块小方格.④将上面的阴影部分绕中心旋转180°,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图(4)所示.例5 国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线所示.如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉.请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘?解:本题是构造性的题目.用五个子管住六十四格,如上右图所示就是一种放置皇后的方案.例6 如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下(要符合象棋规则,“相”走田字,只能放在“相”所能到的位置,同样“兵”也只能放在“兵”所能到的位置.马走“日”字,“车”走直线,“炮”隔子控制等).解:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示.本节我们初步看到了一些棋盘问题,它们的特点是:①以棋盘为背景提出各种问题,无论围棋盘、中国象棋盘或是国际象棋盘.更为一般的提法是m×n方格上的数学问题.②这些问题有面积计算,图形分割,棋子计数,棋子布局等各种类型,这些问题一般属于智巧类的问题或更深一步的组合数学问题.棋盘中的数学(二)——棋盘覆盖的问题有这样一道竞赛题:例1一种骨牌是由形如的一黑一白两个正方形组成,则下图中哪个棋盘不能用这种骨牌不重复地完全覆盖?(A)3×4 (B)3×5 (C)4×4(D)4×5 (E)6×3解:通过试验,很容易看到,应选择答案(B).这类问题,容易更加一般化,即用2×1的方格骨牌去覆盖一个m×n的方格棋盘的问题.定理1:m×n棋盘能被2×1骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数.证明:①充分性:即已知m,n中至少有一个偶数,求证:m×n棋盘可被2×1骨牌覆盖.不失一般性,设m=2k,则m×n=2k×n=k×棋盘可被kn个2×1骨牌覆盖.②必要性:即已知m×n棋盘可以被2×1骨牌覆盖.求证:m,n中至少有一个偶数.若m×n棋盘可被2×1骨牌覆盖,则必覆盖偶数个方格,即mn是个偶数,因此m、n中至少有一个是偶数.例2下图中的8×8棋盘被剪去左上角与右下角的两个小方格,问能否用31个2×1的骨牌将这个剪残了的棋盘盖住?分析刚一想,31个2×1骨牌恰有62个小方格,棋盘去掉两个角后也是62个格,好像很有可能盖住.但只要简单一试,便发现不可能.仔细分析,发现如果把棋盘格黑、白相间染色后,2×1骨牌一次只能盖住一个黑格与一个白格.只要发现这个基本事实立即可以找到解答.解:我们将残角棋盘黑、白相间染色(如图),62个格中有黑格 32个,白格 30个.另外,如果用2×1骨牌 31张恰能盖住这个残角棋盘,我们发现,每个骨牌必定盖住一个黑格,一个白格,31个骨牌将盖住31个黑格及31个白格.这与32个黑格数,30个白格数的事实相矛盾.所以,无论如何用这31张2×1的骨牌盖不住这个残角棋盘.例3在下图(1)、(2)、(3)、(4)四个图形中:解:图形(1)和(2)中各有11个方格,11不是3的倍数,因此不能用这两种图形拼成.图形来拼.只有图形(4)可以用这两种三个方格的图形来拼,具体拼法有多种,下图仅举出一种为例.说明:排除图(1)与(2)的方法是很重要的.因为一个图形可以用这是“必要条件排除法”.但要注意,一个图形小方格数是3的倍数,也不表明的就是这种情况.是3|n.当3|n时,设n=3k,则2×n=2×3k=k(2×3)2×n=3×x则3|2n,但(2,3)=1,∴3|n.思考方法.