高砷高硒碲阳极泥氧压处理的方法
高砷高锡阳极泥中砷锡分离工艺研究
doi:10.3969/j.issn.1007-7545.2018.06.003高砷高锡阳极泥中砷锡分离工艺研究王晓阳1,2,王文祥1,2,方红生2,莫越坚2(1.广东环境保护工程职业学院环境工程系,广东佛山528216;2.广东省固体废弃物资源化与重金属污染控制工程技术研究中心,广东佛山528216)摘要:采用碱性焙烧—浸出工艺处理高砷高锡阳极泥,考察了碱料比、焙烧温度、焙烧时间、液固比、浸出温度及浸出时间等对金属浸出率的影响。
结果表明,优化条件为:碱料比0.9、焙烧温度600℃、焙烧时间2h、液固比3(mL/g)、浸出温度80 ℃、浸出时间2 h。
在此条件下,碱性焙烧—浸出工艺能实现砷锡高效分离,砷的回收率高达95.2%,浸出渣含砷<0.5%,其它有价金属有效富集以便后续回收。
关键词:高砷高锡阳极泥;碱性焙烧;砷锡分离;有价金属中图分类号:TF81;X756 文献标志码:A 文章编号:1007-7545(2018)06-0000-00Study on Separation of Arsenic and Tin from High As and Sn Bearing Anode SlimeWANG Xiao-yang1,2, WANG Wen-xiang1,2, FANG Hong-sheng2, MO Yue-jian2(1. Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216, Guangdong, China;2. Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy MetalPollution Control, Foshan 528216, Guangdong, China)Abstract:High As and Sn bearing anode slime were treated by alkaline roasting and leaching. The effects of mass ratio of soda to anode slime, roasting temperature, roasting time, L/S, leaching temperature, and leaching time on leaching efficiency of metals were investigated. The results show that leaching rate of As is 95.2% and As content in leaching slag is 0.5% below under the optimum conditions including mass ratio of soda to anode slime of 0.9, roasting temperature of 600 ℃, roasting time of 2 h, L/S=3 mL/g, leaching temperature of 80 ℃, and leaching time of 2 h. Other valuable metals in anode slime are relatively enriched for further recycling.Key words:high As and Sn bearing anode slime; alkaline roasting; separation of As and Sn; valuable metals再生铜电解阳极泥为含铜电镀污泥、废弃电子线路板、废杂铜等含铜杂料进行再生电解过程中产生的不溶解于电解液的物质,通常富集了大量的Sn、As、Pb、Sb、Cu、Ni等金属,成分复杂且波动较大[1]。
阳极泥冶炼技术方法
