第一讲三角形基本概念
第一讲 三角形边与角01
小班辅导讲义学生:科目:数学第 1 阶段第 1 次课教师:(1)、从图中你能找到几个三角形?并用符号表示.(2)、请与同学交流你找到的三角形.你是怎么数的?并讨论用什么方法数才能做到不重不漏?【例3】、说一说:让学生举一些生活中看到的三角形例子。
两点之间线段最短,∴AC+BC>AB,同理:AB+AC>BC、AB+BC>AC 三角形任意两边之和大于第三边C D1.在ΔABC中,∠A=12∠B=14∠C,则三个内角分别为。
2.已知三角形两边分别是2cm和7cm,第三边的数值是偶数,则这个三角形的周长是。
3.已知ABC的周长为15,三角形三边分别为a、b、c且a-b=c-1,a-3c=1,则a= ,b= ,c= 。
4.若四条线段长分别是5cm、6cm、8cm、13cm,则以其中任意三条线段长为边可构成个三角形。
5.在ΔABC中,已知∠A=2∠B=3∠C,则这个三角形是三角形。
6.在ΔABC中,∠A=2∠B=750,则∠C=()。
(A)300(B)67030′(C)1050(D)13507.周长为15,各边长是互不相等的整数的三角形有个。
8.若ΔABC的三边长分别为整数,周长为11,且有一边长为4,则这个三角形的最大边长为()。
(A)7 (B)6 (C)5 (D)49. ΔABC的三边a、b、c满足条件a2+b2+c2=ab+bc+ca,试判断ABC是什么三角形。
10.若a、b、c分别是ABC的三条边,则代数式a2-2ab-c2+b2的值是()。
11.如图,AB=AC,CD=BF,BD=CE,则∠a等于()。
(A)900-∠A (B)450-12∠A (C)1800-∠A (D)900-12∠A第11题图12.在ΔABC 中,∠A +∠B =∠C ,∠B =2∠A , ⑴求∠A 、∠B 、∠C 的度数;⑵△ABC 按边分类,属于什么三角形?△ABC 按角分类,属于什么三角形?13.如图,说明∠A+∠B +∠C +∠D +∠E=180°的理由.ACBD E。
第1讲 与三角形有关的线段和角
知识讲解1.三角形的分类:1)按边分类:2)按角分类:2.三角形的高、中线、角平分线(1)三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形的三条高交于一点,这一点叫做三角形的_____________.(2)三角形的中线:在三角形中,连接一个顶点和它对边的_____的线段叫做三角形的中线. (3)三角形的角平分线:在三角形中,一个内角的_______和对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
3.三角形的内角与外角(1)三角形的内角:✓定义:三角形中相邻两边组成的角,叫做三角形的_____.✓三角形内角和定理:三角形三个内角的和等于__________.✓三角形内角和定理的作用:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可求出其_______度数;③求一个三角形中各角之间的关系。
(2)三角形的外角✓定义:三角形一边与另一边_____组成的角,叫做三角形的外角。
三角形外角和为_____。
✓性质:①三角形的一个外角等于与它____相邻的两个内角的和。
②三角形的一个外角大于与它______相邻的任何一个内角.4.三角形的三边关系(1)三边关系性质:三角形的任意两边之和______第三边,任意两边之差_____于第三边,三角形的三边关系反应了任意三角形边的限制关系.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和____最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.考点/易错点1关于三角形的高的注意事项:(1)三角形的高线是一条线段;(2)锐角三角形的三条高都在三角形______,三条高的交点也在三角形____部;钝角三角形有两条高落在三角形的_____部,一条在三角形_____部,三条高所在直线交于三角形___一点;直角三角形有两条高恰好是三角形的两条直角边,它们的交点是直角的顶点,另一条在三角形的内部。
数学八年级上册培优第01讲 三角形
知识导图第一讲:三角形概述教学内容本讲内容涉及三角形角度计算的知识点,在人教版课本第十一章中学习,在本系列教材初二第1册第一节中已学习过.专题1 三角形角度转换基本图形的应用专题2 三角形角平分线基本模型专题3 三角形内、外角度转换专题4 角度转换基本模型与平面直角坐标系综合应用专题讲解专题1:角形角度转换基本图形的应用【例1】如图所示,已知∠C=54°,∠E=30°,∠BDF=130°,求∠A的度数.AECFB D(2012,江岸区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练1.1:如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E . (1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.BC AD P练1.2:如图,已知∠CGE =120°,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.αBCGEAFD练1.3:如图,求:∠A +∠B +∠C +∠D +∠E +∠F = 度.A CD EF B PI专题2:三角形角平分线的基本模型【例2】如图,△ABC 中,∠A =50°,点P 是∠ABC 与∠ACB 平分线的交点.AC B PAC BDEP AC B FP图1 图2 图3(1)求∠P 的度数;(2)猜想∠P 与∠A 有怎样的大小关系?(3)若点P 是∠CBD 与∠BCE 平分线的交点,∠P 与∠A 又有怎样的大小关系? (4)若点P 是∠ABC 与∠ACF 平分线的交点,∠P 与∠A 又有怎样的大小关系? 【解析】【归纳总结】①题型特征: ②方法与技巧:练2.1:如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点G ,∠BDC =140°,∠BGC =110°,求∠A 的度数.D BA CGEF练2.2:(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB = ,∠XBC +∠XCB = .B X ZYAC图1(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.B X ZYAC图2练2.3:(1)如图1,求证:∠CDB =∠A +∠B +∠C .C ABD图1(2)如图2,∠ACD 的平分线与∠ABD 的平分线交于点E .试问∠A ,∠CEB 和∠CDB 有何数量关系?为什么?C ABD E图2(3)如图3,若∠ACE=13∠ACD,∠ABE=13∠ABD,猜想∠A,∠CEB和∠CDB之间的数量关系为.(写出结论,不必证明)E CD 图3【变式】已知△ABC中,∠BAC=100°.B AOBAO1O图1 图2 图3(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2,…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.(2014,光谷实验10月月考)专题3:三角形内、外角度的转换【例3】将△ABC沿EF折叠,使点C落在点C′处.(1)如图1,试问∠1,∠2与∠C之间有何关系?为什么?(2)若点C′在△ABC的外部,如图2所示,试问∠1,∠2与∠C之间又有何关系?为什么?21AC FBEC'21ACFBE C'图1 图2(2014,江汉区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练3.1:如图,△ABC 中,∠ABC =∠ACB ,D 为BC 边上一点,E 为直线AC 上一点,且∠ADE =∠AED ; (1)求证:∠BAD =2∠CDE ;BACDE(2)如图,若D 在BC 的反向延长线上,其他条件不变,则(1)中的结论是否仍然成立?证明你的结论.BACDE【例4】如图,BP 是∠ABC 的平分线,DP 是∠CDA 的平分线,BP 与DP 交于P ,右∠A =40°,∠C =76°,求∠P 的大小.ABDCP【解析】【归纳总结】①题型特征: ②方法与技巧:练3.2:如图,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .在图中,(1)若∠D =40°,∠B =36°,试求∠P 的度数;(2)—般性结论:若∠D 的度数为x ,∠B 的度数为y ,则∠P 的度数为 .ABDCMP N【例5】如图,△ABC 中,∠B >∠C ,AD 是BC 边上的高,AE 是∠BAC 的平分线.求证:∠DAE =12(∠B -∠C ).BCAD E【解析】【归纳总结】①题型特征:②方法与技巧:练3.3:如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=50°,求∠DAE的度数.(2)若∠C>∠B,试说明∠DAE=12(∠C-∠B).(3)如图(2)若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,(2)中的结论还正确吗?为什么?BACD E BACDA'E图1 图2专题4:角度的综合和实际应用【例6】上午8时,一条船从海岛A出发,以15海里每小时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,则海岛B与灯塔C相距海里.BCAN【解析】【归纳总结】①题型特征:②方法与技巧:练4.1:(1)如图,B处在A处的南偏西65°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB 的度数是( ).ACB北南A .80°B .75°C .85°D .70° (2)如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A ,B 两岛的视角∠ACB 是多少度?【原题40°,个人认为改为80°更适合.】D ABC E北北(2014,光谷实验10月月考)【例7】如图,△ABC 中,AD 是高,AE ,BF 是角平分线,BF 交AE ,AD 于点G ,H ,∠C >∠ABC ,下列结论:①∠AGB =90°+12∠C ; ②∠C -∠ABC =2∠EAD ; ③∠BFC +∠AEC =180°;④∠AGB +∠BHD -∠EAD =180°, 其中正确的有( ). BACE D GHFA .1个B .2个C .3个D .4个 【解析】【归纳总结】①题型特征: ②方法与技巧:练4.2:如图,在Rt △ABC 中,∠ACB =90°,∠CAB =20°,∠ACB 的平分线与外角∠ABD 的平分线交于点E ,连接AE ,则∠AEC 的度数为( ).C DA EA.10°B.30°C.35°D.45°(青山,13-14期中考试)专题5:角度转换基本模型与平面直角坐标系综合应用【例8】如图1,△AOB与△COD是两个可以完全重合的直角三角形,其中A,B,C,D四点均在坐标轴上.(1)如果B(0,一3),S△COD=9,请写出点A,C,D的坐标;(2)如图2,∠ADC的平分线DE所在直线与∠OAB的平分线交于F,求∠F的度数;(3)如图3,M是线段AD上任意一点(不同于点A,D),作MN⊥x轴交AF于点N,作∠ADE与∠ANM 的平分线交于点P,在(2)的条件下,能否求出∠P的度数?说出你的理由,若能求出,请写出解答过程;若不能,请说明理由.图1 图2 图3(2013,江岸区期末)【解析】(1)∵△COD与△AOB完全重合,∴OB=OD,OC=OA;∵B(0,一3),∴OB=3,则OD=3,∴D(3,0);∵S△COD=9=12·OD·OC,∴OC=6,∴C(0,6),A(6,0).(2)∵DE平分∠ADC,AF平分∠OAB,∴设∠CDE=∠EDA=x,∠DAF=∠BAF=y;∵x=y+∠F,而∠OAB=∠OCD=2y,∴2x=2y+90°,∴x=y+45°,∴∠F=45°.(3)∵DP平分∠EDA,PN平分∠MNA,∴设∠EDP=∠PDA=x,∠MNP=∠PNA=y,则∠P=90°-x-y;而∠F+180°-2x+180°-2y+90°=360°,∴2x+2y=90°+45°=135°,∴x+y=67.5°,∴∠P=90°-67.5°=22.5°.【归纳总结】①题型特征:②方法与技巧:练5.1:如图1,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;图1(2)如图2,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;图2(3)如图3,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).图3 (2013,江岸区期末)分级检测 A 级1.画△ABC 的BC 边上的高AD ,下列画法中正确的是( ).ACDA BC DD A BCABCDA B C D2.如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( ). A .35° B .70° C .110° D .140°3.多边形内角和是1080°,则这个多边形的边数为( ). A .6 B .7 C .8 D .94.如图,△ABC 中,∠B =45°,∠C =75°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的值为( ).BD ACEA .15°B .30°C .45°D .25°5.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边边长为奇数,则三角形的周长是 cm . 6.(1)在△ABC 中,∠C =60°,∠A =3∠B ,则∠A = ,∠B ;(2)已知一个等腰三角形两内角的度数比为1∶7,则这个等腰三角形的顶角的度数为 ; (3)在△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠A = ,∠B ,∠C .7.一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为 .8.如图,△ACD 的外角是∠ =∠ +∠ ,△ABD 的外角是∠ =∠ +∠ .AB CD9.如图,∠ABC =40°,∠ACB =60°,BO ,CO 平分∠ABC 和∠ACB ,DE 过O 点,且DE ∥BC ,则∠BOC = °.BACOD E10.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A BCD EF11.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A B EDF HCG IB 级1.(1)在图1中,猜想∠A +∠B +∠C +∠A 1+∠B 1+∠C 1= °; (2)试说明你猜想的理由.(3)如果把图1称为二环三角形,则它的内角和为∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图2称为二环四边形,则它的内角和为∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1;把图3称为二环五边形,则它的内角和为∠A +∠B +∠C +∠D +∠E +∠A 1+∠B 1+∠C 1+∠D 1+∠E 1,请你猜一猜,二环n 边形的内角和为 .(只写结果)BCA 1B 1C 1A AB CDA 1B 1C 1D 1A B DE A 1B 1C 1D 1E 1图1 图2 图32.如图1,△ABC 中,∠ABC 的平分线与∠ACB 的外角∠ACD 的平分线交于A 1. (1)分别计算出当∠A 为70°,80°时∠A 1的度数;(2)根据(1)中的计算结果写出∠A 与∠A 1之间的数量关系: (不需证明); (3)∠A 1BC 的平分线与∠A 1CD 的平分线交于A 2,∠A 2BC 与∠A 2CD 的平分线交于A 3,如此继续下去可得A 4,…,A n ,请写出∠A 6与∠A 之间的数量关系: (不需证明); (4)如图2,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的平分线交于Q ,求∠Q +∠A 1的度数.BC AD A 1B C A DA 1EQ图1 图2课后反馈1.一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是( ). A .115° B .120° C .125° D .130°2.如图,已知∠1=20°,∠2=25°,∠A =35°,则∠BDC 的度数为( ).21DAB A .50°B .80°C .70°D .60°3.下列语句中,正确的是( ). A .三角形的外角大于它的内角 B .三角形的一个外角等于它的两个内角 C .三角形的一个内角小于和它不相邻的外角 D .三角形的外角和为180°4.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= .215.如图,∠1+∠2+∠3+∠4=( ).40°3421BC EAD A .100°B .200°C .280°D .300°6.如图,AC ,BD 相交于点O ,BP ,CP 分别平分∠ABD ,∠ACD ,且交于点P . (1)若∠A =70°,∠D =60°,求∠P 的度数; (2)试探索∠P 与∠A ,∠D 间的数量关系; (3)若∠A ∶∠D ∶∠P =2∶4∶x ,求x 的值.AD COPE F B7.如图1,已知在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 为AE 上一点.且FD ⊥BC 于D . (1)试推导∠EFD 与∠B ,∠C 的大小关系;DBCA E F图1(2)如图2,当点F 在AE 的延长线上时,图1的其余条件都不变,你在(1)中推导的结论是否仍然成立?BCAD FE图2下次课必背1.三角形内角和度数:三角形三个内角的和等于180°.外角性质:三角形的外角等于与它不相邻的两个内角之和. 2.基本图形的结论.3.两内角角平分线夹角与顶角的关系、一内角一外角平分线的夹角与顶角的关两外角平分线夹角与顶角的关系.4.三角形中共一个顶点的角平分线与高线夹角、另两个内角的关系. 5.多边形内角和:n 边形内角和=(n —2)×180°; 外角和:多边形外角和=360°. 6.从一个顶点引出的对角线条数为n -3,所有对角线条数为(3)2n n .。