比如,若3|n且2|m时,m×n棋盘可分成若干个2×n棋例5一种游戏机的“方块”游戏中共有如下页图所示的七种图形,每种图形都由4个面积为1的小方格组成.现用7个这样的图形拼成一个7×4的长方形(可以重复使用某些图形).那么,最多可以用上面七种图形中的几种?分析用七个图形,共4×7=28个方格,要是能拼成4×7的棋盘,这时采用了小“方块”中的两种.这样试下去,我们会发现,由七种方块中的6种可以拼成4×7棋盘格,如下图所示.但要将七种“方块”每个都只用一次,要拼成4×7棋盘,试几次会发现拼不出来.因此我们会想到,是不是不可能呢?下面我们证明这一点.证明:用6种“方块”构成4×7棋盘已如上图所示.下面我们证明不能用七种“方块”各一块构成4×7的长方形棋盘.将长方形的28个小方格如右图黑、白相间进行染色,则黑、白格各为个白格1个黑格,而其余六种方块图形皆占据黑格、白格各2个.因此,7种方块图形占据的黑白格数必都是奇数,不会等于14.综上所述,要拼成4×7的方格,最多能用上七种“方块”中的6种图形.例6由1×1、2×2、3×3的小正方形拼成一个23×23的大正方形,在所有可能的拼法中,利用1×1的正方形最少个数是多少?试证明你的结论.解:用1×1的正方形至少一个.第一步:中心放一个1×1的正方形,剩下的4个11×12的矩形,是可以用6个2×2正方形和12个3×3正方形拼成的,如下图所示.第二步:不用1×1而只用2×2与3×3的正方形是拼不成的.将23×23的大正方形的1,4,7,10,13,16,19,22各行染红色,其余各行染蓝色如下图.任意2×2或3×3正方形都将包含偶数个蓝色小格,但蓝格总数是23×15,是个奇数,矛盾.所以不用1×1的小正方形是拼不成23×23棋盘的.综上所述,要拼成23×23棋盘,至少要用一个1×1的小正方形.解:如右图用黑白二色相间涂染8×8棋盘,总计有 32个黑格及32个白格.当我们把“田”放入棋盘时,一定盖住两个小黑格及两个小白格.盖住奇数个(3个,或1个)白格.骨牌共盖住:奇数+2=奇数个白格.这与8×8棋盘上共有32个白格的总数相矛盾.关于棋盘的覆盖问题我们简单介绍到这里,并且只是个别的例题,作为入门的先导罢了!棋盘中的数学(三)——棋盘对弈的数学问题我们看这样一个比输赢的问题.例1 在8×8的棋盘格中的某个格子里已放入一枚棋子“王”(如右图),甲、乙两人轮流移动“王”子,每次只能横向或竖向移动一格.凡“王”子已经占据过的格都不得再进入.谁先遇到无法移动“王”子时,谁就算输方.试证明,先走者存在必胜的策略.分析“王”子已占一个格,还剩下8×8-1=63个格,比如甲先走一个格,还剩下62个格.若能将62个格分成31对,每对都是相邻的两小格,这时该乙走,乙领先进入一格,甲就随之进入与其配对的格,这样就造成了甲必取胜的态势.因此,将64个格两两配对成为32个1×2的小矩形是解决本题的关键.证明:设甲为先走的一方,在甲的心目中如上图将64个方格两两配对分成32个1×2的小矩形,“王”子必在某个1×2的小矩形的一个格子中.甲先走,将“王”子走入这个1×2的小矩形的另一个格子中.这时还有31个1×2的小矩形,每个小矩形中都有两个小方格.这时该乙走,乙总是领先进入某个1×2小矩形的第一个格,甲就可以随之进入这个小矩形的第二个格.由于不能重复进入“王”已经进过的格子,所以乙总处于领先进入新的小矩形的第一格的地位,甲就总可随之进入这个小矩形的第二个格.最后必然乙先无法移动“王”子,乙输.甲必取胜.例2 下图是一盘未下完的中国象棋残局,各子走法必须按中国象棋的规则办事,将对方憋死或无法走子时算取得胜利.如果轮到乙方走,问乙怎样走法才能取胜?分析在上图中,双方的将(帅)均无法移动,双方的士(仕)也无法移动,底炮也不能在横线上移动(否则对方可将炮沉底打闷将).底线兵(卒)只能横向移动.