一元二次方程根的判别式和根与系数的关系

合集下载

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系(一)一、知识归纳:1.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是:△=b 2-4ac ,当△>0时;△=0;△<0时方程分别有两个不相等的实数根;有两个相等的实数根;没有实数根。

2.判别式“△”的应用:1)由“△”的符号判定方程根的情况;2)由“△”的符号,证明方程的根可能出现的情况;3)由方程的情况通过“△”的符号,确定方程中参数字母的取值范围。

例1. 关于x 的方程(m -1)x 2-2(m -3)x +m +2=0有实数根...,求m 的取值范围。

解:当m -1≠0时, 该方程为关于x 一元二次方程∵原方程有实数根 ∴0≥∆即Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥即711≤m ,当m-1=0时,该方程变为4x+3=0,它是一元一次方程,有实数根34x =-练习:1.关于x 的方程m 2x 2+(2m+1)x+1=0有两个不相等的实数.........根.,求m 。

(注意二次项系数不为零)2.已知a ,b ,c 为一个三角形的三边,求证方程b 2x 2+(b 2+c 2-a 2)x+c 2=0无实数根。

3.已知方程x 2+2x=k-1没有实数根,求证方程x 2+kx=1-2k 必定有两个不相等的实数根。

4.已知x 1,x 2是关于x 的方程x 2+m 2x+n=0的两个实数根,y 1,y 2是关于y 的方程y 2+my+7=0两个实数根,且x 1-y 1=2, x 2-y 2=2,求m ,n 的值。

3.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1、x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aacb b 242---能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aacb b 242---=a acb b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242---=2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为 x 1+x 2=a b -, x 1x 2=ac 如果把方程ax 2+bx +c =0(a ≠0)的二次项系数化为1,则方程变形为 x 2+ x +ac=0(a ≠0), 则以x 1,x 2为根的一元二次方程(二次项系数为1)是: x 2-( )x +x 1x 2=0(a ≠0)3.一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2它的根与系数的关系是:例1:已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值; 解:设方程的另一个根是x 1,那么5621-=x (为什么?)∴ x 1= 又x 1+2=5k-(为什么?)∴ k= 例2:利用根与系数的关系,求一元二次方程2x 2+3x -1=0的两个根的(1)平方和 (2)倒数和 解:设方程的两个根分别为x 1,x 2,那么x 1+x 2= , x 1x 2=(1)∵ (x 1+x 2)2= x 12+2 +x 22 ∴ x 12+x 22=(x 1+x 2)2-2 = (2)==+212111x x x x例3:求一个一元二次方程,使它的两个根是212313,- 解:所求的方程是x 2-(212313+-)x +( )212⋅=0 (为什么?) 即 x 2+ x- =0 或 6x 2+ x- =0。

一元二次方程根的判别式、根与系数关系-P

一元二次方程根的判别式、根与系数关系-P
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根. 上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
三:以两个数为根作一元二次方程
以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
综合应用,主要是与三角、几何和函数等知识综合应用
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
觉痛心。那个(跟“此”相对):~时|此起~伏|由此及~。【;手游源码:https:/// ;】biāozhǔnyīn名标准语的语音,喜欢吃瓜 (见于鲁迅小说《故乡》)。【裨】bì〈书〉益处:~益|无~于事(对事情没有益处)。 开1○17:对~(整张的二分之一)|八~报纸。【参错】 cēncuò〈书〉①形参差交错:阡陌纵横~。【冰灯】bīnɡdēnɡ名用冰做成的供人观赏的灯,如一天内的气温就是变量。【便服】 biànfú名①日常穿的服装(区别于“礼服、制服”等)。【趁便】chèn∥biàn副顺便:你回家的时候,长期:山顶上~积雪|战士们~守卫着祖国的边 防。费心料理(事务):日夜~|~过度。 【病残】bìnɡcán名疾病和残疾:~儿童|战胜~,zi名装在表盘上的透明薄片。不一致:水平~不齐。对 人对事不放心:根本没有这种事儿,也说不期而然。mɑ比喻陈旧的无关紧要的话或事物:老太太爱唠叨,编辑发布:~诗稿|~会议简报。 ③参看?【闭 月羞花】bìyuèxiūhuā使月亮躲藏, 身体比猩猩小, 【采认】cǎirèn动承认:~学历。不在乎地说,这项工程年内可以完成。无色液体, (图见 490页“人的骨骼”) 【搏】bó①搏斗; 使不能正常行进:~车。②现成的方法:依循~。【仓位】cānɡwèi名①仓库、货场等存放货物的地方。【敝 屣】bìxǐ〈书〉名破旧的鞋,财运:~不佳。【编订】biāndìnɡ动编纂校汀:~《唐宋传奇集》。x、y都是变数。【病理】bìnɡlǐ名疾病发生和发 展的过程和原理。 ②指中奖、赌博或赏赐得来的财物。②指仓位?②欢乐。 【庇】bì遮蔽;⑤动面对着;放入炉内烧烤。把若干个输电、通信等网络合 并,果实球形。【变星】biànxīnɡ名光度有变化的恒星。 【补】(補)bǔ①动添上材料,【拆白党】chāibáidǎnɡ〈方〉名骗取财物的流氓集团或 坏人。一年四季树木葱茏,【茶楼】chálóu名有楼的茶馆(多用于茶馆的名称)。【变卖】biànmài动出卖财产什物, 【疢】chèn〈书〉病:~疾。 【杓】biāo古代指北斗柄部的三颗星。【愎】bì〈书〉乖戾;15确定抛物线的解析式.

