高一数学集合练习题专题训练(含答案)

合集下载

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥2.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N3.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .4.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,45.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-6.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-9.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-10.已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=( )A .[]22-,B .(]2,1-C .[)2,3-D .∅11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--14.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则A B =( ) A .1,0,1,2B .{}1,0,1?-C .{}0,1D .{}115.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.18.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.19.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.20.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 22.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.23.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.24.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.定义:Leistra 序列是一个由1a ,2a ,…,1n a -,()*,2n a n n ∈≥N 组成的有限项序列,有如下性质:①每项1a ,2a ,…,1n a -,n a 都是正偶数;②每项2a ,3a ,…,1n a -,n a 通过将序列中的前一项除以一个10-50(包含10和50)之间的整数得到(对于一个特定序列,使用的除数不一定都相同);③10-50(包含10和50)之间没有整数m 使得na m是一个偶数(其中n a 为数列的最后一项).(1)试判断序列1000、100、4和序列1000、200、4是否为Leistra 序列?并说明理由; (2)是否存在以首项1216a =,末项2n a =的Leistra 序列?如果有,请写出所有的Leistra 序列;如果没有,请说明理由;(3)首项为350123a =⋅的Leistra 序列有多少个?并说明理由.27.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.28.如图所示阴影部分角的集合.29.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.30.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 2.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==, {}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B. 3.A 【解析】 【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项. 【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误. 故选:A. 4.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=, 故选:C 5.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 6.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A. 9.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 10.C 【解析】 【分析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算. 【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤, 所以{|23}[2,3)A B x x =-≤<=-. 故选:C . 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.C【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 14.B 【解析】 【分析】根据集合的交集运算,求得答案. 【详解】由题意{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,因为集合A 中元素为小于2的整数,又{}1,0,1,2,3B =-, 所以{}1,0,1A B =-, 故选:B . 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.P Q ≠⊂ 【解析】 【分析】根据两个集合中的元素可判断出包含关系. 【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素,P Q ≠∴⊂.故答案为:P Q ≠⊂ 18.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,3 19.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m , 【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-20.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,1 21.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭.故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:5 23. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤24.0或1.【解析】【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意;若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)序列1000、100、4是Leistra 序列,序列1000、200、4不是Leistra 序列,理由见解析(2)不存在,理由见解析(3)187个,理由见解析【解析】【分析】(1)看两个序列是否满足题干中的三个条件,得到1000、100、4是Leistra 序列,1000、200、4不是Leistra 序列;(2)将216拆解为3323⨯,得到{}218,12,6a ∈,故不能得到末项2n a =,从而证明出不存在;(3)首先得到{}2,6,18,4,12,8n a ∈,根据末项和除数进行分类讨论,求出不同情况下的Leistra 序列个数,相加即为答案.(1)序列1000、100、4每项都是正偶数,而除数依次为10,25,且10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),故序列1000、100、4是Leistra 序列;1000、200、4不是Leistra 序列,因为10005200=不在10-50(包含10和50)之间; (2) 因为33121623a ==⨯,则216在10-50(包含10和50)之间的正约数有12,18,24,36,若1216a =,则{}218,12,6a ∈(9不是偶数,舍去),而此时不存在10-50(包含10和50)之间的正数能再进一步计算使得末项2n a =,所以不存在这样的Leistra 序列.(3)因为350123a =⋅,则在10-50(包含10和50)之间的正约数有27,18,12,36,且每一项()231,k a k n k N αβ*=⋅≤≤∈,其中1,2,3,50αβ=≤且N β∈,再结合10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),则末项20n a <,所以{}2,6,18,4,12,8n a ∈,下面根据末项和除数分别进行研究:①当382n a ==时,则5013na a =,所以每个除数只含有因子3,即全是27,当50不能被3整除,所以无法由27相乘得到,即不存在这种情况; ②当242n a ==时,则50123na a =⋅,所以除数中因子2仅出现1次,只能是21823=⨯,剩下除数全是27,又因为剩下除数乘积为()16483163327==,即有17个除数(18出现一次,27出现16次),一共有17种;③当21232n a ==⨯,则49123na a =⋅,所以除数中因子2仅出现了1次,只能是21823=⨯,剩下除数全是27,但因为剩下除数乘积为473,其中47不能被3整除,所以无法由27相乘得到,即不存在这样的情景;④当2n a =时,则250123na a =⋅,所以除数中因子2出现了2次,即18出现2次或12出现1次或36出现1次,剩下的除数全是27,而对应的剩下除数乘积依次为4549483,3,3,其中()16483163327==,其余两种情况(46和49)都不能被3整除,所以有17个除数(36出现1次,27出现16次),共有17种;⑤当632n a ==⨯时,则249123na a =⋅,所以除数中因子2出现2次,即18出现2次或12出现1次,或36出现1次,剩下除数全是27,而对应的剩下除数乘积依次为4548473,3,3,其中()15453153327==,()16483163327==,而47不能被3整除,所以第一种情况有17个除数(18出现2次,27出现15次),一共有217C 136=种,第二种情况有17个除数(12出现1次,27出现16次),一共有17种;⑥当21823n a ==⨯时,248123na a =⋅,所以除数中因子2出现了2次,即18出现了2次或12出现一次或36出现一次,剩下除数全是27,而对应 的剩下除数乘积依次为4447463,3,3三个数都不能被3整除,故无法由27相乘得到,即不存在这种情形;综上:一共有17+17+136+17=187个Leistra 序列.【点睛】对于定义新数列的问题,要能正确阅读理解题干信息,抓住关键信息,转化为我们熟悉的问题解决.27.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集.②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>,所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥.综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤.由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤.所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥.于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥.等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤ (2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤ 所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A 是B 的真子集,故21231m m +≤-⎧⎨+≥⎩即322m -≤≤- 所以实数m 的取值范围是32,2⎡⎤--⎢⎥⎣⎦. 30.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解. (2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤, 由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆, 则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞2.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<3.已知集合{}2|4A x x =≤,{}2|log 1B x x =≥,则A B ⋃=( )A .[]22-,B .{}2C .[)2+∞,D .[)2+-∞,4.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}5.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .5 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()UA BB .()()U UA BC .