边、角、线及三角形
《第一讲:边、角、线》知识点一:角1互为余角(互余): 两个角相加等于90°就说这两个角互余。
2互为补角(互补):两个角相加等于180°就说这两个角互补。
推论1:直角三角形的两个锐角互余。
推论2:三角形的内角和为180°3 N 多边形的内角和求法: (n-2)x 180°经典例题1.(2012南通)已知∠α=32º,则∠α的补角为【 】A .58ºB .68ºC .148ºD .168º2. (2012嘉兴)已知△ABC 中,∠B 是∠A 的2倍, ∠C 比∠A 大20° ,则∠A 等于( ) A. 40° B. 60° C. 80° D. 90°3.(2012•丽水)如图,小明在操场上从A 点出发,先沿南偏东30°方向走到B 点,再沿南偏东60°方向走到C 点.这时,∠ABC 的度数是()A .120°B .135°C .150°D .160°对应练习1. (2012•荆门)已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )1题图 2题图3题图A . 30°B . 35°C . 40°D . 45°2.(2012•中考)如图,在△ABC 中,∠C =70º,沿图中虚线截去∠C ,则∠1+∠2=【 】 A .360º B .250º C .180º D .140º3.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( )A . 50°B . 60°C . 70°D . 80°小结:基本的三角形知识点,大家也要熟记!ACB1 2知识点二:线1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.(3)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 2、角平分线的性质定理:(1)角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA 于点C ,DF ⊥OB 于点D ,则CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; (2)角是一个轴对称图形,它的对称轴是角平分线所在的直线. (3)三角形三条角平分线相交于一点,并且这一点到三边的距离相等.经典例题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm图22.(2012嘉兴)在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为 .3.如图,在△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线 MN 分别交BC 、AB 于点M 、N. 求证:CM=2BM.m图1DABC图4CDOAB FE对应练习1、如图,在ΔABC 中,BC=5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC,则ΔPDE 的周长是___________ cm. 2.(2012云南)如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( )3题图A . 40°B . 45°C . 50°D . 55°3.(2012铜仁)如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9、4.如图所示,AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE=DF 。
第一讲三角形的边及线段
第⼀讲三⾓形的边及线段第⼀讲三⾓形的边及线段知识要点1、三⾓形的概念不在⼀条直线上的三条线段⾸尾顺次相接组成的图形叫做三⾓形。
组成三⾓形的线段叫做三⾓形的边,相邻两边所组成的⾓叫做三⾓形的内⾓,简称⾓,相邻两边的公共端点是三⾓形的顶点。
2、三⾓形的三边关系三⾓形的两边之和⼤于第三边,可⽤字母表⽰为a+b >c ,b+c >a ,a+c >b两边之差⼩于第三边。
3. 三⾓形的三条重要线段三⾓形的⾼定义:从三⾓形的⼀个顶点向它的对边所在的直线画垂线,顶点和垂⾜间的线段叫做三⾓形的⾼(简称三⾓形的⾼)1.画出①、②、③三个△ABC 各边的⾼,并说明是哪条边的⾼.三⾓形的中线定义:在三⾓形中,连接⼀个顶点和它对边中点的线段叫做三⾓形的中线三⾓形的⾓平分线定义:三⾓形的⼀个⾓的平分线与这个⾓的对边相交,这个⾓的顶点和交点之间的线段叫做三⾓形的⾓平分线。
4.三⾓形的稳定性三⾓形的三边长⼀旦确定,三⾓形的形状就唯⼀确定,这个性质叫做三⾓形的稳定性。
四边形则不具有稳定性。
经典例题例1.⼀个三⾓形的两边长分别为3cm 和7cm ,则此三⾓形的第三边的长可能是()A .3cmB .4cmC .7cmD .11cmA BC A B C B A例2.有下列长度的三条线段能否组成三⾓形?为什么?(1)3,5,8;(2)5,6,10;(3)5,6,7. (4)5,6,12例3.从长度分别为10cm、20cm、30cm、40cm的四根⽊条中,任取三根可组成三⾓形的个数是( ).(A)1个(B)2个(C)3个(D)4个例4.若三⾓形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<16例5.(1)⼀个等腰三⾓形的周长为18,若腰长的3倍⽐底边的2倍多6,求各边长.(2)已知等腰三⾓形的⼀边等于8cm,⼀边等于6cm,求它的周长.(3)⼀个等腰三⾓形的周长为30cm,⼀边长为6cm,求其它两边的长.(4)有两边相等的三⾓形的周长为12cm,⼀边与另⼀边的差是3cm,求三边的长.例6.如图,已知△ABC 的周长为16厘⽶,AD 是BC 边上的中线,AD=45AB ,AD=4厘⽶,△ABD 的周长是12厘⽶,求△ABC 各边的长。
等腰三角形
第一讲 等腰三角形知识点:一、认识三角形 1、三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做 三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线 3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
需要稳定的东西 一般都制成三角形的形状。
4、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形等边三角形 三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等 的直角三角形。
5、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
6、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
7、三角形的面积:三角形的面积=21×底×高 二、等腰三角形相关知识点 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
认识三角形-1
第一讲认识三角形1.如图,以BC为边的三角形的个数是()A.2 B.3 C.4 D.52.(中考·大庆)在△ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为() A.120°B.80°C.60°D.40°3.(中考·临沂)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是() A.42°B.64°C.74°D.106°4.(中考·宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°5.(中考·柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个6.(中考·长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是() A.锐角三角形 B.直角三角形C.钝角三角形D.等腰直角三角形7.在直角三角形中,一个锐角的度数为30°,则另一个锐角的度数是() A.70°B.60°C.45°D.30°8.(中考·白银)将一把直尺与一块三角尺如图放置,若∠1=45°,则∠2为() A.115°B.120°C.135°D.145°9.(中考·宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.10.如图,AB∥CD,MN分别交AB,CD于点E,F,∠BEF与∠DFE的平分线交于点G.(1)求∠GEF+∠GFE的度数;(2)△EFG是什么三角形?请说明理由.11.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.12.(中考·包头)若等腰三角形的周长为10 cm ,其中一边长为2 cm ,则该等腰三角形的底边长为( )A .2 cmB .4 cmC .6 cmD .8 cm13.如图,在△ABC 中,BC =BA ,点D 在AB 上,且AC =CD =DB ,则图中的等腰三角形有( )A .1个B .2个C .3个D .0个14.△ABC 的三边长a ,b ,c 满足关系式(a -b )(b -c )·(c -a )=0,则这个三角形一定是( )A .等腰三角形B .等边三角形C .等腰直角三角形D .无法确定15.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A .①②B .①③④C .③④D .①②④16.(中考·常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .11 17.(中考·福建)下列各组数中,能作为一个三角形的三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,518.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或1719.已知三角形的两边长分别是2 cm ,3 cm ,则该三角形的周长l 的取值范围是( )A .1 cm<l <5 cmB .2 cm<l <6 cmC .5 cm<l <9 cmD .6 cm<l <10 cm20.(中考·白银)已知a ,b ,c 是△ABC 的三条边的长,化简|a +b -c |-|c -a -b |的结果为( )A .2a +2b -2cB .2a +2bC .2cD .021.已知a ,b ,c 为△ABC 的三边长,b ,c 满足(b -2)2+|c -3|=0,且a 为方程|x -4|=2的解.求△ABC 的周长,并判断△ABC 的形状.22.已知:如图,四边形ABCD 是任意四边形,AC 与BD 交于点O .试说明:AC +BD >12(AB +BC +CD +DA ). 解:在△OAB 中,有OA +OB >AB ;在△OAD 中,有__________________;在△ODC 中,有__________________;在△________中,有__________________,所以OA +OB +OA +OD +OD +OC +OB +OC >AB +BC +CD +DA ,即__________________________________.所以AC +BD >12(AB +BC +CD +DA ).第一讲认识三角形讲义一、三角形及有关概念1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.注意:1.不在同一条直线上.2.三条线段.3.首尾顺次相接.2. 三角形的表示:三角形用符号“△”表示,如下图的三角形,记作“△ABC”,读作“三角形ABC ”.注意:表示三角形时,字母没有先后顺序.即:可以记作△ABC,也可记作△ACB.3.三角形的顶点:如图,△ABC的三个顶点分别是:A,B,C.4.三角形的边、内角:如图,△ABC的三条边分别是:AB,BC,CA.它的三个内角(简称三角形的角)分别是:∠A,∠B,∠C.例1 下图都是由三条线段组成的图形,其中是三角形的是()总结:(1)判断一个图形是否是三角形的条件:①三条线段,②不在同一直线上,③首尾顺次相接.三者必须同时满足,否则不是三角形.(2)易错警示:图形是三角形与图形内含有三角形是两个不同的概念.图形是三角形表示整个图形是一个三角形,图形内含有三角形表示图形内局部有三角形.如选项A,B,D中的图形内都含有三角形,但整个图形不是三角形.例2 如图,以CD为公共边的三角形是_______________;∠EFB是________的内角;在△BCE中,BE所对的角是________,∠CBE所对的边是__________;以∠A为公共角的三角形________________________________.例3 如图①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为________.二、三角形的内角和方法:度量、剪拼图、折叠三角形三个内角的和等于180°.例4 〈邵阳〉如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,则∠ADE的大小是()A.45°B.54°C.40°D.50°例5【中考·长春】如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC. 若∠A=62°,∠AED=54°,则∠B的大小为()A .54°B .62°C .64°D .74°三、三角形按角的大小分类任何一个三角形中,至少有两个锐角,最多有一个钝角或直角,因此三角形按角分类如下:例6 〈滨州〉在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,试判断△ABC 的形状,并说明理由.判断一个三角形的形状的方法:(1)看三角形中最大角的大小:最大角是锐角,三角形就是锐角三角形;最大角是直角,三角形就是直角三角形;最大角是钝角,三角形就是钝角三角形.