谁先移动底线兵(卒)打将,会造成对方将(帅)移出,从而出现移兵(卒)方自己必输的态势.因而只有底炮、中炮和边卒(兵)可以在纵线上移动,兵(卒)只能前移1步,中炮只能前移4步,底炮只能前移8步.现在的问题是:乙先走,轮流走完这三对子的13步,问乙怎样走才能取胜?解:我们把乙的获胜策略及甲的各种走法列表于下(其中,“甲1,乙1”分别表示,“甲第一步走棋”与“乙第二步走棋”,其余类同;“中炮2,相炮3,卒1”分别表示“中路炮进2步”,“相位炮进3步”和“卒进1步”.其余类同;“结果”栏表明乙1,甲1,乙1之后的态势,其中的“距”以步为单位):其中,情形⑦~⑩显然为乙胜.情形①,②中,如甲2进炮几步,则乙3就将另一路炮进同样步数,…,这样,终将乙胜.情形③,④与⑤,⑥是类似的.以③为例,甲的各种走法及乙的策略见下表:显然,各种情形中也是乙胜.注意,若甲某次退炮几步,则乙接着将同一路炮进相同步数(这样,这两只炮之间的间隔没有改变).说明:本题的深刻道理和规律在于自然数的二进制表示,将1步,4步,8步分别用二进制表示为1,100,1000.当乙从8步中走了3步后,变为还有5步即1,100,101.我们把这三个数写成竖式11 0 01 0 1容易看出每一个数位上的数字之和都是偶数.(这里均勿进位).无论甲怎样走,所走的那一行的步数(用二进制表示)至少有一个数位上的数字发生了变化,从而破坏了上面的规律,即不是每一个数位上的数字之和都是偶数了,比如说,甲在中路炮进一步,三路的步数变为:11 11 0 1这时三个数位上的数字之和1+1+1,1+0,1都不是偶数.乙再接着走,他的办法是恢复上面的规律.这是能办到的.首先,他看一下数字和不是偶数的最高数位,三路步数二进制表示中至少有一路在这数位上的数字是1,然后,他就在这一路上走若干步,使得上述数位上的数字和为0,而较低数位上的数字为1或0以保证这些数位上的数字之和为偶数,其它数位上的数字不变.比如,对于上面的情形,乙应当在“相”位炮所在的路线上走3步,将三路步数变为:11 11 0这样继续下去,步数逐渐减少,必有结束的时候,由于甲走后,不是每个数位上的数字之和都是偶数,所以甲不可能走到最后一步.走最后一步的是乙,所以乙必然取胜.例3 如下图是一个9×9棋盘,它有81个小正方形的格子,在右上角顶的格子里标有“▲”的符号代表山顶.A、B两人这样来游戏:由A把一位“皇后”(以一枚棋子代表)放在棋盘的最下面一行或最左边一列的某个格子里(即放在右图中阴影区域的一个格子里),然后由B开始,两人对奕:“皇后”只能向上,向右或向右上方斜着走,每次走的格数不限,但不得倒退,也不得停步不前;谁把“皇后”走进标有“▲”的那格就得胜.显然,双方对弈下去决不会出现“和棋”,在有限个回合后,必有一胜一负,试分析B 必取胜的策略.这个游戏我们不妨称之为“皇后登山”问题.分析我们采用倒推分析的方法.如果A把皇后走进下图中带阴影的格子,则B就可一步把皇后走到山顶而获胜.因此任何一方都应该避免把皇后走进右图中的阴影地区,而都应该迫使对方不得不把皇后走至带阴影的格子里去,这是取胜的总的指导思想.那么B应把皇后走到哪些格子中才能迫使对方不得不把皇后走进上图中带阴影的格子里去呢?从上图中可看出,这样的格子只有两个:有标号①和②的格子.由此可知,如果谁抢占了①或②,只要走法不再失误,就必会得胜.因此,我们形象地称①、②两格为“制高点”.那么为占①或②,如下图,如果A把皇后走进有★的方格里,则B就能占领①或②,从而获胜,而B又怎样迫使A不得不把皇后走进有★的或有阴影的方格呢?同样的分析可知,只要B能占领第二对制高点③或④即可.继续运用上述分析方法,还可以得到下一组制高点⑤和⑥.这时,不论A开始把皇后放在最左一列与最下面一行的哪个格子中,B第一步都可以抢到一个制高点,或者第一步就直接达到▲,只要走法得当,必能稳操胜券的.