准初一应用题限时训练
数学应用题初一30题
数学应用题初一30题数学是一门重要的学科,它不仅是学习的基础,还是实际生活中的必备技能。
在初中阶段,数学的学习更加注重应用,学生需要掌握一定的应用题解题技巧。
本文将分享初一阶段的30道数学应用题,希望能够对初一学生的数学学习有所帮助。
1. 一间长6米、宽4米的房间,有一块长2米、宽1米的地毯,如图所示。
地毯的周围要留出相同的宽度,求地毯周围应留多宽。
解:地毯周围应留出相同的宽度,设留出的宽度为x,则地毯的长和宽分别为2+2x和1+x。
因此,房间的长和宽分别为6和4,根据题目可列出方程:(2+2x) + x + (2+2x) + x = 6 + 4化简后得到:6x + 6 = 10解得x=2/3,因此地毯周围应留出2/3米的宽度。
2. 两个数的和为20,差为4,求这两个数。
解:设这两个数为x和y,则根据题目可列出方程组:x + y = 20x - y = 4将第二个方程两边加上x+y,得到:2x = 24解得x=12,代入第一个方程可得y=8,因此这两个数分别为12和8。
3. 一条绳子长12米,要将它切成若干段,每段长为1.5米,问最多能切成多少段。
解:将绳子切成若干段,每段长为1.5米,设切成n段,则根据题目可列出不等式:1.5n ≤ 12解得n≤8,因此最多能切成8段。
4. 一个长方体的长、宽、高分别为3、4、5,求它的体积和表面积。
解:该长方体的体积为3×4×5=60,表面积为2×(3×4+4×5+3×5)=94。
5. 一个长方形的长为5,宽为3,将它沿着宽度为1的线剪开,得到两个小长方形和一个正方形,求正方形的边长。
解:将长方形沿着宽度为1的线剪开,得到两个长方形和一个正方形,设正方形的边长为x,则根据题目可列出方程:3x + 2x = 5解得x=1,因此正方形的边长为1。
6. 一批货物,原价为120元,现在打8折出售,求现售价。
七年级二元一次方程应用题集中训练
七年级二元一次方程应用题集中训练二元一次方程是数学中的重要概念,也是七年级数学课程的一部分。
掌握二元一次方程的应用,可以帮助学生在解决实际问题中运用数学方法。
以下是一份针对七年级学生的二元一次方程应用题集中训练。
题目一:购买水果小明去超市购买水果。
苹果的单价为x元,梨子的单价为y元。
已知小明购买了5个苹果和3个梨子,总花费为18元。
请写出一个二元一次方程,表示苹果和梨子的单价,并求解该方程得出苹果和梨子的单价。
题目二:求解距离和时间关系小红和小强同时从同一地点出发,小红以每小时5千米的速度向东行驶,小强以每小时7千米的速度向北行驶。
已知两人分别行驶了x小时和y小时后,他们相距12千米。
请写出一个二元一次方程,表示小红和小强的行驶时间,并求解该方程得出两人的行驶时间。
题目三:饮料制作某饮料公司生产两种饮料A和饮料B。
已知每瓶饮料A售价为3元,每瓶饮料B售价为2元。
公司本月共售出了x瓶饮料A和y瓶饮料B,总收入为20元。
请写出一个二元一次方程,表示饮料A和饮料B的售出数量,并求解该方程得出两种饮料的售出数量。
题目四:班级考试一班有40名学生参加了数学考试。
已知全班的平均成绩为80分。
其中男生的平均成绩为85分,女生的平均成绩为78分。
请写出一个二元一次方程,表示男生和女生的人数,并求解该方程得出男生和女生的人数。
以上是七年级二元一次方程应用题集中训练的示例题目。
通过解决这些应用题,学生可以锻炼二元一次方程的运用能力,提高数学解决问题的能力。
希望这份题集对学生的学习有所帮助。
七年级数学配套应用题专项训练
七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。
甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。
当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。
当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。
对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。
对第二个方程进行化简:公式,即公式。
用公式减去公式:公式公式公式,解得公式。
把公式代入公式,得到公式,公式,公式,解得公式。
2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
解析设船在静水中的速度为公式千米/小时。
顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。
根据路程 = 速度×时间,且两个码头之间的距离不变。
顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。
展开方程得公式。
移项可得公式,解得公式。
两码头之间的距离为公式千米。
二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
两人合作4天完成的工作量为公式。
先计算括号内的值:公式。
那么两人合作4天完成的工作量为公式。
剩下的工作量为公式。
乙单独完成剩下的工作量需要的时间为公式天。
2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。
初一应用题30题
初一应用题30题初一应用题30题应用题是指将所学知识应用到实际生活实践的题目。
在数学上,应用题分两大类:一个是数学应用。
另一个是实际应用。
数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。
下面是初一应用题30题,请参考!初一应用题30题1.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。
若两车同时发车,几小时后两车相距31.5千米?2.一个筑路队要筑1680米长的路。
已经筑了15天,平均每天筑60米。
其余的12天筑完,平均每天筑多少米?3.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。
