2018高三朝阳一模理科数学
2018年辽宁省朝阳市高考数学一模试卷(理科)
2018年辽宁省朝阳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(★)若集合A={y|y≥0},A∩B=B,则集合B不可能是()A.B.C.{y|y=lgx,x>0}D.∅2.(★)设复数z 满足(1-i)z=1+ i(i是虚数单位),则|z|等于()A.B.2C.D.3.(★★)按照程序框图(如图所示)执行,第3个输出的数是()A.6B.5C.4D.34.(★★)已知数列{a n}的通项公式a n=26-2n,要使此数列的前n项和S n最大,则n的值为()A.12B.13C.12或13D.145.(★★★)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺6.(★★)将函数y=3sin(2x+ )的图象向右平移个单位长度后,再将所得图象上各点的纵坐标不变,横坐标压缩到原来的倍,最终所得图象对应的函数的最小正周期为()A.B.2πC.D.7.(★★★)设中心在原点、焦点在x 轴上的双曲线的焦距为12,圆(x-6)2+y 2=20 与该双曲线的渐近线相切,点P在双曲线上,若点P 到焦点F 1的距离是9,则点P 到F 2的距离是()A.17 或1B.13 或5C.13D.178.(★★★)一个含有5项的等比数列,其中每一项都是小于100的正整数,这5项的和为121,如果S是数列中奇数项之和,则S等于()A.90B.91C.118D.1219.(★★)某地流行一种游戏,如图一是一长方形纸盒,高为4,宽为3,纸盒底部是一个“心形”图案,如图二所示,“心形”图案是由上边界C 1(虚线L 上方部分)与下边界C 2(虚线L下方部分)围成,曲线C 1是函数y= + 的图象,曲线C 2是函数y=- + 的图象,游戏者只需向纸盒内随机投掷一颗瓜子,若瓜子落在“心形”图案内部即可获奖,则一次游戏获奖的概率为()A.-B.-C.-D.+10.(★★)从20名男同学和30名女同学中选4人去参加一个会议,规定男女同学至少有1人参加,下面是不同的选法种数的三个算式:①;②- - ;③+ + .则其中正确算式的个数是()A.0B.1C.2D.311.(★★★)已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的实数x的取值范围是()A.(-2,1)B.(-1,)C.(,2)D.(-1,2)12.(★★★)在△ABC中,G为△ABC的重心,过G点的直线分别交AB,AC于P,Q两点,且=h ,=k ,则16h+25k的最小值()A.27B.81C.66D.41二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(★★★)设变量x、y满足约束条件,则z=2x+y的最大值为.14.(★★★)抛物线C:y 2=2px(p>0)的准线与x轴的交点为M,过点M作C的两条切线,切点分别为P,Q,则∠PMQ= .15.(★★★)矩形ABCD中,AB=4,BC=2,PA⊥平面ABCD,PA=2,E,F分别是AB,DC的中点,则四棱锥P-EBCF的外接球表面积为16.(★★★)函数f(x)=sinx(sinx+cosx)- 在区间()(0<a<1)上有且仅有一个零点,则实数a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(★★★)在△ABC中,已知A=45°,cosB= .(1)求cosC的值;(2)若BC=10,D为AB的中点,求CD的长.18.(★★★)在如图所示的几何体ABCDEF中,平面ABCD⊥平面ABEF,四边形ABCD和四边形ABEF都是正方形,且边长为2,Q是AD的中点.(1)求证:直线AE∥平面FQC;(2)求二面角A-FC-B的大小.19.(★★★)为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为9:11)中,采用分层抽样的方法抽取n名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这n名同学的数据,按照以下区间分为八组:①[30,45),②[45,60),③[60,75),④[75,90),⑤[90,105),⑥[105,120),⑦[120,135),⑧[135,150)得到频率分布直方图如图.已知抽取的学生中数学成绩少于60分的人数为5人.(1)求n的值及频率分布直方图中第④组矩形条的高度;(2)如果把“学生数学成绩不低于90分”作为是否达标的标准,对抽取的n名学生,完成下列2×2列联表:据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?(3)若从该校的高二年级学生中随机抽取3人,记这3人中成绩不低于120分的学生人数为X,求X的分布列、数学期望和方差.附1:“2×2列联表”的卡方统计量公式:K 2=220.(★★★★★)已知椭圆C:+ =1(a>b>0)的左右焦点分别为F 1,F 2且F 2关于直线x-y+a=0的对称点M在直线3x+2y=0上.(1)求椭圆的离心率;(2)若过焦点F 2垂直x轴的直线被椭圆截得的弦长为3,斜率为的直线l交椭圆于A,B两点,问是否存在定点P,使得PA,PB的斜率之和为定值?若存在,求出所有满足条件的P点坐标;若不存在,说明理由.21.(★★★★)已知函数f(x)=(x 2-ax)lnx- x 2+ax(常数a>0).(1)讨论f(x)的单调性;(2)设f′(x)是f(x)的导函数,求证:f′(x)<4e x-3-alnx.[选修4-4:坐标系与参数方程选讲]22.(★★★★)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2 sin(θ-),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.[选修4-5:不等式选讲]23.(★★★)已知函数f(x)=|x-m|-3,且f(x)≥0的解集为(-∞,-2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2-x|成立,求实数t的取值范围.。
辽宁省朝阳市2018届高三第一次模拟考试理数试题(考试版)
第1页 共4页 ◎ 第2页 共4页绝密★启用前辽宁省朝阳市2018届高三第一次模拟考试数学(理)试题一、单选题 1.已知集合,,则( ) A .B .C .D .2.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”。
根据欧拉公式可知,表示的复数位于复平面中的( )A . 第一象限 B. 第二象限 C . 第三象限 D . 第四象限 3.已知是定义在上的偶函数,且在上单调递增,则( )A .B .C .D .4.已知,,那么是成立的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.设不等式组表示的平面区域为,若直线经过区域内的点,则实数的取值范围为() A .B .C .D .6.已知函数的部分图象如图所示,则的值可以为( )A . 1B . 2C . 3D . 47.执行如图所示的程序框图,则输出的等于( )A . 1B . 2C .3 D .4 8.设函数,若是的最小值,则实数的取值范围为( )A .B .C .D .9.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为( )A .B .C .D . 810.函数的图象大致为( )A .B .C .D .11.已知为双曲线的左右焦点,点为双曲线右支上一点,交左支于点,是等腰直角三角形,,则双曲线的离心率为( )A . 4B .C . 2D .第3页共4页◎第4页共4页12.已知台风中心位于城市东偏北(为锐角)度的150公里处,以公里/小时沿正西方向快速移动,小时后到达距城市西偏北(为锐角)度的200公里处,若,则( )A.B.80C.100D.125二、填空题13.设函数在内可导,其导函数为,且,则____________.14.已知平面向量,,若,则实数____________.15.在圆上任取一点,则该点到直线的距离的概率为________________.16.已知函数,若,,且,则________.三、解答题17.已知等比数列的前项和为,满足,.(1)求的通项公式;(2)记,求的最大值.18.某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数再取整,绘制成如下茎叶图,规定不低于85分(百分制)为优秀,甲班同学成绩的中位数为74.(1)求的值和乙班同学成绩的众数;(2)完成表格,若有以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大改革面?说明理由.19.如图,四棱锥中,底面,为直角梯形,与相交于点,,,,三棱锥的体积为9.(1)求的值;(2)过点的平面平行于平面,与棱,,,分别相交于点,求截面的周长.20.已知椭圆的下顶点为,右顶点为,离心率,抛物线的焦点为,是抛物线上一点,抛物线在点处的切线为,且.(1)求直线的方程;(2)若与椭圆相交于,两点,且,求的方程.21.已知函数,其中为自然对数的底数.(1)若在处取到极小值,求的值及函数的单调区间;(2)若当时,恒成立,求的取值范围.22.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程分别为,,设直线与曲线的交点为,,,求的面积.23.已知.(1)当时,求不等式的解集;(2)对于任意实数,不等式成立,求实数的取值范围.。
北京市朝阳区2018届高三3月综合练习(一模)数学(理)试题(解析版)
北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为实数集,集合,,则A. B. C. D.【答案】C【解析】【详解】根据题中条件可求得,所以,故选C.2.复数满足,则在复平面内复数所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】由得,在复平面内对应的点为,在第一象限,故选.3.直线的参数方程为(为参数),则直线的倾斜角大小为()A. B. C. D.【答案】C【解析】将直线的参数方程化成普通方程可得,所以直线的斜率,从而得到其倾斜角为,故选C.4.已知,为非零向量,则“”是“与夹角为锐角”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】根据向量数量积的定义式可知,若,则与夹角为锐角或零角,若与夹角为锐角,则一定有,所以“”是“与夹角为锐角”的必要不充分条件,故选B.5.某单位安排甲、乙、丙、丁名工作人员从周一到周五值班,每天有且只有人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为( )A. B. C. D.【答案】B【解析】甲连续天上班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,剩下三个人进行全排列,有种排法因此共有种排法,故选.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A. B. C. D.【答案】D【解析】在长方体中抠点,1.由正视图可知:上没有点;2.由侧视图可知:上没有点;3.由俯视图可知:上没有点;4.由正(俯)视图可知:处有点,由虚线可知处有点,点排除.由上述可还原出四棱锥,如右图所示,,,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )A. 甲B. 乙C. 丙D. 丁【答案】A【解析】由四人的预测可得下表:1.若甲中奖,仅有甲预测正确,符合题意;2.若乙中奖,甲、丙、丁预测正确,不符合题意;3.若丙中奖,丙、丁预测正确,不符合题意;4.若丁中奖,乙、丁预测正确,不符合题意;故只有当甲中奖时,仅有甲一人预测正确,选.8.在平面直角坐标系中,已知点,,动点满足,其中,则所有点构成的图形面积为( )A. B. C. D.【答案】C【解析】设,则,,,所有点构成图形如图所示(阴影部分),,故选.【方法点睛】本题主要考查平面向量基本定理以及线性规划的应用及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,把向量问题转化为线性规划问题解答是解题的关键.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.执行如图所示的程序框图,若输入,则输出的值为________.【答案】【解析】第四次时,,所以输出.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为__________.【答案】【解析】由于双曲线关于原点对称,故在双曲线上,代入方程解得,又因为,所以渐近线方程为.11.函数()的部分图象如图所示,则__________;函数在区间上的零点为_________.【答案】(1). 2(2).【解析】从图中可以发现,相邻的两个最高点和最低点的横坐标分别为,从而求得函数的周期为,根据可求得,在结合题中的条件可以求得函数的解析式为,令,解得,结合所给的区间,整理得出.方法点睛:该题属于利用所给的函数图像,抓住其中的关键点,确定出函数的解析式,利用最高点和最低点的纵坐标求得A,利用相邻的两个最高点和最低点的横坐标的差求得其周期,从而求得的值,再利用最高点求得,最后确定出函数的解析式,最后利用函数的性质,求得其满足条件的零点.12.已知点若点是圆上的动点,则面积的最小值为__________.