(2)通过角的比例关系判断:两较小角的比例和小于最大角的比例,则此三角形为钝角三角形;两较小角的比例和等于最大角的比例(两锐角互余),则此三角形为直角三角形;两较小角的比例和大于最大角的比例,则此三角形为锐角三角形.四、直角三角形两锐角互余直角三角形:(1)定义:有一个内角是直角的三角形叫直角三角形.表示法:直角三角形用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC .(2)性质:直角三角形的两个锐角互余. 如图,在Rt △ABC 中,∠A +∠B =90°.(3)判定:有两个角互余的三角形是直角三角形.注意:这两个角要在同一个三角形中.例7 如图,在△ABC 中,∠A =30°,∠B =70°,CE 平分∠ACB ,CD ⊥AB 于点D ,DF ⊥CE 于点F .(1)试说明∠BCD =∠ECD ;(2)请找出图中所有与∠B 相等的角.例8 【中考·襄阳】如图,将一块含有30°角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( )A .60°B .50°C .40°D .30°易错题:根据下列条件,判断△ABC 的形状.(1)∠A =40°,∠B =80°;(2)∠A ∶∠B ∶∠C =2∶3∶7.五、等腰三角形()()()⎧⎪⎨⎪⎩锐角三角形三个内角都是锐角直角三角形有一个内角是直角钝角三角形有一个内角是钝角三角形1.有两条边相等的三角形叫做等腰三角形.2.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.例9 1.等腰三角形一腰为3cm,底为4cm,则它的周长是__________;2.等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是______________;3.等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是__________.六、三角形按边分类1.三角形按边分类1:2.三角形按边分类2:例10 1下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边都不相等的三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个B.2个C.3个D.4个七、三角形的三边关系三角形任意两边之和大于第三边.三角形任意两边之差小于第三边.例11 〈温州〉下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,11小结:判断三条线段能否组成三角形,只需看较短两边的和是否大于第三边即可.因为只要较短两边的和大于第三边,则任意两边的和都大于第三边,所以用此方法可以很快地判断出三条线段能否构成三角形.例12 一个三角形两边的长分别为5和3,第三边的长是整数,且周长是偶数,则第三边的长是() A.2或4 B.4或6 C.4 D.2或6易错:【中考·贺州】一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20。
(已经整理)七升八暑期数学辅导(全集)
第一讲 与三角形有关的线段 【2 】常识点1.三角形的概念☑ 不在一条直线上的三条线段首尾按序相接构成的图形叫做三角形.构成三角形的线段叫做三角形的边,相邻双方所构成的角叫做三角形的内角,简称角,相邻双方的公共端点是三角形的极点. ☑ 三角形的表示办法三角形用符号“△”表示,极点是A,B,C 的三角形,记作“△ABC ” 三角形ABC 用符号表示为△ABC.三角形ABC 的极点C 所对的边AB 可用c 表示,极点B 所对的边AC 可用b 表示,极点A 所对的边BC 可用a表示.常识点2.三角形的三边关系【探讨】随意率性画一个△ABC,假设有一只小虫要从B 点动身,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?☑ 三角形的双方之和大于第三边,可用字母表示为a+b >c,b+c >a,a+c >b拓展:a+b >c,根据不等式的性质得c-b <a,即双方之差小于第三边. 即a-b <c <a+b (三角形的随意率性一边小于另二边和,大于另二边差)【演习1】一个三角形的双方长分离为3cm 和7cm,则此三角形的第三边的长可能是( ) A .3cmB .4cmC .7cmD .11cm【演习2】有下列长度的三条线段可否构成三角形?为什么? (1)3,5,8; (2)5,6,10; (3)5,6,7. (4)5,6,12【辨析】有三条线段a.b.c,a+b >c,扎西以为:这三条线段能构成三角形.你赞成扎西的意见吗?为什么? 【例1】用一条长为18㎝的细绳围成一个等腰三角形. (1)假如腰长是底边的2倍,那么各边的长是若干? (2)能围成有一边长为4㎝的等腰三角形吗?为什么? 【演习】1.三角形三边为3,5,3-4a,则a 的规模是.2.三角形双方长分离为25cm 和10cm,第三条边与个中一边的长相等,则第三边长为.3.等腰三角形的周长为14,个中一边长为3,则腰长为4.一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长.5.等腰三角形双方为5cm 和12cm,则周长为.6.已知:等腰三角形的底边长为6cm,那么其腰长的规模是________.abc(1)CBA7.已知:一个三角形双方分离为4和7,则第三边上的中线的规模是_________. 8.下列前提中能构成三角形的是( )A.5cm, 7cm, 13cmB.3cm, 5cm, 9cmC.6cm, 9cm, 14cmD.5cm, 6cm, 11cm 9.等腰三角形的周长为16,且边长为整数,则腰与底边分离为( ) A.5,6 B.6,4 C.7,2 D.以上三种情形都有可能 11.一个三角形双方分离为3和7,第三边为偶数,第三边长为( ) A.4,6 B.4,6,8 C.6,8 D.6,8,10 11.△ABC 中,a=6x,b=8x,c=28,则x 的取值规模是( ) A.2<x <14 B.x >2 C.x <14 D.7<x <14 12.指出下列每组线段可否构成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=6 13.已知等腰三角形的双方长分离为11cm 和5cm,求它的周长.14.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两部分,个中一部分比另一部分长2cm,求这个三角形的腰长.15.已知等腰三角形一边长为24cm,腰长是底边的2倍.求这个三角形的周长.16.如图,求证:AB+BC+CD+DA>AC+BD常识点3 三角形的三条主要线段三角形的高(1)界说:从三角形的一个极点向它的对边地点的直线画垂线,极点和垂足间的线段叫做三角形的高(简称三角形的高) (2)高的论述办法 ①AD 是△ABC 的高 ②AD ⊥BC,垂足为D③点D 在BC 上,且∠BDA=∠CDA=90度 【演习】画出①.②.③三个△ABC 各边的高,并解释是哪条边的高.①②③AB 边上的高是线段____ AB 边上的高是线段____ AB 边上的高是线段____ BC 边上的高是_________ BC边上的高是_________ BC 边上的高是_________ AB C A B CB ACABCDAC 边上的高是_________ AC 边上的高是_________ AC 边上的高是_________ [辨析] 高与垂线有差别吗?_____________________________________________[探讨] 画出图1中三角形ABC 三条边上的高,看看有什么发明?假如△ABC 是直角三角形.钝角三角形,上面的结论还成立吗?试着画一画【结论】________________________________________ ☑ 三角形的中线(1)界说:在三角形中,衔接一个极点和它对边中点的线段叫做三角形的中线. 三角形三条中线的交点叫做三角形的重心.【探讨2】如图,AD 为三角形ABC 的中线,△ABD 和△ACD 的面积比拟有何干系?【例2】如图,已知△ABC 的周长为16厘米,AD 是BC 边上的中线,AD=45AB,AD=4厘米,△ABD 的周长是12厘米,求△ABC 各边的长. ☑ 三角形的角等分线(1)界说:三角形的一个角的等分线与这个角的对边订交,这个角的极点和交点之间的线段叫做三角形的角等分线.[辨析]三角形的角等分线与角的等分线是一样的吗? 画出△ABC 各角的角等分线,并解释是哪角的角等分线.[探讨]不雅察画出的三条角平线,你有什么发明?_______________________________ [自我检测]如图,AD.AE.CF 分离是△ABC 的中线.角等分线和高,则: (1)BD=______=12________;(2)BC=2_______=2_______;(3)∠BAE=_______=12_______;(4)∠BAC=2_______=2_______;(5)_______=________=90常识点4 三角形的稳固性三角形的三边长一旦肯定,三角形的外形就独一肯定,这共性质叫做三角形的稳固性.四边形则不具有稳固性. 钢架桥.屋顶钢架和起重机都是应用三角形的稳固性,伸缩门则是应用四边形的不稳固性.你还能举出一些例子吗?A B C BA C FEDCBA【试一试】1.如图,AD 是△ABC 的中线,已知△ABD 比△ACD 的周长大6cm,则AB 与AC 的差为_______2.如图,D 为△ABC 中AC 边上一点,AD=1,DC=2,AB=4,E 是AB 上一点,且△ABC 的面积等于△DEC 面积的2倍,则BE 的长为( )3.若点P 是△ABC 内一点,试解释AB+AC >PB+PC【课后功课】1.AD 是△ABC 的高,可表示为,AE 是△ABC 的角等分线,可表示为,BF 是△ABC的中线,可表示为.2.如图2,AD 是△ABC 的角等分线,则∠=∠=12∠;E 在AC 上,且AE=CE,则BE 是△ABC 的;CF 是△ABC 的高,则∠=∠=900,CFAB.3.如图3,AD 是△ABC 的中线,AE 是△ABC 的角等分线,若BD=2cm,则BC=;若∠BAC=600,则∠CAE=. 4.如图4,以AD 为高的三角形共有.5.三角形的一条高是一条……………………………( )A.直线B.垂线C.垂线段D.射线6.下列说法中,精确的是………………………………( ) A.三角形的角等分线是射线B.三角形的高总在三角形的内部C.三角形的高.中线.角等分线必定是三条不同的线段D.三角形的中线在三角形的内部 7.下列图形具有稳固性的是………………………………( )A.正方形B.梯形C.三角形D.平行四边形 8.如图8,AD ⊥BC 于D,CE ⊥AB 于E,AD.CE 交于点O,OF ⊥CE,则下列说法中精确的是………………………………………………………( ) A.OE 为△ABD 中AB 边上的高 B.OD 为△BCE 中BC 边上的高 C.AE 为△AOC 中OC 边上的高 D.OF 为△AOC 中AC 边上的高9. 如图,BD 是△ABC 的角等分线,DE ∥BC,交AB 于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.CA B DEF图2 AB D EC 图3 A B ED C 图410.已知BD 是△ABC 的中线,AC 长为5cm,△ABD 与△BDC 的周长差为3cm.AB 长为3cm,求BC 的长. 11.如图11,在△ABC 中,∠ACB=900,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm,求(1) △ABC 的面积;(2)CD 的长.12.如图12,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试解释,AD 是△ABC 的角等分线.第二讲 与三角形有关的角 常识点1.三角形的内角和定理:三角形的内角和等于1800.【导入】我们在小学就知道三角形内角和等于1800,这个结论是经由过程试验得到的,这个命题是不是真命题还须要证实,如何证实呢?回想我们小学做过的试验,你是如何操作的?把一个三角形的两个角剪下拼在第三个角的极点处,用量角度量出∠BCD 的度数,可得到∠A+∠B+∠ACB=1800.想一想,还可以如何拼?①剪下∠A ,按图(2)拼在一路,可得到∠A+∠B+∠ACB=1800.图2②把B ∠和C ∠剪下按图(3)拼在一路,可得到∠A+∠B+∠ACB=1800.假如把上面移动的角在图长进行转移,由图1你能想到证实三角形内角和等于1800的办法吗? 证实:已知△ABC,求证:∠A+∠B+∠C=1800..【例1】如图,C 岛在A 岛的北偏东30°偏向,B 岛在A 岛的北偏东100°偏向,C 岛在B岛的北偏西55°偏向,从C 岛看A.B 两岛的视角∠ACB 是若干度?【评论辩论】直角三角形的两锐角之和是若干度?A AA A图11A EB DC图12结论: 直角三角形的两个锐角互余.直角三角形可以用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC. 由三角形内角和定理可得:有两个角互余的三角形是直角三角形.常识点2.三角形的外角界说:三角形的一边与另一边的延长线构成的角,叫做三角形的外角. [自我探讨] 画出图中三角形ABC 的外角1.断定图中∠1是不是△ABC 的外角:_______________2.如图,(1)∠1.∠2都是△ABC 的外角吗?________________ (2)△ABC 共有若干个外角?___________________请在图中标出△ABC 的其它外角.3.探讨题:如图,这是我们证实三角形内角和定理时画的帮助线,你能就此图解释∠ACD 与∠A.∠B 的关系吗?∵C E ∥AB, ∴∠A=_____,_____=∠2 又∠ACD=_______+________ ∴∠ACD=_______+________结论1___三角形的一个外角等于与它不相邻的两个内角的和;结论2__三角形的一个外角大于任何一个与它不相邻的内角(外角两性质)【小结】三角形每个极点处有两个外角,便在盘算三角形外角和时,每个极点处只算一个外角,外角和就是三个外角的和.外角的感化:1.已知外角和与它不相邻的两个内角中的一个,求另一个2.可证一个角等于另两个角的和3.证实两个角不相等的关系 [课后演习]1.填空:求出下列各图中∠1的度数.(1)如图,∠1=______;(2)如图,∠1=______;(3)如图,∠1=______;(1)1B AC D (3)1AB C D(4)AB C D 1(5)E AB C D 1(6)E AB CD12ABC1(2)1A B C D A(1)三角形的一个外角等于两个内角的和. ( )(2)三角形的一个外角减去它的一个不相邻的内角,等于它的另一个不相邻的内角. ( ) (3)三角形的一个外角大于与它不相邻的一个内角. ( ) 2.已知:如图,∠1=30°,∠2=50°,∠3=45°, 则(1)∠4=______°;(2)∠5=______°.3.已知:如图∠1=40°,∠2=∠3,则 (1)∠4=______°;(2)∠2=______°.4.如图,AB ∥CD,∠B=55°,∠C=40°,则 (1)∠D=______°;(2)∠1=______°.5. 如图,∠BAE,∠CBF,∠ACD 是△ABC 的三个外角,它们的和是若干? 解:因为∠BAE=∠__+∠____, ∠CBF=∠__+∠___,∠ACD=__________, 所以∠BAE+∠CBF+∠ACD=(∠__+∠___)+(________)+(___________) =2(∠1+_________)=2×180°=360°. 6.已知:如图,在△ABC 中,AD 是BC 边上的高, ∠BAC=80°,∠C=40°,则∠BAD=________°. 7.已知:如图,BD 是△ABC 的角等分线, ∠A=100°,∠C=30°,则∠ADB=________°. 8.*如图,AD.BE 分离是△ABC 的高和角等分线,∠BAC=100°,∠C=30°,则∠1=________°. 9.如图所示,D,E 分离AC,AB 边上的点,DB,EC 相 交于点F,则∠A+∠B+∠C+∠EFB=_________10.△ABC 中,∠B=∠A+100,∠C=∠B+200,求△ABC 各内角的度数11.如图所示,已知∠1=∠2,∠BAC=70度,求∠DEF 的度数.12.如图所示,在△ABC 中,∠A=70°,BO,CO 分离等分∠ABC 和∠ACB,求∠BOC 的度数.第2题图54321第4题图DCBA1第3题图4321123DE FB AC第5题图DABCABDC1E ABDC第6题第7题第9题第8题OCBA13.如图所示,在△AB C 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321D CB A第三讲 多边形及其内角和一、 常识点总结11180223601332n n n n n ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩⎧⎨⎩⎧⎪︒-⎪︒⎨⎪⎪-⎩由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