每张桌子多少元?4.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。
已知每筐萝卜重30千克,黄瓜每筐重多少千克?5.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。
每套服装用布多少米?6.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?7.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?8.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?9.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?10.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。
这本故事书共有多少页?11.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。
原来两层书架上各有书多少本?12.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。
图书箱里共有图书多少本?13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?14.小红和小芳都积攒了一些零用钱。
博宇中学初一数学限时练9.12
博宇中学初一数学限时练(9月12号)一、单选题1.张老师对全班同学以90分为标准计分,小明得95分,记作5+分;小丽被记作3-分,则小丽的实际分数为()A .93B .92C .87D .882.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是()A .a b >-B .0a b +>C .0b <D b a -3.2020-的绝对值是()A .2020B .2020-C .12020D .12020-4.若11m m -=-+,则m 一定()A .大于1B .小于1C .不大于1D .不小于15.下列说法正确的是()A .所有的整数都是正数B .整数和分数统称有理数C .0是最小的有理数D .零既可以是正整数,也可以是负整数6.下面所给出四个数0、3-、1、4-,其中最小的数是().A .0B .3-C .1D .4-7.2024年元旦当天某省四个城市某个时刻的气温情况如下,其中气温最低的是()A .3C -︒B .5C -︒C .2C -︒D .0C︒8.若23x -=,则x 的值是()A .32B .32-或1C .1D .32-或329.下列各组数的大小比较的式子:(1)30-<;(2)()22--=--;(3)4354->-.其中正确的有()A .0个B .1个C .2个D .3个二、填空题10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别以“正数”与“负数”来命名,若收入80元记作80+元,则支出90元记作元.11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦12.计算:3.1π-=姓名:___________班级:___________分数:___________一选择题(4分*9=36分)二填空题(4分*3=12分)101112三、解答题13.(16分)把下列各数填入相应的大括号里:18-,3.1416,0,2.001-,35-,5%,0.14285-······(1)有理数集合:{}(2)整数集合:{}(3)分数集合:{}(4)非正整数集合:{}14.(8分)如果6a =,8b =,比较a ,b 的大小.15.(8分)比较大小3.4-与335-.题号123456789答案16.(10分)在数轴上把下列各数表示出来,并用“<”连接各数.2-,|1|--,112,0,(3)--.17.(10分)有理数a ,b ,c 在数轴上的位置如图所示:(1)请在数轴上标出||,||,a b c --;(2)比较,,,||,||,a b c a b c --的大小(用“<”将它们连接起来)。
七年级数学限时训练试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-16C. πD. √0.252. 下列各数中,无理数是()A. 2/3B. √9C. 3.14D. √-93. 如果 |x| = 5,那么 x 的值为()A. ±5B. 5C. -5D. 04. 下列函数中,y 与 x 成正比例关系的是()A. y = 2x + 3B. y = 3x^2C. y = 4xD. y = 5/x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 一个长方形的长是 8 厘米,宽是 3 厘米,那么它的周长是()A. 20 厘米B. 24 厘米C. 28 厘米D. 32 厘米7. 下列各图中,全等的是()A.B.C.D.8. 如果一个等腰三角形的底边长是 6 厘米,腰长是 8 厘米,那么它的面积是()A. 24 平方厘米B. 28 平方厘米C. 32 平方厘米D. 36 平方厘米9. 下列各数中,是质数的是()A. 11B. 12C. 13D. 1410. 下列各数中,是偶数的是()A. 23B. 24C. 25D. 26二、填空题(每题5分,共50分)11. (1)一个数的相反数是它本身的数是(),(2)两个数的和为 0,则这两个数互为(),(3)如果 a > b,那么 a - b 的值是()。
12. (1)√64 的值是(),(2)3 的平方根是(),(3)如果 a^2 = 4,那么 a 的值是()。
13. (1)正比例函数 y = 2x 的图象是一条()线,当 x = 1 时,y 的值为(),(2)反比例函数 y = 1/x 的图象是一条()线,当 x = 2 时,y 的值为()。
初一数学应用题专题训练