说明:1.如果我们给出的是8×8的国际象棋盘,玩“皇后登山”游戏,A开始把皇后放在最左列或最下行的哪个格时,A必胜?这时我们看到,对8×8棋盘,制高点⑤在最左列上,制高点⑥在最下列上,所以A开始把皇后放于⑤或⑥,则A必胜,放在其它格时,B可抢到制高点,则B必胜.2.如果在普通的围棋盘上,(共有18×18=324个格)玩“皇后登山”游戏.B取胜的制高点都是哪些?请读者自己找出来.可以告诉大家,一共有六对,计12个制高点.例4 在8×8的国际象棋盘中(如下页图)有三枚棋子,两个人轮流移动棋子,每一次可将一枚棋子移动任意多格(允许两枚或三枚棋子在同一格),但只能按箭头所表示的方向移动.在所有棋子都移到A点时,游戏结束,并且走最后一步的算赢,问哪一个人能够获胜?解:由三枚棋子到A的格数分别要走59步,50步和30步,这样就与例2在三条路线上走步本质上一样的,我们不妨把59,50,30这三个数写成2进制.59=(111011)2,50=(110010)2,30=(11110)2排在一起:1 1 1 0 1 11 1 0 0 1 01 1 1 1 0第一个人应当将第一行的111011改为101100,也就是减少11ll,这样就使各个数位上的数字和为偶数.这时无论第二个人如何走都将破坏这个特性,第一个人接着可以采取使各个数位上的数字和为偶数的方法,稳步地走向胜利.这就是说,第一个人应当将最外面的棋子移动15步(即(1111)2=1×23+1×22+1×2+1=15),即可按例2的规则稳步取胜.棋盘中的数学(四)——棋盘格的计数问题与棋盘有关的另一大类数学问题是计数问题.我们只能就一些简单的例题进行解说,并随之介绍解题的思想方法.例1如下左图,在中国象棋盘上,乙方一只边卒已经过河,它可以向前移一步到B,也可以横行一步到A,要使这个小卒沿最短路线走到对方帅所在的位置(假定前进路上没任何阻难),问有多少种不同的走法?解:为了解这个问题,可以从简单的情形开始,逐步进行.上右图中,小卒沿最短路线走到A、B、C、D、E、F、G、H的走法都只有一种,走到K,则有两种:先走到A再走到K,或者先走到B,再走到K.走到M,则有1+2=3种:先走到C再到M有一种,先走到K再到M有2种(因为走到K有2种走法).把走法的种数标在各点上,每个数等于它前面的两个数(下图中左方一个,下方一个)的和.走到帅的位置有70种不走法.说明:利用标数法可以很快求出从一个点到棋盘上另一点最短的不同路线数,这是一种很直观有用的计数方法.例2围棋盘上横竖各有19条线(如下图),在棋盘上组成许多大小不同的正方形,问其中有多少个和图中右侧小正方形大小一样的正方形(小正解法1:我们把小正方形放在大正方形的左上角,则小正方形的右边线与大正方形的第10条竖线重合.将小正方形向右平行移动一格(如下图)则又可出现一个小正方形,顺次向右移动9次后,小正方形的右边线与大正方形的右边线重合.这样前后共得到10个小正方形.同样,将左上角小正方形再每次向下移动一格,也可得到10个小正方形.所以共有10×10=100个小正方形.解法2:将大正方形左上角的小正方形沿大正方形的对角线AC移动,第1次移动(如下图)可视为是右移一格和下移一格的合成,也可视为是下移一格和右移一格的合成.再加上初始位置的小正方形,这时就有1+3个小正方形.继续将小正方形沿对角线移动,共移动9次,小正方形就移动到大正方形的右下角.这时共包含小正方形(1+3+5…+19)个,我们可解法3:我们先在下右图小正方形中找一个代表点,例如右下角的代表点E,然后将小正方形按题意放在围棋盘上,仔细观察点E应在什么地方,通过观察,不难发现:①点E只能在棋盘右下角的正方形ABCD(包括边界)的格子点上.②反过来,右下角正方形ABCD中的每一个格子点都可以作为小正方形的点E,也只能作为一个小正方形的点E.