第一讲 三角形及相关概念
第一讲三角形及相关概念一知识链接1.三角形定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形是最简单的多边形,也是最简单的封闭图形。
有两边相等的三角形叫等腰三角形。
三角形的简单分类:(1)按角分类:锐角三角形、直角三角形、钝角三角形(2)按边分类:不等边三角形、等腰三角形(只有两边相等的三角形、等边三角形)2.三角形的三边关系:三角形两边的和大于第三边.三角形中,等角对等边,等边对等角,大角对大边,大边对大角;3.判断三条已知线段a、b、c是否能组成三角形,其判断方法:如果a是最大边,且有b+c>a,则此三边能组成三角形.4.三角形中的重要线段:(1)三角形的高:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线(简称三角形的高).(2)三角形的中线:连接三角形的顶点和它所对边的中点,所得线段叫做三角形的中线.三角形的中线平分相应的边且平分三角形的面积。
(3)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.5.三角形的角:相邻两边组成的角.叫三角形的内角,简称三角形的角.三角形内角和定理:三角形的内角和等于180°6.三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.(1)三角形的外角和等于360°(2)三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.7.三角形的稳定性:三角形的形状不会改变,而四边形的形状会改变,这就是说,三角形具有稳定性,而四边形没有稳定性.二典例解析例1.(1)锐角三角形ABC中,∠C=2∠B,则∠B的范围是()A. 1020︒<<︒∠B D.∠B C. 3045︒<<︒︒<<︒∠B B. 2030∠B4560︒<<︒(2)下列命题正确的是( )A、长为5、12、17的三条线段可以构成三角形.B、已知等腰三角形的一边等于5cm,另一边等于6cm,则此三角形的周长为16cm.C、以2、3、x为三角形三边,则x的取值范围为1<x<5.D 、已知线段a 、b 、c 且b -c <a <b +c(b >c),则以a 、b 、c 为边可以组成三角形.(3)若三角形三个外角的比是2:3:4,则它的三个内角之比是________(4)如图,已知∠B =60°, ∠C =20°, ∠1=3∠A .∠A= 度.(5)如图,在ABC ∆中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S ABC ∆=4cm 2,则S 阴影的值为例2、已知P为ABC ∆内任意一点,求证:PB +PC <AB +AC .例3、已知:如图,AD 是∆ABC 的BC 边上高,AE 平分∠BAC 。
八年级(上)培优讲义:第1讲-三角形的初步知识(1)
第1讲三角形的初步知识1(认识三角形、定义与命题、证明)一、知识建构1. 三角形按角分类:(1)锐角三角形:三角形的,这样的三角形称之为锐角三角形(2)直角三角形:三角形有,这样的三角形称之为直角三角形(3)钝角三角形:三角形有,这样的三角形称之为钝角三角形2. 三角形的角平分线:在三角形中,,这个角的顶点与交点之间的线段叫做三角形的角平分线。
3.三角形的中线:在三角形中,,叫做这个三角形的中线。
(1)三角形的中线的形状也是一条;(2)三角形的三条角中线.4.三角形高的定义:从三角形的一个顶点线,的线段叫做三角形的高。
5.三角形三边之间的关系为:6.能清楚地规定某一名称或术语的句子叫做该名称或术语的______.7.对某一件事情作出_______判断的句子叫做命题.•每个命题都是由______•和______两部分组成的.8.思考下列命题的条件和结论分别是什么?并判断那些命题正确? 那些命题不正确?(1)相等的角是对顶角。
(2)直角三角形两锐角互余。
(3)同位角相等。
(4)一个角的补角一定大于这个角的余角。
9. 阅读教材内容后请回答:(1)怎样判断一个命题是真命题还是假命题?(1)真命题、公理、定理三者的区别与联系各是什么?10.判断下列命题是真命题还是假命题?如果是假命题,请说明理由;如果是真命题,请用推理的方法来说明.(1)如果ab=0,那么a=b=0;(2)如图,若AC∥DE,∠1=∠2,则AB∥CD.二、经典例题例1.对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).例2.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°例3. 如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1= , (2)θn= .例4.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.图1图2DC EA B例5. 一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <3例6. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .例7. 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .例8.如图,已知AB ∥CD ,直线EF 分别截AB 、CD 于 点M 、N ,MG 、NH 分别是∠EMB 与∠END 的平分线.求证:MG ∥NH . 请根据分析思路,写出证明过程.三、基础演练1.在△ABC 中,若∠A +∠B =88°,则∠C =_______,这个三角形是______ 三角形.∠EMG=12∠∠ENH=12∠END可证∠EMG=∠MNH要证MG ∥NH 只需证:∠EMB=∠END已知AB ∥CDABCDE FHMN2.直角三角形的一个锐角为42°,则另一个锐角为_________.3.在△ABC 中,若∠A =35°,∠B =68°,则与∠C 相邻的外角等于_______ °.4.若5条线段长分别为1cm ,2cm ,3cm , 4cm ,5cm ,则以其中3条线段为边长可以构成三角形的个数是___________ .5.一木工师傅有两根70,100长的木条,他要选择第三根木条,将它们钉成三角形木架,则第三根木条取值范围_____________ ,木架周长的取值范围_____________ . 6. 如图所示,下面的推理中正确的是 ( ) A .∵∠1=∠2,∴AB ∥CDB .∵∠ABC +∠BCD =180°,∴AD ∥BC C .∵AD ∥BC ,∴∠3=∠4D .∵∠ABC +∠DAB =180°,∴AD ∥BC 7.命题“若a b >,则1ab>”是真命题还是假命题?请说明理由.8.若等腰三角形腰长为6,则底边x 的取值范围是 ( ) A . 6<x <12 B . 0<x <6 C . 0<x <12 D . 无法确定9. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形 10.如图所示,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,过点D 作DE ∥BC •交AB 于点E ,过点D 作DF ⊥AB 于点F .求证:BC =DE +EF .四、直击中考1. (2013广西)一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长是( )A .6cmB .12cmC .18cmD .36cm2.(2013衡阳)如图,∠1=100°,∠C =70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3241D CBA B CE DF A3.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°4.(2013黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A =∠C ﹣∠B ,则∠B = 度.5.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.6.(2013雅安)若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为 .7.(2013东城).如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=,则1A ∠= ;n A ∠= 8.(2014杭州)下列命题中,正确的是( )A .梯形的对角线相等B . 菱形的对角线不相等C . 矩形的对角线不能互相垂直D . 平行四边想的对角线可以互相垂直五、能力拓展1.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠DOC ,若∠MON =α,∠BOC =β,则∠AOD 可表示为( )A . 2α-βB . α-βC . α+βD . 2α2.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.1003.已知等腰三角形的周长为14cm,底边与腰的比为3:2,求各边长.4. 已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|的结果是多少?5.如图所示,已知等腰直角三角形ABC中,∠ACB=90°,直线L经过点C,•AD•⊥L,BE⊥L,垂足分别为D,E.(1)证明:△ACD≌△CBE;(2)求证:DE=AD+BE;(3)当直线L经过△ABC内部时,其他条件不变,(2)中的结论还成立吗?如果成立,请给出证明;如果不成立,猜想这时DE,AD,BE有什么关系?证明你的猜想.六、挑战竞赛1. 在△ABC中,∠A= 50°, 高BE,CF所在的直线相交于点O,求∠BOC.FEC AB2.△ABC 中,已知∠ABC = 74°, ∠A = 56°, BE 是AC 边上的高,CF 是△ ABC 的角平分线,求∠ACF 和∠BFC .4.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .5.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S .6.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.OA BCDEA EBCD图1 图2。
第一讲三角形的基本概念
第一讲三角形的基本概念三角形是几何学中最基本也是最重要的图形之一。
它由三条线段组成,每个线段连接两个不同的顶点。
在这篇文章中,我们将学习三角形的基本概念,包括三角形的定义、分类、性质以及一些相关定理。
一、三角形的定义三角形是由三个非共线点和它们之间的线段所组成的图形。
这些线段被称为三角形的边,而由这些边所围成的区域被称为三角形的内部。
在三角形中,我们通常用大写字母A、B、C来表示三个顶点,而用小写字母a、b、c来表示对应的边长。
例如,我们可以将三角形ABC表示为∆ABC,而边长可以表示为a=BC,b=AC,c=AB。
二、三角形的分类根据三角形的边长和角度,我们可以将三角形分为不同的类型。
以下是一些常见的三角形分类:1. 根据边长分类:- 等边三角形:三条边长相等的三角形,记作∆ABC,其中a = b = c。
- 等腰三角形:两条边长相等的三角形,记作∆ABC,其中a = b或 b = c 或 c = a。
- 普通三角形:三条边长都不相等的三角形,记作∆ABC,其中a≠ b ≠ c。
2. 根据角度分类:- 直角三角形:其中一个角为直角(90度),记作∆ABC,其中∠A = 90度,或∠B = 90度,或∠C = 90度。
- 钝角三角形:其中一个角大于90度的三角形,记作∆ABC,其中∠A > 90度,或∠B > 90度,或∠C > 90度。
- 锐角三角形:三个角都小于90度的三角形,记作∆ABC,其中∠A < 90度,且∠B < 90度,且∠C < 90度。
三、三角形的性质1. 角度性质- 三角形的三个内角的和为180度:∠A + ∠B + ∠C = 180度。
- 直角三角形的两个锐角的和为90度。
- 锐角三角形的三个内角都是锐角。
- 钝角三角形至少有一个角是钝角。
2. 边长性质- 任意两边之和大于第三边:a + b > c,b + c > a,c + a > b。
第一讲认识三角形
第一讲认识三角形1.1认识三角形【学习目标】1. 了解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并能够证明三角形内角和定理;3. 学会三角形的分类;4. 掌握并会应用三角形三边之间的关系;5. 理解三角形的高、中线、角平分线的概念,掌握它们的画法;并能正确应用概念解题.【基础知识】一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.语言 对边所在的直线作垂线,顶点和垂足之间的线段. 点和它对边中点的线段.与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言 过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD . 作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD 是△ABC 的高.2.AD 是△ABC 中BC 边上的高.3.AD ⊥BC 于点D .4.∠ADC =90°,∠ADB =90°.(或∠ADC =∠ADB =90°) 1.AD 是△ABC 的中线.2.AD 是△ABC 中BC 边上的中线.3.BD =DC =BC 4.点D 是BC 边的中点.1.AD 是△ABC 的角平分线.2.AD 平分∠BAC ,交BC于点D . 3.∠1=∠2=∠BAC . 推理语言 因为AD 是△ABC 的高,所以AD ⊥BC .(或∠ADB =∠ADC =90°) 因为AD 是△ABC 的中线,所以BD =DC =BC . 因为AD 平分∠BAC ,所以∠1=∠2=∠BAC . 用途举例 1.线段垂直. 2.角度相等. 1.线段相等. 2.面积相等.角度相等. 注意事项 1.与边的垂线不同. 2.不一定在三角形内. —与角的平分线不同. 重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.【考点剖析】例1.下列每组数表示3根小木棒的长度,3根小木棒能摆成三角形的一组是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .2cm ,3cm ,5cmD .2cm ,3cm ,6cm例2.三角形的中线和角平分线都是( )A .直线B .射线C .线段D .以上都有可能例3.画ABC 中BC 边上的高,下列画法中正确的是( ).12121212A .B .C .D .例4.三角形三条高的交点一定在( )A .三角形内部B .三角形外部C .三角形内部或外部D .以上说法都不完整例5.ABC 中,它的三条角平分线的交点为O ,若∠B =80°,则∠AOC 的度数为( )A .100°B .130°C .110°D .150°例6.在下列条件:∠A B C ∠+∠=∠;∠2A B C ∠=∠=∠;∠12A B C ∠=∠=∠;∠::1:2:3A B C ∠∠∠=中,能确定ABC 为直角三角形的条件有( ) A .2个 B .3个 C .4个 D .0个例7.