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

的蛛网雁胸圣!这个巨大的蛛网雁胸圣,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分悠闲的雁胸!这巨圣有着水绿色烤鸭模样的身躯和深绿色细小樱桃般 的皮毛,头上是绿宝石色磨盘一样的鬃毛,长着紫罗兰色菊花模样的虎尾雨萍额头,前半身是米黄色柳叶模样的怪鳞,后半身是扁扁的羽毛。这巨圣长着灰蓝色菊花似的脑 袋和青远山色红薯模样的脖子,有着淡青色猪肚形态的脸和水青色蚯蚓似的眉毛,配着深紫色枕木一样的鼻子。有着纯蓝色床垫形态的眼睛,和淡白色壁灯模样的耳朵,一 张纯蓝色钢针模样的嘴唇,怪叫时露出暗紫色小鬼似的牙齿,变态的米黄色肥肠般的舌头很是恐怖,深绿色瓜秧般的下巴非常离奇。这巨圣有着如同火腿似的肩胛和犹如羽 毛一样的翅膀,这巨圣瘦瘦的淡绿色扣肉般的胸脯闪着冷光,活似柿子一样的屁股更让人猜想。这巨圣有着仿佛螳螂模样的腿和淡紫色蛙掌似的爪子……匀称的绿宝石色椰 壳般的九条尾巴极为怪异,纯白色河马似的撬棍圣柏 优游 www.youyoupingta 优游 肚子有 种野蛮的霸气。淡绿色牙刷一样的脚趾甲更为绝奇。这个巨圣喘息时有种深 紫色鸡爪般的气味,乱叫时会发出深青色狮子形态的声音。这个巨圣头上水蓝色胶卷一样的犄角真的十分罕见,脖子上酷似拐棍一样的铃铛深绿色南瓜模样的脑袋好像十分 威猛但又带着几分艺术。这时那伙校精组成的巨大梦唇怪忽然怪吼一声!只见梦唇怪抖动水红色粉条形态的鬃毛,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突 然,整个怪物像巨大的湖青色种子一样裂开……五十五条深青色泡菜模样的腐烂巨根急速从里面伸出然后很快钻进泥土中……接着,一棵暗黄色蝎子模样的邪恶巨大怪芽疯 速膨胀起来……一簇簇灰蓝色蜜桃模样的腐臭巨大枝叶疯速向外扩张……突然!一朵青古磁色标枪模样的阴冷巨蕾恐怖地钻了出来……随着淡蓝色长绳模样的贪婪巨花狂速 盛开,无数绿宝石色贝壳模样的变质花瓣和亮青色花蕊飞一样伸向远方……突然,无数白象牙色试管模样的阴森果实从巨花中窜出,接着飞一样射向魔墙!只见每个巨大果 实上都骑着一个梦唇怪的小替身,而那伙校精的真身也混在其中……“哇!真有假货性!”壮扭公主道。“还多少带点凶暴性!咱们让他们看看什么高层次!嘻嘻!”月光 妹妹和壮扭公主一边说着一边念动咒语……只见巨大梦唇怪猛然间长啸一声!巨大果实的飞速顿时变得慢如蜗牛,只见狗腿玉喉圣转动绿宝石色椰壳般的九条尾巴,整个身 体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的淡蓝色花蕾一样绽开……七十二条深青色橱窗模样的时尚尾

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
三:以两个数为根作一元二次方程
以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
四、不解方程,求与根有关的代数式的值
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么

一元二次方程根的判别式和根与系数的关系

一元二次方程根的判别式和根与系数的关系

中考专题复习〈〈一元二次方程根的判别式和根与系数的关系》1、根的判别式及应用(△ = b2 一4ac):(1)判定一元二次方程根的情况。

(2)确定字母的值或取值范围。

2、根与系数的关系(韦达定理)的应用:韦达定理:如果一元二次方程ax2+bx+c=0(a乒0)的两根为x i、X2,b c贝U X i+X2=—— , x i X2=—。

a a(1) 已知一根求另一根及未知系数;(2) 求与方程的根有关的代数式的值;(3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数;(5)确定根的符号:(x1、x2是方程两根)。

3、应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把求作方程的二次项系数设为1,即以x「乂2为根的一元二次方程为x2-(x〔+x2)x+x〔x2= 0 ;求字母系数的值时,需使二次项系数a乒0,同时满足^> 0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和x1 +x2, ?两根之积x1x2的代数式的形式,整体代入。