【答案】【解析】将圆化简成标准方程,圆心,半径,因为,所以,要求面积最小值,即要使圆上的动点到直线的距离最小,而圆心到直线的距离为,所以的最小值为,故答案为 . 13.等比数列满足如下条件:①②数列的前项和.试写出满足上述所有条件的一个数列的通项公式__________.【答案】【解析】例如,则,故答案为.14.已知,函数当时,函数的最大值是_____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是______.【答案】(1). (2).【解析】当时,,因为,所以,所以,当且仅当,即时取等号,而当时,,此时,分母取最小值,分子取最大值,从而得到该式子取得最大值,故最大值为;函数的图像上有且仅有两对点关于轴对称,等价于作轴左边的图像关于轴的对称图形,与轴右侧的图像有两个不同的交点,即方程有两个正根,即函数有两个零点,利用导数研究函数图像的走向,从而确定出所求的参数的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,,(Ⅰ)若ac=5,求的面积;(Ⅱ)若为锐角,求的值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:第一问该题是有关解三角形问题,第一问根据题中的条件,结合同角正余弦平方和等于,从而求得,利用正弦定理,结合题中的条件,求得,利用三角形的面积公式求得结果;第二问由第一问中的结果,结合题中的条件为锐角,利用同角正余弦平方和等于,可得,最后根据三角形内角和为,利用诱导公式转化,利用和角公式求得结果.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.(Ⅱ)因为,且为锐角,所以.所以.方法点睛:该题考查的是有关解三角形问题,在解题的过程中,一定要抓住题的条件,死咬同角的正余弦平方和等于1,以及灵活应用正弦定理,熟练应用诱导公式以及正弦和角公式,从而能够正确得出结果. 16.如图,在矩形中,,为的中点,为的中点.将沿折起到,使得平面平面(如图).图1 图2(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】试题分析:(Ⅰ)根据等腰三角形的性质可得,由平面平面可得平面,从而可得;(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,求出平面的一个法向量及直线的方向向量,利用空间向量夹角余弦公式可得结果;(Ⅲ)假设在线段上存在点,满足平面,设,利用直线与平面的法向量垂直,数量积为零,列方程求解即可..试题解析:(Ⅰ)如图,在矩形中, ,为中点,,为的中点,由题意可知,, 平面平面图1 图2平面平面,平面,平面,平面,,(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,在中,由,则,所以,,设平面的一个法向量为,则,令,则,所以,设直线与平面所成角为,,所以直线与平面所成角的正弦值为. (Ⅲ)假设在线段上存在点,满足平面设,由,,所以,,,若平面,则,所以,解得,所以.【方法点晴】本题主要考查面面垂直的性质以及利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 17.某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.【答案】(Ⅰ)140人.(Ⅱ).(Ⅲ)见解析.【解析】试题分析:第一问根据题中所给的统计表,可以得出选考方案确定的有18人,这18人中,选考生物的有10人,所占比例是,在这30人中,选考方案确定的人所占比例是,该校高一年级共420人,所以可以得出学校高一年级选考方案确定的学生中选考生物的学生有人;第二问从表中可以得出所选男生选考方案含有历史学科的概率为,所选女生选考方案含有历史学科的概率为,根据相互独立事件同时发生的概率公式求得结果;第三问根据统计表写出所选的两名男生所选的科目,找出对应的的取值为,分析取每个值时对应的概率,从而得出分布列,利用离散型随机变量的分布列的期望公式求得结果. (Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为所以.18.已知函数.(Ⅰ)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)(i),(ii)递增区间是,递减区间是;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)(i)求出,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(ii)分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)先利用导数证明,则,再利用二次函数的性质证明,则,从而可得结论.试题解析:(Ⅰ)当时,,定义域为(i)所以切点坐标为,切线斜率为所以切线方程为(ii)令,所以在上单调递减,且所以当时,即所以当时,即综上所述,的单调递增区间是,单调递减区间是. (Ⅱ)方法一:,即设设所以在小于零恒成立即在上单调递减因为所以,所以在上必存在一个使得即所以当时,,单调递增当时,,单调递减所以因为所以令得因为,所以,因为,所以恒成立即恒成立综上所述,当时,方法二:定义域为了证明,即只需证明,即令则令,得令,得所以在上单调递增,在上单调递减所以即,则令因为,所以所以恒成立即所以综上所述,即当时,.【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与极值,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.19.已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与的大小关系并加以证明.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)根据椭圆的离心率为,且过点,结合性质,列出关于、、的方程组,求出、、,即可得椭圆的方程;(Ⅱ)与的大小关系只需看两直线斜率之间的关系,设设,联立,消去得,利用斜率公式以及韦达定理,化简可得,直线的倾斜角互补,可得.试题解析:(Ⅰ)由题可得,解得.所以椭圆的方程为.(Ⅱ)结论:,理由如下:由题知直线斜率存在,设.联立,消去得,由题易知恒成立,由韦达定理得,因为与斜率相反且过原点,设,,联立消去得,由题易知恒成立,由韦达定理得,因为两点不与重合,所以直线存在斜率,则所以直线的倾斜角互补,所以.20.已知集合是集合的一个含有个元素的子集. (Ⅰ)当时,设(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值.(Ⅱ)证明:对任意一个,存在正整数使得方程至少有三组不同的解.【答案】(Ⅰ)(),();(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)()利用列举法可得方程的解有:;()列出集合的从小到大个数中相邻两数的差,中间隔一数的两数差,中间相隔二数的两数差,…中间隔一数的两数差,可发现只有出现次,出现次,其余都不超过次,从而可得结果;(Ⅱ)不妨设记,,共个差数,假设不存在满足条件的,根据的取值范围可推出矛盾,假设不成立,从而可得结论.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,.试题解析:(Ⅰ)()方程的解有:()以下规定两数的差均为正,则:列出集合的从小到大个数中相邻两数的差:;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:;中间相隔三数的两数差:;中间相隔四数的两数差:;中间相隔五数的两数差:;中间隔一数的两数差:.这个差数中,只有出现次,出现次,其余都不超过次,所以的可能取值有.(Ⅱ)证明:不妨设记,,共个差数.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,从而又这与矛盾,所以结论成立.。
2018年高三北京市朝阳区2018届高三(一模)数学
理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.B.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.B.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:.……2分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
高考最新-朝阳区第一次统一考试(理) 精品
朝阳区2018年高三第一次统一考试卷数学(理工农医类)2018.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到8页.共150分,考试时间120分钟.第Ⅰ卷 (选择题,共40分)参考公式:三角函数的和差化积公式 正棱台、圆台的侧面积公式2cos2sin2sin sin β-αβ+α=β+α ()l c 'c 21S +=台侧 2sin2sin 2sin sin β-αβ+α=β-α 其中、c 'c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式2cos2cos2cos sin β-αβ+α=β+α ()h S S 'S 'S 31V ++=台球 2sin2cos 2cos cos β-αβ+α-=β-α 其中S 'S 、分别表示上、下底面面积,h 表示高一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的.(1)设()2x x f =,集合A ={x}f(x)=x,x ∈R},B ={x}f[f(x)]=x,x ∈R,则A 与B 的关系是A .A ∩B =A B .A ∩B =φC .A ∪B =RD .A ∪B ={-1,0,1}(2)已知图中曲线4321C C C C 、、、是函数x log y a =的图象,则曲线4321C C C C 、、、对应a 的值依次为A .3、2、2131、 B .2、3、2131、 C .2、3、3121、 D .3、2、3121、(3)函数y =sinx +sin|x|的值域是A .[-1,1]B .[-2,2]C .[0,2]D [0,1](4)与双曲线116y 9x 22=-有共同的渐近线,且经过点()32,3-的双曲线方程为 A .19y 44x 22=- B .19x 44y 22=- D .14x 9y 422=- D .14y 9x 422=- (5)山坡水平面成30 角,坡面上有一条与山底坡脚的水平线成30 角的直线小路,某人沿小路上坡走了一段路后升高了100米,则此人行走的路程为A .300米B .400米C .200米D .3200米 (6)函数y =arccosx(-1≤x ≤1)的图象关于y 轴对称的图象记为1C ,而1C 关于直线y =x 对称的图象记为2C ,则2C 的解析式是A .y =cosx(0≤x ≤π)B .y =arcsinx(-1≤x ≤1)C .y =-cosx(0≤x ≤π)D .y =π-arccosx(-1≤x ≤1)(7)若三棱锥S —ABC 的项点S 在底面上的射影H 在△ABC 的内部,且是在△ABC 的垂心,则A .三条侧棱长相等B .三个侧面与底面所成的角相等C .H 到△ABC 三边的距离相等D .点A 在平面SBC 上的射影是△SBC 的垂心(8)抛物线()0p px 2y 2>=与直线⎪⎩⎪⎨⎧θ=θ+=sin t y cos t 2p x (t 为参数)相交的弦的中点对应的参数t 的值等于A .θθ2sin cos P 2 B .θ2sin p 2 C .θθ2sin cos p D .θ2sin p第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6分小题,每小题5分,共30分.把答案填在题中横线上.(9)已知()3x log x f 21+=的反函数为)x (f 1-,则使()2x x f 1-<-成立的x 的取值范围是_________.(10)某市电话号码从7位升至8位,这一改变可增加______________个拨号.(11)已知21、F F 是椭圆15y 9x 22=+的左、右焦点,P 为椭圆上一个点,且2:1 |PF |:|PF |21=.则21PF F ∠=_________,2PF 的倾斜角为________.(12)过棱长为2的正方体1AC 的棱AD 、CD 、11B A 的中点E 、F 、G 作一截面,则△EFG的面积为________,点B 到平面EFG 的距离为_______.(13)已知数列{}n a 中,,1a a ,a a a a a a ,2a ,1a 2n 1n 2n 1n n 2n 1n n 21≠++===++++++则6543a ,a ,a ,a 的值依次是_________,100a =________.(14)已知,21cos cos ,21sin sin =αβ-α-=β-α且βα、均为锐角,则cos(α-β)=__________,ctg(α-β)=___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)(Ⅰ)解关于x 的不等式();02x lg x lg 2>--(Ⅱ)若不等式()()01m x lg m 2x lg 2>-++-对于|m|≤1恒成立,求x 的取值范围.(16)(本小题满分13分)设21z ,z 是两个非零复数,且|z z ||z z |2121-=+;设复数21z z z +=,在复平面内与复数z 、21、z z 对应的向量分别为→---→---→---21OZ 、OZ 、OZ .