()U A B ⋂D .()U A B7.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]- B .[1,2]C .[2,3)D .[2,)+∞8.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥9.已知{}1,2,3,4,5,7,8U =,{}1,2,3,5,8A =,则UA 的子集个数为( )A .2B .3C .4D .510.已知集合[)2,4A =,[]3,5B =,则()R A B =( )A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞11.如图,已知全集U =R ,集合{}1,2,3,4,5A =,()(){}120B x x x =+->,则图中阴影部分表示的集合中,所包含元素的个数为( )A .1B .2C .3D .4 12.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( )A .{}2B .{}2,3C .{}0,3D .{}313.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤ B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥14.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--15.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则A B =( ) A .1,0,1,2B .{}1,0,1?-C .{}0,1D .{}1二、填空题16.已知非空集合A ,B 满足:A B =R ,A B =∅,函数()3,,32,x x A f x x x B ⎧∈=⎨-∈⎩对于下列结论:①不存在非空集合对(),A B ,使得()f x 为偶函数; ②存在唯一非空集合对(),A B ,使得()f x 为奇函数; ③存在无穷多非空集合对(),A B ,使得方程()0f x =无解. 其中正确结论的序号为_________. 17.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.18.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.19.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________.20.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________. 21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.25.满足{,}{,,,,}a b A a b c d e ⊆的集合A 的个数为___________三、解答题26.已知全集U =R ,集合{}04A x x =≤≤,(){}lg 2B x y x ==-. (1)求()UA B ;(2)若集合()0,C a =,且C A B ⊆,求实数a 的取值范围.27.已知集合()(){}{}250121A x x x B x m x m =+-<=+≤≤-,. (1)当3m =时,求集合()A B R ; (2)若A B B =,求实数m 的取值范围.28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合{|23}P x x =-<<,{|0}Q x x a =-≥ (1)若P Q ⊆,求实数a 的取值范围; (2)若P Q =∅,求实数a 的取值范围.30.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.【参考答案】一、单选题 1.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 2.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 3.D 【解析】 【分析】先化简集合A 、B ,再去求A B 【详解】{}{}2|4|22A x x x x =≤=-≤≤,{}{}2|log 1|2B x x x x =≥=≥则{}{}{}|22|2|2x x x B x A x x -≤≤⋃≥==≥-⋃ 故选:D 4.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 5.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 6.C 【解析】 【分析】利用交集,并集和补集运算法则进行计算,选出正确答案. 【详解】{}1,2,3,4A B =,(){}5UA B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5UUA B ==,B 错误;(){}{}{}4,53,44U A B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2UA B ==,D 错误.故选:C 7.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C8.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 9.C 【解析】 【分析】求出补集,再由子集的定义求解. 【详解】 由已知{4,7}UA =,子集有4个.故选:C .10.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 11.B 【解析】 【分析】求出集合B ,分析可知阴影部分所表示的集合为()U A B ∩,利用交集的定义可求得结果. 【详解】因为()(){}{1201B x x x x x =+->=<-或}2x >,则{}12U B x x =-≤≤, 由题意可知,阴影部分所表示的集合为(){}1,2UA B =.故选:B. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.A 【解析】 【分析】由交集运算直接求出两集合的交集即可. 【详解】由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 14.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 15.B 【解析】 【分析】根据集合的交集运算,求得答案. 【详解】由题意{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,因为集合A 中元素为小于2的整数,又{}1,0,1,2,3B =-, 所以{}1,0,1A B =-, 故选:B .二、填空题16.①③ 【解析】 【分析】通过求解332x x =-可以得到在集合A ,B 含有何种元素的时候会取到相同的函数值,因为存在能取到相同函数值的不同元素,所以即使当x 与x -都属于一个集合内时,另一个集合也不会产生空集的情况,之后再根据偶函数的定义判断①是否正确,根据奇函数的定义判断②是否正确,解方程()0f x =判断③是否正确 【详解】①若x A ∈,x A -∈,则3()f x x =,3()f x x -=-,()()f x f x ≠- 若x B ∈,x B -∈,则()32f x x =-,()32f x x -=--,()()f x f x ≠-若x A ∈,x B -∈,则3()f x x =,()32f x x -=--,()()f x f x ≠- 若x B ∈,x A -∈,则()32f x x =-,3()f x x -=-,()()f x f x ≠- 综上不存在非空集合对(),A B ,使得()f x 为偶函数 ②若332x x =-,则1x =或2x =-,当{}1B =,A B =R时,(1)312f =⨯-满足当1x =时31x =,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数当{}2B =-,A B =R时,(2)3(2)28f -=⨯--=-满足当2x =-时38x =-,所以()f x 可统一为3()f x x =,此时3()()f x x f x -=-=-为奇函数所以存在非空集合对(),A B ,使得()f x 为奇函数,且不唯一 ③30x =解的0x =,320x -=解的23x =,当非空集合对(,)A B 满足0A ∉且23B ∉,则方程无解,又因为A B =R ,A B =∅,所以存在无穷多非空集合对(),A B ,使得方程()0f x =无解 故答案为:①③ 【点睛】本题主要考查集合间的基本关系与函数的奇偶性,但需要较为缜密的逻辑推理 ①通过对x 所属集合的分情况讨论来判断是否存在特殊的非空集合对(,)A B 使得函数()f x 为偶函数②观察可以发现3x 为已知的奇函数,通过求得不同元素的相同函数值将解析式32x -归并到3x 当中,使得()f x 成为奇函数③通过求解解析式零点,使得可令两个解析式函数值为0的元素均不在所对应集合内即可得到答案 17.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 18.a <-4或a >2 【解析】 【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围. 【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;.②当a ≤3即2a ≤a +3时,若A B ⊆,则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3综上,实数a 的取值范围是a <-4或a >2. 故答案为:a <-4或a >219.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=. 故答案为:{}12x x <<.20.7【解析】 【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果. 【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个.故答案为:721.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.22.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 24.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 25.7 【解析】 【分析】根据子集的概念,列举出集合A ,可得答案. 【详解】 因为{,}{,,,,}a b A a b c d e ⊆,所以集合A 可能是{}{}{}{}{},,,,,,,,,,,,,,,,a b c a b d a b e a b c d a b c e ,{}{},,,,,,,,a b d e a b c d e 共7个; 故答案为:7三、解答题26.(1)()4,+∞(2)02a <≤【解析】【分析】(1)先求出集合B ,再按照并集和补集计算()U A B 即可;(2)先求出[)0,2A B =,再由C A B ⊆求出a 的取值范围即可.(1){}2B x x =<,{}4A B x x ⋃=≤,()()4,U A B ⋃=+∞;(2) [)0,2A B =,由题得()[)0,0,2a ⊆故02a <≤.27.(1){}()5R A B ⋂=(2){}3|m m <【解析】【分析】(1)由题知{}25A x x =-<<{}|45B x x =≤≤,再根据集合交集,补集运算求解即可; (2)由题知B A ⊆,再分B =∅和B ≠∅两种情况讨论求解即可.(1) 解:集合()(){}{}25025A x x x x x =+-<=-<<,当3m =时,{}|45B x x =≤≤,所以{|2R A x x =≤-或5}x所以{}()5R A B ⋂=.(2)因为A B B =,所以B A ⊆,①当B =∅时,121m m +>-,解得2m < ,此时B A ⊆②当B ≠∅时,应满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得23m ≤<,此时B A ⊆ 综上,m 的取值范围是{}3|m m <28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤, 所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤, 所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.29.(1)(,2]-∞-(2)[3,)+∞【解析】【分析】(1)由已知,P Q ⊆可得集合P 是集合Q 的子集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(2)由已知,P Q =∅可得集合P 和集合Q 没有交集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(1)已知{|23}P x x =-<<,{|}Q x x a =≥,要满足P Q ⊆, 即P 中的任意一个元素都是Q 中的元素,则2a ≤-, 即实数a 的取值范围是:(,2]-∞-(2)当P Q =∅,即P 与Q 没有公共元素,因为P和Q都不可能为空集,a≥,所以要使得两个集合没有公共元素,则3+∞.即实数a的取值范围:[3,)30.(1)以A为圆心,5为半径的圆内部分(2)线段AB的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A点距离小于5的点组成的集合,即以A为圆心,5为半径的圆内部分;(2)P到,A B距离相等,即线段AB的垂直平分线.。