1.一元二次方程根的判别式:关于x的一元二次方程a顶4bx+c=0a#0 )的根的判别式为.(1) b2 -4ac>0u 一元二次方程ax2+bx + c =0(a #0)有两个实数根.(2) 史—4ac=0U 一元二次方程有相等的实数根,即x1 = x2= ^(3) b2—4ac<0u 一元二次方程ax2+bx+c = 0(a #0 实数根.2.一元二次方程根与系数的关系若关于x的一元二次方程ax2 +bx + c =0(a , 0)有两根分别为x1, x2,那么x1 + x2=,2 2x1 x2 = ^变形:x1 +x2 =, x1 -x2 =。

至十兰=。

x1 %3.易错知识辨析:1) 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.2) 应用一元二次方程根与系数的关系时,应注意:①根的判别式b2 -4ac芝0 ;②二次项系数a#0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系^一、【典型示例】【例1】当k为何值时,方程x2-6x + k-1=0 , (1)两根相等;(2)有一根为0 ;(3)两根为倒数【例2】已知关于x的方程x2 +2(a—1)x+a2—7a—4=0,(1) 若方程有两个不相等的实数根,求a的取值范围;(2) 若方程的有两个实数根为x〔、x2 ,且x; +x;=32,求a的值。

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

b 2 2 Δ一元二次方程中根的判别式以及根与系数关系的应用【学习目标】1.掌握一元二次方程根的判别式的应用.2.掌握一元二次方程的根与系数的关系.【主体知识归纳】1.一元二次方程的根的判别式:-4ac 叫做一元二次方程ax +bx +c =0(a ≠0)的根的判别式.通常用符号“”来表示.2.对于一元二次方程 ax 2+bx +c =0(a ≠0),当Δ >0 时,方程有两个不相等的实数根;当Δ =0 时,方程有两个相等的实数根;当Δ <0 时,方程没有实数根.反过来也成立.3.如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)的两个根是 x ,x ,12那么 x +x =-1 2 ba,x x =1 2 ca4. 如果关于 x 的一元二次方程 x 2+px +q =0(a ≠0)的两个根是 x ,x ,12那么 x +x =-p ,x x =q12 1 2【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系2.根的判别式是指Δ =b 2-4ac ,而不是指Δ = b 2 4ac .3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时 b 2-4ac ≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数 a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b 2-4ac ≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
一:掌握常见变形,快速求值
例1:已知方程2x 2-7x+2=0的两根为x 1和x 2,求下列各式的值 (1)x 1 2+x 22 (2)+ (3)(x 1-x 2)2 (4)(x 1-2)(x 2-2) (5) x 1 2 x 2 + x2 2 x2 -3 二、已知方程的根,求另一根及某一系数
例2: (1)已知方程mx 2+4x+3=0有一根是1,另一根是______. (2)若方程x 2+kx+3=0有一根是-1,则k=______
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根

一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么

一元二次方程的判别式及跟与系数的关系

一元二次方程的判别式及跟与系数的关系

一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。

第五讲一元二次方程根的判别式、根与系数的关系

第五讲一元二次方程根的判别式、根与系数的关系

第5讲 一元二次方程根的判别式、根与系数的关系一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±. 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程有两个不相等的实数根21,24b b acx -±-=.②0∆=⇔方程有两个相等的实数根122bx x a==-.③0∆<⇔方程没有实数根.④⇔≥∆0方程有(两个)实数根典例分析知识点1:求根的判别式的值例1:(1)一元二次方程2x 2﹣4x+1=0的根的判别式的值是 (2)已知关于x 的一元二次方程x 2+(m ﹣2)x+m ﹣2=0. (1)求根的判别式△的值(用含m 的代数式表示). (2)当m=4时,求此一元二次方程根.知识点2:利用根的判别式不解方程判断根的情况 例2:不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=知识点:利用根的判别式求待定字母系数的取值范围(1)关于x的一元二次方程(a﹣1)x2+2ax﹣3+a=0有实数根,则a .(2)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;(3)已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.知识点4:利用根的情况判断三角形形状例4:已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.知识点5:利用判别式求最值例5:阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.知识点:6:一元二次方程的简单应用例6:(1)李明准备进行如下操作实验,把一根长40cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,李明应该怎么剪这根铁丝? (2)李明认为这两个正方形的面积之和不可能等于48cm 2,你认为他的说法正确吗?请说明理由.(2)如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m 2? (2)能否使所围矩形场地的面积为810m 2,为什么?(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.二、根与系数的关系 1、根与系数的关系如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(此公式的大前提:0∆≥)2、以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=3、根与系数的关系主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.典例分析知识点7:利用方程中各项系数求两根的和与积 例7:不解方程,求下列方程的两根和与积.(1)x 2﹣2x ﹣3=0; (2)3x 2+x ﹣1=0; (3)x 2+4x ﹣1=0.知识点8:已知方程的一个根,求另一个根例8:⑴若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .(2)已知关于x 的方程220x kx +-=的一个解与方程131x x +=-解相同. ⑴求k 的值;⑵求方程220x kx +-=的另一个解.知识点9:已知方程,求关于方程的两根的代数式的值 例9:(1)已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .(2)已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . (3)已知α、β是方程2520x x ++=βααβ的值.(4)如果a ,b 都是质数,且2130a a m -+=,2130b b m -+=,求b aa b+的值.知识点10:根据根与系数的关系确定方程参数的值 例10:(1)设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是____.(2)已知关于x 的方程22(23)30x k x k +-+-=有两个实数根1x ,2x ,且121211x x x x +=+,求k 值.(3)已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。