(Ⅰ)在复平面内画出向量→---→---→---21OZ 、OZ 、OZ ,并说出以O 、1Z 、Z 、2Z 为顶点的四边形的名称;(Ⅱ)求证:221zz ⎪⎪⎭⎫ ⎝⎛是负实数.(17)(本小题满分13分)在矩形ABCD 中,AB =4,BC =3,E 为DC 的中点,沿AE 将△AED 折起,使二面角D -AE -B 为60 .(Ⅰ)求DE 与平面AC 所成角的大小; (Ⅱ)求二面角D -EC -B 的大小.(18)(本小题满分13分)已知函数f(x)是定义域为R 的奇函数,且它的图象关于直线x =1对称. (Ⅰ)求f(0)的值;(Ⅱ)证明函数f(x)是周期函数;(Ⅲ)若f(x)=x(0<x ≤1),求x ∈R 时,函数f(x)的解析式,并画出满足条件的函数f(x)至少一个周期的图象.(19)(本小题满分14分)如图,已知椭圆1by a x :C 2222=+(a>b>0),梯形ABCD(AB ∥CD ∥y 轴,|AB|>|CD|)内接于椭圆C ,E 为对角线AC 与BD 的交点,设|AB|=m ,|CD|=n ,|OE|=d ,dnm -是否存在最大值,若存在,求出最大值并说明存在时的情况;若不存在,请说明理由.(20)(本小题满分14分)一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n ≥3,n ∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(Ⅰ)如图1,圆环分成的3等份为321a a ,a 有多少不同的种植方法?如图2,圆环分成的4等份为4321a ,a ,a ,a ,有多少不同的种植方法?(Ⅱ)如图3,圆环分成的n 等份为n 321a ,,a a ,a ,有多少不同的种植方法?参考答案及评分标准15.(Ⅰ)解:∵,02x lg )x (lg 2>-- ∴(lgx +1)(lgx -2)>0. ∴lgx<-1或lgx>2. ∴0<x<101或210x >……………………………………………………………………6分 (Ⅱ)解:设y =lgx,则(),01m y m 2y 2>-++- ∴01m my y 2y 2>-+-- ∴.0)1y 2y (m )y 1(2>--+- 当y =1时,不等式不成立.设),1y 2y (m )y 1()m (f 2--+-=则f(m)是m 的一次函数,且一次函数为单调函数.当-1≤m ≤1时,若要⇔⎪⎩⎪⎨⎧>-+-->-+--⇔⎩⎨⎧>->⇔>.01y 1y 2y ,0y 11y 2y .0)1(f ,0)1(f 0)m (f 22 ⎩⎨⎧>-<><⇔⎪⎩⎪⎨⎧>-->-.2y 1y ,3y 0y .02y y ,0y 3y 22或或则y<-1或y>3.∴lgx<-1或lgx>3. ∴310x 101x 0><<或. ∴x 的取值范围是),10(101,03+∞⎪⎭⎫⎝⎛ .…………………………………………13分(16)(Ⅰ)图形略,所画图形是矩形.…………………………………………6分 (Ⅱ)证明:由212121、z z |,z z ||z z | -=+不等于零,得,1z z1z z 2121-=+ 它表示复数21z z 在复平面上对应的点到点(-1,0),(1,0)的距离相等, ∴21z z 对应的点是复平面虚轴上的点. ∴21z z 是纯虚数. ∴221)z z (是负实数.………………………………………………………………13分 17.如图1,过点D 作DM ⊥AE 于M ,延长DM 与BC 交于N ,在翻折过程中DM ⊥AE ,MN ⊥AE 保持不变,翻折后,如图2,∠DMN 为二面角D -AE -B 的平面角,∠DMN =60 ,AE ⊥平面DMN ,又因为AE ⊂平面AC ,则AC ⊥平面DMN .…………………………………………4分(Ⅰ)在平面DMN 内,作DO ⊥MN 于O , ∵平面AC ⊥平面DMN , ∴DO ⊥平面AC .连结OE ,DO ⊥OE ,∠DEO 为DE 与平面AC 所成的角. 如图1,在直角三角形ADE 中,AD =3,DE =2,,1323DE AD AE 2222=+=+=.134AE DE ME ,136AE DE AD DM 2===⋅=如图2,在直角三角形DOM 中,,133360sin DM DO =︒⋅=在直角三角形DOE 中,13233DE DO DEO sin ==∠,则.26393arcsin DEO =∠ ∴DE 与平面AC 所成的角为.26393arcsin……………………………………9分 (Ⅱ)如图2,在平面AC 内,作OF ⊥EC 于F ,连结DF ,∵DO ⊥平面AC ,∴DF ⊥EC ,∴∠DFO 为二面角D -EC -B 的平面角.如图1,作OF ⊥DC 于F ,则Rt △EMD ∽Rt △OFD ,,DEEMDO OF =∴.DEEMDO OF ⋅=如图2,在Rt △DOM 中,OM =DMcos ∠DMO =DM ·cos60 =133.如图1,.1318OF ,139MO DM DO ==+= 在Rt △DFO 中,,213OF DO DFO tg ==∠ ∴二面角D -EC -B 的大小为213arctg .…………………………………………13分18.(Ⅰ)解:∵函数f(x)是奇数,∴f(x)=-f(-x). 令x =0,f(0)=-f(0),2f(0)=0∴f(0)=0.…………………………………………………………………………3分(Ⅱ)证:∵函数f(x)是奇函数,∴f(x)=-f(-x)………………………………(1) 又f(x)关于直线x =1对称,∴f(1+x)=f(1-x) 在(1)中的x 换成x +1,即f(1+x)=-f(1-x),即f(1-x)=-f(-1-x) (2)在(2)中,将1-x 换成x ,即f(x)=-f(-2+x) (3)在(3)中,将x 换成2+x ,即f(2+x)=-f(x) (4)由(3)、(4)得:f(-2+x)=f(2+x). 再将x -2换成x,得:f(x)=f(x +4).∴f(x)是以4为周期的周期函数.………………………………………………8分(Ⅲ)解:⎩⎨⎧<<+-≤≤-=.3x 12x ,1x 1x)x (f)Z k (.3k 4x 1k 4k42x 1k 4x 1k 4k 4x )x (f ∈⎩⎨⎧+<<+++-+≤≤--=19.解:根据对称性,点E 在x 轴上,设点E 的坐标为(d,0)设BD 的方程为 (x -d)=k ·y ,1k -为直线BD 的斜率.……………………………………………3分由⎪⎩⎪⎨⎧=+=-.1b y ax ,ky d x 2222消去x 得0b a d b dkb 2y )k b a (222222222=-+++………………………………………(※) 设为B 、D 的坐标分别为)y ,x (、)y ,x (2211, 则21、y y 为方程(※)的根,且,y 0y 21<<由韦达定理:.kb a dkb 2y y 222221+-=+…………………………6分 ∵m>0,n>0,∴.k b a dkb 4)y y (2y 2y 2n m 22222121+=+-=--=-………………………………10分 ∴.a b2ab 2b 4k b kab 4k b a kb 4d n m 22222222=≤+=+=- 当且仅当,k b k a 22=即b ak =时,d n m -取最大值,ab 2 即:a bk BD =时,d n m -取最大值.ab 2∴dn m -存在最大值.……………………………………………………14分20.解:(Ⅰ)如图1,先对1a 部分种值,有3种不同的种法,再对32、a a 种值, 因为32、a a 与1a 不同颜色,32、a a 也不同.所以S (3)=3×2=6(种).……4分 如图2,S (4)=3×2×2×2-S (3)=18(种).…………………………………8分(Ⅱ)如图3,圆环分为n 等份,对1a 有3种不同的种法,对n32、a、、a a 都有两种不同的种法,但这样的种法只能保证1a 与)1、n 、3、2i (a i -= 不同颜色,但不能保证1a 与n a 不同颜色.于是一类是n a 与1a 不同色的种法,这是符合要求的种法,记为S(n)(n ≥3)种.另一类是n a 与1a 同色的种法,这时可以把n a 与1a 看成一部分,这样的种法相当于对n -1部分符合要求的种法,记为S(n -1).共有1n 23-⨯种种法.这样就有.23)1n (S )n (S 1n -⨯=-+即]2)1n (S [2)n (S 1n n ----=-,则数列)3n }(2)n (S {n ≥-是首项为32)3(S -公比为-1的等比数列.则).3n ()1](2)3(S [2)n (S 3n 3n ≥---=-- 由(1)知:S(3)=6, ∴.)1)(86(2)n (S 3n n ---=- ∴.)1(22)n (S 3n n --⋅-=答:符合要求的不同种法有3n n )1(22--⋅-(n ≥3) ………………………14分。
2018年高三最新 北京朝阳区2018届高三理科数学一模试卷 精品
朝阳区高三数学第一次统一练习试卷(理工农医类) 2018.4(考试时间120分钟,满分150分)成绩_____________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷(选择题共60分) 参考公式:三角函数积化和差公式)]sin()[sin(21cos sin β-α+β+α=βα)]sin()[sin(21sin cos β-α-β+α=βα)]cos()[cos(21cos cos β-α+β+α=βα)]cos()[cos(21sin sin β-α-β+α-=βα正棱台、圆台侧面积公式:l )c 'c (21S +=台侧其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长。
台体的体积公式:h )s s 's 's (31V ++=台体其中s ′、s 分别表示上、下底面积,h 表示高。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上将该选项涂黑。
(1)已知函数x 21x )x (f --+=的定义域为M ,1x )x (g +=的值域为N ,则( ) A .)1,1[N M -= B .]1,1[N M -= C .]2,(N M -∞= D .N M ⊆(2)直线1l :ax+2y-1=0与直线2l :0a y )1a (x 2=+-+平行,则a 的值为( ) A .-1 B .2 C .-1或2 D .0或1 (3)已知α、β是两个不同的平面,在下列条件中,可判断平面α与平面β平行的是( ) A .α、β都垂直于平面yB .a 、b 是α内两条直线,且a//β,b//βC .α内不共线的三个点到β的距离相等D .a 、b 为异面直线,且a//α,b//α,a//β,b//β(4)若以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线⎪⎩⎪⎨⎧α=α=2cos y 2sin 21x :C (α为参数)的极坐标方程为 ( ) A .θ=ρsin 21 B .ρ=2sin θ C .ρ=sin θ D .)sin 1(221θ+=ρ (5)不等式x 2x >+的解集为( ) A .{x|-2≤x<2} B .{x|-1<x<2}C .{x|0≤x<2}D .{x|x<2}(6)函数x cos 2x cos x sin 2)x (f 2+=的最小正周期为( ) A .3π B .2π C .π D .2π (7)某房地产开发商在销售一幢23层的商品楼之前接下列方法确定房价:由于首层与顶层均为复式结构,因此首层价格为21m /a 元,顶层由于景观好价格为22m /a 元,第二层价格为2m /a 元,从第三层开始每层在前一层价格上加价2m /100a元,则该商品房各层的平均价格为( )A .a 1.23a a 21=+B .)a 1.23a a (23121=+ C .)a 31.23a a (23121=+ D .)a 9.22a a (23121=+(8)若奇函数y=f(x)(x ≠0),当x ∈(0,+∞)时,f(x)=x-1,则不等式f(x-1)<0的解集为( )A .{x|x<0或1<x<2}B .{x|x<-1或0<x<1}C .{x|x<-2或-1<x<0}D .{x|x<0}(9)高中一年级8个班协商级建年级篮球队,共需10名队员,若每个班至少出一名,则不同的名额分配方式有( )A .224种B .62种C .36种D .28种 (10)如图,三棱台111C B A ABC -中,上底面111C B A 面积为41,侧面11A ACC 面积为2,点B 到上底面111C B A 及侧面11A ACC 的距离均为1,则三棱台111C B A ABC -的体积为( )A .21 B .43C .23D .2 (11)已知z ∈C ,|z|=1,当arg(z-2i)取得最大值时所对应的复数z 为( )A .i 2123- B .i 2123+- C .i 2123+ D .i 2321+ (12)设)0,c (F 1-,)0,c (F 2-(c>0)是椭圆)0b a (1by a x 2222>>=+的两个焦点,P 是以|F F |21为直径的圆与椭圆的一个交点,且1221F PF 5F PF ∠=∠,则该椭圆的离心率为( ) A .36 B .23 C .22 D .32第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分,把答案填在题中横线上。
2018年高三北京市朝阳区2018届高三(一模)数学
理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