阳极泥冶炼技术方法物料处理是指对阳极泥进行预处理,以减少杂质含量并提高回收率。
首先,将阳极泥分选成不同粒度的颗粒,以便更好地进行处理。
其次,将颗粒化的阳极泥经过浸泡、搅拌和沉淀等处理,去除其中的有机杂质和可溶性盐类物质。
接下来,对阳极泥进行热处理,以去除其中的水分和挥发性物质。
最后,对处理后的阳极泥进行干燥,以保证后续的熔炼工艺可以正常进行。
熔炼是将经过处理的阳极泥进行高温熔化,以使其中的有价值金属得以分离和回收的过程。
熔炼过程一般采用电炉或感应炉进行。
首先,在熔炼炉中加入适量的助熔剂,以降低熔点和改善熔化性能。
然后,将处理后的阳极泥加入炉中,控制熔炼温度、温度升降速度和保持时间,使阳极泥完全熔化并与助熔剂充分混合。
在熔炼过程中,通过适时的搅拌、翻煤等措施,促使金属和非金属物质的分离,使金属沉淀在底部,非金属物质则浮在上层。
离析是将经过熔炼得到的熔体进行分离,将所需金属单独提取出来。
熔体离析一般采用氧化还原反应、溶解沉淀等方法。
首先,通过封口加压或减压等方式来调节熔炼温度和压力,控制金属的溶解度。
然后,对熔体进行冷却,使其快速凝固,从而使金属颗粒沉淀和固化。
接下来,通过重力沉淀或离析剂的引入等方式,去除熔体中的杂质和非金属物质。
最后,通过过滤、离心等手段将金属颗粒与熔体分离,得到纯净的金属材料。
回收是将离析得到的金属材料进行处理,使其达到再利用的标准。
回收过程包括冷却、洗涤、干燥等环节。
首先,对离析后的金属颗粒进行冷却,以降低其温度,方便后续的处理。
然后,对金属颗粒进行洗涤,去除表面的附着物和残留的氧化物等。
接下来,将洗涤后的金属颗粒进行干燥,除去水分和其他挥发性物质,以保证其稳定性和质量。
最后,对金属材料进行检验和包装,以便储存和使用。
综上所述,阳极泥冶炼技术方法通过物料处理、熔炼、离析和回收四个步骤,使阳极泥中的有价值金属得以分离和回收,达到循环利用的目的。
这一过程不仅能有效利用资源,减少环境污染,还可以为工业生产提供有价值的原材料。
高砷铅阳极泥预处理工艺述评
图 1 挥 发 焙 烧 法 流 程
Fi 1 Fl ws e to xi zng r a tn g. o h e fo dii o si g f ra s ni e o l o r e c r m va
挥 发焙 烧 法处 理 原料 含 砷 范 围广 、 流程 简单 、 操 作 简 便 。但 除 砷效 率 较低 , 砷 率 只 能 达 到 4 %~ 除 0 7 %, 0 主要是 因为 高 砷 铅 阳极 泥 的 物 相 成 分 较 为 复 杂 , 化 合 物 中有 相 当量 的 As0 , O・ SO 砷 2 5 Me A 2 5存 在 。在 焙烧 过 程 中 , 些 砷 的化 合 物 不能 有 效分 解 , 这 且 因 为 氧 势 太 高 会 使 A ( ) 化 为 难 挥 发 的 s Ⅲ 转 As V) 从 而 降 低 A ( , s的 挥 发 性 。 为 增 大 砷 的 挥 发 率 , 采 取在 较 高 的温 度 下 进 行 焙 烧 J 常 。有 人 对 这 类 砷化 合 物 进 行 过 高 温 挥 发 的 研 究 , 然 可 得 到 虽 As0 , 在 实 际 中 , 2 3但 由于 物 料 熔 点 低 及 其 它 技 术 上
关 键 词 : : 阳极泥 ; 砷 铅 预处 理 ; 砷产品 中 图 分 类 号 : F 1 ; F 3 : 6 3 6 文 献 标 识 码 : 文 章 编 号 :0 1 0 1 ( 0 2 s pl 0 8 — 6 T S 2 T 8 1 O 1 .3 A 10 — 2 1 2 0 ) p 一 10 0 u
的 处 理 , 内外 都 有 大 量 的报 道u J无 论 是 火 法 国 , 还 是湿 法处 理 工 艺都 较 为 成熟 。而对 于高砷 铅 阳极
阳极氧化废水处理方法
阳极氧化废水处理阳极氧化技术作为电镀行业表面处理中常见且主要的技术,在电镀行业中应用广泛。