初一数学应用题专题训练1.(2016•南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90 2.(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元3.(2016•黄冈校级自主招生)一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A.7.5秒B.6秒C.5秒D.4秒4.(2016•南开区校级模拟)一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程()A.B.C.D.5.(2016•石家庄一模)如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20 B.25 C.30 D.356.(2016春•简阳市校级期中)有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为()小时.A.2 B.3 C.D.7.(2016春•南江县校级月考)某公路的干线上有相距108公里的A、B两个车站,某日16点整,甲、乙两车分别从A、B两站同时出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则两车相遇的时间是()A.16时20分B.17时20分C.17时40分D.16时40分8.(2016春•启东市月考)一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为()A.190米B.400米C.380米D.240米9.(2015秋•江阴市校级月考)两年期定期储蓄的年利率为2.25%,按照国家规定,所得利息要缴纳20%的利息税,王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月的存款额为()A.20000元B.18000元C.15000元D.12800元10.(2015秋•巨野县期末)用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个11.(2015秋•浦城县期末)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元12.(2015春•攀枝花期末)一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()A.54 B.27 C.72 D.45二.解答题(共18小题)13.(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.14.(2016•娄底)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?15.(2015•海淀区二模)列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.16.(2015秋•安陆市期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?17.(2015秋•玄武区期末)甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时km;快车的速度为每小时km;(2)当两车相距300km时,两车行驶了小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.18.(2015秋•垫江县期末)列方程解应用题:近年来,我市全面实行新型农村合作医疗,得到了广大农民的积极响应,很多农民看病贵、看病难的问题在合作医疗中得到了缓解.参加医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表①是医疗费用分段报销的标准;下表②是甲、乙、丙三位农民今年的实际医疗费及个人承担总费用.表①医疗费用门诊住院费(元)范围费0~500 0 的部分5000~20000的部分20000以上的部分报销比例a% 40% 50% c% 表②门诊费住院费个人承担总费用甲260元0元182元乙80元2800元b元丙400元25000元11780元注明:①个人承担医疗费=实际医疗费﹣按标准报销的金额;②个人承担总费用包括门诊费和住院费中个人承担的部分.请根据上述信息,解答下列问题:(1)填空:a=,b=,c=;(2)李大爷去年和今年的实际住院费共计52000元,他本人共承担了18300元,已知今年的住院费超过去年,则李大爷今年实际住院费用是多少元?19.(2015秋•江苏校级期末)甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:(1)分别求出快车、慢车的速度(单位:千米/小时);(2)从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.20.(2015秋•海珠区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨的部分且不超过18吨的部分超过18吨的部分收费标准2元/吨 2.5元/吨3元/吨(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a吨,需要交水费为多少元?21.(2015秋•丹江口市期末)某旅游团由4名教师和若干名学生组成,十一黄金周中,到一个国家4级风景区旅游,现有两家旅行社,甲旅行社的收费标准是:如果4人买全票,则其余人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,团体票按原价的八折优惠.这两家旅行社的全票均为每人300元.(1)若有10位学生参加旅游团,问选择哪家旅行社更省钱?(2)参加旅游团的学生人数是多少时,两家旅行社收费一样?22.(2015秋•历城区期末)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.23.