2014-2015最新北师大版八年级数学上册期末试卷(含答案解析)
2015新北师大版八年级数学上册期末试卷(含答案解析)
CABD(第2题)期末调研考试八 年 级 数 学 试 题(全卷三大题24小题 满分:120分 时限:120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.考试结束时,请将试题卷和答题卡一并上交.一、选择题(本题共10小题,每小题3分,计45分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请把符合要求的选项前面的字母填涂在答题卡上指定的位置. 1.下列实数中有理数是( ) A .2B .23-C .πD .0.1010010001…2.如图,□ABCD 中,若∠A =110°,则∠B +∠D =( )A .70°B .110°C .140°D .180° 3.下列说法正确的是( )A .-16的平方根是-4B .8的算术平方根是4C .16的平方根是4D .-1的立方根是-14.若一个多边形的内角和等于720°,则这个多边形的边数是( )A .5B .6C .7D .85.如图,若点P 的坐标为(3,2),O 为坐标原点,将OP 绕点O 按顺时针方向旋转90°得到OP ′,则点P ′的坐标是( ) A .(2,-3) B .( 3,-2) C .(-2,3) D .(-3,2)6.下列计算正确的是( ) A .632=⨯ B .532=+C .248=D .224=-7.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .8.已知一次函数y =kx +3(k 为常数,且k ≠0),其y 的值随着x 的值增大而减小,则一次函数y =kx +3图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限OP yx(第5题)5N0 1 2 3 4 -1 (第9题) 花园墻(第15题)CADB9.如图,数轴上点N 表示的数可能是( )A . 3B . 7C .10D .1710.下列四边形中对角线一定相等的是( )A .梯形B .平行四边形C .菱形D .矩形11.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰直角三角形有( )A .4个B .6个C .8个D .10个12.已知 是二元一次方程2x -y =3的解,则k 的值是( ) A .1 B .-1 C .3 D .-3 13. 下列图形中,不能用同一种平面图形密铺的是( ) A .等边三角形 B .正方形 C .正六边形 D .正八边形14.某公司销售部统计了该公司12名销售人员某月的销售量如下表,则该公司销售人员该月销售量的中位数是( )销售量(件) 200 300 400 500 600 人数(人)24321A .300件B .350件C .400件D .450件15.如图,用篱笆围一个矩形花园,花园的一边利用足够长的墙,另外三边总长为24米,设围成的矩形ABCD 中, BC 的边长为x 米(0<x <24),AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y = -2x +24B .y = -12x +12 C .y =2x -24 D .y = 12x -12二、解答题(本大题共有6小题,计42分)16.(6分)解方程组:2324x y x y +=-=⎧⎨⎩,.17.(6分)6 ×(23-2)+27.18. (7分)在如图所示的平面直角坐标系中,四边形ABCD 为菱形,其中A 点坐标为(-3,0),D 点坐标为(0,4). (1)求菱形的边长及面积; (2)请直接写出B 点和C 点坐标.x ky k=⎧⎨=-⎩xy CDA B OOCDAB (第11题)期中30%期末60%平时10%(第19题)19.(7分)某同学七年级下学期的数学成绩如下表所示:(1)计算这位同学该学期的三次平时测验的平均成绩; (2)如果学期的总评成绩是根据如图所示的权重计算,请计算出这位同学该学期的总评成绩.20.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(1)△ABE 与△DFA 全等吗?说明理由. (2)若AB =6, BC =10,求线段DE 的长.21.(8分)某工程队原计划12天完成一项工程,工作3天后,该工程队提高了工作效率,结果提前完成了此项工程.其工程进度满足如图所示的函数关系. (1)填空:工程队原计划的工作效率为 ,图中a = . (2)求直线AB 的解析式,并计算该工程队实际几天完成此项工程.三、解答题(本大题3小题,计33分)22.(10分)倜海机械厂引进YC -A 型和YC -B 型两种机床共8台,都生产同一种产品,其中的3台A 型机床生产3天的产品装满6箱还差6件,另外的5台B 型机床生产2天的产品装满8箱后还剩2件, 每台B 型机床比A 型机床一天多生产3件产品. (1)求一台A 型机床和一台B 型机床每天各生产多少件产品?(2)已知每台A 型机床比B 型机床产品的次品率高1.9个百分点,且3台A 型机床和5台B 型机床同时工作一段时间,生产出的产品次品率恰为3%,求一台A 型机床和一台B 型机床的产品次品率分别是多少?(说明: 次品率=次品个数÷产品个数;13%比10%高3个百分点.)23.(11分)已知,如图,梯形ABCD 中,AB ∥CD ,点P 为AB 边上一点,作点A 关于直线DP 的对称点M .(1)如图1,点M 在DC 边上.试判断四边形APMD 的形状,并说明理由;(2)如图2,若点M 在梯形ABCD 内部,连结AM 交DP 于O ,过点M 作MN ∥DP ,交AB平时期 中 期 末 测验1 测验2 测验3 成绩9094929592F E D B C A (第20题) (第21题) 53a12工作天数x 工作量y0BAy xl 1l 2P C A OBDl 2l 1xyPCE B O A D 边于N .①试说明点P 是AN 的中点;②如果DP =AD =15, 且OA =2OP ,求线段AN 的长.24.(12分)如图1,直线l 1:y =nx -1与l 2:y = -x +n 交于第一象限内一点P .(1) 求P 点的坐标(用含n 的代数式表示); (2) 说明n 大于1; (3)设直线l 1与x 轴交于点A ,直线l 2与x 轴交于点B .现将直线l 1向左平移(m +1)个单位(m >0),与x 轴负半轴交于点C ;将直线l 2向右平移2m 个单位, 与x 轴正半轴交于点D . ①如果A , B 是线段OD 的三等分点,求点C 的坐标;②如图2,当n =3时,若平移后的两条直线交于y 轴上同一点E ,求点C 的坐标.(第24题图1)(第23题图1)M P BADC(第23题图2) N OMDA B P C(第24题图2)八年级数学试题评分说明及参考答案1~15题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案BCDBAACCCDCADBB16.解:由②得x =2y +4③,(1分)把③代入①,得2(2y +4)+y=3,(2分) 解得y=-1(4分)把y=-1代入③,得x =2 (5分)∴21x y ==-⎧⎨⎩,.(6分) 17.解:原式=6 ×23-6×2+33(2分) =9-32+33(4分) =3-3(6分)18.解:(1) ∵A 点坐标为(-3,0),D 点坐标为(0,4),∴OA=3,OB=4. (1分) ∴AD =2243+=5 .( 2分)∵四边形ABCD 为菱形, ∴AB =AD =5. ( 3分) ∴面积为5 ×4=20 ( 4分)(2)B 点为(2,0),C 点为(5,4). ( 7分) 19.解:(1)平均成绩为3949290++=92;(3分)(2)总评成绩=92×10%+95×30%+92×60%=92.9.(7分) 20.解:(1)△ABE 与△DFA 全等(1分) 理由:∵在矩形ABCD 中,AD ∥BC, ∴∠DAE =∠AEB.(2分)又∵在矩形ABCD 中,∠B=90°,AD=BC ∴∠B=∠DFA=90°,AE=BC=AD. ∴△ABE ≌△DFA (3分) (2)∵AE=BC=10,AB =6,∴BE =8.(4分)∴EC=BC-BE =2(6分) 又∵DC =AB =6, ∴DE= 1022622=+( 8分)21.解:(1)121,41.(2分) (2)设直线AB 的解析式为y =kx +b,把(3,41),(5,21)代入可得k=81,b=-81. ∴直线AB 的解析式为y =81x -81.(6分)把y=1代入得81x -81=1,解得x =9.答:该工程队实际9天完成此项工程.(8分)22.解(1):设一台A 型机床每天生产x 件产品,B 型机床每天生产(x +3)件产品,每箱装y 件产品. 据题意得3366,52(3)8 2.x y x y ⨯=-⎧⎨⨯+=+⎩(3分)解得⎩⎨⎧==.1610y ,x (5分)答:一台A 型机床每天生产10件产品,B 型机床每天生产13件产品。
2014-2015学年北京市北师大实验中学八年级(上)期末数学试卷解析(pdf版)
2014-2015学年北京市北师大实验中学八年级(上)期末数学试卷一、选择题(每小题3分,共30分)..3.(3分)(2014秋•宣武区校级期末)根据下列已知条件,不能唯一确定△ABC的大小和形状的是()4.(3分)(2009•怀柔区一模)已知,一次函数y=kx+b的图象不经过第二象限,则k、b的符号分别为()5.(3分)(2014秋•宣武区校级期末)已知点A(2,﹣3)关于x轴对称的点的坐标为点B (2m,m+n),则m﹣n的值为()6.(3分)(2013秋•绥棱县期末)若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()7.(3分)(2004•贵阳)已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()8.(3分)(2014秋•宣武区校级期末)若分式方程有增根,则a 的值是( )9.(3分)(2003•河北)如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,则水槽中水面上升高度h 与注水时间t 之间的函数关系大致是下列图象中的( ).10.(3分)(2014秋•宣武区校级期末)已知直线y=x+(n 为正整数)与坐.二、填空题(每空3分,共30分) 11.(3分)(2014秋•宣武区校级期末)使式子有意义的x 的取值范围是 .12.(3分)(2006•仙桃)分解因式:4x 2﹣16= .13.(3分)(2014秋•宣武区校级期末)比较大小: .14.(3分)(2013秋•西城区期末)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为.15.(3分)(2011•烟台)等腰三角形的周长为14,其一边长为4,那么它的底边为.16.(3分)(2015•玉溪模拟)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD 的周长为13cm,则△ABC的周长是cm.17.(3分)(2014秋•宣武区校级期末)已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是.18.(3分)(2013秋•包河区期末)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.19.(3分)(2014秋•宣武区校级期末)如图,在平面直角坐标系xOy中,已知A、B两点分别在x轴、y轴上.以AB为一边,作等腰△ABC,若点C在y轴上,则符合题意的C点有个.20.(3分)(2014秋•宣武区校级期末)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.三、解答题(每小题4分,共24分)21.(4分)(2014秋•宣武区校级期末)计算:•.22.(4分)(2014秋•宣武区校级期末)计算:.23.(4分)(2014秋•宣武区校级期末)计算:3÷+(π﹣1)0+.24.(4分)(2014秋•宣武区校级期末)因式分解:6p(p+q)﹣4q(p+q).25.(4分)(2014秋•宣武区校级期末)因式分解:2x2+x﹣3.26.(4分)(2014秋•宣武区校级期末)解关于x的方程:.六、解答题(每小题6分,共36分)27.(6分)(2014•海淀区一模)如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,∠EAB=90°.求证:AB=AE.28.(6分)(2013•黄石)先化简,再求值:,其中a=,b=.29.(6分)(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.(6分)(2013•定西)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)31.(6分)(2014秋•宣武区校级期末)如图,A(0,1),M(3,2),N(4,4),动点P 从点A出发,沿y轴以每秒1个单位长度的速度向上移动,l为过点P且平行于直线y=﹣x 的直线,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.32.(6分)(2014秋•宣武区校级期末)已知△ABC中,AB=AC,∠BAC=α(0°<α<60°),△DBC为等边三角形.(1)如图1,∠ABD=(用含α的式子表示);(2)如图2,若∠BCE=150°,∠ABE=60°,判断△ABE的形状,并说明理由;(3)在(2)的条件下,直线AD与CE的夹角是;(4)在(2)的条件下,若BC=4cm,∠CED=45°,则α=;AD=cm.2014-2015学年北京市北师大实验中学八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分).2.(3分)(2005•盐城)下列因式分解中,结果正确的是().=﹣3.