通常,金属构件如铝件等,为了具有更好的表面特性及光泽度,大部分都需经过阳极氧化处理工序,在其表面覆盖一层致密且具有一定光泽度的金属氧化物薄膜,如镍膜等。
在阳极氧化过程中,通常将待镀的金属如镍等作为阳极,而将被镀的金属构件如铝件等作为阴极,利用电化学法使处于阳极的待镀金属失去电子成为镍离子后,在电场作用下覆盖到被镀的金属构件上,从而完成对被镀金属构件的电镀过程。
通常情况下,在阳极氧化工序之前需要对金属构件利用酸碱进行除油,在阳极氧化之后,则需要对镀件金属构件进行表面封孔处理。
目前,大多数的电镀企业多采用醋酸镍作为封孔剂。
在此过程中,企业会产生大量的除油废水、酸碱废水及含镍废水等。
这些废水中含有国家严格控制的一类污染物镍,因此必须要经过妥善处理后才能排放。
南通某科技有限公司在生产过程会产生一定量的阳极废水,废水中主要含酸碱、磷酸盐、油脂及封孔工段微量镍金属离子等污染成分。
受企业委托,对该企业的废水处理进行了设计及调试工作。
1 项目概况该企业废水可以分为含镍废水与酸碱含油废水两种。
其中含镍废水主要来自封孔镍废水,排放量为30 m3/d,主要污染物为Ni2+,其质量浓度为3~25 mg/L,pH为6~8;酸碱含油废水主要来自前处理阳极废水,排放量为390 m3/d,主要污染物为酸碱、COD、TP、SS、表面活性剂及油脂等,该废水的COD为200~400 mg/L,pH为2~5,SS为150~220 mg/L,TP为50~350 mg/L,石油类质量浓度在80~150 mg/L。
含油废水中的油脂主要为企业使用的机械油、切削油等。
该企业废水经过处理后,要求废水排放指标稳定达到国家《污水综合排放标准》(GB 8978—1996)二级排放标准,即pH为6~9,COD≤100 mg/L,SS≤70 mg/L,石油类≤5 mg/L,色度≤50 mg/L,总镍达到《电镀污染物排放标准》(GB 21900—2008)表2标准,即总镍≤0.5 mg/L,实现约70%的出水回用,余下30%的出水接入市政污水管网到集中污水处理厂进行深度处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高砷高硒碲阳极泥氧压处理的方法一.方法概要本文研究的是在铜电解冶炼过程中产生的高砷高硒碲阳极泥氧压处理的方法,高砷高硒碲阳极泥在高温高压碱性条件下通入氧气选择性浸出砷、硒、碲,经过调节pH值使硒碲贵价金属得到富集,溶液加入硫酸亚铁及絮凝剂制成臭砷石,使得此类阳极泥在脱除有毒物砷并对砷进行无害化处理的基础上,回收其中重贵金属硒、碲且直收率分别达到94%与95%以上。
本高砷高硒碲阳极泥氧压处理的方法适用从各种富含砷、硒、碲的铜、铅、镍阳极泥中选择性脱除有毒物砷,富集贵价金属硒、碲,直收率高且分离彻底,更加利于国内日益严重的砷污染及富集了贵金属硒碲。
二、基本技术原理本文研究的方法是涉及高砷高硒碲阳极泥氧压处理的方法,属于有色金属湿法冶金及废旧二级资源回收领域。
目前,国内外阳极泥处理仍以传统的火法工艺为主,因其操作环境差、污染严重、生产周期长、有价金属得不到综合利用等诸多问题而面临挑战。
此外,火法工艺对中小企业来说,投资大、设备利用率低、铅害难解决。
另外由于高砷矿石的大量采用,使得阳极泥中砷的含量越来越高,由于砷在冶炼体系中属于循环有毒害物质,使得冶炼行业砷污染现象越来越紧迫。
因此采用湿法冶金选择性回收阳极泥中贵重金属并且抑制砷污染是阳极泥处理过程中的重要课题。
从中南大学等人的研究“一种从铅铜锍中分离铜和硒碲的方法”提出了将破碎后的铅铜锍粉末、氢氧化钠、碳酸钠、水按一定的配比混合投入高压釜,往高压釜中通入氧气并控制釜内氧气的压力进行氧化反应,硒被氧化进入碱性浸出液,铜、铅和碲被氧化进入碱性浸出渣,碱性浸出渣再用硫酸溶液浸出铜和碲,铅富集在酸性浸出渣中。
由于高温高压时氧化条件不充分,只选择性浸出了硒,使得碲依然保留在渣中需重复用酸浸碲,使得工艺更加复杂,没有一次到位的分离硒碲并进行富集。