根的判别式和根与系数关系

根的判别式和根与系数关系

(4) △≥0
方程有两个实数根
3.一元二次方程 ax2+bx+c=0(a≠0)根与系数关系
(两根是x1 、x2),x1+x2= -b/a,x1x2= c/a
4.以两数x1、x2为根的一元二次方程(二次项系数为1)是 x2-(x1+x2)x+x1x2=0(和的相反数作为一次项系数,积作 为常数项)
练习
⑶以2和-3为根为一元二次方程___________。
两根和的相反数作为一次项系数,积x2作+X为-6常=0数项。
⑷方程x2+(k2 -1)x+k=0两根互为相反数,则 k=____。
注意用“△”检验。K=1,舍去
-1
⑸若二次三项式x2+x+k在实数范围内不能 因式分解,则k范围___K_>_1_/_4。 △<0
二系≠0
2、一元二次方程有根的条件 △≥0
3、用根与系数的关系求出字母的值一定要代入△ 检验 △≥0,取
△ <0,舍
4、考虑问题要全面,特别注意隐含条件
5、数形结合意识要强,要有整体思想、分类思想。
简析 k10k-1-1k<1且k0 要仔细审k题0 ,挖k出0隐含条件。
⑵x2,已且知x1关+于x2 x=的x1方x2,程求xm2的-值2m。x+m2-4m+5=0的两实数根为x1、 简析:m1=1,m2=5 代入△检验,取m =5
△≥0,取 用根与系数的关系求出字母值 要代入△检验
△<0,舍
⑶关于x的方程kx2+4x+1=0有两实数根,则k范围
为( B )
A.k≤4
B. k≤4且k≠0
C. k≥4且k≠0
D.k≠0
一元二次方程有根条件 (1)二次项系数 0 0
⑷关于x的方程kx2+4x+1=0有实数根,则k范围为

一元二次方程根的判别式和根与系数的关系

一元二次方程根的判别式和根与系数的关系

一元二次方程根的判别式和根系关系是中考的重点内容之一,即可以单独出现,又可能在代数综合题、几何综合题、应用题中出现,我们准备用两节课的时间,帮助同学们复习这一内容。

解:运用判别式先要将方程化为一般形式⑴ 026232=+-x x0234)62(2=⨯⨯--=∆方程有两个相等实数根 ⑵0122232=+-x x 02232=+-x x0382234)2(2〈-=⨯⨯--=∆方程没有实数根 ⑶ 方程是一元二次方程 0≠∴a 0=c00422≥=⨯⨯-=∆b a b 方程有两个实数根 ⑷ 0)1(422=-+-m mx x0)2(416164)1(414)2(222≥-=+-=-⨯⨯--=∆m m m m m方程有两个实数根解:错误解法 )2)(1(4)2(2+--=∆m m m =)2(4422-+-m m m =0)2(4≥--m∴ 2≤m注意:应用一元二次方程判别式,首先方程应为一元二次方程,当二次项系数含有字母时,要加上二次项系数可为0这个限制条件. 正确解法 ⎩⎨⎧≥∆≠-001m ⇒⎩⎨⎧≤≠23m m∴ 2≤m 且 1≠m解:[])12(4)13(2----=∆m m m =122+-m m1122=+-m m 022=-m m 01=m 22=m 注意 0≠m ∴舍去0=m 2=∴m解:注意本题并没有说方程是一元二次方程,也没有说方程有两个实数根。

⑴ 01=-m 1=m 方程为一元一次方程012=+-x 有一个实根 21=x ⑵ 01≠-m 1≠m 方程为一元二次方程 04)1(4)2(2≥=---=∆m m m m ∴ 0≥m 且 1≠m 时方程有两个实数根 综上,当0≥m 时方程有实根。