(3分)(2014秋•宣武区校级期末)根据下列已知条件,不能唯一确定△ABC的大小和形状的是()4.(3分)(2009•怀柔区一模)已知,一次函数y=kx+b的图象不经过第二象限,则k、b的符号分别为()5.(3分)(2014秋•宣武区校级期末)已知点A(2,﹣3)关于x轴对称的点的坐标为点B (2m,m+n),则m﹣n的值为()6.(3分)(2013秋•绥棱县期末)若等腰三角形腰上的高是腰长的一半,则这个等腰三角形CD=A==CD=7.(3分)(2004•贵阳)已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()8.(3分)(2014秋•宣武区校级期末)若分式方程有增根,则a的值是()9.(3分)(2003•河北)如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,则水槽中水面上升高度h与注水时间t之间的函数关系大致是下列图象中的().10.(3分)(2014秋•宣武区校级期末)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S,则S.﹣x+,则﹣x+=0x==•=(﹣(﹣+﹣+﹣=(﹣=×.二、填空题(每空3分,共30分)11.(3分)(2014秋•宣武区校级期末)使式子有意义的x的取值范围是x≤1且x≠﹣2.12.(3分)(2006•仙桃)分解因式:4x2﹣16=4(x+2)(x﹣2).13.(3分)(2014秋•宣武区校级期末)比较大小:>.43∴14.(3分)(2013秋•西城区期末)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为70°.15.(3分)(2011•烟台)等腰三角形的周长为14,其一边长为4,那么它的底边为4或6.16.(3分)(2015•玉溪模拟)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD 的周长为13cm,则△ABC的周长是19cm.AE=CE=17.(3分)(2014秋•宣武区校级期末)已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是②③④.18.(3分)(2013秋•包河区期末)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.标的值均符合方程组中两个方程的要求,因此方程组的解应该是则是即方程组因此方程组的解是19.(3分)(2014秋•宣武区校级期末)如图,在平面直角坐标系xOy中,已知A、B两点分别在x轴、y轴上.以AB为一边,作等腰△ABC,若点C在y轴上,则符合题意的C 点有4个.20.(3分)(2014秋•宣武区校级期末)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).三、解答题(每小题4分,共24分)21.(4分)(2014秋•宣武区校级期末)计算:•.解:•.22.(4分)(2014秋•宣武区校级期末)计算:.=24)﹣23.(4分)(2014秋•宣武区校级期末)计算:3÷+(π﹣1)0+.+=1+1+3+=5+24.(4分)(2014秋•宣武区校级期末)因式分解:6p(p+q)﹣4q(p+q).25.(4分)(2014秋•宣武区校级期末)因式分解:2x2+x﹣3.26.(4分)(2014秋•宣武区校级期末)解关于x的方程:.六、解答题(每小题6分,共36分)27.(6分)(2014•海淀区一模)如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,∠EAB=90°.求证:AB=AE.28.(6分)(2013•黄石)先化简,再求值:,其中a=,b=.==∵.29.(6分)(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.(6分)(2013•定西)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)31.(6分)(2014秋•宣武区校级期末)如图,A(0,1),M(3,2),N(4,4),动点P 从点A出发,沿y轴以每秒1个单位长度的速度向上移动,l为过点P且平行于直线y=﹣x 的直线,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.32.(6分)(2014秋•宣武区校级期末)已知△ABC中,AB=AC,∠BAC=α(0°<α<60°),△DBC为等边三角形.(1)如图1,∠ABD=30°﹣α(用含α的式子表示);(2)如图2,若∠BCE=150°,∠ABE=60°,判断△ABE的形状,并说明理由;(3)在(2)的条件下,直线AD与CE的夹角是60°;(4)在(2)的条件下,若BC=4cm,∠CED=45°,则α=30°;AD=4cm.﹣ABC=﹣﹣﹣﹣ADB=。
20132014新北师大版八年级上数学期末试题及答案
新北师大版八年级上册数学期末测试卷(完成时间; 90 分钟满分 120 分)命题:潘浩一、选择题(每题 2 分,共 30 分)1.25的相反数是()A. 5B. 5C. 5D.252.在给出的一组数 0,, 5 ,3.14 ,3 9 ,22中,无理数有()7A.1 个 B .2个C.3个D.5 个3.某一次函数的图象经过点( 1,2),且 y 随 x 的增大而减小,则这个函数的表达式可能是()A.y2x 4B.y3x 1C.y3x 1D.y2x44. 为了让人们感觉扔掉废旧电池对环境造成的影响,某班环保小组的 6 名同学记录了自己家中一个月内扔掉废电池的数目,结果以下(单位:个): 7,5,6,4,8,6,假如该班有45名学生,那么依据供给的数据预计该月全班同学各家总合扔掉废旧电池的数目约为()B.2255.以下各式中 , 正确的选项是()A.16=±4 B.±16=4 C.327=-3D.( 4)2=-46.将三角形三个极点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()DA .将原图向左平移两个单位B.关于原点对称O C.将原图向右平移两个单位D.关于 y 轴对称.关于一次函数y x ,以下结论错误的选项是()A E 7= +6(第 8 题图)A.函数值随自变量增大而增大 B .函数图象与 x 轴正方向成 45°角C.函数图象不经过第四象限D.函数图象与 x 轴交点坐标是( 0,6).如图,点 O是矩形 ABCD的对称中心, E 是 AB边上的点,沿 CE折叠后,点 B 恰好与点8重合,若 BC=3,则折痕 CE=()33A.23 B .2C.3D.6C B O9. 正方形 ABCD在座标系中的地址以以下图,将正方形ABCD绕 D 点顺时针旋转 90°后, B点的坐标为()A、(- 2,2) B 、(4,1) C 、(3,1) D 、(4,0)10. 如图,某电信公司供给了A, B 两种方案的挪动通信花费y (元)与通话时间 x (元)之间的关系,则以下说法错误的是()..A.若通话时间少于 120 分,则A方案比B方案廉价 20元70 B.若通话时间超出 200 分,则B方案比A方案廉价 12元50 C.若通信花费为 60 元,则B方案比A方案的通话时间多30D.若两种方案通信花费相差 10 元,则通话时间是 145分或 185 分y(元) A 方案B 方案120 170 200250x(分)(第 10 题)11.全军授命,我解放军各部奋力抗战在救灾一线 . 现有甲、乙两支解放军小分队将救灾物质送往某重灾小镇 , 甲队先出发 , 从队伍基地到该小镇只有独一通道 , 且行程为 24km. 如图是他们行走的行程关于时间的函数图象, 四位同学观察此函数图象得出有关信息, 其中正确的个数是()行程( km)24乙队出发乙队到达小镇甲队比乙队早出甲队到达小镇小时后追上甲用了 4 小时,平发 2 小时,但他用了 6 小时,12队均速度是 6km/h们同时到达途中逗留了1小时0 1 2 5 6 时间( h)3 412.两个一次函数ax b 和y=bx+a,它们在同一坐标系中的图象大体是()y= +y y y y o x o x ox oxA B C D13. 一名学生骑自行车出行的图象如图,此中正确的信息是()7千米/时y/ 千米A. 整个过程的均匀速度是76 605B. 前 20 分钟的速度比后半小时慢C.该同学途中休息了10 分钟D.从起点到终点共用了50 分钟4321O10 20 30 4050 60 x/分14.若 2a 3x b y 5 与 5a 24 yb 2x 是同类项,则()x 1x 2x 0x 3A .B .C .y 2 D .1y 2 y 1 y15.如图,已知正方形 ABCD 的边长为 2,假如将线段 BD 绕着点 B 旋转后,点 D 落在 CB 的延长线上的 D ′处,那么 A D ′为() ADA . 10B .22C . 7D .23二、填空题(每题2 分,共 24 分)16. 在 ABC 中, AB 15, AC 13, 高 AD 12, 则 D ′.BCABC 的周长为 17. 已知 a 的平方根是 8 ,则它的立方根是 .18. 如图,已知直线 y=ax+b 和直线 y=kx 交于点 P (-4 ,-2 ),则关于 x ,y 的二元一次方程组yax b,的解是 ________.y kx.(第 18 题图)19.四根小木棒的长分别为 5 cm,8 cm,12 cm ,13 cm ,任选三根构成三角形, 此中有 ________个直角三角形.20. 已知 O (0, 0 ), A (- 3, 0 ), B (- 1, -2),则 △AOB 的面积为 ______.21 小明家准备春节前举行 80 人的聚餐,需要去某餐馆订餐.据认识餐馆有10人坐和 8人坐两种餐桌,要使所订的每个餐桌恰好坐满,则订餐方案共有_____种.22. 若一次函数 ykx b k 0与函数 y1x 1 的图象关于 X 轴对称,且交点在 X 轴上,2则这个函数的表达式为:.23. 如图,已知 yax b 和 ykx 的图象交于点 P ,依据图象可得关于 X 、 Y 的二元一次方ax y b 0.程组y的解是kx 024. 直线 y kxb 经过点 A( 2,0) 和 y 轴正半轴上的一点 B ,假如 △ ABO ( O 为坐标原点)的面积为 2,则 b 的值为. 25. k )在直线 y x 上,则点 到 x 轴的距离是.点 M (-2 , =2 +1 M26. 已知一次函数的图象经过( -1 ,2),且函数 y 的值随自变量 x 的增大而减小,请写出一个吻合上述条件的函数分析式.27. 如图,一次函数 y axb 的图象经过 A 、B 两点,则关于 x 的不等式 ax b 0 的解集是.28. 如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间 x(天)之间的关系 象 . 依据 象供给的信息,可知 公路的 度是______米.29. 符号“ f”表示一种运算,它 一些数的运算 果以下:(1) f (1) 0 , f (2) 1, f (3)2 , f (4)3,⋯12 f 13 f1 f1f45(2)2,3, 4,5,⋯1 f (2008)f利用以上 律 算:2008.a b 1 0 30. 于数 a ,b ,c ,d , 定一种运算=ad -bc ,如=1×( - 2)- 0×2=- 2,c d2( 2)那么当( x1) ( x 2) =27 , x=( x 3) ( x 1)三、解答 (60 分)31. (1)化 (本 3 分,共 12 分)①25 38 9 81 ②实数 a 、 b 在数轴上的地址以以下图,化简: a ba2274169.bxa( 2)解以下方程 (本10 分每 5 分)3x 5y 3( x 1) y 5①y 1②1) 3( x 5)5x5( y32.已知:一次函数 y 2x 4 .( 1)在直角坐 系内画出一次函数y 2x 4 的 象.( 2)求函数 y 2x 4 的图象与坐标轴围成的三角形面积. y( 3)当 x 取何值时, y>0.65 4 3 2 1-6 -5 -4 -3 -2 -1O123456x- 1- 2- 3- 4- 5 - 633. 折叠矩形 ABCD 的一边 AD ,使点 D 落在 BC 边的 F 点处,若 AB=8cm ,BC=10cm ,求 EC 的长 .34.某校八年级( 1)班 50 名学生参加 2007 年市数学质量监控考试,全班学生的成绩统计以下表:成绩 71 74 78 80 82 83 85 86 88 90 91 9294(分)人数 1235453784332请依据表中供给的信息解答以下问题:( 1)该班学生考试成绩的众数是.( 2)该班学生考试成绩的中位数是.(3)该班张华同学在此次考试中的成绩是83 分,能不可以说张华同学的成绩处于全班中游偏上水平?试说明原由.35. 如图,直线 PA 是一次函数 y x 1的图象,直线 PB 是一次 函数 y 2x 2 的图象.(1)求 A、 B、 P 三点的坐标;( 2)求四边形 PQOB的面积;36. 如图,直线l1:y与直线l 2:y mx n订交于点P(1 ,b).x 1( 1)求 b 的值;(2)不解关于 x,y 的方程组x y10请你直接写出它的解.mx y n0yl 1b PO1x l237.甲、乙两件衣饰的成本共 500 元,商店老板为获得利润,决定甲衣饰按 50℅的利润标价,乙衣饰按 40%的利润标价销售 . 在实质销售时,应顾客要求,两件衣饰均按标价 9 折销售,这样商店共盈利 157 元,求两件衣饰的成本各是多少元?38.康乐公司在 A,B 两地分别有同型号的机器 17 台和 15 台,现要运往甲地 18 台,乙地 14台,从 A,B 两地运往甲、乙两地的花费以下表:甲地(元/台)乙地(元/台)A 地600500B 地400800(1)假如从 A 地运往甲地x 台,求完成以上浮运所需总花费y (元)与x (台)之间的函数关系式;(2)请你为康乐公司设计一种最正确调运方案,使总花费最少,并说明原由。
新北师大版2014-2015年八年级上学期期末考试数学试题
新北师大版2014-2015年八年级上学期期末考试数学试题时间 120分钟 满分120分 2015、1、27一、选择题:(每小题3分,共18分。