从葫芦岛锌业股份有限公司等研究人员提出的一种从新鲜高砷铅阳极泥中氧压脱砷的方法。
铅阳极泥经过预处理,然后加入碱并通入氧气,在氧气压力下进行碱浸,碱浸后进行热滤,形成滤液和脱砷阳极泥,脱砷阳极泥分离金属后,进入银冶炼获取银。
滤液冷却结晶,分离出砷酸钠结晶和结晶母液,结晶母液经过固砷形成固砷渣进行存放,而固砷后滤液进行环保排放。
该工艺只选择性浸出了砷,碲硒依然保留在渣中,同样要用其他工艺分离碲硒,工艺复杂。
三、方法的技术内容本高砷高硒碲阳极泥氧压处理的方法目的在于提供一种氧压处理高砷高硒碲阳极泥的方法,高砷高硒碲阳极泥在高温高压碱性条件下通入氧气选择性浸出砷、硒、碲,经过调节pH值使硒碲贵价金属得到富集,溶液加入硫酸亚铁及絮凝剂制成臭砷石,使得此类阳极泥在脱出有毒物砷并对砷进行无害化处理的基础上,重贵金属硒、碲直收率分别达到94%与95%以上。
高砷高硒碲阳极泥氧压处理的方法解决问题的技术方案为:一种氧压处理高砷高硒碲阳极泥的方法,其原料是按质量百分比计含铅5%-15%,含铜5%-20%,含砷5%-10%,含硒1%-10%,含碲1%-15%的高砷高硒碲阳极泥,在高温高压碱性条件下通入氧气,使得高砷高硒碲阳极泥中的砷、硒、碲选择性浸出,逐步经过中和沉硒、碲,砷无害化处理,得到无污染的臭砷石和硒碲富集渣;具体工艺过程如下:①原料球磨至粒度300目以下;②选择性浸出条件:液固体积质量比为4-8:1,单位L /kg,选择性浸出剂为氢氧化钠,浓度为70-120 g/L,压强在0.6-1.2MPa,在通氧条件下,温度控制在130-180℃,反应时间在3-6小时后过滤;③选择性浸出液中和工艺条件:选择性浸出液经过加稀硫酸调pH=7-8并加入絮凝剂沉降1-2小时,絮凝剂加入量为质量百分比1‰,得到含硒碲较高的硒碲富集渣;④沉硒、碲后液中砷无害化处理工艺条件:中和后液pH=7-8,加入硫酸亚铁和絮凝剂,Fe/As摩尔比 1.5-2:1、温度70℃-95℃、空气流量40-120L/h,絮凝剂加入量为质量百分比1‰,时间为3-7小时,使砷转换成稳定状态的臭砷石。
上述步骤③和步骤④的絮凝剂具体为聚丙烯酰胺。
上述步骤②选择性浸出条件的最佳液固比为5-6:1,选择性浸出剂氢氧化钠的最佳浓度为80-110 g/L;最佳压强在0.7-0.8MPa;在通氧条件下,最佳温度控制在150-170℃;最佳反应时间在4-5小时;上述步骤④沉硒、碲后液中砷无害化处理工艺条件:加入硫酸亚铁和絮凝剂,Fe/As最佳摩尔比1.6-1.8:1;最佳温度75℃-65℃;最佳空气流量60-80L/h,最佳处理时间为3小时。
四,方法技术特点1. 高砷高硒碲阳极泥氧压处理的方法,其原料是按质量百分比计含铅5%-15%,含铜5%-20%,含砷5%-10%,含硒1%-10%,含碲1%-15%的高砷高硒碲阳极泥,在高温高压碱性条件下通入氧气,使得高砷高硒碲阳极泥中的砷、硒、碲选择性浸出,逐步经过中和沉硒、碲,砷无害化处理,得到无污染的臭砷石和硒碲富集渣;其特点具体工艺过程如下:①把原料球磨至粒度300目以下;②选择性浸出条件:液固体积质量比为4-8:1,选择性浸出剂为氢氧化钠,浓度为70-120 g/L,压强在0.6-1.2MPa,在通氧条件下,温度控制在130-180℃,反应时间在3-6小时后过滤;③选择性浸出液中和工艺条件:选择性浸出液经过加稀硫酸调pH=7-8并加入絮凝剂沉降1-2小时,絮凝剂加入量为质量百分比1‰,得到含硒碲较高的硒碲富集渣;④沉硒、碲后液中砷无害化处理工艺条件:中和后液pH=7-8,加入硫酸亚铁和絮凝剂,Fe/As摩尔比 1.5-2:1、温度70℃-95℃、空气流量40-120L/h,絮凝剂加入量为质量百分比1‰,时间为3-7小时,使砷转换成稳定状态的臭砷石。
2. 高砷高硒碲阳极泥氧压处理的方法,其特点是步骤③和步骤④的絮凝剂具体为聚丙烯酰胺。