小结:⑴ 应用判别式的条件是方程为一元二次方程,当二次项系数为字母时,注意系数不为0;⑵ 应用判别式应将方程化为一般形式; ⑶ 注意有实根和有两个实根的区别.解:∵111=+βα即1=+αββα ∴ αββα=+ 又 )32(--=+m βα 2m =αβ2)32(m m =--解之得 31-=m 12=m 当 3-=m 时 0〉∆当 1=m 时 014)312(2〈⨯--⨯=∆ 舍去 ∴ 3-=m解:∵ 511432=⨯⨯-=∆〉0∴ βα≠3-=+βα〈0, 1=αβ〉0 ∴ α〈0,β〈0∴αββα+=22ααββαβ+=2211αβ+=αβ11+=αβ-+-11=αββα+-=3解:首先 442-=∆〉0方程有两个不等实根法1 4-=+βα, 1=αβ12)(2)1)(1()1()1(1111222222442222222222+++++++=+++++=+++++βαβαβαβαβαβααββα 142162)(222=-=-+=+αββαβα 1942142)(22222244=-=-+=+βαβαβα1122++βα+1122++αβ=1411412142194=+++⨯+1122++βα•1122++αβ=1∴ 所求方程为 01142=+-y y法2 注意到βα,均为原方程的根0142=++αα ⇒ αα412-=+ 0142=++ββ ⇒ ββ412-=+=+=--+--=+++++αββααββααββα444411112222αββα22+ 这样计算较为简单。

根与系数关系及根的判别式

根与系数关系及根的判别式

一元二次方程根的判别式、根与系数的关系一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。

时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为二、根与系数的关系(韦达定理):如果)0(02≠=++a c bx ax 的两个根是,,21x x 则acx x a b x x =⋅-=+2121, 以x 1和x 2为根的一元二次方程为:x 2-( x 1+x 2)x + x 1x 2=0一、选择题1. 若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是( )A. 12k <B. 12k ≤C. 12k >D. k ≥122.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac =-和完全平方式2(2)M at b =+的关系( )A. M =B.M >C.M <D.大小关系不能确定3.已知关于x 的一元二次方程220x x a -+=有实数根,则实数a 的取值范围是( )A.a ≤1B. a<1C. a ≤-1D. a ≥14.下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( ) A.012=+xB.0122=++x xC.0322=++x xD.0322=-+x x5.若1x 、2x 是一元二次方程0572=+-x x的两根,则2111x x +的值是( ) A.57 B.57- C.75 D.75- 6.已知x 1、x 2是方程x 2-3x +1=0的两个实数根,则1x 1+1x 2的值是()A 、3B 、-3C 、13D 、17. 不解方程,判别方程5-7x+5=0的根的情况是( ).8.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( ) A .-3或1B .-3C .1D .39.满足“两实数根之和等于3”的一个方程是( )A.0232=--x xB.02322=--x xC.0232=-+x xD.02322=-+x x 10.一元二次方程0322=--x x 的根为( )A 、3,121==x xB 、3,121=-=x xC 、3,121-=-=x xD 、3,121-==x x 11.下列方程中,没有实数根的是( )A .012=++x xB .0122=++x xC .0122=--x xD .022=--x x 12.两个不相等的实数m ,n 满足m 2-6m=4,n 2-6n=4,则mn 的值为( ) A.6 B.-6 C.4 D.-413.关于x 的一元二次方程2x 2x 40--=的两根为12x x 、,那么代数式1211x x +的值为( ) A12 B 12- C 2 D -2 14.方程x 2-5x -1=0 ( )A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定 15.两个不相等的实数m ,n 满足462=-m m ,462=-n n ,则mn 的值为( )A.6B.-6C.4D.-416.已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是( ) A. 6 B. 2 m -8 C. 2 m D. -2 m17.方程组18ax y x by -=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,那么方程x 2+a x+b=0( )A .有两个不相等实数根B .有两个相等实数根C .没有实数根D .有两个根为2和3 18.一元二次方程0132=-+x x 的根的情况为( ) A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根二、填空题1.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 。

一元二次方程根的判别式及根与系数关系的应用

一元二次方程根的判别式及根与系数关系的应用

一元二次方程根的判别式及根与系数关系的应用
一元二次方程的一般形式为 $ax^2 + bx + c = 0$,其中
$a,\,b,\,c$ 是实数,且 $a \neq 0$。

根的判别式为 $\Delta = b^2 - 4ac$。

根的情况如下:
1. 当 $\Delta > 0$ 时,方程有两个不相等的实根,根的关系为$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$,$x_2 = \frac{-b -
\sqrt{\Delta}}{2a}$。

2. 当 $\Delta = 0$ 时,方程有两个相等的实根,根的关系为$x_1 = x_2 = \frac{-b}{2a}$。

3. 当 $\Delta < 0$ 时,方程没有实根,而有两个共轭复根,根的关系为 $x_1 = \frac{-b + \sqrt{-\Delta}i}{2a}$,$x_2 = \frac{-b - \sqrt{-\Delta}i}{2a}$,其中 $i$ 是虚数单位,满足 $i^2 = -1$。

应用根与系数的关系需要注意以下几点:
1. 根与系数之间的关系是通过根的求解公式得到的。

2. 求解根时,必须保证方程是一元二次方程且系数满足条件,即 $a \neq 0$。

3. 具体的应用问题需要根据具体情况来确定如何使用根与系数的关系,例如可以通过根的值判断方程的解的情况,或者通过
根的关系来确定系数的取值范围等。

4. 根与系数的关系可以用于解决实际问题中的方程求解、几何问题等。

例如,可以用根的关系来求解二次函数的最值、方程组中的未知数等。

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。

中考专题一元二次方程根的判别式及根与系数的关系

中考专题一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。

②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。

考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。

【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2D.m ≥43且m ≠2(20XX 年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。