高一集合测试题及答案

高一集合测试题及答案

高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={3,4,5},求A∪B。

A. {1,2,3,4,5}B. {1,2,3,4}C. {3,4,5}D. {1,2,3}2. 若集合M={x|x<0},N={x|x>0},则M∩N等于:A. {x|x<0}B. {x|x>0}C. 空集D. {0}3. 集合P={y|y=x^2, x∈R},求P的元素范围。

A. y≥0B. y>0C. y≤0D. y<04. 设集合Q={x|x^2-4=0},求Q的元素个数。

A. 1B. 2C. 3D. 45. 集合R={x|-1≤x≤1},S={x|x>0},求R∩S。

A. {x|0<x≤1}B. {x|-1≤x≤0}C. {x|-1<x≤1}D. {x|-1≤x<0}6. 集合T={y|y=2x, x∈Z},求T的元素性质。

A. 所有元素都是偶数B. 所有元素都是奇数C. 元素既有偶数也有奇数D. 元素不能确定7. 若集合U={x|x^2-4x+3=0},求U的元素。

A. {1,3}B. {-1,3}C. {1,-3}D. {-1,1}8. 设集合V={x|x^2+2x+1=0},求V的元素。

A. {-1}B. {1}C. {-1,1}D. 空集9. 集合W={x|-3≤x≤3},X={x|x>0},求W∩X。

A. {x|0<x≤3}B. {x|-3≤x≤0}C. {x|-3<x≤3}D. {x|-3≤x<0}10. 集合Y={y|y=x^2, x∈N},求Y的元素范围。

A. y≥0B. y>0C. y≤0D. y<0二、填空题(每题2分,共20分)11. 集合A={1,2,3},B={2,3,4},A∩B=______。

12. 若集合C={x|x是偶数},D={x|x是奇数},则C∪D=______。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<4.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,55.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-6.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设R U =,1{|2}2xA x =<,{1}B x =,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤8.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)9.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-10.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1--C .{}2,1,1--D .{}2,1,1,2--12.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( ) A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)13.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,314.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.18.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.1881年英国数学家约翰·维恩发明了Venn 图,用来直观表示集合之间的关系.全集U =R ,集合{}2220M x x ax =-+<,{}2log 1N x x =≤的关系如图所示,其中区域Ⅰ,Ⅱ构成M ,区域Ⅱ,Ⅲ构成N .若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a 的取值范围是______.22.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个 24.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( ) (3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213xg x x =<<的值域为N .求: (1)M ,N ; (2)M N ⋂,M N ⋃.28.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.29.已知集合{}211A x m x m =-<<+,{}24B x x =<.(1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 4.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 5.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B7.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 8.B【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 9.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 10.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 11.C 【解析】【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|{|1}A x y x x ===≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 13.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-. 18.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:819. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4} 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5. 21.39,24⎛⎤⎥⎝⎦【解析】 【分析】由122N xx ⎧⎫=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解不等式组即可. 【详解】由{}21log 122N x x x x ⎧⎫=≤=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解得3924a <≤故答案为:39,24⎛⎤⎥⎝⎦22.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1. 23.7 【解析】 【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可. 【详解】因为{}2320{1,2}A xx x =-+==∣, {06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素, 集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共7个. 故答案为:724.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞ 25. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.28.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 29.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<,(2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。

高一数学集合练习题含答案

高一数学集合练习题含答案

高一数学集合练习题含答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}23.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3- 5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-7.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 8.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5}9.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( ) A .()1,2 B .()1,5 C .()2,4 D .()4,5 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂= 12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1613.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .514.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤二、填空题16.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.17.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.19.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 20.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求(1)A B(2)A B(3)()S C A B28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥. (1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合{|211},{|01}A x a x a B x x =-<<+=≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ;(2)若R ()A B A ⋂=,求实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A2.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.3.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】理解集合的含义,由并集的概念运算【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D6.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B7.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.8.B【解析】【分析】由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B9.B【解析】【分析】先求出集合A ,再根据交集运算求出A B 即可.【详解】 由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1.故选:B.10.B【解析】【分析】先求出集合,A B ,再求A B 即可.【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B.11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.B【解析】【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得.【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集.故选:B13.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.二、填空题16.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞17.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.18.7【解析】【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果.【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个. 故答案为:719.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:220.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.21.24a ≤≤【解析】【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围.【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a a x <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132a a ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤. 故答案为:24a ≤≤22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=,故答案为:{}1.23.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:724.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =,或523a a =⎧⎨+=⎩,无解所以3a =.故答案为:3.25.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}.27.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =, (){}1,2,3,5,7,8S C A B =.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 29.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ; (2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x , 当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件, 0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1)答案见解析(2)11a a ≤-≥或【解析】【分析】(1)分别对a 赋值,利用集合的并集进行求解; (2)先根据题意得到R A B ⊆,再利用集合间的包含关系进行求解,要注意A =∅的情形.(1)解:若选择①:当1a =-时,(3,0)A =-, 因为[0,1]B =,所以(]3,1A B ⋃=-. 若选择②:当0a =时,(1,1)A =-, 因为[0,1]B =,所以(1,1]A B ⋃=-. 若选择③:当1a =时,(1,2)A =, 因为[0,1]B =,所以[)0,2A B ⋃=.(2)解:因为[0,1]B =,所以R (,0)(1,)B =-∞+∞.因为R ()A B A ⋂=,所以R A B ⊆, 当A =∅时,2112a a a -≥+≥,即;当A ≠∅时,2210211a a a a <<⎧⎧⎨⎨+≤-≥⎩⎩或, 即112a a ≤-≤<或;综上,11a a ≤-≥或.。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)一、单选题:1.设全集I={0, 1, 2, 3, 4}, 集合 A={0, 1, 2, 3},集合B={2,3,4}, 则 C(I-A)UC(I-B)= {0}2.方程组 {2x-3y=1,x-y=3 } 的解的集合是 {8,5}3.有下列四个命题:①ø是空集;②若a∈Z, 则-a∉N;③集合A= {x∈R|x∧2−2x+1=0}}是有两个元素;④集合B={x∈Q|x∈N}是有限集。

其中正确命题的个数是24.如果集合.A={x|ax∧2+2x+1=0}中只有一个元素,则a的值是15.已知M={y|x∧2−4≤y≤x≤2},P={x|−2≤x≤2},则M∩P={-2,-1,0,1,2}6.已知全集I=N, 集合A={x|x=2n, n∈N}, B={x|x=4n,n∈N},则I=AUB7.设集合M={x|x=kl/k2,k∈Z},N={x|x=k1/k2+1/2,k∈Z}, 则McN8.设集合A={x|1<x<2}, B={x|x<a}满足 A ⊂B, 则实数 a 的取值范围是(2,+∞)9.满足{1,2, 3}⊂M ⊂{1, 2, 3, 4, 5, 6}的集合M 的个数是810.如右图所示, Ⅰ为全集,M 、P 、 S 为Ⅰ的子集。

则阴影部分所表示的集合为(M∩P)US二、 填空题:12.已知 M={a,b}, N={b,c,d}, 若集合P 满足 P ⊆N, M∩P=∅, 则P={c,d}13.设全集 U={a,b,c,d,e},A={a,c,d}, B={b,d,e}, 则 C(A∩CB)={b,e}14.已知 Sx|x ∧2+2013\cdot (a +2)x +a ∧2−4|=|x −a −2||x +a +2|S,则$a=-2$。