如图中包含的直角三角形的个数是( )A .3个B .4个C .5个D .6个例8.如图,在∠ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( )A .BF =CFB .∠C +∠CAD =90° C .∠BAF =∠CAFD .ABCABF S2S=【过关检测】一、单选题1.不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.学校的栅栏门2.在∠ABC中,∠B=40°,∠C=80°,则∠A的度数为()A.60°B.50°C.40°D.30°3.在直角三角形ABC中,∠A:∠B:∠C=2:m:4,则m的值是()A.3B.4C.2或6D.2或44.如果一个三角形的三个内角的度数之比为1:2:3,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或直角三角形5.如图,若CD是∠ABC的中线,AB=10,则AD=()A.5B.6C.8D.46.下列对于三角形的高、中线、角平分线的说法中正确的是()A.都是线段B.都是直线C.都是射线D.以上都不对7.如图,已知在∠ABC中,∠C=90°,BE平分∠ABC,且BE∠AD,∠BAD=20°,则∠AEB的度数为()A.100°B.110°C.120°D.130°8.如图,在Rt∠ABF中,∠F=90°,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CD∠AC交AB于点D,过点C作CE∠AB交AB于点E,则下列说法中,错误的是()A .∠ABC 中,AB 边上的高是CE B .∠ABC 中,BC 边上的高是AF C .∠ACD 中,AC 边上的高是CED .∠ACD 中,CD 边上的高是AC9.已知ABC ∆的三边长分别为a b c 、、,且()()()M a b c a b c a b c =+++---那么( ) A .0M >B .0M ≥C .0M =D .0M <10.如图所示,在ABC 中,D 为AC 边的中点,E 为线段BD 中点,F 为线段CE 中点,若ABD △的面积为4,则BFC △的面积为( )A .2B .1C .1.5D .0.511.已知AD 是∠ABC 的边BC 上的中线,AB=12,AC=8,则边BC 及中线AD 的取值范围是( ) A .420210BC AD <<,<< B .420420BC AD <<,<< C .210210BC AD <<,<< D .210420BC AD <<,<<12.如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒二、填空题13.在ABC ∆中,若A B C ∠+∠=∠,则此三角形为__;若A B C ∠+∠<∠,则此三角形为___;若A B C ∠+∠>∠,则此三角形为___.(填“锐角三角形”、“钝角三角形”或“直角三角形”,可多选)14.如图,以AD 为边的三角形是__,以C ∠为一个内角的三角形是___,AED ∆的三个内角是___.15.三角形三个内角度数之比为1:2:3,其中最大的角度数为________. 16.(1)线段AD 是ABC ∆的角平分线,那么BAD ∠=∠__12=∠__. (2)线段AE 是ABC ∆的中线,那么BE =__=__BC .17.如图,∠ABC 中,AD 是BC 边上的中线,BE 是∠ABD 中AD 边上的中线,若∠ABC 的面积是24,则∠ABE 的面积________.18.已知如图所示 AD 、AE 分别是∠ABC 的中线、高,且AB=5cm ,AC=3cm ,,则∠ABD 与∠ACD 的周长之差为_________,∠ABD 与∠ACD 的面积关系为_________.19.如图,将三角尺ABC 和三角尺DFF (其中906045A E C F ∠∠︒∠︒∠︒==,=,=)摆放在一起,使得点A DB E 、、、在同一条直线上,BC 交DF 于点M ,那么CMF ∠度数等于_____.20.如图,在ABC ∆中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且24cm ABC S ∆=,则BEF S ∆=________2cm三、解答题21.如图所示,(1)图中有几个三角形?∆的边和角.(2)说出CDE∠是哪些三角形的角?(3)AD是哪些三角形的边?C22.画出如图所示的三角形的三条高.23.如图,已知:在Rt∠ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA的度数24.已知:如图,在∠ABC 中,∠A∠∠ABC∠∠ACB=3∠4∠5,BD ,CE 分别是边AC ,AB 上的高,BD ,CE 相交于H ,求∠BHC 的度数.25.如图,在ABC 中,AB AC >,AD 为BC 边上的中线.(1)ABD S____________ACD S(填“>”“<”或“=”); (2)若ABD △的周长比ACD △的周长多4,且14AB AC +=,求AB ,AC 的长;(3)ABC 的周长为27,9AB =,BC 边上的中线6AD =,ACD △的周长为19,求AC 的长.。
第一讲 与三角形有关的线段和角
DDD DDCB ACCCC BBBBAAAA 第一讲 与三角形有关的线段和角一、知识要点回顾:1、三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的叫做三角形的高线(简称三角形的高)。
3、三角形的分类 按边分:三角形、三角形 按角分:三角形、三角形、三角形 4、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和第三边;推论:三角形的两边之差第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围; ③证明线段不等关系。
注意:通常在求第三边长的范围运用: <第三边< 5、三角形的内角和定理及推论(三角形内角和等于°)推论:①直角三角形的两个锐角;②三角形的一个外角等于和它的两个内角的;(常用于求三角形的内角) ③三角形的一个外角任何一个和它不相邻的内角。
6、三角形的面积=(底×高)/2二、典例讲析:例1:能把一个三角形分成两个面积相等的三角形是三角形的( )A. 中线B. 高线C. 角平分线D. 以上都不对例2、已知三角形三边分别为1,x ,5,则整数x =.例3、在△ABC 中,若∠A ︰∠B ︰∠C =1︰2︰3,则∠A =,∠B =,∠C =.例4、如右上图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( )A. 360°B. 180°C. 255°D. 145° 例5、已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( ) A. 130° B. 60°C. 130°或50°D. 60°或120°例6、一个三角形的周长为81cm ,三边长的比为2︰3︰4,则最长边比最短边长. 例7、如右图,直角三角形ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A /处,折痕为CD ,则∠A /DB =三、巩固提高:1、在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )2、若三条线段中a =3,b =5,c为奇数,那么由a ,b ,c 为边组成的三角形共有( )A. 1个B. 3个C. 无数多个D. 无法确定 3、有下列长度的三条线段,能组成三角形的是( ) A 、2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、6cm ,2cm ,3cm4、右图中三角形的个数是( ) A .6 B .7 C .8 D .95、一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形6、下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( ) A.1个 B.2个 C.3个 D.4个7、已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有() A .6个 B .5个 C .4个 D .3个8、如图1,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D ,∠B = 40°,∠BAD = 30°,则C ∠的度数是()A .70°B .80°C .100°D .110° 9、如果三角形的一个外角是锐角,则此三角形的形状是() A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法判断10、如图2,已知∠A=∠30°,∠BEF=105°,∠B=20°,则∠D=( ) A .25° B .35° C .45° D .30° 11、如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥BC ,则∠AED 的度数是( )A.40°B.60°C.80°D.120°12、在△ABC 中,∠A+∠B=90°,∠C=3∠B ,则∠A=,∠B=,∠C=.如图3,在△ABC 中,∠ABC=90°,∠A=50°,BD ∥AC ,则∠CBD 的度数是°.13、工人师傅在安装木制门框时,为防止变形常常像图4中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.14、如图5,将一副直角三角板又叠在一起,使直角顶点重合于点O ,则∠AOB+∠DOC=_________.15、如图6所示:AB C D 图1CA FBD E 图2 图4B图5ACBD图3(3)(2)(1)22题1()OD C BA AA636(1)在△ABC 中,BC 边上的高是; (2)在△AEC 中,AE 边上的高是;16、三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________. 17、如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C •落在△ABC 内, 若∠1=20°,则∠2的度数为______.18、用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案: ⑴第四个图案中有白色地板砖块; ⑵第n 个图案中有白色地板砖块.19、如图7,已知△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC ,交AB 于E , ∠A =60°,∠C=80°,求:△BDE 各内角的度数.20、已知△ABC 的周长是24cm ,三边a 、b 、c 满足c+a =2b ,c -a =4cm ,求a 、b 、c 的长21、如图9,在△ABC 中,D 为BC上一点,∠BAD=∠ABC ,∠ADC=∠ACD ,若∠BAC=63°,试求∠DAC 、∠ADC 的度数.22、如图22(1)所示,称“对顶三角形”,其中,∠A +∠B =∠C +∠D ,利用这个结论,完成下列填空.① 如图22题(2),∠A +∠B +∠C +∠D +∠E =.② 如图22题(3),∠A +∠B +∠CA E CD 图7A B CD图9+∠D +∠E =.③ 如图22题(4),∠1+∠2+∠3+∠4+∠5+∠6=. ④ 如图22题(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7=. 23、△ABC 中,∠ABC 、∠ACB 的平分线相交于点O 。
第一讲 三角形的边(含解析) (人教版)
第一讲三角形的边【学习目标】1.认识三角形的边、内角、顶点,能用符号语言表示三角形.2.掌握三角形三边的关系定理,能利用定理及其推论进行简单的证明.3.了解三角形按边分类的原则和结论.重点:理解三角形三边之间的不等关系.难点:运用三角形三边之间的不等关系解题.【新课讲解】知识点1:三角形的概念【问题1】观察下面三角形的形成过程,说一说什么叫三角形?三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.【问题2】三角形中有几条线段? 几个定点?有几个角?三角形有三条线段,三个顶点,三个角。
(1)三条边:线段AB,BC,CA是三角形的边。
(2)三个顶点:点A,B,C是三角形的顶点。
(3)三个角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角。
(4)三角形记法:三角形ABC用符号表示△ABC。
三角形的三条边的长短可以分别用小写的字母表示.比如AB=c,BC=a,CA=b(5)三角形的对边与对角:在△ABC中,AB边所对的角是∠C, BC边所对的角是∠A, CA边所对的角是∠B;∠A所对的边是BC,∠B所对的边是AC,∠C所对的边是AB.学习三角形问题注意事项1.构成三角形应满足以下两个条件:(1)位置关系:三条线段不在同一直线上;(2)联接方式:三条线段首尾顺次相接。
2.三角形的表示方法:三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB, △ACB等。
3.规定:三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c。
例题讲解【例题1】(1)下面图中有几个三角形?用符号表示出这些三角形?(2)以AB为边的三角形有哪些?(3)以B为顶点的三角形有哪些?(4)以∠C为角的三角形有哪些?(5)说出△BCD的三个角和三个顶点所对的边.【答案】(1)3个,它们分别是△ABD,△ABC, △BCD。
(2) 以AB为边的三角形有△ABD,△ABC。
高考一轮复习第3章三角函数解三角形第1讲任意角和蝗制及任意角的三角函
第一讲 任意角和弧度制及任意角的三角函数
知识梳理·双基自测
知识点一 角的有关概念
(1)从运动的角度看,角可分为正角、负角和零角.
(2)从终边位置来看,角可分为象限角与轴线角.
(3)若β与α是终边相同的角,则β用α表示为β=2kπ+α,k∈Z.
知识点二 弧度制及弧长、扇形面积公式
知识点三 任意角的三角函数
(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α= (x≠0).
(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是点(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.
[解析]由角α的终边过点P 得sin α=- ,所以sin(α+π)=-sin α= .
考点突破·互动探究
考点一 角的基本概念——自主练透
例1 (1)若角θ的终边与 角的终边相同,则在区间[0,2π)内终边与 角的终边相同的角为 , , .
(2)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=- x上,则角α的取值集合是( D )
考点三 三角函数的定义——多维探究
角度1 定义的直接应用
例3 (1)(2020·北京海淀期中)在平面直角坐标系xOy中,点A的纵坐标为2,点C在x轴的正半轴上.在△AOC中,若cos∠AOC=- ,则点A的横坐标为( A )
A.- B.
C.-3D.3
(2)若角θ的终边经过点P(- ,m)(m≠0)且sin θ= m,则cos θ的值为- .
所以 终边在第三象限,综上, 的终边在第一或三象限.故选A、C.
2014年北师大新版八年级数学辅导第一讲三角形
9、全等三角形的定义:能够完全重合的两个三角形或形状相同、大小相等的两个三角形.
10、全等三角形性质:全等三角形的对应边相等,对应角相等。
如图,∵△ABC≌DFE,(已知)
∴AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等)
∠A=∠D,∠B=∠F,∠C=∠E.(全等三角形的对应角相等)
2、等腰三角形的顶角为120°,腰长为4,则底边长为__________
3、等腰三角形底边上的高为18,一腰上的中线长为15,则等腰三角形的面积为
4、等边三角形ABC中,D为AC的中点,E为BC延长线上一点,且DB=DE,若△ABC的周长为12,则△DCE的周长为___________.
