第六章 控制系统的综合与校正

合集下载

自控原理(6)

自控原理(6)
1/αTa 1/ Ta α 0 1/ Tb α/ Tb ω [20]
③ 无源迟后-超前网络 无源迟后 超前网络 GC(s)的对数频率特性 )
[-20] 20lgα 20 α
90 0 -90
ω
结论: ④ 结论: i) 在低频部分,幅频曲线具有负斜率、负相移,相角是迟后的, 在低频部分,幅频曲线具有负斜率、负相移,相角是迟后的, 起迟后校正作用;在高频部分,幅频曲线具有正斜率、正相移, 起迟后校正作用;在高频部分,幅频曲线具有正斜率、正相移, 相角是超前的,起超前校正作用; 相角是超前的,起超前校正作用; ii)在只有迟后校正或超前校正难以满足系统的稳态和动态性能 ) 要求时,才考虑采用迟后-超前网络来校正系统 超前网络来校正系统。 要求时,才考虑采用迟后 超前网络来校正系统。 4) 其它常用无源校正网络的电路图、传递函数及相应的对数幅频特性 其它常用无源校正网络的电路图、 参见教材P253“表6-1 常用无源校正网络”。 常用无源校正网络” 参见教材 表 2. 有源校正装置 常用的有源校正装置有: 、 常用的有源校正装置有: PI、 PD、PID及滤波型调节器等; 、 及滤波型调节器等 其中主要了解PID控制器的硬件结构及调整、使用方法。 控制器的硬件结构及调整、 其中主要了解 控制器的硬件结构及调整 使用方法。 串联校正(频域法校正 频域法校正) §6.3 串联校正 频域法校正 系统性能指标以频域特征量来表征时, 校正系统常采用频域方法。 系统性能指标以频域特征量来表征时 校正系统常采用频域方法。 校正方法:串联校正、反馈校正、前馈校正和复合校正等 校正方法:串联校正、反馈校正、前馈校正和复合校正等。
C1 R1
① 电路形式
U1
C2 R2
U2
② 传递函数

第六章自动控制原理自动控制系统的校正

第六章自动控制原理自动控制系统的校正

第六章自动控制原理自动控制系统的校正自动控制原理是指通过一系列的传感器、执行器和控制器等装置,对待控制对象进行检测、判断和调节,以实现对系统的自动调控和校正。

在自动控制系统中,校正是一个重要的环节,对于确保系统的稳定性、准确性和可靠性具有至关重要的作用。

接下来,本文将简要介绍自动控制系统的校正方法和重要性。

首先,自动控制系统的校正主要包括以下几个方面:1.传感器校正:传感器作为自动控制系统中的重要组成部分,负责将物理量转化为电信号进而进行处理。

传感器的准确性直接影响着系统的测量和控制效果,因此需要对传感器的灵敏度、精度和线性度等进行校正,以提高系统的测量准确性。

2.执行器校正:执行器主要负责将控制信号转化为物理动作,控制系统的输出效果依赖于执行器的准确性和稳定性。

因此,需要对执行器的响应速度、灵敏度和动态补偿等进行校正,以确保系统的控制精度和稳定性。

3.控制器校正:控制器是自动控制系统的核心部分,负责对传感器数据进行处理和判断,并生成相应的控制信号。

对于不同类型的控制器,需要根据系统的需求和特点进行各种参数的校正和调整,以保证系统的控制效果。

4.系统校正:系统校正是指对整个自动控制系统进行整体的校准和调整。

由于控制系统中存在着多种参数和输入信号,这些参数和信号之间的相互作用会对系统的控制效果产生影响。

因此,需要对系统的整体参数进行校正,以确保系统的稳定性和性能达到预期的要求。

其次,自动控制系统的校正具有以下几个重要性:1.提高系统的准确性:通过对传感器、执行器和控制器进行校正,可以消除误差、降低噪声的影响,提高系统的测量和控制准确性。

这对于一些对测量和控制精度要求较高的系统而言尤为重要,如飞行器、自动化生产线等。

2.提高系统的稳定性:通过对控制器和系统参数的校正和调整,可以改善系统的阻尼特性和相应速度,增强系统的稳定性和快速响应能力。

这对于一些需要频繁变动的系统而言尤为重要,如电力系统、机械运动系统等。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