(2015秋•曲阜市期末)实验室里,水平桌面上甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,求开始注入多少分钟的水量后,甲与乙的水位高度之差是0.5cm?25.(2015秋•邵阳校级期末)某旅行社安排8名旅客分别乘坐两辆小汽车一起赶往飞机场,其中一辆小汽车在距机场15km的地方出了故障,次时,距规定到达机场的时间仅剩42分钟,但唯一可以使用的交通工具只有一辆小汽车,连司机在内限坐5人,已知这辆汽车分两批送这8人去机场的平均速度是60km/h,现拟如下方案:方案一、小汽车送走第一批人后,第二批人在原地等待汽车返回接送;方案二、小汽车送走第一批人的同时,第二批人以5km/h的平均速度往机场方向步行,等途中遇返回的汽车时上车前行;请问这两种方案是否都能使这8名旅客在规定的时间内赶到机场?26.(2015秋•南京期末)甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?27.(2015秋•九江期末)盘秤是一种常见的称量工具,指针转过的角度与被称物体的重量有一定的关系,如表所示:重量(单位:千0 2 2.5 3 b克)指针转过的角0°36°a°54°180°度(1)请直接写出a、b的值;(2)指针转过的角度不得超过360°,否则盘秤会受捆,称量22千克的物品会盘秤造成损伤吗?说说你的理由.(3)某顾客在一家水果店购买水果,用这种盘秤称量两次,第二次的数量是第一次数量的2倍少3千克,且指针第二次转过的角度比第一次大108°,该顾客一共购买了多少千克水果.28.(2015秋•赵县期末)某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果这两种车都租用了,且60座的车比45座的车多租了一辆,这样租车的总费用要比单独某一种车辆更省钱,求按这种方案租车需要租金多少元?29.(2015秋•昌平区期末)某校开展社会实践大课堂活动,七年级学生8点钟从学校乘大客车去博物馆参观.小明同学由于在去学校的路上遇到了堵车情况,8:10才到学校,他的家长立刻开汽车从学校出发,沿相同的路线送小明追赶大客车,结果8:30追上了大客车.已知小明家长的汽车的速度比大客车的速度每小时多29千米,求大客车的速度是每小时多少千米?30.(2015秋•潮南区期末)已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数.(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?初一数学应用题专题训练考答参案与试题解析1.(2016•南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【分析】设某种书包原价每个x元,根据题意列出方程解答即可.2.(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.3.(2016•黄冈校级自主招生)一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A.7.5秒B.6秒C.5秒D.4秒【分析】应先算出甲乙两列车的速度之和,乘以高速列车驶过窗口的时间即为高速列车的车长,把相关数值代入即可求解.4.(2016•南开区校级模拟)一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程()A.B.C.D.【分析】等量关系为:(售价﹣进价)÷进价=15%,把相关数值代入即可.5.(2016•石家庄一模)如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20 B.25 C.30 D.35【分析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.6.(2016春•简阳市校级期中)有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为()小时.A.2 B.3 C.D.【分析】根据每小时两支蜡烛燃烧总长度的,,再利用燃烧后其中的一支是另一支的一半,进而得出等式求出即可.7.(2016春•南江县校级月考)某公路的干线上有相距108公里的A、B两个车站,某日16点整,甲、乙两车分别从A、B两站同时出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则两车相遇的时间是()A.16时20分B.17时20分C.17时40分D.16时40分【分析】在相遇问题中,常用的相等关系为:两车所走的路程和=两个站之间的总路程,即S甲+S乙=S AB.先利用相等关系求出相遇所用的时间,再换算成时间即可.8.(2016春•启东市月考)一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为()A.190米B.400米C.380米D.240米【分析】设这列火车的长为x米,根据题意表示出火车的速度:米/秒,或者是米/秒,根据速度的相等关系列出方程,解方程即可.9.(2015秋•江阴市校级月考)两年期定期储蓄的年利率为2.25%,按照国家规定,所得利息要缴纳20%的利息税,王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月的存款额为()A.20000元B.18000元C.15000元D.12800元【分析】如果设王大爷2002年6月的存款额为x元,根据本金×利率×时间×(1﹣税率)=税后利息,列出方程求解即可.10.(2015秋•巨野县期末)用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.11.(2015秋•浦城县期末)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【分析】设出洗发水的原价是x元,直接得出有关原价的一元一次方程,再进行求解.12.