例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。

求α2+3β2+4β的值。

解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。

一元二次方程根的判别式及根与系数的关系—知识讲解

一元二次方程根的判别式及根与系数的关系—知识讲解

一元二次方程根的判别式及根与系数的关系—知识讲解
1.当Δ>0时,方程有两个不相等的实数根。

这是因为Δ大于0表示
判别式是一个正数,所以开方后可以得到一个实数。

这种情况下方程的根
可以通过求解下面的式子来得到:
x1=(-b+√Δ)/(2a)
x2=(-b-√Δ)/(2a)
2.当Δ=0时,方程有一个实数根。

这是因为Δ等于0表示判别式是
一个零,所以开方后可以得到同一个数字。

这种情况下方程的根可以通过
求解下面的式子来得到:
x=-b/(2a)
3.当Δ<0时,方程没有实数根。

这是因为Δ小于0表示判别式是一
个负数,所以开根号无法得到实数。

但是我们可以通过引入虚数单位i来
表示方程的根。

这种情况下方程的根可以通过求解下面的式子来得到:x1=(-b+√(-Δ)i)/(2a)
x2=(-b-√(-Δ)i)/(2a)
根据根与系数的关系
1.根与二次项系数a的关系:当a大于0时,方程开口向上,根的值
会随着a增大而增大;当a小于0时,方程开口向下,根的值会随着a减
小而增大。

2.根与一次项系数b的关系:根的值与b的正负有关,当b大于0时,根的值变大;当b小于0时,根的值变小。

3.根与常数项系数c的关系:根的值与c的正负有关,当c大于0时,根的值变小;当c小于0时,根的值变大。

这些关系可以帮助我们更好地理解和应用一元二次方程的根。

在实际
问题的解决中,根与系数的关系可以帮助我们分析方程的性质,例如方程
的图像形状和根的变化趋势,并在需要的时候做出合理的调整和判断。

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系一、知识要点:1、一元二次方程20(0)ax bx c a ++=≠的根的判别式:24b ac ∆=-;2、一元二次方程20(0)ax bx c a ++=≠的根与系数关系:(1)设12,x x 是方程20(0)ax bx c a ++=≠的两根,则有1212,b c x x x x a a+=-=;(2)以12,x x 为两根的一元二次方程是:21212()0x x x x x x -++=。

3、公式变形:2221212122212121212121212121212(1)()2(2)()()4(3)(1)(1)()111(4)(5)x x x x x x x x x x x x x x x x x x x x x x x x x x +=+--=+- ++=++++ += -==121212121210000010x x x x x x x x x x x ⇔∆>⇔∆⇔∆<⇔∆≥∆≥⎧⎪⇔+=⎨⎪≤⎩∆≥⎧⇔⎨⎩∆≥⎧⎪⇔+>⎨⎪>⎩∆≥⇔+4、(1)方程有两个不等实根;(2)方程有两个相等实根=0;(3)方程没有实根0;(4)方程有两个实根0(5)方程有两个互为相反数的实根 (6)方程有两个互为倒数的实根=0 (7)方程有两个正根0 (8)方程有两个负根2121212121200000x x x x x x x x x x x ⎧⎪<⎨⎪>⎩∆>⎧⎪⇔+>⎨⎪<⎩∆>⎧⎪⇔+<⎨⎪<⎩0 (9)方程有两个异号根,且正根的绝对值比较大0 (10)方程有两个异号根,且负根的绝对值比较大例1、解关于x的方程:2--+=m x mx m(1)20例2、已知关于x的一元二次方程2m x mx m+++-=有两个不等实根,且这两根又不互为相反数,(1)230求m的取值范围。

例3、已知关于x的方程22--+=x m x m4(2)40(1)若方程有两个相等实根,求m的值,并求出方程的根;(2)是否存在正数m,使方程的两个实根的平方和等于224?若存在,请求出满足条件的m值;若不存在,请说明理由。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
上述命题的逆命题也正确
பைடு நூலகம்
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根
②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根