2018年北京市朝阳区高考一模数学试卷(理科)【解析版】
2018年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|2x>1},则(∁R A)∩B=()A.(﹣∞,0]∪[3,+∞)B.(0,1]C.[3,+∞)D.[1,+∞)2.(5分)复数z满足(1+i)z=i,则在复平面内复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.4.(5分)设,是单位向量,则“•>0”是“和的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A.18B.24C.48D.966.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.7.(5分)庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是()A.甲B.乙C.丙D.丁8.(5分)在平面直角坐标系xOy中,已知点A(,0),B(1,2).动点P 满足=+,其中λ,μ∈[0,1],λ+μ∈[1,2],则所有点P构成的图形面积为()A.1B.2C.D.2二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为.10.(5分)若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,则双曲线C的渐近线方程为.11.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则ω=;函数f(x)在区间上的零点为.12.(5分)已知两点A(﹣2,0),B(0,2),点C是圆x2+y2﹣2x+2y=0上任意点,则△ABC面积的最小值是.13.(5分)等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1.试写出满足上述所有条件的一个数列的通项公式.14.(5分)已知a∈R,函数当x>0时,函数f(x)的最大值是;若函数f(x)的图象上有且只有两对点关于y轴对称,则a的取值范围是.三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程)15.(13分)在△ABC中,已知,b=2a cos A.(Ⅰ)若ac=5,求△ABC的面积;(Ⅱ)若B为锐角,求sin C的值.16.(14分)如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE沿BE折起到A'BE,使得平面A'BE⊥平面BCDE(如图2)(Ⅰ)求证:A'O⊥CD;(Ⅱ)求直线A'C与平面A'DE所成角的正弦值;(Ⅲ)在线段A'C上是否存在点P,使得OP∥平面A'DE?若存在,求出的值;若不存在,请说明理由.17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量求ξ的分布列及数学期望Eξ.18.(13分)已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且与直线l1的斜率互为相反数.若直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE与x轴所成的锐角为θ1,直线BF与x轴所成的锐角为θ2,判断θ1与θ2的大小关系并加以证明.20.(13分)已知集合X={x1,x2,…,x8}是集合S={2001,2002,2003,…,2016,2017}的一个含有8个元素的子集.(Ⅰ)当X={2001,2002,2005,2007,2011,2013,2016,2017}时,设x i,x j∈X(1≤i,j≤8),(i)写出方程x i﹣x j=2的解(x i,x j);(ii)若方程x i﹣x j=k(k>0)至少有三组不同的解,写出k的所有可能取值.(Ⅱ)证明:对任意一个X,存在正整数k,使得方程x i﹣x j=k(1≤i,j≤8)至少有三组不同的解.2018年北京市朝阳区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|2x>1},则(∁R A)∩B=()A.(﹣∞,0]∪[3,+∞)B.(0,1]C.[3,+∞)D.[1,+∞)【解答】解:集合A={x|x2﹣3x<0}={x|x(x﹣3)<0}={x|0<x<3},集合B={x|2x>1}={x|2x>20}={x|x>0};所以∁R A={x|x≤0或x≥3},所以(∁R A)∩B={x|x≥3}=[3,+∞).故选:C.2.(5分)复数z满足(1+i)z=i,则在复平面内复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由(1+i)z=i,得,∴z在复平面内对应的点为,在第一象限,故选:A.3.(5分)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.4.(5分)设,是单位向量,则“•>0”是“和的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设与的夹角是θ,因为,是单位向量,所以•>0等价于cosθ>0,由0≤θ≤π得,0≤θ<,所以“•>0”推不出“和的夹角为锐角”;反之,和的夹角为锐角得cosθ>0,即得•>0,所以“和的夹角为锐角”推出“•>0”,综上可得,“•>0”是“和的夹角为锐角”的必要不充分条件,故选:B.5.(5分)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A.18B.24C.48D.96【解答】解:根据题意,分2步进行分析:①,甲连续2天上班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,②,剩下三个人进行全排列,有种排法,因此共有4×6=24种排法,故选:B.6.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.【解答】解:抠点法:在长方体ABCD﹣A1B1C1D1中抠点,1)由正视图可知:C1D1上没有点;2)由侧视图可知:B1C1上没有点;3)由俯视图可知:CC1上没有点;4)由正(俯)视图可知:D,E处有点,由虚线可知B,F处有点,A点排除.由上述可还原出四棱锥A1﹣BEDF,=1×1=1,.如右图所示,S四边形BEDF故选:D.7.(5分)庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是()A.甲B.乙C.丙D.丁【解答】解:由四人的预测可得下表:1)若甲中奖,仅有甲预测正确,符合题意2)若乙中奖,甲、丙、丁预测正确,不符合题意3)若丙中奖,丙、丁预测正确,不符合题意4)若丁中奖,乙、丁预测正确,不符合题意故只有当甲中奖时,仅有甲一人预测正确.故选:A.8.(5分)在平面直角坐标系xOy中,已知点A(,0),B(1,2).动点P 满足=+,其中λ,μ∈[0,1],λ+μ∈[1,2],则所有点P构成的图形面积为()A.1B.2C.D.2【解答】解:以OA,OB为邻边作平行四边形OACB,∵=+,且λ,μ∈[0,1],λ+μ∈[1,2],∴P点位于△ABC内部(包含边界).==.∴所有点P构成的图形面积为S△ABC故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为4.【解答】解:模拟程序的运行,可得:第四次时,65>50,满足判断框内的条件,退出循环,输出k的值为4.故答案为:4.10.(5分)若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,则双曲线C的渐近线方程为.【解答】解:根据题意,若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,又由双曲线的图象关于原点对称,故(﹣2,1),(2,﹣1)在双曲线上,则有,解可得a=,则双曲线的方程为﹣y2=1,所以渐近线方程为;故答案为:11.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则ω=2;函数f(x)在区间上的零点为.【解答】解:由函数f(x)=A sin(ωx+φ)的部分图象得,即最小正周期T=π;又因为,且ω>0,解得ω=2;由图得时,,又因为,所以;函数f(x)的零点即的图象与x轴交点的横坐标,令,解得;因为,得,所以函数的零点为.故答案为:.12.(5分)已知两点A(﹣2,0),B(0,2),点C是圆x2+y2﹣2x+2y=0上任意点,则△ABC面积的最小值是2.【解答】解:圆x2+y2﹣2x+2y=0化为(x2﹣2x+1)+(y2+2y+1)=2,即(x﹣1)2+(y+1)2=2,由题意即为在圆上找一点到线段AB的距离最小即可,直线,y﹣2=x,∴线段AB:y=x+2(﹣2≤x≤0),圆心(1,﹣1)到其距离,∴圆上某点到线段AB的距离最小值为,=2.故答案为:2.13.(5分)等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1.试写出满足上述所有条件的一个数列的通项公式(答案不唯一).【解答】解:根据题意,等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1,则有0<a1<1,0<q<1,据此满足条件的一个数列的通项公式为(答案不唯一);故答案为:(答案不唯一)14.(5分)已知a∈R,函数当x>0时,函数f(x)的最大值是;若函数f(x)的图象上有且只有两对点关于y轴对称,则a的取值范围是(﹣1,).【解答】解:(1)当x>0时,,令,当,即x=1时取等号,即当x=1时,f1(x)min=2,令,又因为,则;(2)f(x)图象仅有两对点关于y轴对称,即f(x)(x<0)的图象关于y轴对称的函数图象与f(x)(x>0)仅有两个交点,当x<0时,f(x)=(x+1)2+a.设其关于y轴对称的函数为g(x),∴g(x)=f(﹣x)=(x﹣1)2+a(x>0)∵,由(1)可知近似图象如图所示:当g(x)与f(x)仅有两个交点时,,综上,a的取值范围是(﹣1,),故答案为:,(﹣1,).三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程)15.(13分)在△ABC中,已知,b=2a cos A.(Ⅰ)若ac=5,求△ABC的面积;(Ⅱ)若B为锐角,求sin C的值.【解答】解:(Ⅰ)根据题意,若b=2a cos A,由正弦定理得,则sin B =2sin A cos A,,因为,所以,所以,所以.(Ⅱ)由(Ⅰ)知,因为B为锐角,所以.所以sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B==16.(14分)如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE沿BE折起到A'BE,使得平面A'BE⊥平面BCDE(如图2)(Ⅰ)求证:A'O⊥CD;(Ⅱ)求直线A'C与平面A'DE所成角的正弦值;(Ⅲ)在线段A'C上是否存在点P,使得OP∥平面A'DE?若存在,求出的值;若不存在,请说明理由.【解答】证明:(Ⅰ)如图,在矩形ABCD中,∵AB=2,BC=4,E为AD中点,∴AB=AE=2,∵O为BE的中点,∴AO⊥BE,由题意可知,A'O⊥BE,∵平面A'BE⊥平面BCDE,平面A'BE∩平面BCDE=BE,A'O⊂平面A'BE,∴A'O⊥平面BCDE,∵CD⊂平面BCDE,∴A'O⊥CD.解:(Ⅱ)取BC中点为F,连结OF,由矩形ABCD性质,AB=2,BC=4,可知OF⊥BE,由(Ⅰ)可知,A'O⊥BE,A'O⊥OF,以O为原点,OA'为z轴,OF为x轴,OE为y轴建立坐标系,在Rt△BAE中,由AB=2,AE=2,则,∴,,,,,设平面A'DE的一个法向量为则,,令y=z=1,则x=﹣1,∴,设直线A'C与平面A'DE所成角为θ,,∴直线A'C与平面A'DE所成角的正弦值为.(Ⅲ)假设在线段A'C上存在点P,满足OP∥平面A'DE,设由,∴,,若OP∥平面A'DE,则,∴,解得,所以.17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量求ξ的分布列及数学期望Eξ.【解答】解:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为x,则(人),所以该学校选考方案确定的学生中选考生物的学生为140人;(Ⅱ)该男生和该女生的选考方案中都含有历史科目的概率为P=;(Ⅲ)由题意知ξ的所有可能取值为1,2,,P(ξ=2)===;所以ξ的分布列为:ξ的数学期望为.18.(13分)已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且与直线l1的斜率互为相反数.若直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE与x轴所成的锐角为θ1,直线BF与x轴所成的锐角为θ2,判断θ1与θ2的大小关系并加以证明.【解答】解:(Ⅰ)由题可得,解得.所以椭圆C的方程为.(Ⅱ)结论:θ1=θ2,理由如下:由题知直线l1斜率存在,设l1:y=k(x+1),A(x1,y1),B(x2,y2).联立,消去y得(1+2k2)x2+4k2x+2k2﹣2=0,由题易知△>0恒成立,由韦达定理得,因为l2与l1斜率相反且过原点,设l2:y=﹣kx,E(x3,y3),F(x4,y4),联立消去y得(1+2k2)x2﹣2=0,由题易知△>0恒成立,由韦达定理得,因为E,F两点不与A,B重合,所以直线AE,BF存在斜率k AE,k BF,则=====0所以直线AE,BF的倾斜角互补,所以θ1=θ2.20.(13分)已知集合X={x1,x2,…,x8}是集合S={2001,2002,2003,…,2016,2017}的一个含有8个元素的子集.(Ⅰ)当X={2001,2002,2005,2007,2011,2013,2016,2017}时,设x i,x j∈X(1≤i,j≤8),(i)写出方程x i﹣x j=2的解(x i,x j);(ii)若方程x i﹣x j=k(k>0)至少有三组不同的解,写出k的所有可能取值.(Ⅱ)证明:对任意一个X,存在正整数k,使得方程x i﹣x j=k(1≤i,j≤8)至少有三组不同的解.【解答】解:(Ⅰ)(i)方程x i﹣x j=2的解有:(x i,x j)=(2007,2005),(2013,2011)(ii)以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次,6出现4次,其余都不超过2次,所以k的可能取值有4,6(Ⅱ)证明:不妨设2001≤x1<x2<…<x8≤2017记a i=x i+1﹣x i(i=1,2,…,7),b i=x i+1﹣x i(i=1,2,…,6),共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而(a1+a2+…+a7)+(b1+b2+…+b6)≥2(1+2+…+6)+7=49①这与①矛盾,所以结论成立.。
