七年级线段运算专题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014年七年级数学上册压轴题

1.(10分)如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE

(1)若AB=18,BC=21,求DE的长;

(2)若AB=a,求DE的长;(用含a的代数式表示)

(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为.

AC=(

BC=7

AC=(=

BC

AC

﹣AC+﹣﹣AB

a

=

故答案为:.

2.(10分)如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角)

(1)如图1,O为直线AB上一点,OC⊥AB于点O,OE⊥OD于点O,直接指出图中所有互为垂角的角;

(2)如果一个角的垂角等于这个角的补角的,求这个角的度数;

(3)如图2,O为直线AB上一点,∠AOC=75°,将整个图形绕点O逆时针旋转n(0<n <90°),直线AB旋转到A′B′,OC旋转到OC′,作射线OP,使∠BOP=∠BOB′,求:当n 为何值时,∠POA′与∠AOC′互为垂角.

一个角的垂角等于这个角的补角的

90=

3.(8分)如图(1),长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF 对折,点B落在直线EF上的点B′处,得折痕EM;将AEF对折,点A落在直线EF上的A′处,得折痕EN

(1)若A′F:FB′:B′E=2:3:1且FB′=6,求线段EB的长度;

(2)如图(2),若F为边DC的一点,BE=AB,长方形ABCD的面积为48,求三角形FEB的面积.

×=2

S

BE=AB

4.(8分)已知D为直线AB上的一点,∠COE是直角,OF平分∠AOE

(1)如图1,若∠COF=34°,则∠BOE=68°;若∠COF=m°,则∠BOE=2m°;∠BOE 与∠COF的数量关系为BOE=2∠COF.

(2)在图2中,若∠COF=75,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的三分之一?若存在,请求出∠BOD的度数;若不存在,请说明理由.

(3)当射线OE绕点O顺时针旋转到如图3的位置时,(1)中∠BOE和∠COF的数量关系是否仍然成立?请说明理由,若不成立,求出∠BOE与∠COF的数量关系.

5.(8分)点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0 (1)求线段AB的长;

(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;

(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,

当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值

BC+AB

PM=×﹣②PM+

2x+1=x

BC+AB

PN=,

PB=

﹣﹣××

(不变)

②PM+BN=+××n(随

BN

6.(12分)(1)已知数轴上A、B两点分别表示﹣3、5,则AB=8,数轴上M、N两点分别表示数m、n,则MN=n﹣m

(2)如图1,E、F为线段AB的三等分点,P为直线AB上一动点(P不与E、F、A重合),在点P运动过程中,PE、PF、PA有何数量关系?请写出结论并说明理由

7.(4分)把一张纸剪成5块,从所得纸片中取出若干块各剪成5块,再从以上所得纸片中取出若干块,每块又剪成5块,…,如此进行下去,到剪完某一次后停止时,所得纸片总数

点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

AP+BP=(AB=

NP=﹣BP=(AB=7

9.(12分)如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转.

(1)试求∠AOB的度数;

(2)如图l,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以l度/

秒的速度绕点0顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?

(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射

线OE处(OE在∠DOC的内部)时,且=,试求x.

的度数,再根据=

COD=∠

COE=×

10.(10分)如图1,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°,

(1)求∠COB的度数;

(2)经过点O作射线OD,使得∠AOC=4∠AOD,求∠BOD的度数;

(3)如图2,在∠AOB的内部作∠EOF,OM、ON分别为∠AOE和∠BOF的平分线,当∠EOF绕点O在∠AOB的内部转动时,请说明∠AOB+∠EOF=2∠MON.

FON=EOF+(∠

∠FON=∠

(∠

相关文档
最新文档