15.已知集合SA =\{x|−1<x <3}S,SA\capB =\varmotℎingS, SA\cupB =mathbb {R }S,,求集合$B=\{x|x\leq-1\text{或 }x\geq 3\}$。

高一数学集合练习题含答案

高一数学集合练习题含答案

高一数学集合练习题含答案一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >3.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤B .{|1}x x ≥-C .{}|3x x >D .{}|0x x >4.设集合{}0,2,4,6,8A =,{}1212B x x =-≤<,则A B =( ) A .{}2,4,6B .{}0,2,4,6,8C .{}0,2,4D .{}4,6,85.已知集合{A x y ==,{}0,1,2,3B =,则A B =( ) A .{}3B .{}2,3C .{}1,2,3D .{}0,1,2,36.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-7.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,48.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,19.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.正确表示图中阴影部分的是( )A .R M ∪NB .R M ∩NC .R(M ∪N )D .R(M ∩N )11.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]12.已知集合*1|2cos ,,|2232x n A x x n B x π⎧⎫⎧==∈=≤≤⎨⎬⎨⎩⎭⎩N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2-D .1,0,1,213.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅ D .SSABC14.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( ) A .6B .7C .8D .915.已知集合{}{24},3A xx B x y x =<==-∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞二、填空题16.设()1,2,3i a i =均为实数,若集合{}123,,a a a 的所有非空真子集的元素之和为12,则123a a a ++=__________17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.设全集{}0,1,2U =,集合{}0,1A =,在UA______19.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 20.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.已知函数1()51f x a x=-+-的定义域为M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 23.若集合(){},|1M x y y x ==-,(){},|1N x y x ==,则MN =______.24.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B . (1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈ (1)若2,B ∈求实数a 的取值范围 (2)若B A ⊆,求实数a 的取值范围29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由; (2){}123,,A a a a =具有性质P ,当24a =时,求集合A ; (3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)若A ⊆B ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.2.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可. 【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 3.B【解析】 【分析】由分式不等式求得集合A ,再根据并集的原则求解即可. 【详解】对于集合A ,满足1033xx x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩,解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-, 故选:B 4.C 【解析】 【分析】根据不等式的性质,结合集合交集的定义进行求解即可. 【详解】因为162B x x ⎧⎫=-≤<⎨⎬⎩⎭,{}0,2,4,6,8A =,所以A B ={}0,2,4, 故选:C 5.C 【解析】 【分析】根据定义域的求法解出集合A ,然后根据交集的运算法则求解. 【详解】 解:由题意得:{{}|1A x y x x ===≥ {}1,2,3A B ∴⋂=6.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 7.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 8.D 【解析】 【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<,所以()0,1A B =, 故选:D. 9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.B 【解析】 【分析】根据韦恩图直接分析即可 【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂, 故选:B. 【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题 11.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 12.C 【解析】 【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得; 【详解】 解:因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭,6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N , 由12422x ≤≤,即512222x -≤≤,所以512x -≤≤, 所以15|242|122xB x x x ⎧⎫⎧⎫=≤≤=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,所以{}1,1,2A B =-; 故选:C 13.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D. 14.B 【解析】 【分析】解对数不等式化简A ,求出B 可得答案. 【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<, 所以N B A ={2,3,4,5,6,7,8}=, 则B 中元素的个数为7. 故选:B 15.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】 解:{}[)2424A x x =≤<=,,{}[)33,B x y x ∞==-=+,因此,[)2,A B =+∞. 故选:A.二、填空题 16.4【解析】 【分析】列举出集合{}123,,a a a 的所有非空真子集,根据题意可求得123a a a ++的值. 【详解】集合{}123,,a a a 的所有非空真子集为:{}1a 、{}2a 、{}3a 、{}12,a a 、{}13,a a 、{}23,a a , 由题意可得()123312a a a ++=,解得1234a a a ++=. 故答案为:4.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.19.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}20.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.(){}1,0【解析】 【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故MN =(){}1,0.故答案为:(){}1,0.24.A B ⋂##B A ⋂【解析】【分析】根据集合的运算法则求解.【详解】 阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂. 故答案为:A B ⋂.25.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1){}|11A B x x ⋂=-≤<;(2)(][),12,-∞-⋃+∞(3)(]1,2【解析】【分析】(1)分别解出解出集合A ,B ,再求A B ;(2)由A B B ⋃=得到A B ⊆.对m 分类讨论,分0m >, 0m =和0m <三种情况,分别求出m 的范围,即可得到答案;(3)用集合法列不等式组,求出a 的范围.(1) 由5212x x ->+的解集是A ,解得:{}|21A x x =-<<. 当m =1时,22450x mx m --≤可化为2450x x --≤,解得{}|15B x x =-≤≤. 所以{}|11A B x x ⋂=-≤<.(2)因为A B B ⋃=,所以A B ⊆.由(1)得:{}|21A x x =-<<.当0m >时,由22450x mx m --≤可解得{}|5B x m x m =-≤≤.要使A B ⊆,只需512m m ≥⎧⎨-≤-⎩,解得:2m ≥;当0m =时,由22450x mx m --≤可解得{}0B =.不符合A B ⊆,舍去;当0m <时,由22450x mx m --≤可解得{}|5B x m x m =≤≤-.要使A B ⊆,只需152m m -≥⎧⎨≤-⎩,解得:1m ≤-;所以,1m ≤-或2m ≥.所以实数m 的取值范围为:(][),12,-∞-⋃+∞.(3)设关于x 的不等式22430x ax a -+<(其中>0a )的解集为M ,则(),3M a a =;不等式组2260280x x x x ⎧--≤⎨+->⎩的解集为N ,则(]2,3N =;要使p 是q 的必要不充分条件,只需N M ,即233a a ≤⎧⎨>⎩,解得:12a <≤. 即实数a 的取值范围(]1,2.28.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明;② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴=又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴=0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+=故得证30.(1)(],2-∞-(2)[)0,∞+【解析】【分析】 (1)根据集合包含关系列出不等式组,求出实数m 的取值范围;(2)分B =∅与B ≠∅进行讨论,列出不等关系,求出实数m 的取值范围.(1)由题意得:2113m m ≤⎧⎨-≥⎩,解得:2m ≤-,所以实数m 的取值范围是(],2-∞-; (2)当B =∅时,21m m ,解得:13m ≥; 当B ≠∅时,需要满足2111m m m <-⎧⎨-≤⎩或2123m m m <-⎧⎨≥⎩,解得:103m ≤<或∅,即103m ≤<; 综上:实数m 的取值范围是[)0,∞+.。