3. 高砷高硒碲阳极泥氧压处理的方法,其特点是步骤②选择性浸出条件的最佳液固比为5-6:1,选择性浸出剂氢氧化钠的最佳浓度为80-110 g/L;最佳压强在0.7-0.8MPa;在通氧条件下,最佳温度控制在150-170℃;最佳反应时间在4-5小时。
4. 高砷高硒碲阳极泥氧压处理的方法,其特点是步骤④沉硒、碲后液中砷无害化处理工艺条件:加入硫酸亚铁和絮凝剂,Fe/As最佳摩尔比1.6-1.8:1;最佳温度75℃-65℃;最佳空气流量60-80L/h,最佳处理时间为3小时。
五、方法技术结果讨论与现有技术比较,本方法有以下优点:1)本高砷高硒碲阳极泥氧压处理的方法经过碱性条件下以氢氧化钠为选择剂在高温高压通氧的条件下选择性浸出砷、硒、碲,经过此工艺处理,使得阳极泥中砷循环得到有效控制,本发明适用从各种富含砷、硒、碲的铜、铅、镍阳极泥中选择性脱除有毒物砷,富集贵价金属硒、碲,直收率高且分离彻底;本对其贵重金属硒碲一次性选择浸出直收率分别高达94%与95%以上;2)选择性浸出液经过中和沉降,并在加入絮凝剂的情况下一次性沉降得到富含硒碲的富集渣;3)本高砷高硒碲阳极泥氧压处理的方法经过加入硫酸亚铁在温度及空气流量控制条件下并加入絮凝剂,得到无害的臭砷石;对沉硒碲后液进行了砷的无害化处理,使砷转换沉稳定状态,使得阳极泥冶炼系统中砷污染得到一定量的减少,对环境无污染。
抑制了国内日益严重的砷污染;4)生产无环境污染,水系统循环使用,无固体废弃物,分离砷、硒、碲后的渣料可继续进入火法系统回收其于的铅、铜、锑、金、银等有价金属;5)本高砷高硒碲阳极泥氧压处理的方法适用从各种富含砷、硒、碲的铜、铅、镍阳极泥中选择性脱除有毒物砷,富集贵价金属硒、碲,直收率高且分离彻底,更加利于国内日益严重的砷污染及富集了贵金属硒碲。
六、附图说明附图是结合具体的工艺实施方式,详细的说明了工艺走向。
图1工艺流程图。
七、实施方法方法1物料成分:铅:12.71%,铜:16.27%,砷:9.15%硒7.36% ,碲:11.48%。
此物料实施方式采用生产流程如图1,经过球磨至300目,取500g物料在氢氧化钠浓度80g/L,在5L实验室用的高压反应釜中,液固体积质量比5:1,压强控制0.7 MPa,温度在150℃并通入氧气条件下反应时间4h,反应完成后冷却过滤,取反应液缓慢加入稀硫酸调pH=8.0,并加入0.1g絮凝剂,静置1h后过滤得到硒碲渣,取滤液缓慢加入硫酸亚铁,Fe/As摩尔比1.6:1、温度75℃、空气流量60L/h,絮凝剂加入量为0.1g,静置时间为3小时,过滤得到稳定无害的臭砷石。
分别得到硒碲渣,臭砷石,其元素成分及直收率如下表2。
(渣样都为干重。
)表1名称重量铅% 铜% 砷% 硒% 碲% 各主要金属直收率%碱浸渣378.9g 16.621.11.050.56 0.67 硒直收率:94.3硒碲渣117.2g 29.60 46.81 碲直收率:95.6臭砷石109.8g 38.0 砷脱除率:91.2方法2物料成分:铅:8.45%,铜:14.22%,砷:7.18%,硒:6.71% ,碲:9.85%。
此物料实施方式采用生产流程如图1,经过球磨至300目,取500g物料在氢氧化钠浓度110g/L,在5L实验室用的高压反应釜中,液固体积质量比6:1,压强控制0.8 MPa,温度在170℃并通入氧气条件下反应时间5h,反应完成后冷却过滤,取反应液缓慢加入稀硫酸调pH=7.0,并加入0.1g聚丙烯酰胺,静置1h后过滤得到硒碲渣,取滤液缓慢加入硫酸亚铁,Fe/As摩尔比 1.8:1、温度85℃、空气流量80L/h,聚丙烯酰胺加入量为0.1g,静置时间为3小时,过滤得到稳定无害的臭砷石。
分别得到硒碲渣,臭砷石,其元素成分及直收率如下表1。
(渣样都为干重。
)表2名称重量铅% 铜% 砷% 硒% 碲% 各主要金属直收率% 碱浸渣367.8g 11.320.70.920.34 0.35 硒直收率:96.2硒碲渣105.4g 30.63 45.51 碲直收率:97.4臭砷石102.3g 31.8 砷脱除率:90.6附图说明;。