)1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。
2、414 ,226 15三个数的大小关系是( )A: 414<`15<`226 B: 226<`15<`414 C: 414<`226<15 D:15< 226 <414 3、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。
)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=…………… 9、已知实数x y 满足y=x x 221616---+2,则x-y=…………---------- 10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题(78分)15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE∥BC,试求∠AFD 的度数。
北师大版初二级上册期末考试数学试卷含答案(共3套)
O DC AB D CBA北师大版八年级上学期期末考试数学试卷含答案一、选择题:1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a =C.= D=2.点(35)p ,-关于y 轴对称的点的坐标为( )A . (3,5)--B . (5,3)C .(3,5)-D . (3,5) 3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C.D. (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D. //AD BC AB =CD(图1)9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDGDHGE SS =四边形; ④图中只有8个等腰三角形。
2015新北师大版八年级数学上册期末试卷(含答案)
2015新北师大版八年级数学上册期末试卷(含答案)初二数学第一学期期末考试试卷考生须知:1.本试卷共7页,共六道大题,25道小题。
2.本试卷满分100分,考试时间100分钟。
3.除作图题用铅笔,其余用蓝色或黑色签字笔作答,不允许使用修正工具。
一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内)1.16的算术根是()。
A。
4B。
-4C。
±4D。
±82.若代数式(2x-3)/(x-1)有意义,则x的取值范围是()。
A。
x>1B。
x≥1C。
x≥1且x≠3/3D。
x>1且x≠2/33.下列图形不是轴对称图形的是()。
A。
线段B。
等腰三角形C。
角D。
有一个内角为60°的直角三角形4.下列事件中是不可能事件的是()。
A。
随机抛掷一枚硬币,正面向上。
B。
a是实数,a²=-a。
C。
长为1cm、2cm、3cm的三条线段为边长的三角形是直角三角形。
D。
___从古城出发乘坐地铁一号线去西单图书大厦。
5.初二年级通过学生日常德育积分评比,选出6位获“阳光少年”称号的同学。
年级组长___将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给___等6位同学。
这些奖品中3份是研究文具,2份是体育用品,1份是科技馆通票。
___同学从中随机取一份奖品,恰好取到体育用品的可能性是()。
A。
11/12B。
6/32C。
3/32D。
2/326.有一个角是36°的等腰三角形,其它两个角的度数是(。
)。
A。
36°。
108°B。
36°。
72°C。
72°。
72°D。
36°。
108°或72°。
72°7.下列四个算式正确的是()。
A。
3+3=6B。
23÷3=2C。
(-4)×(-9)=36D。
2015北师大版八年级上数学期末测试题及答案[1]
北师大版八年级上数学期末测试题1班级 姓名一、选择题(本题共有10个小题,每小题3分,共30分) 1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.-8的立方根是( )(A )2± (B )2 (C ) -2 (D )24 4.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 5.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x6..已知函数23(1)m y m x -=+是正比例函数,且图像在第二、四象限内,则m 的值是( )A .2B .2-C .2±D .12-7(A )平均数 (B )中位数 (C )众数 ( D 8.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )19.在平面直角坐标系中,已知一次函数b kx y +=的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, 10.已知:5=a ,72=b ,且b a b a +=+,则b a -的值为( ) (A )2或12 (B )2或-12 (C )-2或12 (D )-2或-12 二、填空题:(每小题3分,共12分)11.9的平方根是 。
12.如图将等腰梯形ABCD 的腰AB 平行移动到DE 的位 置,如果∠C=60°,AB=5,那么CE 的长为 。
2014北师大版八年级上册数学期末测试题2
八年级2014-2015学年度上数 学 测 试 题(时间:120分钟;满分150分)姓名: 成绩:一、选择题(本大题共12个小题,每小题4分,共48分) .1.(2013安徽)计算32)2(x -的结果是( )A.52x -B. 68x -C.62x -D.58x -2.(2013江苏南通)有3cm ,6cm ,8cm ,9cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为【 】A .1B .2C .3D .43.(2013攀枝花)如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=( )A . 30°B . 35°C . 40°D . 50°3题 4题 5 题 4. (2013铁岭)如图,在△ABC 和△DEB 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DCC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D5. (2013临沂)如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB=ADB .AC 平分∠BCD C .AB=BD D .△BEC ≌△DEC6. (2013深圳市)分式242+-x x 的值为0,则( )A.2-=xB. 2±=xC. 2=xD. 0=x7.(2013钦州)等腰三角形的一个角是80°,则它顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°8.(2013山东省滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 9.(2013苏州)已知31=-x x ,则x x 232142+-的值为( ) A .1 B .32 C .52 D .7210. (2013铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A .B .C .D .11.(2013贵州省毕节市)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 式垂足,连接CD ,若BD=1,则AD 的长是( ) A.23 B.2 C.43 D. 412题 15题12.(2013 德州)如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3)二、填空题(每题4分,共24分)13.(2013淮安)点A (﹣3,0)关于y 轴的对称点的坐标是 .14.(2013泰州)若12+=n m ,则2244n mn m +-的值是 .15.(2013江苏泰州)如图,△ABC 中,AB+AC=6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 cm .16. (2013德阳市)已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是17. (2013永州)已知0a b a b+=,则ab ab 的值为 18.(2013玉林)一列数1a ,2a ,3a ,…,其中211=a ,111--=n n a a (n 为不小于2的整数),则100a =三、解答题:(本大题2个小题,每个小题7分,共14分)。
2014-2015年(新北师大版)八年级上学期期末考试数学试题
B A2014-2015年(新北师大版)八年级(上)期末考试数学试卷考试时间:120分钟,试卷满分100分一、选择题(每题3分,共24分)1、在实数101.05063-0722 、、、、、π-中,无理数的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个2、如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=75°,则∠AED 的度数是( )A 、120°B 、110°C 、115°D 、100° 3、一次函数b kx y +=的图形如右图所示,则k 、b 的值是( )A 、0,0>>b kB 、0,0<>b kC 、0,0><b kD 、0,0<<b k4、某青年排球队12名队员年龄情况如下: 年龄 18 19 20 21 22 人数14322则这12名队员年龄的众数、中位数分别是( )A 、19,20B 、19,19C 、20,20D 、20,19 5、下列命题正确的是( )A 、正方形既是矩形,又是菱形B 、一组对边平行,另一组对边相等的四边形是等腰梯形C 、四条边相等的四边形是正方形D 、矩形的对角线一定互相垂直 6、16的平方根是( )A 、4B 、±4C 、2D 、±27、判断下列几组数据中,可以作直角三角形的三条边的是( )A 、6,15,17B 、7,12,15C 、13,15,20D 、7,24,258、如图,一圆柱高cm 8,底面半径cm 2,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( ) A 、cm 20 B 、cm 10 C 、cm 14 D 、无法确定.二填空题(每题3分,共18分)9、9的算术平方根是 。
10、如果某公司一销售人员的个人月收入与其每月的销售量成一次函数,那么此销售人员在4千件时的月收入是 元。
【北师大版】八年级数学上期末试卷(及答案)
一、选择题1.如果分式2121x x -+的值为0,则x 的值是( ) A .1B .0C .1-D .±1 2.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 3.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或24.2222x y x y x y x y-+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ 5.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 6.将11n n x x +--因式分解,结果正确的是( ) A .()121n xx -- B .()11n x x -- C .()1n x x x --D .()()111n x x x -+- 7.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个 8.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=9.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .10.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm11.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 12.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°二、填空题13.计算:22311x x x -=+-____________. 14.若13x x +=,则231x x x ++的值是_______. 15.若()()253x x x bx c +-=++,则b+c=______.16.已知4222112x x +-⋅=,则x =________17.如图,∠AOB =45°,OC 平分∠AOB ,点M 为OB 上一定点,P 为OC 上的一动点,N 为OB 上一动点,当PM +PN 最小时,则∠PMO 的度数为___________.18.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.19.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 20.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.三、解答题21.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?22.列方程解应用题:为了响应绿色环保的倡议,我县教体局提出了每个人都践行“双面打印,节约用纸”的口号.已知打印一份资料,如果用A4厚型纸单面打印,总质量为800克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为320克,已知每页A4薄型纸比A4厚型纸轻0.8克,求A4薄型纸每页的质量(墨的质量忽略不计).23.