高一集合练习题及答案

高一集合练习题及答案

一、选择题(一)1.下列八个关系式①{0}=φ②φ=0 ③φ {φ} ④φ∈{φ}⑤{0}⊇φ⑥0∉φ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7 2.集合{1,2,3}的真子集共有( )(A )5个 (B )6个 (C )7个 (D )8个3.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )(A )(a+b )∈A (B)(a+b) ∈B (C)(a+b) ∈ C (D)(a+b) ∈ A 、B 、C 任一个 4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( ) (A )CUA ⊆CUB (B )CUA ⋃CUB=U (C )A ⋂CUB=φ (D )CUA ⋂B=φ5.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=( ) (A )R (B ){12≥-≤x x x 或} (C ){21≥≤x x x 或} (D ){32≥≤x x x 或}6.设f(n)=2n +1(n ∈N),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N|f(n)∈P},Q ∧={n ∈N|f(n)∈Q},则(P ∧∩NQ ∧)∪(Q ∧∩NP ∧)=()(A) {0,3} (B){1,2} (C)(3,4,5} (D){1,2,6,7}7.已知A={1,2,a2-3a-1},B={1,3},A =⋂B {3,1}则a 等于( ) (A )-4或1 (B )-1或4 (C )-1 (D )48.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA )⋃(CUB )=( ) (A ){0} (B ){0,1}(C ){0,1,4} (D ){0,1,2,3,4}10.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( )(A ){3,5}、{2,3} (B ){2,3}、{3,5} (C ){2,5}、{3,5} (D ){3,5}、{2,5}11.设一元二次方程ax2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax2+bx+c ≥0的解集为( ) (A )R (B )φ≠⊂(C ){a b x x 2-≠} (D ){ab 2-} 12.已知P={04<<-m m },Q={012<--mx mx m ,对于一切∈x R 成立},则下列关系式中成立的是( )13.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N 等于( ) (A )φ (B ){φ} (C ){0} (D )Z14.已知集合则实数的取值范围是( ) A .B .C .[—1,2] D .15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(CUA )⋂B={4},(CUA )⋂(CUB )={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,16.设集合10,2A ⎡⎫=⎪⎢⎭⎣, 1,12B ⎡⎤=⎢⎥⎣⎦, 函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若0x A ∈,且()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )(A )P Q (B )QP (C )P=Q (D )P ⋂Q=φ≠⊂≠⊂A .10,4⎛⎤ ⎥⎦⎝B .11,42⎛⎤ ⎥⎦⎝ C .11,42⎛⎫⎪⎝⎭D .30,8⎡⎤⎢⎥⎣⎦17.在R 上定义运算: 2a b ab a b =++,则满足()20xx -<的实数x 的取值范围为( )A. (0,2)B. (-1,2)C. ()(),21,-∞-+∞D. (-2,1) .18.集合P={x|x2=1},Q={x|mx=1},若QP ,则m 等于( )A .1B .-1C .1或-1D .0,1或-119.设全集U={(x,y )R y x ∈,},集合M={(x,y )122=-+x y },N={(x,y)4-≠x y },那么(CUM )⋂(CUN )等于( )(A ){(2,-2)} (B ){(-2,2)} (C )φ (D )(CUN ) 20.不等式652+-x x <x2-4的解集是( ) (A ){x 2,2>-<x x 或} (B ){x 2>x } (C ){ x 3>x } (D ){ x 2,32≠<<-x x 且} 二、填空题1. 在直角坐标系中,坐标轴上的点的集合可表示为 2. 若A={1,4,x},B={1,x2}且A ⋂B=B ,则x= 3. 若A={x 01032<-+x x } B={x 3<x },全集U=R ,则A )(B C U ⋃=4. 如果集合中只有一个元素,则a 的值是5. 集合{a,b,c}的所有子集是真子集是;非空真子集是 6. 方程x2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。

(完整版)高一数学集合练习题及答案(人教版)

(完整版)高一数学集合练习题及答案(人教版)

一、选择题(每题 4 分,共 40 分)1、以下四组对象,能组成会合的是()A 某班全部高个子的学生B有名的艺术家C全部很大的书D倒数等于它自己的实数2、会合 {a , b,c } 的真子集共有个()A 7B 8C9D103、若 {1 , 2}A{1 , 2, 3,4, 5} 则知足条件的会合 A 的个数是()A. 6B. 7C.8D. 94、若 U={1, 2, 3, 4} ,M={1, 2} , N={2,3} ,则 C U( M∪ N) =()A. {1,2, 3}B. {2}C. {1, 3, 4}D. {4}x y15、方程组x y 1 的解集是( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:0 0 ,0,0.3Q ,0 N ,a, b b, a,x | x2 2 0, x Z 是空集中,错误的个数是()A4 B 3 C 2 D 17、点的会合M={ (x,y)|xy≥0}是指( )A. 第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D.不在第二、第四象限内的点集8、设会合 A=B= x x a A B1 x 2,则 a 的取值范围是,,若()A a a 2B a a 1C a a 1D a a29、知足条件 M1 = 1,2,3的会合 M的个数是()UA 1B 2C 3D 410、会合P x | x2k, k Z, Q x | x 2k 1, k Z ,R x | x4k1, k Z ,且a P, b Q ,则有()A a b PB a b QC a b RD a b 不属于P、Q、R中的随意一个二、填空题(每题 3 分,共 18 分)11、若A { 2,2,3,4},B {x|x t2,t}BA ,用列举法表示12、会合 A={x| x 2+x-6=0}, B={x| ax+1=0},若 B A,则 a=__________13、设全集 U= 2,3, a22a3, A= 2,b, C U A= 5,则a =, b =。