5、在△ABC中,∠A、∠B、∠C的度数之比为1︰2︰3,CD是中线,CE是高,下面四个结论:
14、直角三角形:
(1)、如果一个锐角等于30°,那么它所对的直角边等于斜边的一平方。
判定:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2014年春八年级数学精品班辅导第一讲课堂练习
班级:姓名:
1、等腰三角形的底角为15°,腰上的高为16,那么腰长为__________
15、如图12,在△ABC中,∠C=90°AD平分∠BAC,CD=3,DB=5。求AC的值。
2014年春八年级数学精品班辅导第一讲课后作业
班级:姓名:分数:
一、填空(每小题10分,共40分)
1、等腰三角形的三边长都是整数,若两边之和为4,则其周长为。
2、如图1,△ABC中,∠C=90°,E为AB的中点,DE⊥AB于E,∠CAD︰∠DAB=2︰5,则∠B=。
(2)、有两个角相等的三角形是等腰三角形。(简单叙述:等角对等边。)
走进重高_培优讲义__数学__八年级__上册_(浙教版)
基础巩固篇第一讲认识三角形思维导图重难点分析重点分析:1. 三角形是由不在同一条直线上的三条线段首尾顺次相接而成的图形,是最简单、最基本的几何图形,是学习其他几何图形的基础.2.三角形的边的性质有:任意两边之和大于第三边,任意两边之差小于第三边,这一性质可用“两点之间线段最短”来说明,若三角形的两边长分别为a和b,那么第三边长c的取值范围是|a-b|<c<a+b.3.三角形的角的性质有:三个内角的和为180°,三个外角的和为360°,每个外角等于与它不相邻的两个内角的和.4.三角形按边可以分为等腰三角形(等边三角形是特殊的等腰三角形)和不等腰三角形,按角可以分为锐角三角形、直角三角形和钝角三角形.难点分析:1.判断三条线段能否组成三角形时,一般先确定最长的一条线段,然后将另外两条线段的和与最长的一条线段作比较,如果两条线段的和大于最长的线段,则这三条线段可以组成三角形,反之则不能.2.三角形角的性质主要是关于角的等量关系,常应用于角度计算,解题时要注意把已知角和未知角统一到一个三角形中.例题精析例1、有四条线段,长度分别为4 cm,8 cm,10 cm,12 cm,选其中三条组成三角形,试问可以组成多少个三角形?思路点拨:四条线段中选三条线段共有4种选法,可以将每种情况列举出来,再根据三角形的三边关系进行判断,如果两条较短线段的和大于最长线段,则可以组成三角形.解题过程:有3种情况可以组成三角形:①12 cm,10 cm,8 cm;②12 cm,10 cm,4 cm;③10 cm,8 cm,4 cm.方法归纳:判断三条线段能否组成三角形分两步:(1)确定最长的一条线段;(2)检验两条较短线段的和是否大于最长的线段.易错误区:四条线段中选三条共有四种选法,用枚举法将各种情况列举出来,注意不重不漏.例2、如图,在△ABC 中,点D 为△ABC 内一点,已知∠BDC=100°,∠1=30°,∠2=20°,求∠A 的度数.思路点拨:要求∠A 的度数,只需要求出∠ABC+∠ACB 的度数.根据∠BDC=100°,利用三角形的内角和定理可求出∠DBC+∠DCB 的度数,从而可求得∠ABC+∠ACB 的度数.解题过程:∵∠BDC=100°,且∠DBC+∠DCB+∠BDC=180°,∴∠DBC+∠DCB=180°-∠BDC=80°.∴∠ABC+∠ACB=∠DBC+∠DCB+∠1+∠2=130°.又∵∠A+∠ABC+∠ACB=180°,∴∠A=50°.方法归纳:本题也可延长BD 或CD 分割△ABC ,然后利用三角形的内角和及外角的性质计算. 易错误区:本题∠DBC 与∠DCB 的度数不能确定,要把它们看成一个整体,即求它们的和.例3、如图,在△ABC 中,已知点D ,E ,F 分别是边BC ,AD ,CE 上的中点,且S △BEF =1,求S △ABC .思路点拨:根据三角形的中线把三角形分成两个面积相等的三角形解答.解题过程:∵点E 是AD 的中点,∴S △ABE =21S △ABD ,S △ACE =21S △ACD . ∴S △ABE +S △ACE =21S △ABC .∴S △BCE =21S △ABC . ∵点F 是CE 的中点,∴S △BEF =21S △BCE =41S △ABC .∴S △ABC =4S △BEF =4. 方法归纳:本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.易错误区:题中三角形面积的倍半关系比较复杂,注意三角形面积相等的条件.例4、如图:(1)图1是一个五角星,求∠A+∠B+∠C+∠D+∠E 的度数;(2)将图1中的点A 向下移到BE 上(如图2),五个角的和有无变化?说说你的理由;(3)将图2中的点C 向上移到BD 上(如图3),五个角的和有无变化?说说你的理由.图1图2 图3思路点拨:要求∠A+∠B+∠C+∠D+∠E,需要将这些角转化为一个三角形的内角或外角,如图4,根据三角形的外角的性质可得∠A+∠C=∠2,∠B+∠E=∠1,所以∠A+∠B+∠C+∠D+∠E=∠1+∠2+∠D,其他两个图形用同样的方法即可解决.解题过程:(1)如图4,∵∠A+∠C=∠2,∠B+∠E=∠1,∴∠A+∠B+∠C+∠D+∠E=∠1+∠2+∠D.而∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.图4 图5(2)不变,仍为180°,如图5,同(1)可证∠CAD+∠C=∠2,∠B+∠E=∠1,∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠D=180°.(3)不变,理由同(2).方法归纳:应用转化的数学思想,将问题转化为三角形的外角和内角的性质问题.易错误区:本题中三个图形虽然有变化,但其中角之间的数量关系没有变化,解题时要抓住图形中的三角形特征.图中角比较多,要注意理清数量关系,不要混淆.例5、将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B,C.图1 图2 图3(1)如图1,若∠A=40°,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;(2)如图2,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A 之间存在怎样的数量关系,并验证你的结论;(3)如图3,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD,∠ACD,∠A三者之间存在的数量关系.思路点拨:(1)根据三角形内角和定理可得∠ABC+∠ACB=180°-∠A=140°,∠DBC+∠DCB=180°-∠BDC=90°,进而可求出∠ABD+∠ACD的度数;(2)根据三角形内角和定理有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°-∠A;(3)由(1)(2)的解题思路可得:∠ACD-∠ABD=90°-∠A.解题过程:(1)答案为:140;90;50.(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°-∠A.证明:∵在△ABC中,∠ABC+∠ACB=180°-∠A,在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB-(∠DBC+∠DCB)=180°-∠A-90°.∴∠ABD+∠ACD=90°-∠A.(3)∵在△ABC中,∠ABC+∠BCD+∠ACD=180°-∠A,在△DBC中,∠ABD+∠ABC+∠BCD=90°,∴∠ACD-∠ABD=180°-∠A-90°.∴∠ACD-∠ABD=90°-∠A.方法归纳:本题考查三角形外角的性质及三角形的内角和定理,解答本题的关键是沟通外角和内角的关系.易错误区:题(3)直角的位置发生了变化,所以结论与题(2)有区别,要注意图形的变化.探究提升图1 图2例、已知如图1,线段AB,CD相交于点O,连结AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数有个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)思路点拨:(1)根据三角形内角和定理即可得出∠A+∠D=∠B+∠C;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;(3)先根据“8字形”中的角的规律及角平分线的定义可得∠P与∠D,∠B之间的数量关系,进而求出∠P的度数;(4)由(3)可得. 解题过程:(1)∠A+∠D=∠B+∠C(2)6(3)由(1)得,∠DAP+∠D=∠DCP+∠P,∠PAB+∠P=∠PCB+∠B,∴∠DAP-∠DCP=∠P-∠D,∠PAB-∠PCB=∠B-∠P.又∵AP,CP分别平分∠DAB和∠BCD,∴∠DAP=∠PAB,∠DCP=∠PCB.∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D.∴∠P=(40°+36°)÷2=38°.(4)2∠P=∠B+∠D.方法归纳:本题主要考查了三角形内角和定理,角平分线的定义及阅读理解与知识的迁移能力.(1)中根据三角形内角和定理得出“8字形”中的角的规律;(2)是考查学生的观察理解能力,需从复杂的图形中辨认出“8字形”;(3)(4)直接运用“8字形”中的角的规律解题. 易错误区:找基本图形“8字形”是本题难点及易错点,一般可以先确定“8字形”中的其中一个三角形,然后根据“8字型”的特征找另一个与它相对应的三角形.专项训练拓展训练A组1.略2.略3.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于( ).A.42°B.66°C.69°D.77°(第3题) (第4题)4.如图是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另外一个角是度.5.略6.略7.如图,△ABC三边的中线AD,BE,CF交于点G,若S△ABC=12,则阴影部分的面积是.(第7题) (第8题)8.如图,BM是△ABC中AC边上的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长之差为cm.9.略10.如图所示,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.(第10题)11.如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过点B作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.(第11题)B组12.略13.如图,△ABC的两条中线相交于点F,若△ABC的面积是45cm2,则四边形DCEF的面积是( ).A.30cm2B.15cm2C.20cm2D.不能确定(第13题) (第14题) (第16题) 14.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,依次类推,∠ABD4与∠ACD4的平分线交于点D5,则∠BD5C的度数是( ).A.60°B.56°C.94°D.68°15.略16.如图,点G是△AFE的两外角平分线的交点,点P是△ABC的两外角平分线的交点,点F,C在AM上,又点B,E在AN上,如果∠FGE=66°,那么∠P= .17.略18.在Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图1,且∠α=50°,则∠1+∠2=;(2)若点P在边AB上运动,如图2,则∠α,∠1,∠2之间的关系为;(3)如图3,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α,∠1,∠2之间的关系式,并说明理由.图1 图2 图3(第18题)走进重高1.【绵阳】如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC等于( ).A.118°B.119°C.120°D.121°(第1题) (第2题) (第5题) 2.如图,四边形ABCD的对角线AC和BD相交于点E,如果△CDE的面积为3,△BCE的面积为4,△AED的面积为6,那么△ABE的面积为().A.7B.8C.9D.103.略4.略5.【临海】如图,若∠B=40°,A,C分别为角两边上的任意一点,连结AC,∠BAC与∠ACB 的平分线交于点P1,则∠P1= ,D,F也为角两边上的任意一点,连结DF,∠BFD 与∠FDB的平分线交于点P2……按这样的规律,则∠P2016= .6.如图是一张三角形纸片ABC,其中∠A=∠C.(1)把△ABC纸片按如图1所示折叠,使点A落在AC边上的点F处,DE是折痕,说明BC∥DF;(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时(如图3),∠C与∠1,∠2的关系是 .(直接写出结论)图1 图2 图3(第6题)高分夺冠1.如图,在△ABC 中,已知点P ,Q 分别在边AC ,BC 上,BP 与AQ 相交于点O ,若△BOQ,△ABO,△APO 的面积分别为1,2,3,则△PQC 的面积为( ).A.22B.22.5C.23D.23.5 (第1题)2.将长度为25cm 的细铁折成边长都是质数(单位:cm)的三角形,若这样的三角形的三边的长分别是a ,b ,c ,且满足a ≤b ≤c ,则(a ,b ,c)有 组解,所构成的三角形都是 三角形.3.已知△ABC 中,∠A=α.如图1,∠B,∠C 的平分线交于点O 1,则可计算得∠BO 1C=90°+21α;如图2,∠B,∠C 的两条三等分角线分别对应交于点O 1,O 2,则∠BO 2C= ;请你猜想,当∠B ,∠C 同时n 等分时,(n-1)条等分角线分别对应交于点O 1,O 2,…,O ;如图2,∠B,∠C 的两条三等分角线分别对应交于点O 1,O 2,则∠BO 2C=;请你猜想,当∠B ,∠C 同时n 等分时,(n-1)条等分角线分别对应交于点O 1,O 2,…,O n-1,如图3,则∠BO n-1C= (用含n 和α的代数式表示).图1图2 图3(第3题) (第4题)4.如图,点D ,C ,G 在同一直线上,BE 平分∠ABD 交AC 于点E ,CF 平分∠ACG,BE 延长线与CF 相交于点F ,若∠BDC=160°,∠A=100°,则∠F= 度.5.已知△ABC 的面积是60,请完成下列问题:(1)如图1,若AD 是△ABC 的BC 边上的中线,则△ABD 的面积(填“>”“<”或“=”)△ACD 的面积;(2)如图2,若CD ,BE 分别是△ABC 的AB ,AC 边上的中线,求四边形ADOE 的面积可以用如下方法:连结AO ,由AD=DB 得:S △ADO =S △BDO ,同理:S △CEO =S △AEO .设S △BDO =x ,S △CEO =y ,则S △ADO =x ,S=x ,S △AEO =y.由题意得:S △ABE =21S △ABC =30,S △ADC =21S △ABC =30,可列方程组为:⎩⎨⎧=+=+30,2y x 30,y 2x 解得 ,通过解这个方程组可得四边形ADOE 的面积为 ;(3)如图3,AD ∶DB=1∶3,CE ∶AE=1∶2,请你计算四边形ADOE 的面积,并说明理由.图1图2 图3(第5题)第二讲命题与证明思维导图重难点分析重点分析:1.利用命题的定义来判断语句是否为命题,关键看语句是否为一个判断句,对一个命题,要准确找出命题的题设和结论部分,并写成“如果……,那么……”的形式,其中“如果”后写题设,“那么”后写结论.2.判断一个命题是真命题,主要依据已知的定理、公理或相关数学性质,而判断一个命题是假命题,只要举一个反例即可.3.