北京市朝阳区2018年一模数学理科试题
(第6题图)2018年朝阳区高三第一次综合模拟数学学科测试(理工类)一、选择题:本大题共8小题,每小题5分,共40分. (1)复数i(2+i)z =在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知集合1{|(1}2xA x =<,集合{|lg 0}B x x =>,则A B =U ( )A .{|0}x x >B .{|1}x x >C . {|1}{|0}x x x x ><UD . ∅(3)若,x y 满足约束条件,1,33,x y y x x y +⎧⎪+⎨⎪+⎩≤3≤≥则函数2z x y =-的最大值是( ).A .1-B .0C .3D .6(4)在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q 是“乙落地站稳”,则命题“至少有一位队员落地没 有站稳”可表示为( ).A .p q ∨B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .()()p q ⌝∨⌝(5)在ABC △中,π4A =,BC ,则“AC ”是“π3B =”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件(6)执行如图所示的程序框图,输出的S 值为( )A .2B .2-C .4D .4-(7)已知函数2sin ()1xf x x =+.下列命题:①函数()f x 的图象关于原点对称; ②函数()f x 是周期函数;③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是( )A . ①③B .②③C . ①④D .②④(8)直线y x m =+与圆2216x y +=交于不同的两点M ,N,且MN ON ≥+uuu r r uuu r,其中O 是坐标原点,则实数m 的取值范围是( )A .(-U B.(⎡--⎣UC . [2,2]-D .[-二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)抛物线28y x =的准线方程是 .(10)在一次选秀比赛中,五位评委为一位表演者打分,若去掉一个最低分后平均分为90分,去掉一个最高分后平均分为86分.那么最高分比最低分高 分.(11)某三棱锥的三视图如图所示,则这个三棱锥的体积为 ;表面积为 .(12)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b = ;此双曲线的离心率为 .(13)有标号分别为1,2,3的红色卡片3张,标号分别为1,2,3的蓝色卡片3张,现将全部的6张卡片放在2行3列的格内(如 图).若颜色相同的卡片在同一行, 则不同的放法种数为 .(用数字作答)(14)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的 动点,则满足90SEC ∠=︒的点E 的个数是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数22()2sin()cos sin cos f x x x x x =π-⋅+-,x ∈R .俯视图BC DESA(Ⅰ)求()2f π的值及函数()f x 的最小正周期;(Ⅱ)求函数()f x 在[]0,π上的单调减区间.(16)(本小题满分13分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25.(I)求a,ξ的值;(II)从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;(III)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望Eξ.(17)(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧面PAD ⊥底面ABCD .PAD △为等腰直角三角形,且PA AD ⊥. E ,F 分别为底边AB 和侧棱PC 的中点. (Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:EF ⊥平面PCD ; (Ⅲ)求二面角E PD C --的余弦值.A E BCDP F(18)(本小题满分13分)已知函数21()ln 2f x ax x =-,a ∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>经过点.(Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.(20)(本小题满分13分)从1,2,3,,n L 中这n 个数中取m (,m n *∈N ,3m n ≤≤)个数组成递增等差数列,所有可能的递增等差数列的个数记为(,)f n m .(Ⅰ)当5,3n m ==时,写出所有可能的递增等差数列及(5,3)f 的值; (Ⅱ)求(100,10)f ;(Ⅲ)求证:()(1)(,)2(1)n m n f n m m -+>-.。
北京市朝阳区2018届高三3月综合练习一模数学理考试 含解析 精品
2018年北京市朝阳区高三一模数学(理)考试解析 第I 卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为实数集错误!未找到引用源。
,集合错误!未找到引用源。
,则错误!未找到引用源。
(A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )错误!未找到引用源。
(D )错误!未找到引用源。
【答案】错误!未找到引用源。
【解析】本题考查集合的运算. 集合错误!未找到引用源。
,集合错误!未找到引用源。
.所以错误!未找到引用源。
或错误!未找到引用源。
,所以错误!未找到引用源。
,故选错误!未找到引用源。
.2. 复数错误!未找到引用源。
满足错误!未找到引用源。
,则在复平面内复数错误!未找到引用源。
所对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限【答案】错误!未找到引用源。
【解析】本题考查复数的运算与坐标表示.由错误!未找到引用源。
得错误!未找到引用源。
,在复平面内对应的点为错误!未找到引用源。
,在第一象限,故选错误!未找到引用源。
.3. 直线错误!未找到引用源。
的参数方程为错误!未找到引用源。
(错误!未找到引用源。
为参数),则错误!未找到引用源。
的倾斜角大小为 (A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )错误!未找到引用源。
(D )错误!未找到引用源。
【答案】错误!未找到引用源。
【解析】本题考查直线的参数方程及倾斜角. 由错误!未找到引用源。
可以得到直线的方程为错误!未找到引用源。
.所以直线的斜率为错误!未找到引用源。
,倾斜角为错误!未找到引用源。
,故选错误!未找到引用源。
.4. 已知错误!未找到引用源。
为非零向量,则“错误!未找到引用源。
”是“错误!未找到引用源。
与错误!未找到引用源。
夹角为锐角”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】错误!未找到引用源。
2018年高三最新 朝阳区高三第一次统一考试数学试卷(理
朝阳区高三第一次统一考试数学试卷(理科)一、选择题:(1) 设全集U=R,集合M={ x | x >0 },N={x| x2≥x },则下列关系中正确的是()A.M∩N∈M B.M∪N⊆MC.(C U M)∪(C U N)=φD.(C U N)∩M⊆M(2)在△ABC中,sin2A=sin2B是A=B的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(3) 已知a、b是两条不重合的直线,α、β是两个不重合的平面,给出四个命题:①a∥b,b∥α,则a∥α;②a、b⊂α,a∥β,b∥β,则α∥β;③a与α成30°的角,a⊥b,则b与α成60°的角;④a⊥α,b∥α,则a⊥b.其中正确命题的个数是()A.4个B.3个C.2个D.1个(4)已知等比数列{a n}的前n项和为S n,S3=3,S6=27,则此等比数列的公比q等于()A. 2B.-2C.12D. -12(5)从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A.210种B.186种C.180种D.90种(6) 已知函数f(x)=-在区间M上的反函数是其本身,则M可以是()A.[-2,2] B.[-2,0] C.[0,2] D.[-2,0)(7) 已知椭圆焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为M,则点M的轨迹是()A. 圆B.椭圆C. 直线D.双曲线的一支(8) 已知计算机中的某些存储器有如下特性:若存储器中原有数据个数为m个,则从存储器中取出n个数据后,此存储器中的数据个数为m-n个;若存储器中原有数据为m个,则将n个数据存入存储器后,此存储器中的数据个数为m+n个.现已知计算机中A、B、C三个存储器中的数据个数均为0,计算机有如下操作:第一次运算:在每个存储器中都存入个数不小于2的数据;第二次运算:从A存储器中取出2个数据,将这2个数据存入B存储器中;第三次运算:从C存储器中取出1个数据,将这1个数据存入B存储器中;第四次运算:从B存储器中取出与A存储器中个数相同的数据,将取出的数据存入A存储器,则这时B 存储器中的数据个数是 ( )A . 8B . 7C . 6D . 5二、填空题:(9) 设复数z 1=1+2i ,z 2=2-i ,则12z z 等于 . (10) 若(1-ax )6的展开式中x 4的系数是240,则实数a 的值是 .(11)圆x 2+y 2+4x -2y +4=0上的点到直线x -y -1=0的最大距离与最小距离的差为 . (12) 已知一个球与一个二面角的两个半平面都相切,若球心到二面角的棱的距离是5,切点到二面角棱的距离是1,则球的表面积是 ,球的体积是 . (13)已知向量a = (2,3),|b |a ∥b ,则|a |= ,b 的坐标是. (14)已知函数f (x )=|1|(1),3(1),x x x x +<⎧⎨-+⎩≥且不等式f (x )≥a 的解集是(]2-∞-,∪[0,2],则实数a 的值是 . 三、解答题:(15)(本小题满分13分)已知a = (cos x ,sin x ),b = (-cos x ,cos x ),函数f (x )= 2a ·b +1. (Ⅰ)求函数f (x )的最小正周期;(Ⅱ) 当x ∈[0,2π]时,求f (x )的单调减区间. (16)(本小题满分13分)甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获胜的概率为0.4,每场比赛均要分出胜负. 比赛时采用三场两胜制, 即先取得两场胜利的球队胜出. (Ⅰ)求甲队以二比一获胜的概率;(Ⅱ)求乙队获胜的概率; (Ⅲ)若比赛采用五场三胜制,试问甲获胜的概率是增大还是减小,请说明理由. (17)(本小题满分13分)如图,棱长为1的正四面体ABCD 中,E 、F 分别是棱AD 、CD 的中点,O 是点A 在平面BCD 内的射影.(Ⅰ)求直线EF 与直线BC 所成角的大小; (Ⅱ)求点O 到平面ACD 的距离; (Ⅲ) 求二面角A-BE-F 的大小.· ABCDEFO(18)(本小题满分13分)已知函数f (x )= x 3+ax 2+bx +c 在x =1处有极值,f (x )在x =2处的切线l 不过第四象限且斜率为1,坐标原点到切线l的距离为2. (Ⅰ) 求a 、b 、c 的值; (Ⅱ) 求函数y = f (x )在区间[-1,32]上的最大值和最小值. (19)(本小题满分14分)已知双曲线的中心在原点O ,右焦点为(,0)F c ,P 是双曲线右支上任意一点,且OFP∆(Ⅰ)若点P 的坐标为(2,求此双曲线的离心率;(Ⅱ)若26(1)OF FP c ⋅=,当OP 取得最小值时,求此双曲线的方程. (20)(本小题满分14分)已知数列{}n a 的前n 项和为n S ,点,n S n n⎛⎫⎪⎝⎭在直线11122y x =+上.