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭. 24.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标:________;(2)求ABC 的面积:(3)点(),2P a a -与点Q 关于x 轴对称,若6PQ =,则点P 的坐标为________. 25.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.26.如图,AD 、AE 分别是ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.2.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)xx xx x x+⋅--⋅--+-=1-31xx--=21x-,故选D.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x2-4=0,且x+2≠0,所以x2=4,且x≠-2,解得,x=2.故选:C.【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 5.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.6.D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 7.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.8.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.9.D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.10.B解析:B【分析】根据折叠的性质得到:DE=CD,BE=BC=5cm,求出AE=4cm,根据△ADE的周长为AD+DE+AE=AC+AE代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.11.D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx,4-1×t=3,解得:t=1,x=1,故选:D.【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.12.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B 代入求出∠C 即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B ,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D .【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.二、填空题13.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 14.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算 解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算.【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.15.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.16.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 17.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.18.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠.在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△, ∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.19.7【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A (a-13)与点B (2-2b-1)关于x 轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A (a-1,3)与点B (2,-2b-1)关于x 轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b+=2×3+1=7.故答案为:7.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.20.25【分析】依据角平分线的定义即可得到∠DBC的度数再根据三角形外角的性质即可得到∠CAE的度数【详解】解:∵∠ABC=30°BD平分∠ABC∴∠DBC=∠ABC=×30°=15°又∵AE⊥BD∴∠解析:25【分析】依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.【详解】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°-15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB-∠C=75°-50°=25°,故答案为:25.【点睛】本题考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.(1)这项工程的规定时间是30天;(2)该工程的费用为225000元【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x天,根据题意得:1110()1513x x x+⨯+=,解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.2克.【分析】设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克, 根据题意,得:80032020.8x x =⨯+, 解得 3.2x =经检验 3.2x =是原分式方程的解,且符合题意.答:例子中的A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验. 23.4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦ ()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-=【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.24.(1)作图见详解,(−2,1);(2)8.5;(3)(5,3)或(−1,−3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用分割法求解即可.(3)先根据P ,Q 关于x 轴对称,得到Q 的坐标,再构建方程求解即可.【详解】(1)如图,△A 1B 1C 1即为所求.点C 1的坐标(−2,1).故答案为:(−2,1);(2)S △ABC =5×5−12×1×3−12×4×5−12×2×5=8.5. (3)∵点(),2P a a -与点Q 关于x 轴对称,∴Q (),2a a -,∵6PQ =,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P (5,3)或(−1,−3).故答案为:(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.25.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.26.(1)10°;(2)12DAE,证明见解析. 【分析】(1)根据三角形的内角和等于180︒列式求出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠代入数据计算即可得解;(2)根据三角形的内角和等于180︒列式表示出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠整理即可得解.【详解】解:(1)40B ∠=︒,60C ∠=°,180180406080BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒, AE ∵是角平分线, 11804022BAE BAC ,AD 是高,90904050BADB , 504010DAE BAD BAE ;(2)1()2.B α∠=,()C βαβ∠=<,180()BAC ,AE ∵是角平分线, 1190()22BAE BAC ,AD 是高,9090BADB , 1190[90()]()22DAE BAD BAE .【点睛】本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,熟练掌握定理与概念并准确识图理清图中各角度之间的关系是解题的关键.。
20142015新北师大版八年级上数学期末试题及答案_详解
八年级上册数学期末测试卷一、选择题 (每题3分,共计24分) 1.4的算术平方根是()A .4 B .2 C .2 D.2 2.在给出的一组数0,,5,3.14,39,722中,无理数有()A .1个 B.2个C.3个 D.5个3. 某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是()A .42xyB .13x yC .13xyD .42xy4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180B.225 C.270 D.3155.下列各式中,正确的是A .16=±4 B.±16=4 C.327= -3 D .2(4)= - 46.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位 D.关于y 轴对称7.对于一次函数y= x+6,下列结论错误的是A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)8.如果某公司一销售人员的个人月收入与其每月的销售量成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是元。
二、填空题 (每题3分,共计27分) 9. 在ABC 中,,13,15ACAB 高,12AD则ABC 的周长为 . 10. 已知a 的平方根是8,则它的立方根是 .11.在下面的多边形中:①正三角形;②正方形;③正五边形;销售量(千件)xy月收入(元)21 O500700yxA BOx y 3y④正六边形,如果只用一种正多边形进行镶嵌,那么不能..镶嵌成一个平面的有12..四根小木棒的长分别为 5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.13.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种.15.若一次函数0kb kx y与函数121xy的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为: .16.如图,已知b axy和kx y的图象交于点P ,根据图象可得关于x ,y 的二元一次方程组ykxb y ax 的解是 .17.如图,在平面直角坐标系中,把直线x y3沿y 轴向下平移后得到直线AB ,如果点N (m ,n )是直线AB 上的一点,且3m -n =2,那么直线AB 的函数表达式为三、解答题18.化简(本题10分每题5分)①21631526②(2+3)(23)+ 21219.解下列方程组(本题10分每题5分)①1553yxy x ②)5(3)1(55)1(3xy y x 20.(本题8分)某校为了公正的评价学生的学习情况.规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、ADCEBF期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?21.(本题11分) 如图,已知四边形ABCD 是正方形,E 是正方形内一点,以BC 为斜边作直角三角形BCE ,又以BE 为直角边作等腰直角三角形EBF ,且∠EBF=90°,连结AF 。
(8套)最新北师大版八年级数学上册期末试卷(含答案解析)
第7题图第一学期八年级期末联考 数 学 试 题(一)(2014年1月15日上午8﹕30至10﹕30)(满分150分,考试时间120分钟)题号一 二 三总分18 19 20 21 22 23 24 25 26 得分一、选择题(有且只有一个答案正确)(每小题3分,共21分) 1.下列式子正确的是( ).93=93=±93=- D.|1212= 2. 下列计算正确的是( )A .a 2•a 3=a 6B .a 6-a 3=a 3C .a 3÷a 3=a D. (a 2)3=a 63.下列实数 中,是无理数的频率为( ) A. 20% B. 40% C. 60% D. 80% 4.下列等式从左边到右边的变形属于分解因式的是( ) A.(ab+1)(ab-1)=ab 2-1 B. x 2-4x+4=x(x-4)+4C.x 2-5x+6=(x-2)(x-3)D. (x-y)2+(y-x)=(x-y)(x-y+1)5.如果多项式x 2+8x +m 恰好能写成一个二项式的平方,则m 的值可以是( ).A. 8±B.16C. 4D. 4± 6.如图所示四边形ABCD 中AD//BC,AC 与BD 相交于点O,OA=OC ,则图中共有( )对全等的三角形。