第六章 自动控制系统的综合与校正 答案

第六章 自动控制系统的综合与校正 答案

第六章习题答案1.答:需要校正的控制系统可分为被控对象、控制器和检测环节三个部分。

各装置除其中放大器的增益可调外,其余的结构和参数是固定的。

在系统中引进一些附加装置来改变整个系统的特性,以满足给定的性能指标,这种为改善系统的静、动态性能而引入系统的装置,称为校正装置。

而校正装置的选择及其参数整定的过程,就称为自动控制系统的校正问题。

根据校正装置在系统中的安装位置,及其和系统不可变部分的连接方式的不同,通常可分成三种基本的校正方式:串联校正、反馈校正、复合校正。

2.答:串联校正是设计中最常使用的,通常需要安置在前向通道的前端,主要适用于参数变化敏感性较强的场合。

设计较简单,容易对信号进行各种必要的变换,但需注意负载效应的影响。

3.答:反馈校正的设计相对较为复杂。

显著的优点是可以抑制系统的参数波动及非线性因素对系统性能的影响。

另外,元件也往往较少。

4.答:通过增加一对相互靠得很近并且靠近坐标原点的开环零、极点,使系统的开环放大倍数提高,以改善系统稳态性能。

5.答:通过加入一个相位引前的校正装置,使之在穿越频率处相位引前,以增加系统的相位裕量,这样既能使开环增益足够大,又能提高系统的稳定性,以改善系统的动态特性。

6.解:(1)根据误差等稳态指标的要求,确定系统的开环增益K(2)画出伯德图,计算未校正系统GO (j ω )的相位裕量(3)由要求的相角裕度γ,计算所需的超前相角(4)计算校正网络系数(5)确定校正后系统的剪切频率202)2(4lim )(lim 00==+⋅==→→K s s K s s sG K s o s v )15.0(20)2(40)(++=ωωωωωj j j j j G o =︒=+︒=⇒=17)(1807.6c o c ωϕγω︒=︒+︒-︒=+-=385175000εγγϕ2.438sin 138sin 1sin 1sin 1=︒-︒+-+==m m ϕϕα2.62.4lg 10lg 10-=-=-=∆αm L 9===T m c αωω(6)确定超前网络的转角频率ω1、ω2(7)画出校正后的伯德图,验算相角稳定裕度(画图略)(8)验算其它性能指标(9)写出校正装置的传递函数(10)提出实现形式,并确定网络参数7. 解:(1)根据给定的稳定误差或误差系数,确定系统的开环增益(2)确定未校正系统的相角稳定裕量(3)选择新的ωc4.182.4941.42.49121=⨯=======αωαωαωωm m T T 1054.01227.014.18141.42.41]11[1)(++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=++=s s s s Ts s G c αα1054.01227.0)15.0(20)()()(++⋅+==s s s s s G s G s G c s 11=C 227101227.0611=⨯==-C T R 7112.4227112=-=-=αR R 5)15.0)(1(lim )(lim 00==++==→→K s s s sK s sG K s o s v )15.0)(1(5)(++=s s s s G o ︒-=⇒=⇒=201.20)(γωωc L(4)计算校正网络系数(5)选择校正网络的交接频率(6)画出校正后伯德图,验算相角裕度是否满足要求(7) 验算其它性能指标(8)写出校正装置的传递函数(9)提出实现形式,并确定网络参数8. 解:(1)根据给定的稳态误差或误差系数,确定系统的开环增益(2)确定未校正系统的相位裕量和增益裕量︒=︒+︒=︒-+=521240)205(2γγ12225.05525.090180-=⇒︒=--︒-︒=s arctg arctg c c ωωγ1086.9lg 201lg 20lg 20lg 20)(22≈=⇒-+==∆βωβωc C K L 1.055.05122====c ωτω01.0101.0121====βωβτω1s 1001s 10s G c ++=)(12=C 10010110622=⨯==-C T R 900)1(21=-=αR R 375)13757.0237(lim )(lim 2200=+⨯+==→→s s s sK s sG K s s s v 375=K )13757.0237(375)(22+⨯+=s s s s G s 25=c ω︒35=γ(3)超前校正环节(4)滞后校正环节在ω处滞后校正引起的滞后足够小 校正后开环传递函数(5)确定校正装置参数025.022=αT 2512)3548(=+-=m ϕcm ωω=5.225sin 125sin 1sin 1sin 12==︒-︒+-+=m m ϕϕα063.0255.222===m T ωα⎪⎭⎫ ⎝⎛++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=1025.01063.05.21111)(22222s s s T s T s G c ααdB K L L a c s c s 5.29845.25lg 20lg 20)()(lg 2021=+-=+-=∆=αωω7.291=a ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⋅+⨯+==1s 8551s 201s 02501s 06301s 37570237s s 375s G s G s G 22c s ....).()()()((6)校验略 422=R 422=R 5653=R 204=R 11=C 102=C。

自控控制原理习题_王建辉_第6章答案

自控控制原理习题_王建辉_第6章答案

看到别人设定的下载币5块钱一个,太黑了。

为了方便各位友友都有享受文档的权利,果断现在下来再共享第六章控制系统的校正及综合6-1什么是系统的校正?系统的校正有哪些方法?6-2试说明超前网络和之后网络的频率特性,它们各自有哪些特点?6-3试说明频率法超前校正和滞后校正的使用条件。