(2015春•攀枝花期末)一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()A.54 B.27 C.72 D.45【分析】要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x,因为个位数字与十位数字的和是9,则十位数字是9﹣x.则原数是:10(9﹣x)+x.新数是:10x+(9﹣x),本题中的等量关系是:新数=原数+9.二.解答题(共18小题)13.(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.14.(2016•娄底)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.15.(2015•海淀区二模)列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.【分析】设小明家到学校的距离为x米,根据“小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校”建立方程,解方程即可.16.(2015秋•安陆市期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.17.(2015秋•玄武区期末)甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时75km;快车的速度为每小时150km;(2)当两车相距300km时,两车行驶了或小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.【分析】(1)由速度=路程÷时间计算即可;(2)需要分类讨论:相遇前距离300km和相遇后相距300km;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.18.(2015秋•垫江县期末)列方程解应用题:近年来,我市全面实行新型农村合作医疗,得到了广大农民的积极响应,很多农民看病贵、看病难的问题在合作医疗中得到了缓解.参加医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表①是医疗费用分段报销的标准;下表②是甲、乙、丙三位农民今年的实际医疗费及个人承担总费用.表①医疗费用范围门诊费住院费(元)0~500的部分5000~20000的部分20000以上的部分报销比例a% 40% 50% c% 表②门诊费住院费个人承担总费用甲260元0元182元乙80元2800元b元丙400元2500011780元元注明:①个人承担医疗费=实际医疗费﹣按标准报销的金额;②个人承担总费用包括门诊费和住院费中个人承担的部分.请根据上述信息,解答下列问题:(1)填空:a=30,b=1736,c=80;(2)李大爷去年和今年的实际住院费共计52000元,他本人共承担了18300元,已知今年的住院费超过去年,则李大爷今年实际住院费用是多少元?【分析】(1)由甲的个人承担费用全部为门诊费用可求出a,根据乙的两项费用及报销比例可求得b,根据丙的和计算出的a可求出c;(2)设今年的住院费用为x元,则去年的为(52000﹣x),利用求出的报销费用判定也李大爷去年的住院实际费用的范围,再根据条件列出方程求解即可.19.(2015秋•江苏校级期末)甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:(1)分别求出快车、慢车的速度(单位:千米/小时);(2)从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.【分析】(1)根据速度=直接列算式计算即可;(2)设经过x个小时,分三种情形讨论①相遇前两车相距150千米②相遇后且快车未到达甲地时两车相距150千米(或恰好到达但尚未休息)③休息后快车从乙地出发在慢车后追至相距150千米,根据速度×时间=路程,列出方程,求出x的值即可.20.(2015秋•海珠区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨的部分且不超过18吨的部分超过18吨的部分收费标准2元/吨 2.5元/吨3元/吨(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a吨,需要交水费为多少元?【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a≤12时,②当12<a≤18时,③当a>18时,求出答案.21.(2015秋•丹江口市期末)某旅游团由4名教师和若干名学生组成,十一黄金周中,到一个国家4级风景区旅游,现有两家旅行社,甲旅行社的收费标准是:如果4人买全票,则其余人按七折优惠;乙旅行社的收费标准是:5。
初一数学应用题60题
初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。
请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。
那么面包车的数量为600辆-200辆-150辆=250辆。
2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。
所以小明最终花的钱为160元×80%=128元。
3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。
男生人数为40名同学-30人=10人。
所以男生占总人数的十分之一。
4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。
请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。
5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。
然后再减去20元。
所以最后的售价为160元×30%-20元=28元。
6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。