A.1 B.2 C.3 D.47、如图,所有的四边形都是正方形,•所有的三角形都是直角三角形,其中最大的正方形边长为10cm ,正方形A 的边长为6cm ,B 的边长为5cm ,C•的边长为5cm ,则正方形D 的边长为( )A .3cmB .4cmC 1415二、填空题(每小题4分,共40分) 8.64的立方根是 _________.9.因式分解:9x 2-16 = .10.计算:()201320142 1.53⎛⎫⨯= ⎪⎝⎭____ ____.学校 班级 姓名 座号 密 封 装 订 线考试顺序号3,16,,5,722--π11.一个等腰三角形的一个角为1000,则其底角的度数为 . 12.命题“2220ABC AC BC AB +≠∠≠若中,,则C 90”的结论是 ,若用反正法证明此命题时应假设13.如图AB=AC,请添写一个条件在横线上________________,使△ABE ≌△ACD. 14.如图,湖泊两岸有A 和B 两座古塔,两座古塔之间的距离AB 无法直接测量,我们可以在湖边选一个C 点,使得∠ABC=90°,并测得AC 长400米,BC 长320米,请你运用所学知识计算两座古塔之间的距离AB 为______米.15. 如图,△ABC 中,AB=6cm ,BC=10cm ,AC 的垂直平分线交AC 于点D,交BC 于点E,则△ABE 的周长等于 cm 。
北师大版八年级(上学期)期末数学试卷含参考答案
((.北师大版八年级(上学期)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在、、、、、﹣3x中,分式的个数有()A.2个B.3个C.4个D.5个2.下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.3,5)B.(3,﹣5)C.5,﹣3)D(﹣3,﹣5)4.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 0000076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm7.计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab8.下列各式中,从左到右的变形是因式分解的是()A.3x+3y﹣5=3(x+y)﹣5B.x2+2x+1=(x+1)2C.(x+1)(x﹣1)=x2﹣1D.x(x﹣y)=x2﹣xy9.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有()A.2对B.3对C.4对D.5对10.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=3二、填空题(共6小题,每小题3分,满分18分)11.当x≠__________时,分式有意义.12.一个正多边形的内角和是1440°,则这个多边形的边数是__________.13.分解因式:a2﹣81=__________.14.如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为__________cm.15.若5x﹣3y﹣2=0,则105x÷103y=__________.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了__________m.三、解答题(共8小题,满分52分)17.计算:﹣24x2y4÷(﹣3x2y)•2y﹣.18.分解因式:4x2y﹣4xy2+y3.19.在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.20.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.21.先化简,再求值:,其中x=3.22.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.23.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?24.如图(1),△Rt ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB 于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.( ( .广东省八年级(上)期末数学试卷一、选择题(共 10 小题,每小题 3 分,满分 30 分)1.在 、 、、 、 、﹣3x 中,分式的个数有( )A .2 个B .3 个C .4 个D .5 个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式 ,共 2 个.故选 A .【点评】本题主要考查分式的定义,注意 π 不是字母,是常数,则不是分式,是整式.2.下列运算中正确的是( )A .2x+3y=5xyB .x 8÷x 2=x 4C .(x 2y )3=x 6y 3 D .2x 3•x 2=2x 6 【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据合并同类项、同底数幂的除法及幂的乘方与积的乘方运算法则,结合选项进行判断即可.【解答】解:A 、2x 和 5y 不是同类项,不能合并,故本选项错误;B 、x 8÷x 2=x 6,原式计算错误,故本选项错误;C 、(x 2y )3=x 6y 3,计算正确,故本选项正确;D 、2x 3•x 2=2x 5,原式计算错误,故本选项错误.故选 C .【点评】本题考查了合并同类项、同底数幂的除法及幂的乘方与积的乘方等知识,掌握运算法则是解答本 题的关键.3.在平面直角坐标系 xOy 中,点 P (﹣3,5)关于 x 轴的对称点的坐标是( )A . 3,5)B .(3,﹣5)C . 5,﹣3)D (﹣3,﹣5)【考点】关于 x 轴、y 轴对称的点的坐标.【分析】关于 x 轴对称的两点的横坐标相等,纵坐标互为相反数.【解答】解:∵关于 x 轴对称的两点的横坐标相等,纵坐标互为相反数∴点 P (﹣3,5)关于 x 轴的对称点的坐标是(﹣3,﹣5).故选:D .【点评】本题主要考查的是关于坐标轴对称点的坐标特点,明确关于 x 轴对称的两点的横坐标相等,纵坐 标互为相反数是解题的关键.4.等腰三角形的顶角为 80°,则它的底角是( )A .20°B .50°C .60°D .80°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.【解答】解:∵等腰三角形的一个顶角为 80°∴底角=(180°﹣80°)÷2=50°.故选 B .【点评】考查三角形内角和定理和等腰三角形的性质的运用,比较简单.5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 0000076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克【考点】科学记数法—表示较小的数.【分析】对于绝对值小于1的数,用科学记数法表示为a×10n形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容写出即可.【解答】解:0.000000076克=7.6×10﹣8克,故选C.【点评】本题考查了科学记数法表示较小的数,注意:对于绝对值小于1的数,用科学记数法表示为a×10n 形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等.6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.7.计算3a•(2b)的结果是()A.3ab B.6a C.6ab D.5ab【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.下列各式中,从左到右的变形是因式分解的是()A.3x+3y﹣5=3(x+y)﹣5B.x2+2x+1=(x+1)2C.(x+1)(x﹣1)=x2﹣1D.x(x﹣y)=x2﹣xy【考点】因式分解的意义.【分析】判断一个式子是否是因是分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【解答】解:A、3x+3y﹣5=3(x+y)﹣5,等式的右边不是整式的积的形式,故本选项错误;B、x2+2x+1=(x+1)2,符合因式分解的定义,故本选项正确;C、(x+1)(x﹣1)=x2﹣1是整式的乘法,故本选项错误;D、x(x﹣y)=x2﹣xy是整式的乘法,故本选项错误.故选:B.【点评】本题考查了对因式分解的定义的理解和运用,正确把握因式分解的意义是解题关键.9.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有()A.2对B.3对C.4对D.5对【考点】全等三角形的判定.【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD△与ACD中,,∴△ABD≌△ACD(SAS),∴BD=CD,∠B=∠C,∠ADB=∠ADC,又∠EDB=∠FDC,∴∠ADE=∠ADF,∴△AED≌△AFD,△BDE≌△CDF△,ABF≌△ACE.∴△AED≌△AFD,△ABD≌△ACD△,BDE≌△CDF,△ABF≌△ACE,共4对.故选C.【点评】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题3分,满分18分)11.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.12.一个正多边形的内角和是1440°,则这个多边形的边数是10.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的内角和公式列式求解即可.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=1440°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键.13.分解因式:a2﹣81=(a+9)(a﹣9).【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用平方差公式分解即可.【解答】解:原式=(a+9)(a﹣9).故答案为:(a+9)(a﹣9).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为4cm.【考点】角平分线的性质.【分析】由角平分线的性质可知D到AB的距离等于DC,可得出答案.【解答】解:设D到AB的距离为h,∵AD平分∠CAB,且DC⊥AC,∴h=CD=4cm,故答案为:4.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.15.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360°除以一个外角度数即可.三、解答题(共8小题,满分52分)17.计算:﹣24x2y4÷(﹣3x2y)•2y﹣3.【考点】整式的混合运算.【专题】计算题;整式.【分析】原式利用单项式乘除单项式法则计算即可得到结果.【解答】解:原式=8y3•=16.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.分解因式:4x2y﹣4xy2+y3.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4xy+y2)=y(2x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.【考点】多边形内角与外角.【分析】可设多边形的一个内角是x度,根据题意表示出外角的度数.再根据各个内角和各个外角互补,列方程求解即可.【解答】解:设多边形的一个内角为x度,则一个外角为x度,依题意得:x+x=180,解得x=135,则360÷(180﹣135)=360÷45=8.答:多边形的边数是8.【点评】本题考查多边形的内角和外角的关系,利用多边形的外角和即可解决问题.20.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证∠A=∠C和AF=CE,即可证明△ADF≌△CBE,根据全等三角形对应边相等的性质即可解题.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF△和CBE中,,∴△ADF≌△CBE(SAS),∴DF=BE.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADF≌△CBE 是解题的关键.21.先化简,再求值:,其中x=3.【考点】分式的化简求值.【分析】首先将括号里面通分,进而因式分解化简求出即可.【解答】解:,=[+]×=×=,当x=3时,原式=2.【点评】此题主要考查了分式的化简求值,正确因式分解得出是解题关键.22.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣(2)如图所示:(3)A1(2,5),B1(1,0),C1(4,3).﹣﹣=6;【点评】此题主要考查了作图﹣﹣轴对称变换,关键是找出对称点的位置,再顺次连接即可.23.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?【考点】分式方程的应用.【分析】设篮球的单价为x元,则足球的单价为(x﹣40)元,根据用1500元购进的篮球个数与900元购进的足球个数相同,列方程求解.【解答】解:设篮球的单价为x元,依题意得,=,解得:x=100,经检验:x=100是原分式方程的解,且符合题意,则足球的价钱为:100﹣40=60(元).答:篮球和足球的单价分别为100元,60元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图(1),△Rt ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB 于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;平移的性质.【专题】几何综合题;压轴题.【分析】(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,11(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CF A=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CFA=∠AED,又∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG△与BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.12。