这样一来,就将“小正方形的个数”化为“正方形ABCD中的格子点个数”了,很容易看出正方形ABCD中的格子点为10×10=100个.说明:以上三种解法都有一定代表性.其中解法3既巧妙又迅速,它利用了“一一对应就一样多”的配对原理.配对原理在计数中是非常重要的.例3从8×8的方格棋盘(下图)中取出一个由三个小方格组成的“L”形(可旋转),问有多少种不同的取法?分析如果从2×2的方格中取“L”形,则有4种不同的取法,因此,我们只要知道从8×8的方格棋盘上总共可以取出多少个“田”字形就可以了,又由于每个“田”字形的中心点是棋盘内横线与竖线的交叉点(但不包括边界上的点),反过来每一个这样的交叉点都有一个以它为中心的“田”字形,于是问题就转化为求横线与竖线一共有多少个不在边界上的交叉点.解:设S是从棋盘上所能取出的所有“田”字形组成的集合,S′是棋盘内所有横线和竖线的交叉点(不包括边界上的点)组成的集合.由于每个“田”字形的中心点是棋盘内横线与竖线的一个交叉点且不在边界上,反过来,位于棋盘内横线与竖线交叉点四周的四个小方格恰好组成一个“田”字形,因此集合S 与S′的元素能一一配对.由配对原理,这两个集合的元素一样多.而棋盘内横线与竖线的交叉点有:(9-2)×(9-2)=49(个).所以棋盘上可以取出“田”字形的个数为49个.又由于从一个“田”字形中可以取出4个“L”形,并且,从不同的“田”字形中取出的“L”形是不同的,所以可知,从棋盘上共可以取出49×4=196个“L”形,即题中“L”形的不同取法共196种.例4如下图在5×5棋盘格中,共有多少个正方形?解:在5×5的棋盘格中包含1×1的正方形共25个;包含2×2的正方形共16个;包含3×3的正方形共9个;包含4×4的正方形共4个;包含5×5的正方形共1个;总计包含各种正方形共有:25+16+9+4+1=55个.说明:本题解法是先将正方形分成五类:1×1,2×2,3×3,4×4,5×5,对每一类都仿例3中第3种解法去解是非常迅速的.例5下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的三个点为顶点,可以构成三角形,在这些三角形中,与阴影三角形有同样大小面积的有多少个?分析解决这个问题,主要是运用两个结论:①同底等高的两个三角形的面积相等.②平行的两条直线间的距离处处相等.解:设原正方形的边长是3,则小正方形的边长是1,阴影三角形的面积是:所求的三角形可分两种情形:①三角形的一边长为2,这边上的高是3.这时,长为2的边只能在原正方形的边上.这样的三角形有:2×4×4=32(个).②三角形的一边长为3,这边上的高是2.这时,长为3的边是原正方形的一边或平行于一边的分割线(其中,与①重复的三角形不再算入).这样的三角形有:8×2=16(个).答:所求的三角形共48个(包括上页图中给出的三角形).说明:解本题,容易出现两种错误,一是“少”,如忽略了底是3,高是2的三角形,这样就少算了16个;二是“多”:在计算底是3,高是2的三角形时,没有考虑其中有16个在情形①中已经计算过了,于是会得出错误结果64个.棋盘格计数问题,本质上是一种数数问题.其一要注意会把对象分类.其二,在每类数数时要做到不重,不漏.这样才能得到正确的结果.。

小学六年级奥数知识点 第十三讲 棋盘中的数学(四)

小学六年级奥数知识点 第十三讲 棋盘中的数学(四)
第十三讲 棋盘中的数学(四)
——棋盘格的计数问题
与棋盘有关的另一大类数学问题是计数问题.我们只能就一些简单的例题进行解说,并随之介绍解题的思想方法.
例1 如下左图,在中国象棋盘上,乙方一只边卒已经过河,它可以向前移一步到B,也可以横行一步到A,要使这个小卒沿最短路线走到对方帅所在的位置(假定前进路上没任何阻难),问有多少种不同的走法?