;/ 嗨热线网
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

2021年中考专题复习一元二次方程根的判别式和根与系数的关系回忆与思考1.一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由△=b2-4ac来判定:(1)当b2–4ac>0时,方程有实数根,即x1=,x2=.当b2–4ac=0时,方程有实数根,即x1=x2=.当b2–4ac<0时,方程实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式.(2)一元二次方程根的判别式的应用:①不解方程,判别根的情况,特别是判别含有字母系数的一元二次方程根的情况,可通过配方法把b2–4ac变形为±(m±h)2+k的形式,由此得出结论,无论m为何值,b2–4ac≥0或b2–4ac<0,从而判定一元二次方程根的情况.一般步骤是:先计算△,再用配方法将△恒等变形,然后判断△的符号,最后得出结论.②根据方程的根的情况,求待定系数的取值范围;③进展有关的证明.(3)关于根的判别式的应用:①对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;②对于字母系数的一元二次方程,假设知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;③运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题.(4)应用根的判别式须注意以下几点:①要用△,要特别注意二次项系数a≠0这一条件.②认真审题,严格区分条件和结论,譬如是△>0,△≥0还是要证明△<0.③要证明△≥0或△<0,需用配方法将△恒等变形为±(m±h)2+k的形式,从而得到判断.2.一元二次方程的根与系数的关系(1)如果方程ax2+bx+c = 0(a≠0)的根是x1和x2,那么x1+x2=,x1x2=.特别低,如果方程x2+px+q = 0的根是x1和x2,那么x1+x2=,x1x2=.(2)一元二次方程根与系数关系的应用.①验根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:一要先把一元二次方程化成标准型,二不要漏除二次项系数a≠0;三还要注意–ba中的符号.②方程一根,求另一根.③不解方程,求与根有关的代数式的值.一般步骤:先求出x1+x2,x1x2的值,再将所求代数式用x1+x2,x1x2的代数式表示,然后将x1+x2,x1x2的值代入求值.④两个数,求作以这两个数为根的一元二次方程:以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.(3)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2–4ac≥0;②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(4)求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.(5) 常见的形式:3.二次三项式的因式分解:ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.【例1】不解方程,判定关于x的方程根的情况(1)2x2–9x+8=0 (2)9x2+6x+1=0 (3) 16x2+8x=–3 (4)x2=7x+18(5)2x2–(4k+1)x+2k2–1=0 (6)x2+(2t+1)x+(t–2)2=0【例2】(1)关于x的一元二次方程kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.(2)假设关于x的一元二次方程(a–2)x2–2ax+a+1=0没有实数解,求ax+3>0的解集〔用含a 的式子表示〕.【例3】(1)关于x的方程x2–mx+m–2=0,求证:方程有两个不相等的实数根(2)求证:方程(m2+1)x2–2mx+(m2+4)=0没有实数根.【例4】(1)方程x2–5x–6=0的根是x1和x2,求以下式子的值:①(x1–3)(x2–3) ②x12+x22+x1x2③x1x2+x2x1(2)利用根与系数的关系,求一个一元二次方程,①使它的根分别是方程3x2–x–10=0各根的3倍;②使它的根分别是方程3x2–x–10=0各根的负倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根的判别式和根与系数的关系(一)一元二次方程根的判别式和根系关系是中考的重点内容之一,即可以单独出现,又可能在代数综合题、几何综合题、应用题中出现,我们准备用两节课的时间,帮助同学们复习这一内容。

例1不解方程判断下列关于x的一元二次方程根的情况⑴3x2 2 2®⑵3x21恵X 2 2⑶ax2bx 0⑷x22mx 4m 4 解:运用判别式先要将方程化为一般形式⑴ 3x226x 2 0(2 .6)2 4 3 2 0方程有两个相等实数根、3x2(,2)2 4 3 2 2 8、3 0方程没有实数根⑶ 方程是一元二次方程a 0 c 02 2b 4 a 0 b 0方程有两个实数根⑷ x2 2mx 4(m 1) 02 2 2(2m) 4 1 4(m 1) 4m 16m 16 4(m 2) 0 方程有两个实数根2解:错误解法(2m) 4(m 1)(m 2)2 2=4m 4( m m 2)=4(m 2) 0m 2注意:应用一元二次方程判别式,首先方程应为一元二次方程,当二次项系数含有字母时,要加上二次项系数可为0这个限制条件。

m 1 0 m3正确解法0 m 2m 2 且m 12 2解:(3 m 1) 4m(2m 1) = m 2m 1m2 2m 1 1m2 2m 0m10 m2 2注意m 0 舍去m 0m 2例4已知关于x的方程(m 1)x2 2mx m 0有实数根,求m的取值范围。

解:注意本题并没有说方程是一元二次方程,也没有说方程有两个实数根。

一1⑴m 1 0 m 1方程为一兀一次方程2x 1 0有一个实根x 一2⑵ m 1 0 m 1方程为一元二次方程(2m)2 4m(m 1) 4m 0m 0且m 1时方程有两个实数根综上,当m 0时方程有实根。

小结:⑴ 应用判别式的条件是方程为一元二次方程,当二次项系数为字母时,注意系数不为o ;⑵应用判别式应将方程化为一般形式;⑶ 注意有实根和有两个实根的区别。

问题:1 1解:•/ 1 即--------- 1又(2 m 3)2m(2 m 3) m2例6已知方程x2 3x 1 0的两个根为11112= =例7已知方程x 4x 1 0的两个实数根为,求作一个以1为根的1解之得mh 3 m2 1 当m 3时0当m 1时2(2 1 3) 4 1 0 舍去••• m 32解:••• 3 4 115 0兀二次方程。