数列{}n b 满足2120n n n b b b ++-+=*()n N ∈,且311b =,前9项和为153.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)设3(211)(21)n n n c a b =--,数列{}n c 的前n 项和为n T ,求使不等式57n k T >对一切*n N ∈都成立的最大正整数k 的值;(Ⅲ)设**(21, ),() (2, ).n n a n l l N f n b n l l N ⎧=-∈⎪=⎨=∈⎪⎩是否存在*m N ∈,使得(15)5()f m f m +=成立?若存在,求出m 的值;若不存在,请说明理由.朝阳区高三第一次统一考试数学试卷答案(理科)一.选择题(1)D (2)B (3) D (4)A (5)C (6)B (7)A (8)D 二.填空题(9)i (10)±2 (11)2 (12)16π 323π(13(-4,-6)或(4,6) (14)1三.解答题(15) 解:(Ⅰ)因为f (x )= 2a ·b +1 = 2(cos x ,sin x )·(-cos x ,cos x )+1=2(-cos 2x + sin x cos x ) +1 ……………………………………2分 =1-2cos 2x + 2sin x cos x=sin2x -cos2x ……………………………………4分x -4π) ……………………………………6分 所以f (x )的最小正周期是T=22π= π. ……………………………………7分(Ⅱ)依条件得2k π+2π≤2x -4π≤2k π+32π(k ∈Z). ………………………………9分解得k π+38π≤x ≤k π+78π(k ∈Z). ……………………………………11分又x ∈[0,2π],所以38π≤x ≤78π,118π≤x ≤158π.即当x ∈[0,2π]时,f (x )的单调减区间是[38π,78π],[118π,158π]. …………13分(16) 解: (Ⅰ)甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为P 1=12C ×0.6×0.4×0.6=0.288. ……………………………………4分(Ⅱ)乙队以2:0获胜的概率为 20.40.40.16P '=⨯=;乙队以2:1获胜的概率为 1220.40.60.40.192P C ''=⨯⨯=∴乙队获胜的概率为 P 2=0.42+12C ×0.4×0.6×0.4=0.16+0.192=0.352. …………………8分(Ⅲ)若三场两胜,则甲获胜的概率P 3=0.62+12C ×0.6×0.4×0.6=0.36+0.288=0.648或P 3=1- P 2=1-0.352=0.648;若五场三胜,则甲获胜的概率P 3′=0.63+23C ×0.62×0.4×0.6+24C ×0.62×0.42×0.6=0.216+0.2592+0.21836=0.68256. ……………………………………12分 ∵P 3< P 3′,∴采用五场三胜制,甲获胜的概率将增大. ……………………………………13分 (17) 方法一:(Ⅰ)因为E 、F 分别是棱AD 、CD 的中点,所以EF ∥AC .所以∠BCA 是EF 与BC 所成角.∵正四面体ABCD ,∴△ABC 为正三角形, 所以∠BCA=60°.即EF 与BC 所成角的大小是60°. ……………………………………3分 (Ⅱ)解法1:如图,连结AO ,AF , 因为F 是CD 的中点,且△ACD ,△BCD 均为正三角形, 所以BF ⊥CD ,AF ⊥CD . 因为BF ∩AF=F , 所以CD ⊥面AFB . 因为CD 面ACD , 所以面AFB ⊥面ACD . 因为ABCD 是正四面体,且O 是点A 在 面BCD 内的射影,所以点O 必在正三角形BCD 的中线BF 上. 在面ABF 中,过O 做OG ⊥AF ,垂足为G ,所以OG ⊥面ACD .即OG 的长为点O 到面ACD 的距离. 因为正四面体ABCD 的棱长为1,在△ABF 容易求出,OF=,AO=3因为△AOF ∽△OGF , 故由相似比易求出所以点O 到平面ACD 的距离是· A B CD E FO G· ABCDEFO9……………………………………8分 解法2:如图,连结AO ,CO ,DO , 所以点O 到平面ACD 的距离就是三棱锥 O-ACD 底面ACD 上的高h . 与解法1同理容易求出所以V A -COD =1312·.因为V O -ACD =V A -COD ,所以36= V O -ACD =13·h ·(12·2·1) .解得h(Ⅲ) 设△ABD 中,AB 边的中线交BE 于H , 连结CH ,则由ABCD 为正四面体知 CH ⊥面ABD .设HD 的中点为K ,则FK ∥CH . 所以FK ⊥面ABD .在面ABD 内,过点K 作KN ∥AD , KN 交BE 于M ,交AB 于N ,因为BE ⊥AD , 所以NM ⊥BE. 连结FM , 所以FM ⊥BE.所以∠NMF 是所求二面角的平面角. 因为FK=12CH=12MK=12ED=14AD=14, 所以tan ∠FMK=FK MK. HKM· A BCDEFON所以tan ∠NMF=tan (π-∠FMK)=-3. 所以所求二面角的大小为π-arctan3. ……………………………………13分 (或者由正四面体的对称性,可转求二面角C —BF —E 的大小) 方法二:如图,以点A 在面BCD 的射影O 为坐标原点,有向直线OA 为z 轴,有向直线BF 为y 轴,x过点O 与DC 平行方向.因为正四面体ABCD 的棱长为1, 所以可以求出各点的坐标依次为:O(0,0,0),A(0,0,B(0,0)C(12,6,0),D(-12,6,0), E(-14,12,6,F(0,6,0).(Ⅰ)因为EF =(14,,=(12,,0), 又EF ·=14×12+0=18+18=14,且|EF |=12||=12,||=1,所以cos 〈EF ,BC 〉=14112=12.所以EF 与BC 所成角的大小是60°. ……………………………………3分 (Ⅱ) 因为AC =(12,), AD =(-12, 设平面ACD 的一个法向量为F ACD = (x 1,y 1,z 1), 由AC ·F ACD =0,AD ·F ACD =0,解得F ACD = (0,2,22). CD因为OF =(0,6,0),OF ·F ACD =33,| F ACD|=2, 所以点O 到平面ACD 的距离等于d =ACD ACD OF ⋅F F =33×3=…………8分(Ⅲ)因为AB =(0,-33,,AD =(-12,,,设平面ABD 的一个法向量为F ABD = (x 2,y 2,z 2), AB ·F ABD =0,AD ·F ABD =0, 可得一个法向量F ABD = (-6,-2, 1).同理可以求出平面BEF 的一个法向量为F BEF = (26,0,3). 因为F ABD ·F BEF =-9,|F ABD |=3,|F BEF|= 所以co s β=ABD BEF ABD BEF ⋅F F F F=所以二面角A-BE-F 的大小为arccos (-)=π-…………13分 (18) 解:(I) 由f (x )= x 3+ax 2+bx +c ,得f ′(x )= 3x 2+2ax +b . ………………………2分∵x =1时f (x )有极值,∴f ′(1)= 3+2a +b =0. ① ∵f (x )在x =2处的切线l 的斜率为1,∴f ′(2)= 12+4a +b =1. ②由①②可解得a = -4,b =5. ……………………………………4分 设切线l 的方程为y =x + m ,由坐标原点(0,0)到切线l的距离为2,可得m =±1, 又切线不过第四象限,所以m =1,切线方程为y =x +1. ……………………………6分 ∴ 切点坐标为(2,3),∴f (2)=8-16+10+c =3,所以c =1.故a = -4,b =5,c =1. ……………………………………7分(Ⅱ)由(Ⅰ)知f (x )= x 3-4x 2+5x +1,f ′(x )= 3x 2-8x +5=(x -1)(3x -5).∵x ∈[-1,32],∴ 函数f (x )在区间[-1,1]上递增,在3(1,]2上递减 . ………9分又f (-1)=-9,f (1)=3,f (32)=238, ……………………………………12分∴f(x)在区间[-1,32]上的最大值为3,最小值为-9.……………………………13分(19)解:(Ⅰ)设所求的双曲线的方程为22221(0,0) x ya ba b-=>>,则1||22OF=,∴c=……………………………………1分∴22222b c a a=-=-.……………………………………2分由点P在双曲线上,∴224312a a-=-,解得21a=,……5分∴离心率cea==……………………………………6分(Ⅱ)设所求的双曲线的方程为22221(0,0)x ya ba b-=>>,11(,)P x y,则11(,)FP x c y=-. ……………………………………7分∵OFP∆112OF y=∴1y=……8分∵26(1)OF FP c⋅=-, ∴21()1)OF FP x c c c⋅=-=.解得13x=. ……………………………………9分∵22OP x=, …………………………11分当且仅当c=. …………………………………12分此时P.由此得2222221,3a ba b⎧-=⎪⎨⎪+=⎩解得2212ab⎧=⎨=⎩或2263ab⎧=⎨=-⎩(舍).故所求双曲线的方程为2212y x -=. …………………………………14分(20)解:(Ⅰ)由题意,得11122n S n n =+,即211122n S n n =+. 故当2n ≥时,1n n n a S S -=-=2111()22n n +2111[(1)(1)]22n n --+-5n =+.注意到1n =时,116a S ==,而当1n =时,56n +=,所以, *5 ()n a n n N =+∈. ………………………………………3分又2120n n n b b b ++-+=,即211n n n n b b b b +++-=-*()n N ∈,所以{}n b 为等差数列,于是379()1532b b +=. 而311b =,故723b =,2311373d -==-, 因此,33(3)32n b b n n =+-=+,即32n b n =+*()n N ∈.………………5分 (Ⅱ)3(211)(21)n n n c a b =--3[2(5)11][2(32)1]n n =+-+-1111(21)(21)22121n n n n ⎛⎫==- ⎪-+-+⎝⎭.所以,12n n T c c c =+++1111111112335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11122121nn n ⎛⎫=-= ⎪++⎝⎭. ………………………………………8分 由于112321n n n n T T n n ++-=-++10(23)(21)n n =>++, 因此n T 单调递增,故min 1()3n T =. 令1357k >,得19k <,所以 max 18k =. …………………………………10分(Ⅲ)**+5 (21, ),()3 2 (2, ).n n l l N f n n n l l N ⎧=-∈⎪=⎨+=∈⎪⎩ ① 当m 为奇数时,15m +为偶数.此时(15)3(15)2347f m m m +=++=+,5()5(5)525f m m m =+=+,所以347m +525m =+,11m =. …………………………………12分 ② 当m 为偶数时,15m +为奇数.此时(15)15520f m m m +=++=+,5()5(32)1510f m m m =+=+, 所以20m +1510m =+,*57m N =∉(舍去). 综上,存在唯一正整数11m =,使得(15)5()f m f m +=成立.…………………………………14分。
北京市朝阳区2018届高三3月综合练习一模数学理
i z 由 (1 i) z i 得 1 i 第一象限 ,故选 A .
i(1 i) (1 i)(1 i)
1i 2 ,在复平面内对应的点为
11 (,) 2 2 ,在
·1·
x 3t, 3. 直线 l 的参数方程为 y 1 3t (t 为参数 ),则 l 的倾斜角大小为
π (A) 6
π ( B) 3
2π (C) 3
则 (eR A) B
( A ) ( ,0] [3, )
(0,1]
(B)
( C) [3, )
( D ) [1, )
【答案】 C 【解析】本题考查集合的运算 . 集合 A { x | x2 3x 0} { x | x(x 3) 0} { x | 0 x 3} , 集合 B { x | 2x 1} { x | 2x 20} { x | x 0} .
5π ( D) 6斜角 .
x 3t,
由 y 1 3t, 可以得到直线的方程为 y 1
3x
.
所以直线的斜率为
2π 3 ,倾斜角为 3 ,故选 C .
4. 已知 a,b 为非零向量 ,则“a b 0 ”是 “a 与 b 夹角为锐角 ”的
( A )充分而不必要条件
( B )必要而不充分条件
( C)充分必要条件
( D)既不充分也不必要条件
【答案】 B
【解析】本题考查平面向量数量积与夹角的关系 .
∵ a,b 为非零向量
a b 0 cos a,b 0 ∴
a, b [0, π) 2
a,b 夹角为锐角
a, b (0, π) 2
(0, π) ü[0, π)
∵2
2
故选 B .