证明一个命题,要根据题意,分析命题的条件和结论,有条理的写出证明过程,证明的每一步都要有依据,这些依据可以是定义、定理、公理、已知等.4.反证法的基本步骤:(1)假设,否定待证命题的结论;(2)推理导出矛盾;(3)肯定原命题的结论.难点分析:1.探求证明的途径,一般有两种思考方法:一种是从已知出发,推出可能的结果,并与要证明的结论作比较,直至得到要证明的结论,另一种是从要证明的结论出发,探索要使结论成立的条件,并与已知对照,直至找到所需要并已知的条件.对于比较复杂的证明,常常把这两种思考方法综合运用,称为分析综合法.2.有以下特征的命题宜用反证法证明:(1)结论涉及唯一性;(2)结论涉及“至多或至少”;(3)结论为否定形式;(4)结论涉及无限形式等.3.作辅助线是证明命题常用的手段,要会作简单的辅助线解决证明题.常见的辅助线有:分割图形,作平行线,截长可补短等.例题精析例1、把下列命题写成“如果……,那么……”的形式.(1)两直线平行,同位角相等;(2)周长相等的两个三角形全等;(3)等角的补角相等.思路点拨:先找出命题的题设和结论,然后改写成“如果……,那么……”的形式.其中“如果”后面跟命题的题设,“那么”后面跟命题的结论.解题过程:(1)如果两条平行线被第三条直线所截,那么所得的同位角相等.(2)如果两个三角形的周长相等,那么这两个三角形全等.(3)如果两个角分别是两个相等角的补角,那么这两个角相等.方法归纳:将命题改写成“如果……,那么……”的形式更容易分清命题中的条件和结论. 易错误区:第(3)题的结论是两角相等,所以条件应该是满足何种条件的两角,为了命题的证明方便一般不改写成“如果两个角相等,那么它们的补角相等”.例2、(1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:(填“真”或“假”);(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一个条件,使该命题成为真命题,并说明理由.思路点拨:(1)利用平行线的判定方法进而判断即可;(2)利用平行线的性质结合判定方法添加合理的条件.解题过程:(1)假(2)添加条件:BE∥DF,则∠EBD=∠FDN.又∵∠1=∠2,∴∠ABD=∠CDN.∴AB∥CD.方法归纳:本题主要考查了命题与定理以及平行线的判定,正确把握平行线的判定方法是解题关键.易错误区:注意本题是添加条件而不是修改条件,切不可把原来“∠1=∠2”的条件改掉.例3、在研究三角形内角和等于180°的证明方法时,小胡和小杜分别给出了下列证法.小胡:在△ABC中,延长BC到点D(如图1).∵∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°(等量代换).图1 图2小杜:在△ABC中,作CD⊥AB于点D(如图2).∵CD⊥AB(已知),∴∠ADC=∠BDC=90°(直角定义).∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).∴∠A+∠ACD+∠B+∠BCD=180°(等量加等量和相等).∴∠A+∠B+∠ACB=180°.请你对上述两名同学的证法给出评价,并另给出一种你认为较简单的证明三角形内角和定理的方法.思路点拨:两名同学的证法都不对.因为“三角形一个外角等于和它不相邻的两个内角和”与“直角三角形两锐角互余”都是由三角形内角和定理推导得到的,这种用结论来说明的错误称为“循环论证”,不符合推理论证的逻辑规律.解题过程:评价:两位同学都巧妙地通过作辅助线将问题转化,作辅助线的思路对解题有帮助,但证明过程用到的理论依据是由本命题的结论推导出来的,所以证明方法不正确,陷入了“循环论证”的错误之中. 图3正确的证法如下:如图3,过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等).∵∠MAB+∠NAC+∠BAC=180°(平角定义),∴∠B+∠C+∠BAC=180°(等量代换).方法归纳:要证明三角形的内角和等于180°,即三角形三个内角的和是平角,可以通过作辅助线,使得三角形的三个内角的和转化成组成平角的三个角之和.平行线是几何证明中常用的辅助线.易错误区:“循环论证”是初学几何证明者比较容易出现的一种错误,即用命题的结论推导得到的性质来证明命题本身,做证明题时对每一步的说理依据要认真考证,以避免出现“循环论证”.例4、如图,在△ABC 中,点E 在AC 上,∠AEB=∠ABC.图1 图2(1)在图1中,作∠BAC 的平分线AD ,分别交CB ,BE 于点D ,F ,求证:∠EFD=∠ADC;(2)在图2中,作△ABC 的外角∠BAG 的平分线AD ,分别交CB ,BE 的延长线于点D ,F ,试探究(1)中结论是否仍成立?为什么?思路点拨:(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠GAD,再根据等量代换可得∠FAE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB -∠FAE,∠ADC=∠ABC -∠BAD,进而可得∠EFD=∠ADC.解题过程:(1)∵AD 平分∠BAC,∴∠BAD=∠DAC.∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.(2)探究(1)中结论仍成立.理由:∵AD 平分∠BAG,∴∠BAD=∠GAD.∵∠FAE=∠GAD,∴∠FAE=∠BAD.∵∠EFD=∠AEB -∠FAE,∠ADC=∠ABC -∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.方法归纳:本题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.易错误区:利用三角形外角的性质要注意找准三角形及相应的内角,看清并读懂图形很重要.例5、在△ABC 中,BO 平分∠ABC,点P 为直线AC 上一动点,PO⊥BO 于点O .图1 图2 图3(1)如图1,当∠ABC=40°,∠BAC=60°,点P 与点C 重合时,∠APO= ;(2)如图2,当点P 在AC 的延长线上时,求证:∠APO=21(∠ACB -∠BAC);(3)如图3,当点P 在边AC 上如图所示位置时,请直接写出∠APO 与∠ACB,∠BAC 之间的等量关系式 .思路点拨:(1)根据三角形的内角和定理求出∠ACB,再根据角平分线的定义求出∠OBC,然后求出∠OCB,再根据∠APO=∠ACB -∠OCB 计算即可得解;(2)作射线AO ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠4=∠1+∠2,∠3=∠5+∠P ,从而得到∠3+∠4=∠1+∠2+∠5+∠P,再根据三角形的内角和定理以及角平分线的定义用∠ACB 和∠BAC 表示出∠2,代入整理即可得解;(3)用∠ACB 和∠BAC 表示出∠OBC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解.解题过程:(1)∵∠ABC=40°,∠BAC=60°,∴∠ACB=180°-∠ABC -∠BAC=180°-40°-60°=80°.∵BO 平分∠ABC,∴∠OBC=21∠ABC=20°. ∵PO⊥BO,∴∠OCB=90°-∠OBC=90°-20°=70°.∴∠APO=∠ACB -∠OCB=80°-70°=10°.(2)如图4,作射线AO.则∠4=∠1+∠2,∠3=∠5+∠P,∴∠3+∠4=∠1+∠2+∠5+∠P.∵PO⊥BO,∴∠3+∠4=90°.∴∠1+∠2+∠5+∠P=90°,即∠BAC+∠2+∠P=90°. 图4 ∵BO 平分∠ABC,∴∠2=21∠ABC. ∵∠ABC+∠BAC+∠ACB=180°,∴∠ABC=180°-∠BAC -∠ACB.∴∠2=12(180°-∠BAC -∠ACB).∴∠APO=90°-∠BAC -∠2=90°-∠BAC -21(180°-∠BAC -∠ACB)=21(∠A CB-∠BAC). (3)∵BO 平分∠ABC,∴∠ABO=12(180°-∠BAC -∠ACB). ∵PO⊥BO,∴∠APO=90°+(∠ABO+∠BAC)=90°+21(180°-∠BAC -∠ACB)+∠BAC=180°+21(∠BAC -∠ACB),即∠APO=180°+21(∠BAC -∠ACB). 方法归纳:本题考查了三角形的内角和定理,三角形的外角性质,难度中等,熟记性质并准确识图是解题的关键.易错误区:本题中涉及的角较多,要准确表示出各角度之间的等量关系,运用三角形外角的性质时要注意对应的角度关系不要混淆.探究提升例、如果一个数能表示成x 2+2xy+2y 2(x ,y 是整数),我们称这个数为“好数”.(1)判断29是否为“好数”;(2)写出1,2,3,…,20中的“好数”;(3)如果m ,n 都是“好数”,求证:mn 是“好数”.思路点拨:(1)根据x 2+2xy+2y 2=(x+y)2+y 2可以得到好数特征,根据“好数”定义判断29是否为“好数”;(2)根据好数的定义判断1,2,3,…,20中的“好数”;(3)设m=x 2+2xy+2y 2,n=p 2+2pq+2q 2,化简得到mn=[(x+y)(p+q)+qy ]2+[q(x+y)-y(p+q)]2,令u+v=(x+y)(p+q)+qy ,v=q(x+y)-y(p+q),于是可以判断出mn为“好数”.解题过程:(1)x2+2xy+2y2=(x+y)2+y2,特征:“好数”就是两个整数的平方和,而29=52+22,故29是“好数”.(2)1,2,3,…,20中的“好数”有1,2,4,5,8,9,10,13,16,17,18,20.(3)m=x2+2xy+2y2,n=p2+2pq+2q2.则mn=(x2+2xy+2y2)(p2+2pq+2q2)=[(x+y)2+y2][(p+q)2+q2]=[(x+y)(p+q)+qy]2+[q(x+y)-y(p+q)]2,令u+v=(x+y)(p+q)+qy,v=q(x+y)-y(p+q).那么mn=(u+v)2+v2=u2+2uv+2v2,∵x,y,p,q均为整数,∴(x+y)(p+q)+qy,q(x+y)-y(p+q)也为整数.∴u+v,v为整数.∴u,v为整数.∴mn为“好数”.方法归纳:本题是代数证明题,解答本题的关键是掌握“好数”的定义,并能将此定义作为依据利用完全平方式的知识进行推理证明.易错误区:题(3)中代数式的变形是本题难点,要注意正确利用完全平方式对式子进行恒等变形.专项训练拓展训练A组1.略2.下列命题中,正确的是( ).A.在同一平面内,垂直于同一条直线的两条直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同位角相等D.和为180°的两个角叫做邻补角3.略(第4题)4.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( ).A.180°B.360°C.540°D.720°5.略6.略7.如图,已知AB∥CD,∠1=50°,∠2=110°,则∠3= .(第7题)(第8题)8.如图,CD,CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= .9.如图,有三个论断:①∠1=∠2;②∠B=∠D;③∠A=∠C.请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.(第9题)10.略11.如图,已知∠EGF=∠E+∠F,求∠A+∠B+∠C+∠D的度数.(第11题)B组12.略13.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于点G,若∠BDC=140°,∠BGC=110°,则∠A为( ).A.70°B.75°C.80°D.85°(第13题) (第14题)14.如图,AB⊥AC,CD,BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是( ).A.①③B.②④C.①③④D.①②③④15. 略16.略17.在学习中,小明发现:当n=1,2,3时,n2-6n的值都是负数.于是小明猜想:当n为任意正整数时,n2-6n的值都是负数.小明的猜想正确吗?请简要说明你的理由.18.探究发现图1 图2 图3(第18题)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?如图1,∠FDC,∠ECD为△ADC的两个外角,则∠A与∠FDC+∠ECD的数量关系为.探究二:在四边形ABCD中,∠F为四边形ABCD的内角∠ABC的平分线及外角∠DCE的平分线所在的直线构成的锐角,设∠A=α,∠D=β.(1)如图2,若α+β>180°,求∠F;(用α,β表示)(2)如图3,若α+β<180°,请在图中画出∠F,并求∠F=;(用α,β表示)(3)一定存在∠F吗?如有,直接写出∠F的值,如不一定,直接指出α,β满足什么条件时,不存在∠F.走进重高1.略2.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则下列∠A,∠1与∠2的数量关系中,正确的是().A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠AD.2∠1=∠2+∠A (第2题)3.略4.在A,B,C三个盒子里分别放一些小球,小球数依次为a0,b0,c0,记为G0=(a0,b0,c0).游戏规则如下:若三个盒子中的小球数不完全相同,则从小球数最多的一个盒子中拿出两个,给另外两个盒子各放一个(若有两个盒子中的小球数相同,且都多于第三个盒子中的小球数,则从这两个盒子序在前的盒子中取小球),记为一次操作.若三个盒子中的小球数都相同,游戏结束,n次操作后的小球数记为G n=(a n,b n,c n).(1)若G0=(5,8,11),则第次操作后游戏结束;(2)小明发现:若G0=(1,5,12),则游戏永远无法结束,那么G2016= .5.如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)在△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE 与α,β间的等量关系,并说明理由.(第5题)6.已知△ABC,△DEF是两个完全一样的三角形,其中∠ACB=∠DFE=90°,∠A=∠D=30°.(1)将它们摆成如图1的位置(点E,F在AB上,点C在DF上,DE与AC相交于点G).求∠AGD的度数;(2)将图1的△ABC固定,把△DEF绕点F按逆时针方向旋转n°(0<n<180).①当△DEF旋转到DE∥AB的位置时(如图2),n= ;②若由图1旋转后的EF能与△ABC的一边垂直,则n的值为.图1 图2(第6题)高分夺冠1.如图,A,B,C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大.现想将这三个圆片移动到B柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A,B,C三根立柱之一,且较大的圆片不能叠在较小的圆片上面,那么完成这件事情至少要移动圆片的次数是( ).A.6B.7C.8D.9(第1题) (第2题) (第3题)2.如图,△ABC内有三个点D,E,F,分别以A,B,C,D,E,F这六个点为顶点画三角形,如果每个三角形的顶点都不在另一个三角形的内部,那么这些三角形的所有内角之和为( ).A.360°B.900°C.1260°D.1440°3.如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1= 度.4.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°.理由:连结A1A4.