北师大版八年级上学期数学《期末考试试卷》带答案解析
北 师 大 版 数 学 八 年 级 上 学 期期 末 测 试 卷一、选择题1.在给出的一组数0,π,5,3.14,39,227中,无理数有( ) A. 1个 B. 2个C. 3个D. 5个2.4算术平方根是( )A. 4B. 2C.2 D. 2±3.在一组数据3,4,4,6,8中,下列说法正确的是( ) A. 平均数小于中位数 B. 平均数等于中位数 C. 平均数大于中位数D. 平均数等于众数4.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. 24y x =+B. 31y x =-C. 31y x =-+D. 24y x =-+5. 为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为( ) A. 180B. 225C. 270D. 3156.下列各式中,正确的是( ) A.164=±B. 164±=C.3273-=-D.()244-=-7. 将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( ) A. 将原图向左平移两个单位 B. 关于原点对称C. 将原图向右平移两个单位D. 关于y 轴对称8.对于一次函数y=x+6,下列结论错误是() A. 函数值随自变量增大而增大 B. 函数图象与轴正方向成45°角C. 函数图象不经过第四象限D. 函数图象与轴交点坐标是(0,6)9.如图,点O 是矩形ABCD 对称中心,E 是AB 边上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE =( )A. 4B. 23C. 5D. 610.如果x a y b =⎧⎨=⎩是方程x ﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是( )A. 8B. 5C. 2D. 0二、填空题11.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________. 12.已知a 平方根是8±,则它的立方根是_______13.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是_____________.14.四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有______个直角三角形. 15.已知O (0,0),A (-3,0),B (-1,-2),则△AOB 的面积为__________.16.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种. 17.若一次函数()0y kx b k =+≠与函数112y x =+的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为:______________________.18.如图,已知y ax b =+和y kx =的图象交于点P ,根据图象可得关于X 、Y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是_________________.三、解答题19.化简 ①()16215362-⨯- ②(2+3 )(23- )+ 212 20.解下列方程组35151x y x y =⎧⎨-=⎩();(2)()()()3155135x y y x ⎧-=+⎪⎨-=+⎪⎩21.如图所示,沿AE 折叠矩形,点D 恰好落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长.22.某校为了公正的评价学生的学习情况.规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高? 平时成绩 期中成绩 期末成绩 小明 96 94 90 小亮 90 96 93 小红 90909623.直线P A是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.(1)求A,B,P三点的坐标;(2)求四边形PQOB的面积;24.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?25.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?26. 某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?答案与解析一、选择题1.在给出的一组数0,π3.14227中,无理数有( ) A. 1个 B. 2个C. 3个D. 5个【答案】C 【解析】试题分析:根据无理数的概念知:π3个. 故选C. 考点:无理数.的算术平方根是( )A. 4B. 2C.D. 2±【答案】C 【解析】解:=2.故选C . 3.在一组数据3,4,4,6,8中,下列说法正确的是( ) A. 平均数小于中位数 B. 平均数等于中位数 C. 平均数大于中位数 D. 平均数等于众数【答案】C 【解析】 【分析】根据平均数,中位数及众数的性质,采用排除法求解即可.【详解】先算出平均数(3+4+4+6+8)÷5=5;中位数是4;众数是4. 故选C .【点睛】一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. 24y x =+ B. 31y x =-C. 31y x =-+D. 24y x =-+【答案】D【解析】 【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b , ∵图象经过点(1,2), ∴k+b=2;∵y 随x 增大而减小, ∴k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以 故选:D.【点睛】此题考查一次函数,解题关键在于掌握一次函数的性质及图象上点的坐标特征. 5.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为( ) A. 180 B. 225C. 270D. 315【答案】C 【解析】 【分析】先求出6名同学家丢弃废电池的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答. 【详解】解:估计本周全班同学各家总共丢弃废电池的数量为:7564866+++++×45=270.故选C .考点:用样本估计总体. 6.下列各式中,正确的是( )4=± B. 4=3=-4=-【答案】C 【解析】 【分析】根据算术平方根的定义对A 进行判断;根据平方根的定义对B 进行判断;根据立方根的定义对C 进行判断;根据二次根式的性质对D进行判断.【详解】A. 原式=4,所以A选项错误;B. 原式=±4,所以B选项错误;C. 原式=−3,所以C选项正确;D. 原式=|−4|=4,所以D选项错误;故选C. 【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.7. 将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A. 将原图向左平移两个单位B. 关于原点对称C. 将原图向右平移两个单位D. 关于y轴对称【答案】A【解析】试题分析:根据坐标与图形变化,把三角形三个顶点的横坐标都减2,纵坐标不变,就是把三角形向左平移2个单位,大小不变,形状不变.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选A.考点:坐标与图形变化-平移.8.对于一次函数y=x+6,下列结论错误的是()A. 函数值随自变量增大而增大B. 函数图象与轴正方向成45°角C. 函数图象不经过第四象限D. 函数图象与轴交点坐标是(0,6)【答案】D【解析】【分析】根据一次函数性质逐项判断即可.【详解】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=-6,∴直线与x轴交于点(-6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选D.【点睛】本题主要考查一次函数的性质,掌握一次函数的图象与x轴、y轴的交点及函数的增减性是解题的关键.9.如图,点O是矩形ABCD的对称中心,E是AB边上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE=()A. 4B. 23C. 5D. 6【答案】B【解析】【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【详解】∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得3在Rt△AOE中,设OE=x,则3,AE2=AO2+OE2,即(3)2=32+x2,解得3∴333故选B.【点睛】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.10.如果x ay b=⎧⎨=⎩是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A. 8B. 5C. 2D. 0 【答案】A【解析】【分析】把x ay b=⎧⎨=⎩代入方程,再根据5-a+3b=5-(a-3b),然后代入求值即可.【详解】把x ay b=⎧⎨=⎩代入方程,可得:a−3b=−3,所以5−a+3b=5−(a−3b)=5+3=8,故选A.【点睛】本题考查的知识点是二元一次方程的解,解题关键是利用整体代入的思想.二、填空题11.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为_______________.【答案】32或42【解析】【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴222213125CD AC AD=-=-=,∵∠D=90°,AB=15,AD=12,∴222215129BD AB AD=-=-=,∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴222213125CD AC AD =-=-=,∵∠ADB=90°,AB=15,AD=12, ∴222215129BD AB AD =-=-=, ∴BC=BD-CD=9+5=14, ∴△ABC 的周长=14+15+13=42;综上,△ABC 的周长是32或42, 故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键. 12.已知a 平方根是8±,则它的立方根是_______ 【答案】4. 【解析】 【分析】先根据乘方运算求出a ,再求出a 的立方根即可 【详解】解:∵a 的平方根是±8, ∴a=64,则它的立方根是4. 故答案为4.【点睛】本题考查平方根,立方根的应用,主要考查学生的理解能力和计算能力. 13.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________.【答案】42x y -⎩-⎧⎨==【解析】 【分析】由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解. 【详解】函数y=ax+b 和y=kx 的图象交于点P (-4,-2), 即x=-4,y=-2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组y ax b y kx=+⎧⎨=⎩的解是42x y -⎩-⎧⎨==.故答案为42x y -⎩-⎧⎨==.【点睛】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标. 14.四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有______个直角三角形.【答案】1 【解析】【详解】∵四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,∴可以组成三角形的有:5cm 、8cm 、12cm ;5cm 、12cm 、13cm ;8cm 、12cm 、13cm .要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm 、12cm 、13cm 的一组. ∴有1个直角三角形.【点睛】本题考查了1.勾股定理;2.三角形三边关系;3.勾股定理的逆定理. 15.已知O (0,0),A (-3,0),B (-1,-2),则△AOB 的面积为__________. 【答案】2 【解析】试题分析:将点A 、B 、C 在平面直角坐标系中找出,根据图形,由三角形的面积公式进行解答. 