5. 某单位安排甲、乙、丙、丁 4 名工作人员从周一到周五值班 ,每天有且只 有1 人值班 ,每人至少安排一天且甲连续两天值班 ,则不同的安排方法种数为
2018辽宁朝阳一模含答案 2018届辽宁省朝阳市普通高中高三第一次模拟考试数学(理)试卷
朝阳市2018年普通高中高三第一次模拟考试数学(理)参考答案及评分标准一、选择题: CABCA BD BCC D A 二、填空题13:10 14:π2 15: 44π 16 (18,14)∪(58,98] 三、 解答题:17:(Ⅰ)4cos ,5B =且(0,180)B ∈,∴3sin 5B ==.---------3分 cos cos(180)cos(135)C A B B =--=-43cos135cos sin135sin 5B B =+= =--------------6分(Ⅱ)由(Ⅰ)可得sin C =.--------------8分 由正弦定理得sin sin BC AB A C =7=,解得14AB =.-----------10分 在BCD ∆中,7BD =, 22247102710375CD =+-⨯⨯⨯=,所以CD =-----12 18.证明(1):∵且AF ∥BE,AD ∥BCAF 与AD 交于点A,BE 与BC 交于点B∴平面ADF ∥平面BCE,∴几何体ADF-BCE 是三棱柱 …………2分又平面ABCD ⊥平面ABEF,AB ⊥BC,∴AB ⊥平面BCE,故几何体ADF-BCE 是直三棱柱; ………………4分(1)四边形ABCD 和四边形ABEF 都是正方形,所以EF ∥AB ∥DC 且EF=AB=DC ,所以四边形DCEF 为矩形;…………………………………………………………………………………2分 于是,连结DE 交FC 于P,连结PQ, P 是DE 中点,又Q 是AD 的中点,故PQ 是边AE 的中位线,PQ ∥AE ,注意到AE 在平面FQC 外,PQ 在平面FQC 内, ∴直线AE ∥平面FQC; ……………6分(2) 由于平面ABCD ⊥平面ABEF,AB ⊥BC,∴BC ⊥平面ABEF ,所以BC ⊥BE.于是AB ,BC ,BE 两两垂直。
以BA,BC,BE 所在直线分别为x,y,z 轴建立空间直角坐标系,因正方形边长为2且Q 为AD 中点.所以Q(2,1,0),F(2,0,2),C(0,2,0),B(0,0,0)……………………………8分于是BC →=(0,2,0),BF →=(2,0,2),设平面BFC 的法向量为m →=(x,y,z)则⎩⎨⎧m →⋅BC →=0m →⋅BF →=0,解之得m →=(1,0,-1); 同理可得平面AFC 的法向量n →=(1,1,0) ∴cos<m →,n →>=12记二面角B-FC -A 的大小为θ,依题意知,θ为锐角,cos θ=12,θ=π3即求二面角B-FC-A 的大小为π3…………………………12分19.解析:(1) “成绩少于60分”的频率5n =(11500+1375)·15⇒n =100……2分④的高度=[75,90)内的频率组距=1−(151500+15375+30375+1550+1560+15100+15300)15=1/125……4分(2) 按照“男生”和“女生”分层抽样在容量为100的样本中,“男生”人数=99+11⨯100=45,“女生”人数=119+11⨯100=55“达标”即“成绩不低于90分”的频数=(150+160+1100+1300)⨯15⨯100=75据此可填表如下6分 据表可得卡方统计量K 2=100(30⨯10−45⨯15)245⨯55⨯75⨯25=10033=3.030<3.841 故有不足95%的把握认为“学生性别”与“数学成绩达标与否”有关 可以认为它们之间没有关联……8分(3) “成绩不低于120分”的频率=(1100+1300)⨯15=15因高二年级的学生数远超过样本容量,故从该年级抽取任意1人的概率都可认为是15从而X ~B (3,15)则 P (X =0)=(15)0(45)3=64125, P (X =1)=(15)1(45)2=48125P (X =2)=(15)2(45)1=12125, P (X =3)=(15)3(45)0=1125故X 的分布列为: X 0123P 6412548125121251125……10分数学期望E (X )=3⨯15=35……11分 方差D (X )=3⨯15⨯(1−15)=1225……12分20解析: (1)依题知F 2(c,0),设M(x 0,y 0),则y 0x 0-c =-1且x 0+c 2-y 02+a=0,解得⎩⎨⎧x 0=-a y 0=a+c , 即M(-a,a+c)∵M 在直线3x+2y=0上,∴-3a+2(a+c)=0,a=2c,∴e=c a =12……………………… 6分 (2)由(1)及题设得:c a =12且2b 2a =3,∴a=2,b=3,∴椭圆方程为x 24+y 23=1……………… 7分 设直线l 方程为y=12x+t,代入椭圆方程消去y 整理得x 2+tx+t 2-3=0.依题∆>0,即t 2<4 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-t,x 1x 2=t 2-3. ………………………… 8分如果存在P(m,n)使得k PA +k PB 为定值,那么k PA +k PB 的取值将与t 无关k PA +k PB =y 1-n x 1-m +y 2-n x 2-m =(n-32m)t+2mn-3t 2+mt+m 2-3,令(n-32m)t+2mn-3t 2+mt+m 2-3=M, ………………………… 10分 则Mt 2+(mM+32m-n)t+m 2M-3M-2mn+3=0为关于t(t 2<4)的恒等式 ∴⎩⎨⎧M=0n=32m 2mn=3,解得⎩⎪⎨⎪⎧m=1n=32或⎩⎪⎨⎪⎧m=-1n=-32. 综上可知,满足条件的定点P是存在的,坐标为(-1,-32)及(1,32) ……………………… 12分21.(1) f ′(x )=(x −a )lnx (x >0,a >0)画出y =x −a (a >0)及y =lnx (x >0)的图象,它们的零点分别为a 和1①当0<a <1时,f (x )在(0,a )↑,(a ,1)↓,(1,+∞)↑……2分②当a =1时,f (x )在(0,+∞)↑......4分 ③当a >1时,f (x )在(0,1)↑,(1,a )↓,(a ,+∞)↑ (6)分(2) 因f ′(x )=(x −a )lnx =xlnx −alnx要证f ′(x )<4e x −3−alnx ,需证xlnx <4e x −3(x >0)法1. 即证lnx x <4e x −3x 2(x >0)设F (x )=lnx x (x >0),G (x )=4e x −3x 2(x >0)一方面,F ′(x )=1−lnx x 2(x >0)⇒F (x )在(0,e )↑,(e ,+∞)↓则F (x )≤F (e )=1e ……① 另一方面,G ′(x )=4(x −2)e x −3x 3(x >0)⇒G (x )在(0,2)↓,(2,+∞)↑则G (x )≥G (2)=1e ……②据①②⇒F (x )≤G (x ) 有因①的取等条件是x =e ,②的取等条件是x =2故F(x)<G(x),即lnxx<4e x−3x2(x>0)成立,即f′(x)<4ex−3−alnx………………………………………………………………………12分法2. 先证lnx≤1e x(x>0)(差函数)进而xlnx≤1e x2(x>0)再证1e x2≤4e x−3(差函数或商函数)说明等号不成立故xlnx<4e x−3(x>0)成立22.解(I)……………………………5分…………10分23.……5分……10分。
2018北京市朝阳区高三(一模)数学(理)含答案
2018北京市朝阳区高三(一模)数 学(理) 2018.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知全集为实数集R ,集合2{30}A x x x =-<,{21}x B x =>,则RA B ()=A .(0][3,),-∞+∞B .(0,1]C .[)3+∞,D .[1),+∞ 2.复数z 满足(1+i)i z =,则在复平面内复数z 所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.直线l 的参数方程为=3,1+3x t yt-(t 为参数),则l 的倾斜角大小为A .6π B . 3π C . 32π D .65π4.已知a b ,为非零向量,则“0a b >⋅”是“a 与b 夹角为锐角”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A .18B .24C .48D .96 6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A .34B .23C .12D .137.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:俯视图正视图侧视图1甲说:“我或乙能中奖”; 乙说:“丁能中奖”; 丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A .甲B .乙C .丙D .丁8.在平面直角坐标系xOy 中,已知点(3,0)A ,(1,2)B ,动点P 满足OP OA OB λμ=+,其中,[0,1],[1,2]λμλμ∈+∈,则所有点P 构成的图形面积为A . 1B . 2C . 3D . 23第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.执行如图所示的程序框图,若输入5m =,则输出k 的值为________.10.若三个点(2,1),(2,3),(2,1)---中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为_____________.11.函数()sin()f x A x ωϕ=+(0,0,2A ωϕπ>><)的部分图象如图所示,则=ω ;函数()f x 在区间[,3ππ]上的零点为 .12.已知点(2,0),(0,2)A B -,若点M 是圆22220x y x y +-+=上的动点,则ABM ∆面积的最小值为 . 13.等比数列{}n a 满足如下条件:①10a >;②数列{}n a 的前n 项和1n S <. 试写出满足上述所有条件的一个数列的通项公式 .14.已知R a ∈,函数211(+1)0π()sin 2,0.22x x x a x x f x x --+⎧+<⎪⎪=⎨⎪>⎪⎩+, ,当0x >时,函数()f x 的最大值是 ;若函数()f x 的图m >50输出k 结束开始 输入m k =0m =2m -1 是k =k +1否象上有且只有两对点关于y 轴对称,则a 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)在ABC ∆中,已知sin A =,2cos b a A =. (Ⅰ)若5ac =,求ABC ∆的面积; (Ⅱ)若B 为锐角,求sin C 的值. 16.(本小题满分14分)如图1,在矩形ABCD 中,2AB =,4BC =,E 为AD 的中点,O 为BE 中点.将ABE ∆沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2). (Ⅰ)求证:A O CD '⊥;(Ⅱ)求直线A C '与平面A DE '所成角的正弦值;(Ⅲ)在线段A C '上是否存在点P ,使得//OP 平面A DE '? 若存在,求出A PA C''的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案图1EABCDOA '图2CBDEO确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率; (Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量221,2,ξ⎧=⎨⎩名男生选考方案相同名男生选考方案不同,,求ξ的分布列及数学期望E ξ.18. (本小题满分13分)已知函数ln 1()x f x ax x-=-. (Ⅰ)当2a =时,(ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(ⅱ)求函数)(x f 的单调区间;(Ⅱ)若12a <<,求证:)(x f 1<-. 19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点(1,2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆C 的左焦点的直线1l 与椭圆C 交于,A B 两点,直线2l 过坐标原点且与直线1l 的斜率互为相反数.若直线2l 与椭圆交于,E F 两点且均不与点,A B 重合,设直线AE 与x 轴所成的锐角为1θ,直线BF 与x 轴所成的锐角为2θ,判断1θ与2θ大小关系并加以证明. 20. (本小题满分13分)已知集合128{,,,}X x x x =是集合{2001,2002,2003,,2016,2017}S =的一个含有8个元素的子集.(Ⅰ)当{2001,2002,2005,2007,2011,2013,2016,2017}X =时,设,(1,8)i j x x X i j ∈≤≤,(i )写出方程2i j x x -=的解(,)i j x x ;(ii )若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值;(Ⅱ)证明:对任意一个X ,存在正整数k ,使得方程(1,8)i j x x k i j -=≤≤至少有三组不同的解.2018北京市朝阳区高三(一模)数学(理)参考答案二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由2cos b a A =,得cos 0A >,因为sin A =,所以cos 5A =.因为2cos b a A =,所以4sin 2sin cos 25B A A ===. 故ABC ∆的面积1sin 22S ac B ==. ………………….7分 (Ⅱ)因为4sin 5B =,且B 为锐角,所以3cos 5B =.所以sin sin()sin cos cos sin 25C A B A B A B =+=+=.………….13分16.(本小题满分14分)证明:(Ⅰ)由已知2AB AE ==,因为O为BE 中点,所以A O BE '⊥. 因为平面A BE '⊥平面BCDE ,且平面A BE'平面BCDE BE =,A O '⊂平面A BE ',所以A O '⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A O CD '⊥. ………….5分 (Ⅱ)设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点.由已知易得OF OG ⊥.由(Ⅰ)可知,A O '⊥平面BCDE , 所以A O OF '⊥,A O OG '⊥.以O 为原点,,,OF OG OA '所在直线分别为,,x y z 轴 建立空间直角坐标系(如图). 因为2A B '=,4BC =,所以(00(110),(130),(130),(110)A B C D E ,,,,,,,,'---. 设平面A DE '的一个法向量为111(,,)x y z =m ,因为(132),(020)A D DE ,,,,'=--=-, 所以 0, 0,A D DE ⎧'⋅=⎪⎨⋅=⎪⎩m m 即111130,20. x y y ⎧-+=⎪⎨-=⎪⎩取11z =-,得1)=-m . 而A C '=(1,3,.所以直线A C '与平面A DE '所成角的正弦值sin 3θ== ……….10分 (Ⅲ)在线段A C '上存在点P ,使得//OP 平面A DE '. 设000(,,)P x y z ,且(01)A PA Cλλ'=≤≤',则A P AC λ''=,[0,1]λ∈. 因为(00(130)A C ,,',所以000(,,(,3,)x y z λλ=, 所以000,3,x y z λλ==,所以(,3)P λλ,(,3)OP λλ=.若//OP 平面A DE ',则OP ⊥m.即0OP ⋅=m .由(Ⅱ)可知,平面A DE '的一个法向量1)=-m,0-=,解得1[0,1]2λ=∈, 所以当12A P A C '='时,//OP 平面A DE '. ……….14分17.(本小题满分13分)解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人. ……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84; 选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310. 所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分 (Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===, 1111422228()213(2)4C C C C P C ξ++⨯+===,或3(2)1(1)4P P ξξ==-==. 所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分 18. (本小题满分13分)(Ⅰ)当2a =时,ln 1()2x f x x x-=-.2222ln 22ln ()2x x xf x x x ---'=-=. (ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y =-. ….