所以还剩下的重量为5千克的一半=2.5千克(或2500克)。
7. 甲乙两个人一起行走,甲每走30步,乙走5步。
假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。
所以乙走的步数为180步÷30步×5步=30步。
8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。
七年级限时训练数学试卷
考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. -3D. 无理数2. 下列各式中,正确的是()A. (-3)² = 3B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a ÷ b < 0D. a × b > 04. 下列图形中,面积最小的是()A. 正方形B. 长方形C. 等腰三角形D. 圆5. 下列函数中,自变量x的取值范围是所有实数的是()A. y = √(x - 2)B. y = √(x² + 1)C. y = √(x - 3) + 1D. y = √(x² - 4)6. 已知一次函数y = kx + b,若k > 0,b > 0,则该函数的图像位于()A. 第一、二、四象限B. 第一、二、三象限C. 第一、三、四象限D. 第一、二、三象限7. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 6)8. 若一个正方形的边长为a,则其面积为()A. a²B. 2aC. 4aD. 8a9. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² - b² = (a + b)(a - b)C. (a + b)² = a² + b² + 2abD. (a - b)² = a² - b²10. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x²C. y = 3/xD. y = √x二、填空题(每题5分,共20分)11. 若a = -3,b = 2,则a² - b² = ________。
【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习
【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习第一篇:【40】七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习七年级数学应用题能力训练(数字问题与方案设计)(一元一次方程)拔高练习一、单选题(共5道,每道20分)1.某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶.方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.则方案一与方案二的总利润各为()A.10500,12000B.10500,16800C.12000,10500D.16800,105002.十一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人,八年级同学多于50人而少于100人.若七、八年级分别购票,两个年级共计应付门票费1575元,若合在一起购买折扣票,总计应付门票费1080元.参加郊游的七、八年级同学的总人数是否超过100人,以及参加郊游的七、八年级同学的人数分别是()A.不超过;35,55B.超过;35,75C.不超过;25,55D.超过;45,753.儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍A.3年后B.3年前C.9年后D.不可能4.如果某一年的5月份中,有五个星期五,它们的日期之和是80,那么这个月的五个星期五分别是()号A.2,9,16,23,30B.1,8,15,22,29C.3,10,17,24,31D.1,8,16,23,305.一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原来大63,则原来的两位数是()A.92B.29C.56D.65第二篇:七年级数学应用题分配问题专项训练分配问题1、某厂要在5天内完成18台拖拉机的装配任务,甲车间每天能装配2台,乙车间每天能装配3台,应如何分配两车间的装配任务,使两车间的工作天数都是整天数?2、有三个桶,容积比为7:8:9,原来甲桶盛水12千克,乙桶盛水200千克,丙桶盛水210千克,把190公斤的水分别注入三个桶中恰好都注满,求三个桶各注水多少千克?3、甲、乙、丙三个粮仓共存粮70吨,甲与乙存粮比为1:3,乙与丙存粮比为1:2,求甲、乙、丙三个粮仓分别存粮多少吨?4、三台拖拉机工耕地228亩,已知甲、乙两拖拉机耕地的亩数比是1:2,乙、丙两拖拉机耕地的亩数比是5:3,求三抬拖拉机各耕地多少亩?5、地板砖厂的坯料由白土、砂土、石膏、水按25:2:1:6的比例配制而成,先将前三种坯料称好,共5600千克,应加多少千克的水后搅拌?这前三种坯料各称了多少千克?6、某农户养鸡鸭一群,卖掉15只鸭后,鸡鸭只数比为2:1,在此以后,又卖掉45只鸡,这时鸡鸭只数比为1:5,则该农户原来养鸭的只数是多少?7、红旗机械厂生产甲、乙两种机器,甲种机器每台销售价为4万元,乙种机器每台销售价为5万元。
初一列方程解应用题专项练习
初一列方程解应用题专项练习实际问题与一元一次方程综合练1.某车间有85名工人,每人每天能加工8个大齿轮或10个小齿轮。
每套产品需要1个大齿轮和3个小齿轮。
问如何安排劳力,使生产的产品刚好成套?2.某车间有28名工人,生产螺栓和螺帽。
每人每小时能生产12个螺栓或18个螺帽。
每2个螺栓需要3个螺帽。
问应分配多少人生产螺栓和螺帽,才能使生产的螺栓和螺帽刚好配套?3.生产某种产品需要两道工序。
第一道工序每人每天可完成90件,第二道工序每人每天可完成120件。
现有14名工人分别参加这两道工序工作。