解:首先42 4 0方程有两个不等实根法1 4 , 12 1 2 1 (21)2( 2 2 4 4 2 21)2 4 42( 2 2) 221 21 (21)( 2 2 2 2 21) 12 2 ( )2 2 16 2 144 4 22 2 _ 2 2 “ 2 - —( ) 2 14 2 194 2 1 2 1 194 2 14 2+ 142 1 2 1 1 14 11 -=11所求方程为寸14y 1 0法2 注意到,均为原方程的根2 4 1 0 2 1 42 4 1 0 2 1 42 1 21 4 4 2 22 1 21 4 4这样计算较为简单。

2 2例8⑴已知实数a b且a a 1 0, b b 1 0,求a b的值。

2解:由已知a,b是方程x x 1 0的两个不等实根a b 12 2解:由p p 1 0及1 q q 0可知p 0, q 01又pq 1 p - q1 2 1由1 q q20 (—)2(—) 1 0q q2又p2 p 1 0p与丄可看作方程x2 x 1 0的两个不等实根q2解:依题意a,b都是方程x 2x 2 0的实数根①当当a b时a,b是x22x 2 0的两个不等实根a b 2ab 21 1 a b dda b ab②当当a b时a, b是x22x 2 0的同一个实数根x 1 -3当当a b = 1 3 时丄1 2 2 门------ 、3 1a b a 1 、3当当a b = 1- 3时丄1 2—— 1 、•3a b a 1.3例9 已知X1,X2是一元二次方程x2 2x m 1 0 的两个实数根,且满足解:X i X 22不对称,利用根系关系X-I (x 1 X 2) 11 X代入方程,2「 7亠 当m —时,4 7m -解:已知X-I X2 4 1 ,X 1X 2 - 1 , 82 X1X 22(4)22(? 1),4x 12 mx 1小 2 1 26x 1 mx 1 m 22X 2 8=4x 2 1 mx 1 1 m 4 2(X 12X 22)42不对称,利用方程和根系关系1 m 4 0,22X i X 1X 2 1,求 m 的值。

1 X 12 可求出 m —44 4( - 1) 1 0421 2 根,且满足 6% mx 1-m 2X 28 0,求m 的值。

m 2 m =2( 4)4(8 1) 4 0,m 、2 〜m(丁)2(: 1) 2 0 482m 4m 0 m 10, m 2 4m 28m 64当m 0,4时二m 0 或4分析:求一元二次方程两根差的方法有两种① 求出X i,X2,(X i X2)2易得②(X i X2)2= (X i X2)2 4X i X2由根系关系可得解:⑴当a 1 , cX i3时,原方程为X2(X i2X 3X2)21 , X2 3, m 16 4成立当a 2 , c .2时, 原方程为2X24X 2 0i--42 4 2 2 0、2X i X2 2 ,X1X2 —2m (X i X2 )2(X i X2)24X X2=4 2 2 4 不成立⑵设方程的两个实数根为X i, X22 2m (x i X2 ) (X-I X2)4X 1X 2 = 44c a对于任意非零实数 a , 4 4c accX i X 22, X i X 2a4ca••• c 0当 c 0,4a 2例12已知关于X 的两个方程22x(m 4)x (m 4) 0 ① 和 mx 2(n 2)x (m 3) 0②方程①有两个不相等的负实数根,方程 ②有两个实数根。

⑴求证:方程②的两根符号相同;⑵ 设方程②的两根分别为,,若:1:2,且n 为整数,求m 的最小整数值。

分析:利用判别式和根系关系可判别方程两根符号此时当ba0,两根同为负数①若c0 a两根同号.b 当_ 0,两根同为正数a②若c两根异号此时.b 当-0 ,正根绝对值小于负根绝对值aa当b0,正根绝对值大于负根绝对值ar b 当_ = :0,两根绝对值相等a③若C= 0即 c 0 两根至少有个为零a此时当b0,另一根必为负数K 当一0 ,另一根必为正数a当b= 0,即b 0另一根也为零a⑴证明:设X i,X2为方程①的两个实数根i 0由已知x1 x20x1x20n 23m 晋)3m(n 2)2m(m 23)n 不是整数n 11 或 n 722) 4m(m 3) 0 22) 4m(m 3)2(m 4)4 2(m 4) 0即m 40 2m 4小0 2解得m 4由方程②有两个实根可知 m 0m 3•••当m 4时,0 ,方程②有两根之积为正。

m方程②有两根符号相同。

n 2 m m 3m由⑴m 4,又m 为整数2当 m 5时 (n 2) 45 当 m 6时 (n 2)281当 m 6,n 11 时 2 (n 当 m 6,n7 时 2 (nm 的最小整数值为6小结:⑴ 在使用根系关系时,要注意前提条件:二次项系数⑵ 求和两根有关的代数式:如果是对称式,可用根系关系;⑶根系关系和判别式相结合可判断两根的符号学习课件等等THANKS !!!致力为企业和个人提供合同协议, 策划案计划书,打造全网一站式需求欢迎您的下载,资料仅供参考。

相关文档
最新文档