说明:本题解法是先将正方形分成五类:1×1,2×2,3×3,4×4,5×5,对每一类都仿例3中第3种解法去解是非常迅速的.
例5 下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的三个点为顶点,可以构成三角形,在这些三角形中,与阴影三角形有同样大小面积的有多少个?
说明:利用标数法可以很快求出从一个点到棋盘上另一点最短的不同路线数,这是一种很直观有用的计数方法.
例2 围棋盘上横竖各有19条线(如下图),在棋盘上组成许多大小不同的正方形,问其中有多少个和图中右侧小正方形大小一样的正方形(小正
解法1:我们把小正方形放在大正方形的左上角,则小正方形的右边线与大正方形的第10条竖线重合.将小正方形向右平行移动一格(如下图)则又可出现一个小正方形,顺次向右移动9次后,小正方形的右边线与大正方形的右边线重合.这样前后共得到10个小正方形.同样,将左上角小正方形再每次向下移动一格,也可得到10个小正方形.所以共有10×10=100个小正方形.
2×4×4=32(个).
②三角形的一边长为3,这边上的高是2.这时,长为3的边是原正方形的一边或平行于一边的分割线(其中,与①重复的三角形不再算入).这样的三角形有:
8×2=16(个).
答:所求的三角形共48个(包括上页图中给出的三角形).

高斯小学奥数六年级上册含答案第04讲 对应计数

高斯小学奥数六年级上册含答案第04讲 对应计数
2.现在有12道竞赛题,卡莉娅要在今天、明天、后天这三天内按顺序做完,但每一天可以做很多道题也可以一道不做.共有多少种安排做题的方案?91
3.阿呆在玩PSP格斗游戏,游戏采用的是五局三胜制(阿呆VS电脑),谁先胜三场谁就获得胜利.如果最后阿呆获胜,那么一共有多少种可能的比赛过程?(只考虑每场比赛的胜负)10
练习:
1.答案: ;
简答:用插板法即可解决,具体过程略.
2.答案:
简答:相当于把8个球放入4个篮子,每个篮子都可以为空.
3.答案:100
简答:每个田字格都可以找到4个“L”型.共有 个田字格,所以共 个“L”型.
4.答案:20
简答:6次跳远中,一定3次向左,3次向右,因此共有 种不同的跳法.
作业
1.答案:165
例3.在 的方格棋盘中,一共可以数出多少个如下图所示的由4个单位小正方形组成的“L”型?
「分析」要把“L”型放入 的方格棋盘的方格盘中,按照放的方向分,可以有8种情形,那么是不是需要对每一个方向的“L”型分别进行计数呢?
练习3、在 的方格棋盘中,一共可以数出多少个如下图所示的由3个单位小正方形组成的图形?
对应法最早的应用是结绳计数.最早期的时候,人类还没有发明数字.因而用枚举等其他方法来记录数量的多少是不可能办到的.这时,人们的计数方法是在绳子上打结或者在树上刻痕.用绳子上的结的数目或者树上划痕的道数来记录补获了多少猎物,采集了多少花果.这个时期持续了很长时间,因为人类的历史已经有几百万年,而数字的发明距今还不到1万年,在人类历史上的大部分时间,使用的计数方法是对应法——结绳计数.
详解:第一问用课文里所说的“插板法”即可解决.20个苹果,共有19个空隙,分给3个小朋友需要 块隔板,将2块隔板插入19个空隙中的某两个中,就是从19个空隙中挑出两个用来插板子,方法有 ;第二问同样用插板法,仍然是20个苹果和2块隔板.但此时隔板不一定要放在19个空隙中,也可以放在所有苹果的最左端或者最右端,而且它们也不一定插入两个不同的空隙,插入同一个空隙也是可以的.因此,我们只要把20个苹果和2块隔板随意排成一行即可.这 个对象排成一行会占22个位置,从这22个位置中挑出2个来放隔板,剩余的20个位置自然就是放苹果,因此共有 种不同的方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档