高一数学集合练习题及答案

高一数学集合练习题及答案

高一数学集合练习题及答案一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--5.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()UA B =( ) A .{}4,5B .{}2,3C .{}1D .{}36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1 B .{}0,1,2 C .1,0,1,2D .{}1,1,2- 7.已知集合{0,1,2,3}M =,集合{1,0,1,4,6}N =-,则MN =( )A .{}1-B .{0,1}C .{0}D .{1}8.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,29.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( ) A .{}1 B .{}1,2,3 C .{}1,2 D .{}1,0,1- 10.下列关系中正确的是( )A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =11.已知集合{}24A x Z x =∈<,{}210B x x =+>,则A B =( )A .{}1B .{}0,1C .{}1,2D .{}0,1,212.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示) 20.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.21.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.22.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.23.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.24.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}2|3100A x x x =--<,{}|121B x m x m =+≤≤-.(1)当3m =时,求集合()U A B ;(2)若A B B =,求实数m 的取值范围.27.对于正整数a ,b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b ≤<.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{}1,2,3,,23A =⋅⋅⋅(1)存在q A ∈,使得()202291091q r r =+≤<,试求r 的值;(2)求证.不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)若B A ⊆,()12card B =(()card B 指集合B 中的元素的个数).且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.判断:当7m =时,集合A 中有12个元素并且含有m 的任意子集是否都为“和谐集”,并说明理由.28.已知集合2111x A xx +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.30.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围; (2)若p 是q 的充分不必要条件,求a 的取值范围.【参考答案】一、单选题 1.A【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 4.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 5.C 【解析】 【分析】直接按照补集和交集的概念运算即可. 【详解】 由题意知:{}1,4,5UB =,则(){}1UA B =.故选:C. 6.C 【解析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 7.B 【解析】 【分析】运用集合交集的定义进行求解即可. 【详解】因为{0,1,2,3}M =,集合{1,0,1,4,6}N =-, 所以M N ={0,1},故选:B 8.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 9.C 【解析】 【分析】求出集合A 的解集,取交集运算即可. 【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =. 故选:C. 10.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;【详解】对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当ab 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,11.B 【解析】 【分析】解不等式求得集合,A B ,由此求得A B . 【详解】()()24,220,22x x x x <+-<-<<,所以{}1,0,1A =-,由于1,2B ⎛⎫=-+∞ ⎪⎝⎭,所以{}0,1A B =.故选:B 12.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 15.B 【解析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B.二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:± 18.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.19.{0,3,6}【解析】 【分析】根据给定条件直接计算作答. 【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =. 故答案为:{0,3,6}20.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞21.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =. 故答案为:{1,2,3,4,6,8}. 22.0,1或1- 【解析】 【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可. 【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =-故答案为:01,或-1.23.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+24.{}|23x x <≤【解析】 【分析】先求得A B ,然后求得()A B C . 【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}5 (2)(3),-∞ 【解析】 【分析】(1)求出集合B ,进而求出补集与交集;(2)根据集合交集的结果得到集合的包含关系,进而分类讨论,求出实数m 的取值范围. (1)由题意得,集合{}25A x x =-<<,当3m =时,{}45B x x =≤≤, 所以{2UA x x =≤-或}5x ≥,所以{}()5U AB =.(2)由A B B =,可得B A ⊆,①当B =∅时,可得121m m +>-,解得:2m <;②当B ≠∅时,则满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得:23m ≤<,综上所述:实数m 的取值范围是(3),-∞. 27.(1)20 (2)证明见解析 (3)是,理由见解析 【解析】 【分析】(1)由2022除以91求解; (2)利用反证法证明; (3)利用“和谐集”的求解. (1)解:因为2022912220=⨯+,且q A ∈, 所以q =22,r =20; (2)假设存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠,设(){}(){}1,1,2,3,2,1,2,3f a a f b b =∈=∈, 由已知ab ,由于312,321-=-=, 所以()()()()31,32f f f f ≠≠,不妨设(){}3,1,2,3f c c =∈,且,c a c b ≠≠, 同理()()4,4f b f c ≠≠, 因为{}1,2,3只有三个元素, 所以()4f a =,即()()14f f =, 但413-=,与已知矛盾,所以假设不成立,即不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠ (3)设{}1211,,...,,7B a a a =,若1,14,21中之一为集合B 的元素,显然为“和谐集”, 现考虑1,14,21都不属于集合B ,构造集合{}{}{}1232,4,8,16,3,6,12,5,10,20B B B ===,{}{}459,18,11,22B B ==,{}13,15,17,19,23B '=,12345,,,,B B B B B 每个集合中的元素都是倍数关系,考虑B B '⊆的情况,也即B '中5个元素全都是B 的元素,则B 中剩下的6个元素必须从12345,,,,B B B B B 这5个集合中选取6个元素,则至少有一个集合有两个元素被选,即集合B 中至少有两个元素存在倍数关系, 综上:当7m =时,集合A 中有12个元素并且含有m 的任意子集都为“和谐集”.28.(1){21}x x -<<;(2)[2,4]∈-m .【解析】【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答.(1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭, 所以{21}A B x x ⋃=-<<.(2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2m B x x =<<-,B A ⊄,不符合题意, 当12m -=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤, 综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.30.(1)2,13⎡⎤⎢⎥⎣⎦(2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( )A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,3 2.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B ⋂=( )A .(,1)-∞B .[)1,+∞C .(]2,0-D .(0,1) 3.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的4.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,8 5.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2- 7.设集合{}Z 22M x x =∈-<,则集合M 的子集个数为( )A .16B .15C .8D .78.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}9.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()U A B ⋂=( ) A .[0,4] B .(,4]-∞ C .(,0)-∞ D .[0,)+∞ 10.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)- 11.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅ D .U 12.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,5 13.