∵∠1+∠2+∠A1OA4=180°,∠A5+∠A6+∠A5OA6=180°,又∵∠A1OA4=∠A5OA6,∴∠1+∠2=∠A5+∠A6.∵∠A2+∠3+∠1+∠2+∠4+∠A3=360°,∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°,即S=360°.(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明;②如图3是二环五边形,可得S= ,聪明的你,请根据以上的规律直接写出二环n 边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后的结果)图1 图2 图3(第4题)第三讲 全等三角形思维导图重难点分析重点分析:1.能够完全重合的两个三角形全等,全等三角形对应边相等、对应角相等.2.三角形全等的条件有:SAS(边角边)、SSS(边边边)、ASA(角边角)、AAS(角角边).3.角平分线上的点到角两边的距离相等,线段中垂线上的点到线段两端的距离相等. 难点分析:1.找全等三角形的关键在于确定对应边、对应角,找对应边、对应角常用的方法有:公共边或公共角一般是对应边或角;对顶角、角平分线、直角等得到的等角一般是对应角;最大(或最小)的边或角是对应边或角;对应边的夹角是对应角,对应角的夹边是对应边;书写全等时顶点字母要对应,便于我们找对应的边和角.2.注意边边角(两边及一角对应相等)不能判定两个三角形全等,这是本节内容的易错点.3.注意借助常见的全等基本图形以及对称、平移、旋转等变换来确定图形中的全等三角形.例、如图,已知点A ,E ,F ,C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?(答出5个即可,不需证明)思路点拨:根据全等三角形的对应边相等,全等三角形的对应角相等即可解答.参考答案:AD=CB ,AE=CF ,ED=FB ,∠ADE=∠CBF,∠AED=∠CFB,∠EAD=∠FCB 等.方法归纳:本题主要考查了全等三角形的性质,正确判断对应角、对应边是解答本题的关键.如果再根据全等三角形的判定定理,图形中还能再找出两对全等的三角形.易错误区:要正确找出两个全等三角形的对应边和对应角,除了利用图形直观判断外,还要能应用“△AED ≌△CFB”中字母的对应关系来确定对应边及对应角.例2、如图,已知点B ,F ,C ,E 在同一直线上,并且BF=CE ,∠B=∠E.(1)请你只添加一个条件(不再加辅助线),使得△ABC≌△DEF.你添加的条件是: ;(2)添加了条件后,请证明△ABC ≌△DEF.思路点拨:(1)根据全等三角形的判定定理AAS 可以添加条件∠A=∠D;根据ASA 可以添加条件∠ACB=∠DFE,根据SAS 可以添加条件AB=DE ;(2)根据题意可得BC=EF ,再根据全等三角形的判定定理即可证明结论.解题过程:(1)∠A=∠D(或∠ACB=∠DFE,AB=DE).(2)以添加∠A=∠D 为例证明:∵BF=CE ,∴BF+FC=EC+FC,即BC=EF.在△ABC 和△DEF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,EF BC E B D A ∴△ABC≌△DEF(AAS).。
第一讲三角形的基本概念
第一讲 三角形基本概念知识点一: 三角形1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。
2、分类:(1)按角分:锐角三角形;直角三角形;钝角三角形;(2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。
5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。
注意:三角形的角平分线、中线和高都有三条。
6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边的差小于第三边。
7、三角形的内角:三角形的内角和等于180。
如图:180321=∠+∠+∠ 8、三角形的外角(1)三角形的一个外角与相邻的内角互补。
18041=∠+∠(2)三角形的一个外角等于与它不相邻的两个内角的和。
324∠+∠=∠ (3)三角形的一个外角大于任何一个与它不相邻的内角。
4∠>2∠或4∠>3∠ 6、三角形的周长、面积求法和三角形稳定性。
(1)如图1:C △A BC =AB +BC +AC 或C △A BC = a +b +c 。
四个量中已知其中三个能求第四个。
(2)如图2:AD 为高,S △ABC =·BC ·AD三个量中已知其中两个能求第三个。
(3)如图3:△ABC 中,∠ACB=90°,CD 为AB 边上的高,则有:S △ABC =·AB ·CD=·AC ·BC 即:AB ·CD=AC ·BC四条线段中已知其中三条能求第四条。
知识点二:多边形及其内角和1、n 边形的内角和=()2180-⨯n;2、n 边形的外角和=360。
3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。
KT教育 第一讲三角形(1)
KT(课堂)教育(第一讲)三角形(1)分析:三角形是中学几何的重要内容之一,也是几何部分的基础和中考重要考点之一。
预计在中考中分值为30分左右。
【典型例题】在等腰三角形ABC中,AB=AC,AC边上的中线BD将△ABC的周长分为15cm和36cm两部分,求各边长。
解:设AB=2x,则AD=CD=x.①当AB+AD=36cm时,即3x=36,x=12.则AB=AC=24cm,BC=3此时AB+BC>AC,成立.②当AB+AD=15cm时,即3x=15时,x=5则AB=AC=10时,BC=31cm此时AB+AC<BC,不成立。
∵①和②∴此三角形三边长分别为24cm,24cm,3cm。
【解题思想】分类讨论。
解本题易漏掉①或②的其中一种,但要考虑完整①和②,又易忘记三边关系定理检验。
【举一反三】1.已知三角形两边长分别为4和10,则三角形的第三边可能是()A.5或7 B.6或7 C.11或7 D.16或7【解题方法】三角形两边之和大于第三边,两边之差小于第三边,在一些求边长和周长类题目时,对三边关系定理间接形式的考察容易忽视。
【同类指导】1.设第三边长为x,x满足条件即可:6-2<x<6+2。
2.两边之和大于第三边。
【巩固类题】2.若三角形的两边长分别为2和6,则第三边的长可能是()A.3或5B.4或7C.5或6D.8或73.已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3B. x>3C.3<x<6D. x>6答案:1.C 2.C 3.B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:三角形的基本定义 一、认识三角形 1、三角形的定义:由不在同一条直线上的三条线段首位顺次连接而组成的图形叫三角形。
如图,三角形ABC 表示为△ABC ,与点A 相对的边可表示为线段a ;直角三角形ABC 可表示为Rt △ABC2、三角形的分类(1)按角分① 锐角三角形:三个内角均为锐角 ② 直角三角形:有一个角是直角 ③ 钝角三角形:有一个角是钝角(2)按边分① 不等边三角形:三边均不相等②等腰三角形:有两边相等的边(特殊:等边三角形) 3、三角形的基本性质:(1)两边之和大于第三边;两边之差小于第三边:a-b <c <a+b (2)三个内角和为180°:∠A+∠B+∠C=180° (3)三角形具有稳定性,四边形具有不稳定性。
(4)直角三角形的两个锐角互余。
(5)三角形的外角等于和它不相邻的两个内角和。
(三角形的一条边与另一条边延长线组成的角,叫做三角形的外角) 4、三线:(1)三角形的中线:连接三角形的一个顶点与它对边中点的线段;三角形一共有三条中线,交于三角形内部一点(2)三角形的角平分线:三角形内角的角平分线交对边于一点,这点与角的顶点间的线段;三角形共有三条角平分线,交于三角形内部一点。
(3)三角形的高线:从三角形的顶点向对边作垂线,垂线段叫做三角形的高。
三角形共有三条高线,锐角三角形三高交于三角形内部一点,直角三角形三高交于直角顶点,钝角三角形三边的延长线交于三角形外部一点请画一个钝角三角形的三条高ABCabc典型例题一:三角形角的关系例1:已知:如图1,D 是BC 上一点, ∠C =62°,∠CAD =32°,则 ∠ADB = 度. 此题的依据:例2:(2013•湘西州)如图2,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD = 度例3:(2013•昭通)如图3,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1= 度例4:在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3, ③∠A=900-∠B , ④∠A=∠B=12 ∠C 中,能确定△ABC 是直角三角形的条件有( )A 、1个B 、2个C 、3个D 、4个 典型例题二:三角形三边的关系例1:以下列各组线段长为边,能构成三角形的是( )A 、4cm 、5cm 、6cmB 、2cm 、3cm 、5cmC 、4cm 、4cm 、9cmD 、12cm 、5cm 、6cm 例2:(2013•南通)有3cm ,6cm ,8cm ,9cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数是例3:为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )。
A .5mB .15mC .20mD .28m 例4:一个三角形的两边长为2和6,第三边为偶数.则这个三角形的 周长为 变式训练1、已知ABC △的三边长a b c ,,,化简a b c b a c +----的结果是( ) A.2aB.2b -C.22a b +D.22b c -2、一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.3、一个等腰三角形两边的长分别是15cm 和8cm 则它的周长是__________. 典型例题三:三角形的稳定性:例1:木工师傅作一木制矩形门框时,常需在其相邻两边之门钉上一根木条,他这样做的目的是 ,其中所涉及的数学道理是. 典型例题四:三角形的三线之中线:例1:(2008•黔东南州)如图,学校有一块三角形空地(即△ABC ),现准备将它分成面积相等的两块地,栽种不同的花草,请你把它分出来.例2:如图,在三角形ABC 中,AD 是BC 边上的中线,三角形ABD 的周长比三角形ACD 的周长小5,你能求出AC 与AB 的边长的差吗?例3:在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.例4:已知等腰三角形ABC 一腰AC 上的中线BD 将三角形的周长分成12cm 和21cm 两部分,求这个三角形的腰长.典型例题五:三角形三线之高线例1:在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D )例2:下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点例3:如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角例4:在△ABC中,高线BD,CE相交于点H,若∠A=60°,则∠BHC= 度补充多边形内角和公式:典型例题六:三角形三线之角平分线例1:已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.例2:△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.例3:如图,△ABC的三条角平分线交于I点,AI交BC于点D.求证:∠CID+∠ABI=90°例4:如图,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.由此你可以得出什么结论;例5:如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC=90°-21∠BAC . ②由①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?例6:在△ABC 中,∠ACD 为一外角,BO 、CO 分别平分∠ABC 和∠ACD ,求证∠O=21∠A例7:如图,在△ABC 中,∠A=60°,BO 1、BO 2是∠ABC 的三平分线,CO 1、CO 2是∠ACB 的三等分线,则∠BO 1C= °,∠BO 2C= °.补充:重要结论之:平行线、角平分线,等腰三角形来添①如图1,在△ABC中,BO、CO分别平分∠ABC,∠ACB,过点O作直线EF∥BC交AB于E,交AC于F,猜想EF与BE、CF之间的关系②如图2,在△ABC中,BO平分∠ABC,CO分别∠ACB的外角,过点O作直线EF∥BC交AB于E,交AC 于F,猜想EF与BE、CF之间的关系③如图3,在△ABC中,BO、CO分别平分∠ABC和∠ACB的外角,过点O作直线EF∥BC交直线AB于E,交直线AC于F,猜想EF与BE、CF之间的关系例8:如图,在△ABF中,BO、FO分别平分∠ABF和∠AFB,OD∥AB,OE∥AF,BF=14,求△ODE的周长?巩固训练(一):一、填空选择题1.(2009•呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.锐角三角形或钝角三角形2.(2013•长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.83.(2010•台湾)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何()A.5 B.6 C.7 D.104.只有一条高在三角形内部的三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.直角三角形或钝角三角形5.(2013•丽水)如图5,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80°B.70° C.60°D.50°6.(2012•连云港)如图6,将三角尺的直角顶点放在直线a上,且a∥b,∠1=50°,∠2=60°,则∠3= 度7.(2012•海南)如图7小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β= 度8.(2013•内江)如图8,把一块直尺与一块三角板放置如图,若∠1=40°,则∠2= 度9.三角形的高线、中线、角平分线中,一定能把三角形分为面积相等的两个部分的是.10.如图10,点O是三角形两条角平分线的交点,若∠BOC=110°,则∠A= .11.如图11,△ABC中,BE平分∠ABC交AC于E,DE∥BC交AB于D,∠ADE=70°,求∠DEB= .12.如图12,BF为∠ABC的角平分线,CF为外角∠ACG的角平分线,∠A=50°,则∠F= .13.生活中,我们经常会看到如图13所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的.二、解答题1.(2000•内蒙古)如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数?2.(2013•邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.3.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.。