解:∵A (﹣3,0),B (﹣1,﹣2),O 为原点, ∴OA=3,OD ⊥AO 于点D , ∴S △AOB =OA•DB=×3×2=3. 故答案为3.考点:三角形的面积;坐标与图形性质.16.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种. 【答案】3 【解析】试题分析:设10人桌x 张,8人桌y 张,根据题意得:10x+8y=80 ∵x 、y 均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共3种方案. 故答案是3.考点:二元一次方程的应用.17.若一次函数()0y kx b k =+≠与函数112y x =+的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为:______________________. 【答案】y=-12x-1. 【解析】试题解析:∵两函数图象交于x 轴, ∴0=12x+1,解得:x=-2, ∴0=-2k+b , ∵y=kx+b 与y=12x+1关于x 轴对称, ∴b=-1,∴k=-12 ∴y=-12x-1.考点:一次函数图象与几何变换.18.如图,已知y ax b =+和y kx =的图象交于点P ,根据图象可得关于X 、Y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是_________________.【答案】42x y =-⎧⎨=-⎩【解析】解:由图知:函数y =ax +b 和y =kx 的图象交于点P (﹣4,﹣2),则x =﹣4,y =﹣2同时满足两个函数的解析式,∴42x y =-⎧⎨=-⎩是y ax b y kx =+⎧⎨=⎩的解,即二元一次方程组00ax y b kx y -+=⎧⎨-=⎩的解.故答案为42x y =-⎧⎨=-⎩. 点睛:一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.三、解答题19.化简 ①161532②2323-)12 【答案】(1)65-(2)31.【解析】 【分析】(1)先利用二次根式的乘法法则运算,然后合并即可; (2)利用平方差公式计算.【详解】解:(1)原式==-(2)原式=1.【点睛】本题考查二次根式的混合运算,掌握运算法则正确计算是解题关键. 20.解下列方程组35151x y x y =⎧⎨-=⎩();(2)()()()3155135x y y x ⎧-=+⎪⎨-=+⎪⎩【答案】(1)522322x y ⎧⎪⎪⎨⎪⎪⎩==;(2)57x y =⎧⎨=⎩ 【解析】 【分析】①把第二个方程整理得到y=5x-1,然后代入第一个方程,利用代入消元法其解即可; ②先把方程组整理成一般形式,然后利用加减消元法求解即可.【详解】(1)3551x y x y ⎧⎨-⎩=①=②, 由②得,y=5x-1③, ③代入①得,3x=5(5x-1), 解得x=522, 把x=522代入③得,y=5×522-1=322,所以,方程组的解是5 22322xy⎧⎪⎪⎨⎪⎪⎩==;(2)方程组可化为383520x yx y-⎧⎨--⎩=①=②,①-②得,4y=28,解得y=7,把y=7代入①得,3x-7=8,解得x=5,所以,方程组的解是57xy⎧⎨⎩==.【点睛】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.21.如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.【答案】3【解析】【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF 中,利用勾股定理计算出BF=6,则CF=BC−BF=4,设CE=x,则DE=EF=8−x,然后在Rt△ECF中根据勾股定理得到x2+42=(8−x)2,再解方程即可得到CE的长.【详解】∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF22AF AB-6,∴CF=BC−BF=10−6=4,设CE=x,则DE=EF=8−x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+42=(8−x)2,解得x=3,即CE=3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.22.某校为了公正的评价学生的学习情况.规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?【答案】这学期中小亮的数学总评成绩最高【解析】【分析】根据三项成绩比算出三个人的成绩,比较大小即可得出结果.【详解】根据题意,3人的数学总评成绩如下:小明的数学总评成绩为:96294390592.4235⨯+⨯+⨯=++(分);小亮的数学总评成绩为:90296393593.3235⨯+⨯+⨯=++(分);小红的数学总评成绩为:90290396593235⨯+⨯+⨯=++(分);因此,这学期中小亮的数学总评成绩最高.【点睛】主要考查了平均数的概念和利用比例求平均数的方法.要掌握这些基本概念才能熟练解题.23.直线P A 是一次函数y =x +1的图象,直线PB 是一次函数y =-2x +2的图象. (1)求A ,B ,P 三点的坐标; (2)求四边形PQOB 的面积;【答案】(1)A(-1,0);B(1,0),P(13,43);(2)56.【解析】 【分析】(1)令一次函数y=x+1与一次函数y=﹣2x+2的y=0可分别求出A ,B 的坐标,再由122y x y x =+⎧⎨=-+⎩可求出点P 的坐标;(2)设直线PB 与y 轴交于M 点,根据四边形PQOB 的面积=S △BOM ﹣S △QPM 即可求解. 【详解】(1)∵一次函数y=x+1的图象与x 轴交于点A ,∴A (﹣1,0), 一次函数y=﹣2x+2的图象与x 轴交于点B ,∴B (1,0),由122y x y x =+⎧⎨=-+⎩,解得1343x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P (13,43).(2)设直线PA 与y 轴交于点Q ,则Q (0,1),直线PB 与y 轴交于点M ,则M (0,2), ∴四边形PQOB 的面积=S △BOM ﹣S △QPM =12×1×2﹣12×1×15=36【点睛】本题考查一次函数综合题型,难度一般,关键在于能够把四边形的面积分成两个三角形面积的差. 24.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?【答案】甲服装的成本是300元,乙服装的成本是200元. 【解析】 【分析】若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.【详解】设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+50%)x+90%•(1+40%)(500-x )-500=157, 1.35x+630-1.26x-500=157, 0.09x=27, x=300,则乙的成本价是:500-300=200(元).答:甲服装的成本为300元、乙服装的成本为200元.【点睛】注意此类题中的售价的算法:售价=定价×打折数.25.某工厂要把一批产品从A 地运往B 地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A 地到B 地的路程为x km ,通过铁路运输和通过公路运输需交总运费y 1元和y 2元, (1)求y 1和y 2关于x 的表达式.(2)若A 地到B 地的路程为120km ,哪种运输可以节省总运费? 【答案】(1)225100y x =+;(2)铁路运输节省总运费. 【解析】 【分析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y 1、y 2关于x 的函数关系式; (2)把路程为120km 代入,分别计算y 1和y 2,比较其大小,然后可判断出哪种运输可以节省总运费. 【详解】(1)解:根据题意得:115400200y x =++ 即115600y x =+ 225100y x =+(2)当x=120时,1151206002400y =⨯+= 2251201003100y =⨯+= ∵12y y <∴铁路运输节省总运费【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型. 26.某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x 人,则双人间住了 人,一天一共花去住宿费用y 元表示,写出y 与x 的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?【答案】(1)三人间、双人间普通客房各住了8间,13间.(2)(50)x -;101750y x =-+(3)不是.理由见解析 【解析】 【分析】(1)分别设三人间和双人间为x ,y ,根据人数和钱数列方程组求解; (2)根据收费列出表达式整理即可;(3)利用(2)一次函数的性质,可得到y 随着x 的增大而减小,x 最大为48,而题中安排方式x=24,故不是【详解】(1)设三人间普通客房住了x间,双人间普通客房住了y间,由题意可得3?502?70151023250x yx y+=⨯⎧⎨+=⎩,解得x=8,y=13故三人间、双人间普通客房各住了8间,13间.(2)设三人间共住了x人,则双人间住了50-x人,一天一共花去住宿费用y=12 [50x+70(50-x)]=-10x+1750(0≤x<50)(3)不是,因为在一次函数中y随着x的增大而减小,因为x应该为3的倍数,所以x最大为48,故y取最小值时x=48,题中住宿方式三人间人数为24人,故不是费用最少,费用最少为x=48时,y=1270元【点睛】本题主要考查一次函数的简单应用,解题关键在于能够读懂题意,解出函数解析式.。
北师大版八年级上册期末考试数学试卷含答案(共3套)
八年级第一学期期末质量检测数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
检测时间90分钟,满分120分Ⅰ(客观卷)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共9 1.一个多边形的内角和与外角和相等,则这个多边形是A 、四边形B 、五边形C 、六边形D 、八边形2.小华将一张如图所示的矩形纸片沿对角线剪开,他利用所得的两个直角三角形进行图形变换,构成了下列四个图形,这四个图形中不是轴对称图形的是A B C D5.把a a 42-多项式分解因式,结果正确的是A 、)4(-a aB 、)2)(2(-+a aC 、)2)(2(-+a a aD 、4)2(2--a6.已知16)3(22+--x m x 是一个完全平方式,则m 的值是 A 、7-B 、1C 、7-或1D 、7或1-7.如果把分式y x xy+中的x 和y 都扩大2倍,即分式的值A 、扩大4倍B 、扩大2倍C 、不变D 、缩小2倍8.计算222---x xx 的结果是 A 、0B 、1C 、1-D 、x9.分式方程1123-=x x 的解为 A 、1=xB 、2=xC 、3=xD 、4=x10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车去奶奶家比乘坐公交车去奶奶家所需的时间少用了15分钟,现已知小林家距奶奶家8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为A 、x x 5.28158=+ B 、155.288+=x x C 、xx 5.28418=+D 、415.288+=x x Ⅱ(主观卷)90分二、填空题(每小题3分,共18分)13.分解因式=+-224b a 。
14.化简=-+-÷--4122122x x x x x 。
15.分式方程1231+=x x 的解为 。
16.如图,△ABC 的周长是12,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 。
2014-2015北师大版八年级上学期期末考试数学试题2
2014-2015北师大版八年级上学期期末考试数学试题(第Ⅰ卷 57分)一、选择题(每小题3分,共36分.) 1.在,115-,51-,π,39,16.0中,无理数的个数有( ) A.2个 B.3个 C.4个 D.5个 2. 下列说法正确的是( )A 、一个数的平方等于它本身的数有:1和0B 、±2是8的立方根C 、16的算术平方根是±4D 、9的平方根是±3 3.根据下列表述,能确定位置的是( )A .某电影院6排B .济南市师范路C .北偏西40°D .东经108°,北纬30° 4.下列实数运算中正确的是( )A .6)6(33=-B .24±=C .3)3(2-=-D .9)9(2= 5.在平面直角坐标系中,点()2,3-M 关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.某商店选用每千克28元的A 型糖3千克,每千克20元的B 型糖2千克,每千克12元的C 型糖5千克混合杂拌后出售,这种杂拌糖平均每千克售价为( )A.20元B.18元C.19.6元D.18.4元7.已知三组数据:① 2,3,4;② 3,4,5;③ 1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A .② B .①② C .①③ D .②③8.一次函数y=kx+b 的图象如右图所示,则方程kx+b=0的解为( )A .x=2B .y=2C .x=-1D .y=-19.已知⎩⎨⎧=+-=+32392n m n m 则n m +等于( )A .-1B .23-C .32- D .1 10. 如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于点D ,∠D=20º,则∠A 的度数是 ( ).A .20 ºB .30ºC .40ºD .50º 11.在一组数据4,6,4,3,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数12 若直线k x y 3+=与直线62-=x y 的交点在y 轴上,则k 等于( )A .21B .21- C .2 D .—2二、填空题(本大题共7个小题.每小题3分,共21分.)13.若042=-+++y x x ,则x y -的算术平方根是 .14. 一组数据5,7,7,x 的中位数与平均数相等,则x 的值为15.如图所示,坐标系中四边形的面积是 . 16.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 17.已知点A (2,0)和直线y=-12 x+3上一点P,若S △AOP =4,则点P 的坐标为_____ ____.18. 如图,在平面直角坐标系中,点A 的坐标为(0,1),点B 的坐标为(3,1),C 的坐标为(4,3),如果存在点D ,要使△ABD 与△ABC 全等,那么点D 的坐是 .19.如图,AD 是△ABC 的中线,∠ADC =60°,BC =8,把△ABC 沿直线AD 折叠,三、解答题(解答应写出文字说明,证明过程或演算步骤.) 20.(每小题5分 ,共计20分)(1) (2)2163)1526(-⨯-216316-⨯21. (1) ⎩⎨⎧=-=+39y x y x (2)⎩⎨⎧=+=-82573y x y x22、(本题7分)在解方程组+5y=15 42ax x by ⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的a ,得到的解为= 31x y -⎧⎨=-⎩,乙看错了方程组中的b ,得到的解为=54x y ⎧⎨=⎩。