问如何安排人员,才能使每天生产的产品数量最多?4.某纺织厂有300名纺织工人,要将其合理分配到纺织车间和制衣车间。
每人每天平均能织布30米或制4件成衣,每件成衣需要1.5米布。
问应有多少人去生产成衣,才能使生产出的布匹刚好制成成衣?5.一天内,3名一级技工粉刷8个房间,而50平方米墙面未来得及刷。
同时,5名二级技工粉刷了10个房间,还多刷了40平方米墙面。
每名一级技工比二级技工一天多粉刷10平方米墙面。
求每个房间需要粉刷的墙面面积。
工程问题1.___独做20小时完成一批零件,___独做30小时完成。
如果两人同时做,那么完成任务时___比___多做60个零件。
这批零件共有多少个?2.要生产940个某种零件,甲和乙两人合作5天可以完成。
若甲每天能生产80个这种零件,问乙每天能生产多少个这种零件?3.一项任务原计划每天做80件,可按计划天数完成。
实际上每天比原计划多完成25%,结果提前6天完成。
问原计划几天完成,共完成多少件?4.某车间一项工作由一名师傅去做要12天完成,由一名徒工去做要14天完成。
现派6名师傅和49名徒工共同完成,几小时可以完成?(一天工作时间为8小时)5.一条地下管线由甲工程单独铺设需要12天,由乙工程单独铺设需要24天。
如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?球赛积分问题1.初一级进行法律知识竞赛,共有30题。
七年级上册数学应用题专项训练
七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。
甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。
根据时间 = 路程÷速度,可得时间为公式分钟。
2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。
返回时速度为每小时80千米,那么返回的时间为公式小时。
二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。
现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。
甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。
甲、乙合作3天完成的工作量为公式先算括号里的公式。
再乘以3得到公式。
剩下的工作量为公式。
乙单独做需要的时间为公式天。
2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。
如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。
甲管每小时的注水量是公式,乙管每小时的注水量是公式。
甲、乙两管同时开每小时的注水量为公式。
注满水池的公式需要的时间为公式小时。
三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。
那么最低售价应该是公式元。
设打公式折,根据标价×折扣=售价,可得公式。
解方程公式,得公式,所以最低可以打7折。
2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。
集宁市-七年级上12月限时训练数学试卷含答案.doc
2015—2016学年第一学期限时训练七年级数学试卷分值:100分命题人:常瑞芳第三章一元一次方程应用题过关测试(每题都用方程解)(每题10分)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲、乙两地相距多少千米?2.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?3.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
4.某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?5 有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6. 某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?7某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的2倍?8、现有36张白铁皮。
用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套。
应怎样安排才能使盒身与盒底正好配套?9某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?10.出租车起步价(3千米以内)8元,超过的部分每千米1.5元,小明乘车支付了35元,求他乘坐了多少千米.数学限时训练答案 1.6.3408=-x x x=362. 1-X )4161(2161+=⨯ , X=511 , 2小时12分3.解:设船在静水中的速度是x 千米/时,则3×(x -3)=2×(x +3)解得x =15 2×(x +3)=2×(15+3) =36(千米)答:两码头之间的距离是36千米。
七年级数学限时训练