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}14.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( )A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥ 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在2,43ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围为______.21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.24.写出集合{1,1}-的所有子集______.25.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆.(1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.29.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .30.判断下列每对集合之间的关系: (1){}2,N A x x k k ==∈,{}4,N B y y m m ==∈;(2){}1,2,3,4C =,D {x x 是12的约数}; (3){}32,N E x x x +=-<∈,{}1,2,3,4,5F =.【参考答案】一、单选题1.B【解析】【分析】由交集运算求解即可.【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣ 故选:B2.B 【解析】【分析】求出集合A 的补集,化简集合B ,再根据交集的概念可求出结果.【详解】因为{}21A x x =-<<,所以R (,2][1,)A =-∞-+∞,又{}lg B x y x ==(0,)=+∞,所以()R A B ⋂=[1,)+∞.故选:B3.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .4.C【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C5.C【解析】【分析】由并集的概念运算【详解】S T ⋃={}0,1,3故选:C6.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C7.C【解析】【分析】利用公式法解绝对值不等式,再根据集合子集个数公式进行求解即可.【详解】 因为2222204x x x -<⇒-<-<⇒<<,所以{}1,2,3M =,因此集合M 的子集个数为328=,故选:C8.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.9.D【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解.【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<,所以()U A B ⋂={|0}x x ≥,即()U A B ⋂[0,)=+∞.故选:D10.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】 解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-, 所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.11.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B12.D【解析】【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案.【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,所以{}3,5,6U A =,所以(){}3,5U A B =.故选:D.13.A【解析】【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进【详解】因为集合A={-8,1},B={-8,-5,0,1,3},Venn 图中阴影部分表示的集合为∁BA={-5,0,3}.故选:A.14.A【解析】【分析】由交集运算直接求出两集合的交集即可.【详解】 由集合{}13A x x =≤≤,集合{}24B x x =≤≤则{}|23A B x x =≤≤故选:A15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.±【解析】【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案.【详解】解:因为A ={2|x x -ax +2=0}的子集有两个,所以集合A 中仅有一个元素,所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:±17.2【解析】【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解.因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =. 故答案为:2.18. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.5,66ππ⎛⎫ ⎪⎝⎭【解析】【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 20.9[1,]8【解析】【分析】 由()()sin()04f x x πωω=+>的单调递减区间包含2,43ππ⎡⎤⎢⎥⎣⎦可计算ω 的取值范围. 【详解】()()sin()04f x x πωω=+> 在2,43ππ⎡⎤⎢⎥⎣⎦ 上单调递减 令(),42x k k Z ππωπ+=+∈ 得14ππωω=+k x 令(),4x k k Z πωππ+=+∈得234k x ππωω=+ 23,+,4344k k ππππππωωωω⎡⎤⎡⎤∴⊂+⎢⎥⎢⎥⎣⎦⎣⎦442334k k πππωωπππωω⎧+≤⎪⎪∴⎨⎪≤+⎪⎩ 419382k k ωω⎧≥+⎪∴⎨≤+⎪⎩ 93110041082420k k k k Z k ω>∴<+<+∴-<<∈∴=ω∴∈9[1,]8故答案为:9[1,]821.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.0或1.【解析】【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意; 若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.24.∅,{}1-,{1},{1,1}-【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.25.5,6##{}6,5【解析】【分析】先求出A B ,再进行补集运算及即可求解.【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=,故答案为:5,6.三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解; (2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时, 则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】 (1)按照集合B 是空集和不是空集分类讨论求解; (2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤.综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个. 28.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+, 则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤29.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<< 30.(1)B A(2)C D(3)E F【解析】【分析】(1)分析A ,B 集合中元素的关系,即得解; (2)列举法表示集合D ,即得解;(3)列举法表示集合E ,即得解(1)由题意,任取4y m B =∈,有2(2),2y m m N =⨯∈,故y A且6,6A B ∈∉,故B A(2)由于D {x x 是12的约数}{1,2,3,4,6,12}= 故C D(3) 由于{}32,N E x x x +=-<∈{|5,}{1,2,3,4}x x x N +=<∈= 故E F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合练习题专题训练姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共__小题)1.下列写法:(1){0}∈{1,2,3};(2)∅⊆{0};(3){0,1,2}⊆{1,2,0};(4)0∈∅其中错误写法的个数为()A.1B.2C.3D.42.已知集合M={a|a=+,k∈Z},N={a|a=+,k∈Z},则()A.M=N B.M⊊N C.N⊊M D.M∩N=∅3.下列各式正确的是()A.2⊆{x|x≤10}B.{2}⊆{x|x≤10}C.∅∈{x|x≤10}D.∅⊄{x|x≤10}4.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2004};④{0,1,2}⊆{0,1,2};⑤{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个5.设A、B是两个集合,对于A⊆B,下列说法正确的是()A.存在x0∈A,使x0∈B B.B⊆A一定不成立C.B不可能为空集D.x0∈A是x0∈B的充分条件6.设U为全集,集合M、N⊊U,若M∪N=N,则()A.∁U M⊇(∁U N)B.M⊆(∁U N)C.(∁U M)⊆(∁U N)D.M⊇(∁U N)7.设集合A={(x,y)|-=1},B={(x,y)|y=},则A∩B的子集的个数是()A.8B.4C.2D.18.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}的子集个数是()A.5B.8C.16D.329.下列四个集合中,是空集的是()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}10.已知集合A={x|<-1},B={x|-1<x<0},则()A.A B B.B A C.A=B D.A∩B=∅11.已知集合A={1,2,3},则B={x-y|x∈A,y∈A}中的元素个数为()A.9B.5C.3D.112.已知全集U=R,集合M={x|x2-2x>0},N={x|y=lg(x-2)},则集合M,N的关系为()A.M⊊N B.M⊋N C.M=N D.不确定13.已知集合A={x|x2-2x-3<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=∅14.设集合M={x|x=,k∈Z},N={x|x=,k∈Z},则M、N之间的关系为()A.M⊊N B.M⊋N C.M=N D.M∩N=∅15.已知集合M={x|x-2<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,0]16.下列六个关系式:①{a,b}⊆{b,a}②{a,b}={b,a}③0=∅④0∈{0}⑤∅∈{0}⑥∅⊆{0}其中正确的个数为()A.6个B.5个C.4个D.少于4个17.设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是()A.M=P B.P⊈M C.M⊈P D.∁U(M∪P)=∅18.集合M={x|x2-2x-3<0},N={x|x>a},若M⊆N,则实数a的取值范围是()A.[3,+∞)B.(3,+∞)C.(-∞,-1]D.(-∞,-1)19.设集合P={x|x2+x-6=0},则集合P的元素个数是()A.0B.1C.2D.320.