北师大版八年级上册数学《期末》测试卷及完整答案
北师大版八年级上册数学《期末》测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <5,化简2(1)x -+|x-5|=________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.4的平方根是 .4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、B6、A7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、-153、±2.4、10.5、1 (21,2) n n--6、8三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、112x-;15.3、(1)12b-≤≤;(2)24、(1) 65°;(2) 25°.5、24°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年度第一学期八年级期末检测数学试题说 明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟. 一、选择题(本大题共6小题,每小题3分,共18分) 1.16的平方根是( )A .2B .4C .±2D .±42.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数12y x =-图象上的两点,下列判断中,正确的是( )A .y 1>y 2,B .y 1<y 2C .当x 1<x 2时,y 1<y 2,D .当x 1<x 2时,y 1>y 2 3.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( ) A .1.71, B .1.85, C .1.90, D .2.31 4.下列长度的各组线段能组成一个直角三角形的是( ) A .4cm ,6cm ,11cm, B .4cm ,5cm ,1cm C .3cm ,4cm ,5cm, D .2cm ,3cm ,6cm 5.如图AB=AC,则数轴上点C 所表示的数为( )A .5+1B .5-1C .-5+1D .-5-16.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是( ) A .26千米, 2千米 B .27千米, 1千米C .25千米, 3千米D .24千米, 4千米二、填空题(本大题共8小题,每小题3分,共24分) 7.计算:8-2 = .8.已知点A (l ,-2),若A 、B 两点关于x 轴对称,则B 点的坐标为_______9.若a <1,化简1)1(2--a 是 .10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为 米.11.若一次函数62+=x y 与kx y =图象的交点到x 轴的距离为2,则k 的值为 .12.若关于x y ,的方程组2x y mx my n-=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则||m n -= .13.将一张等宽的直条型纸片按图中方式折叠,若∠1 = 50°, 则∠2的度数为 .14.在平面直角坐标系中, 已知点 A ( -6, 0), B (6, 0), 点C 在x 轴上, 且AC +BC = 6, 写出满足条件的所有点C 的坐标 . 三、(本大题共2小题,每小题5分,共10分) 15.解方程组⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简: 31318)62(-⨯-. 四、大题共2小题,每小题6分,共12分)17.已知在平面直角坐标系中有三点A (-2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置,并求△ABC 的面积;(2)在平面直角坐标系中画出△'''A B C ,使它与△ABC 关于x 轴对称,并写出△'''A B C 三顶点的坐标.(3)若M (x,y )是△ABC 内部任意一点,请直接写出这点在△'''A B C 内部的对应点M '的坐标.18.一辆汽车的油箱中现有汽油40升,如果不再加油,那么油箱中的油量y (单位:升)随行驶里程x (单位:千米)的增加而减少,若这辆汽车平均耗油量为0.2升/千米. (1)求y 与x 之间的函数关系式;(2)设景德镇到骛源两地的里程约为95 千米,当油箱中余油量少于3升时,汽车将自动报警,则这辆汽车在往返途中是否会报警?五、(本大题共2小题,每小题8分,共16分)19.如图,含有30°角的直角三角板EFG 的直角顶点放在宽为2cm 的直尺ABCD 的BC 边上,并且三角板的直角边EF 始终经过点A ,直角边EG 与AD 交于点H ;∠G =30° (1)当∠1=36°时,求∠2的度数.(2)当∠1为多少度时,AH ∥FG, 并求此时AH 的长度.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)20.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m . (1)当3m =时,求点B 坐标的所有可能值;(2)当点B 的横坐标为4n (n 为正整数)时,用含n 的代数式表示m .六、(本大题共2小题,每小题9分,共18分)21.某校对学生的数学学习成绩进行综合评价,学期最后得分由完成学习任务的基本得分和学期课堂总体表现得分乘以考试成绩平均分两部分组成(即:学期最后得分=基本得分+学期课堂总体表现得分×考试平均分).下表是甲、乙两同学本学期的考试成绩平均分与最后得分的情况.学生甲乙考试平均分80 90学期最后得分700 780若两同学的基本得分与学期课堂总体表现得分相同,求此基本得分和学期课堂总体表现得分.22.一日雾霾天气重新出现在某市城区,某市记者为了了解―雾霾天气的主要成因‖,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾部排放nD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题;(1)填空:m=________,n=_______,扇形统计图中E组所占的百分比为_________%.(2)若该市人口约有100万人,请你估计其中持D组―观点‖的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组―观点‖的概率是多少?七、(本大题共2小题,第23题10分,第24题12分,共22分)23.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是;(2)探究∠B与∠NMA的关系,并说明理由;(3)连接MB ,若AB =8 cm ,△MBC 的周长是14 cm . ①求BC 的长;②在直线MN 上是否存在点P ,使PB+CP 的值最小,若存在,标出点P 的位置并求PB+CP 的最小值,若不存在,说明理由.24.如图,平面直角坐标系中,直线AB :b x y +-=31交y 轴于点A (0,1),交x 轴于点B .直线1=x 交AB 于点D ,交x 轴于点E , P 是直线1=x 上一动点,且在点D 的上方,设P (1,n ).(1)求直线AB 的解析式和点B 的坐标; (2)求△ABP 的面积(用含n 的代数式表示);(3)当2=∆ABP S 时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.数学试题参考答案1.C 2.D 3.C 4.D 5.B 6.B7.2 8.B (l ,2) 9.- a 10.1.5米 11.-1 或2112.2 13.65°, 14.( 3, 0), (- 3, 0) 15.解: ⎩⎨⎧=+=②.13y 2x ①11,3y -4x①+②×3,得10x=50, x=5,把x=5代入②,得2×5+y=13,解得y=3. ∴方程组的解为⎩⎨⎧==3y 5x .16.解:原式=3366182-⨯⨯-⨯ =6-336- =6-7317.解:(1)描点如图依题意,得AB ∥x 轴,且AB=3-(-2)=5,∴S △ABC =12×5×2=5; (2)如图;A′(-2,-1)、B′(3,-1)、C′(2,-3). (3)M '(x , -y )18.解:(1)根据题意,每行驶x ,耗油0.2x ,即总油量减少0.2x , 则油箱中的油剩下40-0.2x ,∴y 与x 的函数关系式为:y=40-0.2x ;(2)当y=3时,40-0.2x =3, 解得x=185所以汽车最多可行驶185千米.就会报警,而往返两地95×2=190千米,汽车会报警。
19.解:根据题意,∠1+∠EAH =90° ∠AHE+∠EAH =90° ∠1=∠AHE ∠AHE =∠2 ∠1=∠2(1)当∠1=36°时∠2=∠1=36°(2)当∠1=30°时,AH ∥FG 理由如下:(不写理由,只写结果给1分) ∠1=30°∠2=∠AHE =∠1=30° ∠G =30° ∠G =∠2 AH ∥FG 设AH =x在Rt △AEH 中,∠AHE =30°所以AE =21AH =21x 在Rt △ABE 中,∠1=30° 所以BE =21AE =41AH =41x由勾股定理:338364421631614122222222=====-=-=x x x x x BE AE AB AH=338cm 20.解:(1)当B 点的横坐标为3或者4时,即B (3,0)或(4,0)如下图所示,只有3个整点,坐标分别为(1,1),(1,2),(2,1);(2)当n =1时,即B 点的横坐标为4,如上图,此时有3个整点; 当n =2时,即B 点的横坐标为8,如下图,此时有9个整点; 当n =3时,即B 点的横坐标为12,如下图,此时有15个整点; 根据上面的规律,即可得出3,9,15…, ∴m =6n –3.当点B 的横坐标为4n (n 为正整数)时,∵以OB 为长OA 为宽的矩形内(不包括边界)的整点个数为(4n -1)×3=12 n -3,对角线AB 上的整点个数总为3,∴△AOB 内部(不包括边界)的整点个数m=(12 n -3-3)÷2=6n -3。
21..解:设基本得分为x ,两同学的学期课堂总体表现得分都是y , 则可列方程组为⎩⎨⎧=+=+,78090,70080y x y x解得⎩⎨⎧==.8,60y x∴基本得分为60分,两同学的学期课堂总体表现得分都是8分.22.解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人), C 组的频数n=400-80-40-120-60=100, E 组所占的百分比是:60400×100%=15%; (2)持D 组观点的市民人数约为100×(万人)30601201004080120=++++.(3)持C 组观点的概率为41400100=. 23.解:(1) 50°.(2)猜想的结论为:∠NMA= 2∠B -90°. 理由:因AB=AC ,所以∠B=∠C , ∴∠A= 180°-2∠B, 又因MN 垂直平分AB,∴∠NMA=90°-∠A =90°-(180°-2∠B )=2∠B -90°.(3)①因MN 垂直平分AB ,所以MB =MA ,又因△MBC 的周长是14 cm , 故AC+BC =14 cm ,所以BC =6 cm .②当点P 与点M 重合时,PB+CP 的值最小,最小值是8cm .24.解:(1)∵b x y +-=31经过A (0,1), ∴1=b ,∴直线AB 的解析式是131+-=x y .当0=y 时,1310+-=x ,解得3=x ,∴点B (3,0).(2)过点A 作AM ⊥PD ,垂足为M ,则有AM=1,∵1=x 时,131+-=x y =32,P 在点D 的上方,∴PD=n -32,3121)32(12121-=-⨯⨯=⋅=∆n n AM PD S APD 由点B (3,0),可知点B 到直线1=x 的距离为2,即△BDP 的边PD 上的高长为2, ∴32221-=⨯=∆n PD S BPD , ∴123323121-=-+-=+=∆∆∆n n n S S S BPD APD PAB;(三角形ABP 的面积可以用三角形PDB 的面积+梯形AODP 的面积—三角形AOB 的面积。