七年级数学限时训练一、选择题(每小题3分,共30分) 限时:100min1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11. ; , 12. 13. 14. 15.1、下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( )A.1个B.2个C.3个D.4个2、实数在数轴上的位置如下图,那么化简2a b a --的结果是( ) A.b a -2 B.b C.b - D.b a +-23、若一个数的平方根是它本身,则这个数是A 、1B 、-1C 、0D 、1或04、若033=+y x ,则y x 和的关系是 ( )A.0==y xB. y x 和互为相反数C. y x 和相等D. 不能确定 5下列说法正确的是 ( )A.x=2不是不等式3x>6的解B.x>2是不等式3x>5的解集C.x=2是不等式3x>6的一个解D.以上说法都正确6、如下图在数轴上所表示的是哪一个不等式的解集 ( )A.121->xB.323-≥+xC.11-≥+xD.42>-x 7、不等式-3x +6<0的正整数解有( ) A.1个 B.2个 C.3个 D.无数多个8、关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( )A.3>a B.3≤a C.3<a D.3≥a9、若不等式组⎩⎨⎧><11x mx 无解,则m 的取值范围是( )A.m <11B.m >11C.m ≤11D.m ≥1110、某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,最低可打( )折出售A.7折B.7.5折C. 8折D.8.5折二、填空题(每小题4分,共20分)11、2)4(-的平方根是_______,36的算术平方根是______12、已知关于x 的不等式组521x x a -≥-⎧⎨>⎩无解,则a 的取值范围是_________.13、若a >b >c,则不等式组x a x b x c <⎧⎪>⎨⎪>⎩的解集为_______ __.14、若一个数的算术平方根与它的立方根相等,那么这个是 . 15、比较大小:5 三.解答题(共70分):16、(8分)解不等式:2(1)4143x x x x +-≤⎧⎪+⎨>⎪⎩并把解集在数轴上表示出来.17、(每小题6分,共12分)(1)求x 的值 4)12(2=-x (2))]31(2[352323x x x x -+--18、(6分)化简33323272)21()4()4()2(--⨯-+-⨯-19、(10分)已知3(2x+1)≥2(4x+1)+7,然后再化简2x -- - 54x +20、(10分)一个正数a 两个平方根是2m-4与3m-1,求a 的值 21、(12分)某校高一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,已知住宿生少于55人,求住宿生人数. 22、(12分)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元,已知两种球厂家的批发价和商场的零售价如下表,试(1(2)若该商场把100只球全部以零售价售出,为使商场的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?。
七年级数学综合应用题练习
1、某人乘船由A地顺流而下到B地,然后又逆流而上到C地,一共花去4小时,已知船在静水中的速度是7.5千米/小时,水流速度是2.5千米/小时。
若A、C两地的距离为10千米,求A、B两地的距离。
2、某路道一圈长400米,若甲乙两运动员从同一起点同时出发,相背而行,25秒后相遇;若甲从起点先跑2秒钟,乙从该点同向出发追甲,再过3秒钟后乙追上甲。
求甲、乙两人的速度。
3、甲乙两人分别从相距20千米的A、B两地相向而行,两小时后在途中相遇,相遇后,甲立即以原速返回A地,乙仍以原速向A地前进,甲返回A地时,乙离A地还有2千米。
求甲乙两人的速度。
4、甲乙两列火车,甲车长190米,乙车长250米,在平行的轨道上相向而行,已知两车自车头相遇到车尾相离共经过16秒钟,甲、乙两车的速度比是7:4,求两车的速度各是多少?5、从A地到B地是上坡路,从B地到C地是下坡路,某同学自A地途经B地到C地,立即再沿原路返回A地,共用3.5小时,已知上坡速度相同,下坡速度也相同,并且走上坡路比走下坡路多用30分钟时间,求该同学走上坡路时共用了多长时间。
6、甲骑自行车乙步行,两人分别从相距40千米的两地同时出发同向而行,5小时甲追上乙,然后甲继续前进,乙休息30分钟后立即返回,5小时后到达A地,乙从A地到其出发地还需继续走20分钟,此时甲与A地相距84千米,求A地与甲出发地之间的距离。
7、AB两地相距180千米,甲乙两车分别从A、B两地出发相向而行,2小时相遇;相遇后两车继续前进1小时,这时,甲车距B地的路程正好是乙车距A地路程的2倍,甲乙两车每小时各行多少千米?8、甲乙两人同时从A地出发去B地,走了2小时的时候,乙发现有重要通知遗忘在A地,立即以原速按原路返回(甲继续前进),经过1小时,两人相距26千米;乙到达A地,取了通知立即掉头以原速度原路追甲,经过一段时间,两人相距54千米(甲在前且未到达B地)。
已知乙每小时比甲多行2千米,求两人从相距26千米到相距54千米时甲所用的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准初一应用题限时训练(所有题请用综合算式或方程解答)时间35分钟满分100分1修路队修一条长1400米的公路,开始每天修200米,修了2天后,余下的任务每天多修50米,还要几天修完?
2工程队挖一条隧道,计划每天挖36米,30天完成,实际每天多挖多少米就可以提前6天就可以完成任务?
3果品公司储存一批苹果,售出这批苹果的30%后,又运来320箱,这时比原来储存的苹果多1/10,这时的苹果比原来增加了多少箱?
4)一项工程,甲队单独20天可以完成,乙队单独3天可以完成这项工程的1/10.两队合修,几天可以完成这项工程?
5小明看一本书,原计划每天看35页,32天看完。
实际每天比计划多看5页,实际用多少天看完?
6有100千克青草,含水量为66%,晾晒后含水量降到15%。
这些青草晾晒后重多少千克?
7一件工作20人40天可以完成,先做了5天后,增加了5人且每人工效提高1/3,可以比计划提早多少天完成?
8苹果收购价是9.9元每千克,原定利润是4050元,因没人买不得不打7折出售实际利润只有原定的1/3,求这批苹果有多少千克?
9一批衣服按定价出售每件可以获利90元,按定价7折出售10件和每件降价50元出售12件所得总利润一样多.求每件定价多少元?
10一个工厂一车间人数占25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10。
三车间有78人,求这个工厂多少人?。