对于集合A={x|x=2k+1,k∈N}和集合B={x|x=a*b,a,b∈A},若满足B⊆A,则集合B中的运算“*”可以是()A.加法B.减法C.乘法D.除法21.已知集合A={x|x2-2x-3=0},集合B={x|mx+1=0},若B⊆A,则实数m的集合为()A.{-}B.{1}C.{-,1}D.{0,-,1}22.设(1-3x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则集合{a1,a2,a3,a4,a5,a6}含2个元素的所有子集的元素总和为()A.640B.630C.320D.31523.设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P=Q B.P∪Q=R C.P⊊Q D.Q⊊P24.已知集合,M={-1,0,1,2,3,4},N={-2,2},则下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}第Ⅱ卷(非选择题)二.填空题(共__小题)25.已知集合A={x|4-2k<x<2k-8},B={x|-k<x<k},若A⊆B,则实数k的取值范围为______.26.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为______.27.{(1,2),(-3,4)}的所有真子集是______.28.已知集合,且A=B,则a2010+b2011=______.29.已知集合S={x|-1≤x≤4},若非空集合T满足条件:(S∩T)⊇(S∪T),则集合T等于______.30.已知集合,,则集合A,B的关系是______.参考答案一.单选题(共__小题)1.下列写法:(1){0}∈{1,2,3};(2)∅⊆{0};(3){0,1,2}⊆{1,2,0};(4)0∈∅其中错误写法的个数为()A.1B.2C.3D.4答案:B解析:解:(1){0}和{1,2,3}都是集合,不能用“∈”,故不正确;(2)∅⊆{0},空集是任何集合的子集,故正确;(3){0,1,2}⊆{1,2,0}两集合的元素相等,也可用“⊆”表示,故正确;(4)0∈∅,空集是不含任何元素的集合,故不正确,故选B.2.已知集合M={a|a=+,k∈Z},N={a|a=+,k∈Z},则()A.M=N B.M⊊N C.N⊊M D.M∩N=∅答案:B解析:解:集合M={a|a=+,k∈Z}={a|a=,k∈Z},分子取到全体奇数;N={a|a=+,k∈Z}={a|a=π,k∈Z},分子取到全体整数,所以M⊊N,故选:B.3.下列各式正确的是()A.2⊆{x|x≤10}B.{2}⊆{x|x≤10}C.∅∈{x|x≤10}D.∅⊄{x|x≤10}答案:B解析:解:A、2⊆{x|x≤10},元素与集合之间用属于符号,故不正确;B、{2}⊆{x|x≤10},正确C、∅∈{x|x≤10},空集是任何集合的子集,故不正确;D、∅⊄{x|x≤10},空集是任何非空集合的真子集,故不正确;故选B.4.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2004};④{0,1,2}⊆{0,1,2};⑤{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个答案:A解析:解::①1∈{0,1,2},元素与集合之间用属于符号,故正确;②∅⊆{0,1,2};空集是任何集合的子集,正确③{1}∈{0,1,2004};集合与集合之间不能用属于符号,故不正确;④{0,1,2}⊆{0,1,2},集合本身是集合的子集,故正确⑤{0,1,2}={2,0,1},根据集合的无序性可知正确;故选:A5.设A、B是两个集合,对于A⊆B,下列说法正确的是()A.存在x0∈A,使x0∈B B.B⊆A一定不成立C.B不可能为空集D.x0∈A是x0∈B的充分条件答案:D解析:解:若A⊆B,A=φ,则不存在x0∈A,使x0∈B,故A答案错误;若A=B,则A⊆B,B⊆A成立,故B答案错误;若A=B=φ,A⊆B,成立,故C答案错误;根据充分条件的集合法判定原则,可得若A⊆B,则x0∈A是x0∈B的充分条件,故D答案正确;故选D6.设U为全集,集合M、N⊊U,若M∪N=N,则()A.∁U M⊇(∁U N)B.M⊆(∁U N)C.(∁U M)⊆(∁U N)D.M⊇(∁U N)答案:A解析:解:∵M∪N=N,∴M⊆N,又∵U为全集,∴∁U M⊇∁U N.故答案选:A7.设集合A={(x,y)|-=1},B={(x,y)|y=},则A∩B的子集的个数是()A.8B.4C.2D.1答案:A解析:解:结合双曲线=1的图形及指数函数y=的图象可知,有3个交点,故A∩B子集的个数为23=8.故选A.8.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}的子集个数是()A.5B.8C.16D.32答案:D解析:解:因为集合A={0,1,2},集合B={x-y|x∈A,y∈A},所以B={0,1,-1,-2,2},故集合B有25=32个子集.故选D.9.下列四个集合中,是空集的是()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}答案:B解析:解:空集的定义:无任何元素的集合,选项B是空集.故选:B.10.已知集合A={x|<-1},B={x|-1<x<0},则()A.A B B.B A C.A=B D.A∩B=∅答案:C解析:解:不等式<-1可化为:+1<0,即,x(x+1)<0,解得-1<x<0,∴A={x|-1<x<0},∴A=B.故选C.11.已知集合A={1,2,3},则B={x-y|x∈A,y∈A}中的元素个数为()A.9B.5C.3D.1答案:B解析:解:∵A={1,2,3},B={x-y|x∈A,y∈A},∴x=1,2,3,y=1,2,3.当x=1时,x-y=0,-1,-2;当x=2时,x-y=1,0,-1;当x=3时,x-y=2,1,0.即x-y=-2,-1,0,1,2.即B={-2,-1,0,1,2}共有5个元素.故选:B.12.已知全集U=R,集合M={x|x2-2x>0},N={x|y=lg(x-2)},则集合M,N的关系为()A.M⊊N B.M⊋N C.M=N D.不确定答案:B解析:解:集合M={x|x2-2x>0}={x|x(x-2)>0}={x|x<0或x>2},N={x|y=lg(x-2)}={x|x>2}∴M⊋N,故选B.13.已知集合A={x|x2-2x-3<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=∅答案:B解析:解:由x2-2x-3<0⇒-1<x<3,所以A={x|x2-2x-3<0}={x|-1<x<3},而B={x|-1<x<1},如图,所以B⊊A.故选B.14.设集合M={x|x=,k∈Z},N={x|x=,k∈Z},则M、N之间的关系为()A.M⊊N B.M⊋N C.M=N D.M∩N=∅答案:A解析:解:∵M={x|x=,k∈Z}={x|x=(2k±1),k∈Z},N={x|x=,k∈Z}={x|x=(k+2),k∈Z};∴M⊊N;故选A.15.已知集合M={x|x-2<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,0]答案:A解析:解:M={x|x<2};∵M⊆N;∴a≥2;∴a的取值范围是[2,+∞).故选A.16.下列六个关系式:①{a,b}⊆{b,a}②{a,b}={b,a}③0=∅④0∈{0}⑤∅∈{0}⑥∅⊆{0}其中正确的个数为()A.6个B.5个C.4个D.少于4个答案:C解析:解:根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间可知④正确;根据空集是任何集合的子集可知⑥正确.故选C.17.设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是()A.M=P B.P⊈M C.M⊈P D.∁U(M∪P)=∅答案:C解析:解:P={x|x>1,或x<-1},M={x|x>1};∴M⊊P.故选C.18.集合M={x|x2-2x-3<0},N={x|x>a},若M⊆N,则实数a的取值范围是()A.[3,+∞)B.(3,+∞)C.(-∞,-1]D.(-∞,-1)答案:C解析:解:∵集合M={x|x2-2x-3<0}=(-1,3)N={x|x>a},若N={x|x>a},则-1≥a即a≤-1即实数a的取值范围是(-∞,-1]故选C19.设集合P={x|x2+x-6=0},则集合P的元素个数是()A.0B.1C.2D.3答案:C解析:解:集合P={x|x2+x-6=0},解方程x2+x-6=0,得两根:2,-3则集合P的元素个数是2.故选C.20.对于集合A={x|x=2k+1,k∈N}和集合B={x|x=a*b,a,b∈A},若满足B⊆A,则集合B中的运算“*”可以是()A.加法B.减法C.乘法D.除法答案:C解析:解:由于奇数+奇数=偶数,奇数-奇数=偶数,奇数×奇数=奇数,不一定是整数,因此若满足B⊆A,则集合B中的运算“*”可以是乘法.故选:C.21.已知集合A={x|x2-2x-3=0},集合B={x|mx+1=0},若B⊆A,则实数m的集合为()A.{-}B.{1}C.{-,1}D.{0,-,1}答案:D解析:解:A={x|x2-2x-3=0}={-1,3},①若m=0,则B=∅,成立;②若-m+1=0,则m=1;③若3m+1=0,则m=-;故选D.22.设(1-3x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则集合{a1,a2,a3,a4,a5,a6}含2个元素的所有子集的元素总和为()A.640B.630C.320D.315答案:D解析:解:由二项式定理得:(1-3x)6=c60+c61(-3x)+c62(-3x)2+c63(-3x)3+c64(-3x)4+c65(-3x)5+c66(-3x)6,则a1=-18,a2=135,a3=-540,a4=1215,a5=-1458,a6=729,所以集合{a1,a2,a3,a4,a5,a6}含2个元素的所有子集的元素总和为5(-18+135-540+1215-1458+729)=315.故选D23.设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P=Q B.P∪Q=R C.P⊊Q D.Q⊊P答案:C解析:解:对P有,P=(1,+∞),对于Q,有x2-x>0,解可得x>1,或x<0;则Q=(-∞,0)∪(1,+∞);所以P⊊Q,故选择C.24.已知集合,M={-1,0,1,2,3,4},N={-2,2},则下列结论成立的是()A.N⊆M B.M∪N=M C.M∩N=N D.M∩N={2}答案:D解析:解:∵M={-1,0,1,2,3,4},N={-2,2},∴M∩N={2}.故选:D.二.填空题(共__小题)25.(理科)已知集合A={x|4-2k<x<2k-8},B={x|-k<x<k},若A⊆B,则实数k的取值范围为______.答案:k≤4解析:解:当B=∅时即k≤0,A⊆B,A=∅⇒4-2k≥2k-8⇒k≤3,∴k≤0;当B≠∅时即k>0,则⇒⇒k≤4,∴0<k≤4,综上k≤4故答案是k≤4.26.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为______.答案:(-∞,-2]解析:解:∵集合A={x|-2≤x≤3},B={x|x≥m},且A⊆B,∴m≤-2,∴实数m的取值范围是:(-∞,-2],故答案为:(-∞,-2].27.{(1,2),(-3,4)}的所有真子集是______.答案:∅,{(1,2)},{(-3,4)}解析:解:{(1,2),(-3,4)}的真子集有:∅,{(1,2)},{(-3,4)}三个.故答案为:∅,{(1,2)},{(-3,4)}.28.已知集合,且A=B,则a2010+b2011=______.答案:1解析:解:∵集合,且A=B,∴,解得(舍),或,∴a2010+b2011=(-1)2010+02011=1.故答案为1.29.已知集合S={x|-1≤x≤4},若非空集合T满足条件:(S∩T)⊇(S∪T),则集合T等于______.答案:S解析:解:若S⊆T,此时不满足条件;若T⊆S,此时不满足条件;当T=∅,此时不满足条件;∵(S∩T)⊇(S∪T),故答案为S.30.已知集合,,则集合A,B的关系是______.答案:A⊃B解析:解:∵集合=(-∞,0)∪(0,+∞)集合={-1,1}故A⊃B故答案为:A⊃B。

相关文档
最新文档