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分 (Ⅱ)由0x >,()1f x <-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设2()1ln h x ax x x =-+-,只须证()0h x >成立.因为2121()21ax x h x ax x x--'=--=,12a <<,由()0h x '=,得2210ax x --=有异号两根.令其正根为0x ,则200210ax x --=. 在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>.则()h x 的最小值为20000()1ln h x ax x x =-+-0011ln 2x x x +=-+- 003ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,所以0112x <<.则0030,ln 02x x ->->.因此003ln 02x x -->,即0()0h x >.所以()0h x >所以()1f x <-. ….….13分19. (本小题满分14分)解:(Ⅰ)由题意得22222,111.2c a a b c ab ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩解得a =1b =,1c =.故椭圆C 的方程为2212x y +=. ….….5分(Ⅱ)12=θθ.证明如下:由题意可设直线1l 的方程为(1)y k x =+,直线2l 的方程为y kx =-,设点11(,)A x y ,22(,)B x y ,33(,)E x y ,33(,)F x y --.要证12=θθ,即证直线AE 与直线BF 的斜率之和为零,即0AE BF k k += . 因为13231323AE BF y y y y k k x x x x -++=+-+ 13231323(1)(1)k x kx k x kx x x x x +++-=+-+ 2121231323[2()2]()()k x x x x x x x x x +++=-+.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=,所以2122412k x x k -+=+,21222212k x x k -=+.由22,1,2y kx x y =-⎧⎪⎨+=⎪⎩得22(12)2k x +=,所以232212x k =+. 所以2221212322244442()20121212k k x x x x x k k k --+++=++=+++.2121231323[2()2]0()()AE BFk x x x x x k k x x x x ++++==-+.所以12=θθ. ….….14分20. (本小题满分13分)解:(Ⅰ)(ⅰ)方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =.……2分 (ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10; 中间相隔四数的两数差:12,14,12; 中间相隔五数的两数差:15,15; 中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.…………………………………………………………6分 (Ⅱ)证明:不妨设12820012017x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而 127126()()2(126)749a a a b b b +++++++≥++++=. …………①又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾!所以结论成立.……………………………………………………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第一次综合练习数学学科测试 (理工类)2018.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为实数集R ,集合2{30}A x x x =-<,{21}x B x =>,则R A B ()=ðA .(0][3,),-∞+∞B .(0,1]C .[)3+∞,D .[1),+∞ 2.复数z 满足(1+i)i z =,则在复平面内复数z 所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.直线l的参数方程为=,1+3x y tìïïíï=ïî(t 为参数),则l 的倾斜角大小为 A .6π B . 3π C . 32π D .65π4.已知a b ,为非零向量,则“0a b >⋅”是“a 与b 夹角为锐角”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A .18B .24C .48D .96 6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A .34B .23C .12D .13俯视图正视图侧视图17.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下: 甲说:“我或乙能中奖”; 乙说:“丁能中奖”; 丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A .甲B .乙C .丙D .丁8.在平面直角坐标系xOy中,已知点A ,(1,2)B ,动点P 满足OP OA OB λμ=+,其中,[0,1],[1,2]λμλμ∈+∈,则所有点P 构成的图形面积为A . 1B . 2C .D .第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.执行如图所示的程序框图,若输入5m =,则输出k 的值为________.10.若三个点(2,1),(2,3),(2,1)---中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为_____________.11.函数()sin()f x A x ωϕ=+(0,0,2A ωϕπ>><)的部分图象如图所示,则=ω ;函数()f x 在区间[,3ππ]上的零点为 .12.已知点(2,0),(0,2)A B -,若点M 是圆22220x y x y +-+=上的动点,则ABM ∆面积的最小值为 .13.等比数列{}n a 满足如下条件:①10a >;②数列{}n a 的前n 项和1n S <. 试写出满足上述所有条件的一个数列的通项公式 .14.已知R a ∈,函数211(+1)0π()sin 2,0.22x x x a x x f x x --+⎧+<⎪⎪=⎨⎪>⎪⎩+, , 当0x >时,函数()f x 的最大值是 ;若函数()f x 的图象上有且只有两对点关于y 轴对称,则a 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)在ABC ∆中,已知sin A =,2cos b a A =. (Ⅰ)若5ac =,求ABC ∆的面积; (Ⅱ)若B 为锐角,求sin C 的值.16.(本小题满分14分)如图1,在矩形ABCD 中,2AB =,4BC =,E 为AD 的中点,O 为BE 中点.将ABE ∆沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2).(Ⅰ)求证:A O CD '⊥;(Ⅱ)求直线A C '与平面A DE '所成角的正弦值;(Ⅲ)在线段A C '上是否存在点P ,使得//OP 平面A DE '? 若存在,求出A PA C''的值;若不存在,请说明理由.图1EABCDOA '图2DEO某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人? (Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率; (Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量221,2,ξ⎧=⎨⎩名男生选考方案相同名男生选考方案不同,,求ξ的分布列及数学期望E ξ.18. (本小题满分13分)已知函数ln 1()x f x ax x-=-. (Ⅰ)当2a =时,(ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(ⅱ)求函数)(x f 的单调区间;(Ⅱ)若12a <<,求证:)(x f 1<-.已知椭圆2222:1(0)x y C a b a b+=>>,且过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆C 的左焦点的直线1l 与椭圆C 交于,A B 两点,直线2l 过坐标原点且与直线1l 的斜率互为相反数.若直线2l 与椭圆交于,E F 两点且均不与点,A B 重合,设直线AE 与x 轴所成的锐角为1θ,直线BF 与x 轴所成的锐角为2θ,判断1θ与2θ大小关系并加以证明.20. (本小题满分13分)已知集合128{,,,}X x x x =是集合{2001,2002,2003,,2016,2017}S =的一个含有8个元素的子集.(Ⅰ)当{2001,2002,2005,2007,2011,2013,2016,2017}X =时,设,(1,8)i j x x X i j ∈≤≤,(i )写出方程2i j x x -=的解(,)i j x x ;(ii )若方程(0)i j x x k k -=>至少有三组不同的解,写出k 的所有可能取值; (Ⅱ)证明:对任意一个X ,存在正整数k ,使得方程(1,8)i j x x k i j -=≤≤至少有三组不同的解.北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)答案2018.3三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由2cos b a A =,得cos 0A >,因为sin A =,所以cos A =.因为2cos b a A =,所以4sin 2sin cos 25B A A ===. 故ABC ∆的面积1sin 22S ac B ==. ………………….7分 (Ⅱ)因为4sin 5B =,且B 为锐角,所以3cos 5B =.所以sin sin()sin cos cos sin C A B A B A B =+=+=.………….13分16.(本小题满分14分)证明:(Ⅰ)由已知2AB AE ==,因为O 为BE 中点,所以A O BE '⊥. 因为平面A BE '⊥平面BCDE ,且平面A BE'平面BCDE BE =,A O '⊂平面A BE ',所以A O '⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A O CD '⊥. ………….5分(Ⅱ)设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点.由已知易得OF OG ⊥.由(Ⅰ)可知,A O '⊥平面BCDE , 所以A O OF '⊥,A O OG '⊥.以O 为原点,,,OF OG OA '所在直线分别为,,x y z 轴 建立空间直角坐标系(如图). 因为2A B '=,4BC =,所以(00(110),(130),(130),(110)A B C D E ,,,,,,,,'---. 设平面A DE '的一个法向量为111(,,)x y z =m , 因为(132),(020)A D DE ,,,,'=--=-,所以 0, 0,A D DE ⎧'⋅=⎪⎨⋅=⎪⎩m m 即111130, 20. x y y ⎧-+=⎪⎨-=⎪⎩取11z =-,得1)=-m . 而A C '=(1,3,.所以直线A C '与平面A DE '所成角的正弦值sin 3θ== ……….10分 (Ⅲ)在线段A C '上存在点P ,使得//OP 平面A DE '. 设000(,,)P x y z ,且(01)A PA Cλλ'=≤≤',则A P A C λ''=,[0,1]λ∈. 因为(00(130)A C ,,',所以000(,,(,3,)x y zλλ=, 所以000,3,x y zλλ===,所以(,3)P λλ,(,3)OP λλ=.若//OP 平面A DE ',则OP ⊥m.即0OP ⋅=m .由(Ⅱ)可知,平面A DE '的一个法向量1)=-m,0=,解得1[0,1]2λ=∈,所以当12A P A C '='时,//OP 平面A DE '. ……….14分17.(本小题满分13分)解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人. ……….3分 (Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84; 选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310. 所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分 (Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===, 1111422228()213(2)4C C C C P C ξ++⨯+===,或3(2)1(1)4P P ξξ==-==. 所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分 18. (本小题满分13分)(Ⅰ)当2a =时,ln 1()2x f x x x-=-.2222ln 22ln ()2x x xf x x x ---'=-=.(ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y =-. ….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分 (Ⅱ)由0x >,()1f x <-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设2()1ln h x ax x x =-+-,只须证()0h x >成立.因为2121()21ax x h x ax x x--'=--=,12a <<,由()0h x '=,得2210ax x --=有异号两根. 令其正根为0x ,则200210ax x --=. 在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>.则()h x 的最小值为20000()1ln h x ax x x =-+-0011ln 2x x x +=-+- 003ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,所以0112x <<.则0030,ln 02x x ->->.因此003ln 02x x -->,即0()0h x >.所以()0h x >所以()1f x <-. ….….13分19. (本小题满分14分)解:(Ⅰ)由题意得22222,111.2c a a b c ab ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩解得a =1b =,1c =.故椭圆C 的方程为2212x y +=. ….….5分(Ⅱ)12=θθ.证明如下:由题意可设直线1l 的方程为(1)y k x =+,直线2l 的方程为y kx =-,设点11(,)A x y ,22(,)B x y ,33(,)E x y ,33(,)F x y --.要证12=θθ,即证直线AE 与直线BF 的斜率之和为零,即0AE BF k k += . 因为13231323AE BF y y y y k k x x x x -++=+-+ 13231323(1)(1)k x kx k x kx x x x x +++-=+-+2121231323[2()2]()()k x x x x x x x x x +++=-+.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=, 所以2122412k x x k -+=+,21222212k x x k -=+.由22,1,2y kx x y =-⎧⎪⎨+=⎪⎩得22(12)2k x +=,所以232212x k =+. 所以2221212322244442()20121212k k x x x x x k k k --+++=++=+++.2121231323[2()2]0()()AE BFk x x x x x k k x x x x ++++==-+.所以12=θθ. ….….14分20. (本小题满分13分)解:(Ⅰ)(ⅰ)方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =.……2分 (ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10;11 中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设12820012017x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而127126()()2(126)749a a a b b b +++++++≥++++=. …………① 又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾!所以结论成立.……………………………………………………………………13分。