6-4相位滞后网络的相位角滞后的,为什么可以用来改善系统的相位裕度?6-5反馈校正所依据的基本原理是什么?6-6试说明系统局部反馈对系统产生哪些主要影响。

6-7在校正网络中,为何很少使用纯微分环节?6-8试说明复合校正中补偿的基本原理是什么?6-9选择填空。

在用频率法设计校正装置时,采用串联超前网络是利用它的(),采用串联滞后校正网络利用它的()。

A 相位超前特性B 相位滞后特性C 低频衰减特性D 高频衰减特性6-10 选择填空。

闭环控制系统因为有了负反馈,能有效抑制()中参数变化对系统性能的影响。

A 正向通道 B反向通道 C 前馈通道6-11 设一单位反馈系统其开环传递函数为W(s)=若使系统的稳态速度误差系数,相位裕度不小于,增益裕量不小于10dB,试确定系统的串联校正装置。

解:→所以其对数频率特性如下:其相频特性:相位裕度不满足要求设校正后系统为二阶最佳,则校正后相位裕度为,增益裕量为无穷大。

校正后系统对数频率特性如下:校正后系统传递函数为因为所以串联校正装置为超前校正。

6-12设一单位反馈系统,其开环传递函数为W(s)=试求系统的稳态加速度误差系数和相位裕度不小于35的串联校正装置。

解:所以其对数频率特性如下:其相频特性:相位裕度不满足要求,并且系统不稳定。

设校正后系统对数频率特性如上(红线所示):则校正后系统传递函数为因为在时(见红线部分),,则→选取,则校正后系统传递函数为其相频特性:相位裕度满足要求。

校正后的对数频率曲线如下:因为所以校正装置为滞后-超前校正。

6-13设一单位反馈系统,其开环传递函数为W(s)=要求校正后的开环频率特性曲线与M=4dB的等M圆相切,切点频率w=3,并且在高频段w>200具有锐截止-3特性,试确定校正装置。

自动控制6第六章控制系统的综合与校正

自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标

自动控制原理_吴怀宇_第六章控制系统的校正与设计

自动控制原理_吴怀宇_第六章控制系统的校正与设计

扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20

图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

信息文本单项选择题(共20道题,每题4分,共90分)题目1标记题目题干在采用频率法设计校正装置时,串联超前校正网络是利用它()。

选择一项:A. 相位超前特性B. 低频衰减特性C. 相位滞后特性D. 高频衰减特性反馈恭喜您,答对了。

正确答案是:相位超前特性题目2标记题目题干闭环系统因为有了负反馈,能有效地抑制()中参数变换对系统性能的影响。

选择一项:A. 正向及反馈通道B. 反馈通道C. 前馈通道D. 正向通道反馈恭喜您,答对了。

正确答案是:正向及反馈通道题目3标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统的抗干扰能力差,需要改变高频段特性。

B. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

C. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

D. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

题目4正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

B. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

C. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

D. 系统的抗干扰能力差,需要改变高频段特性。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

题目5正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

第6章 控制系统的校正及综合

第6章   控制系统的校正及综合
W
(s ) =
100 s + 1 s 10
A(ω c ) ≈
100
ωc
ωc
10
=1
ω c = 31.6
31.6 γ (ω c ) = 180° + − 90° − arctan = 17.5° 10
6.2 串联校正
Bode图如下图所示 图如下图所示
6.2 串联校正
γd
γd
频率特性为
jω T + 1 Wc ( jω ) = ⋅ γ d jω T + 1 1
γd
6.2 串联校正
校正电路的Bode图如下:
ω 2 = γ d ω1
ωmax = ω1 ⋅ ω2,ϕ max γ d −1 = arcsin γ d +1
6.2 串联校正
引前校正的设计步骤:
(1)根据稳态误差的要求确定系统开环放大系数,绘制 Bode图,计算出未校正系统的相位裕量和增益裕量。 (2)根据给定相位裕量,估计需要附加的相角位移。 (3)根据要求的附加相角位移确定γd。 (4)确定1/Td 和γd/Td ,使校正后中频段(穿过零分贝线) 斜率为-20dB/十倍频,并且使校正装置的最大移相角 出现在穿越频率的位置上。 (5)计算校正后频率特性的相位裕量是否满足给定要求, 如不满足须重新计算。 (6)计算校正装置参数。
6.2 串联校正
校正电路的Bode图:
6.2 串联校正
例6-3 一系统的开环传递函数为
K W (s ) = s (s + 1 )(s + 2 )
试确定滞后-引前校正装置, 试确定滞后-引前校正装置,使系统满足 下列指标: 下列指标:速度误差系数 K v = 10,相位裕 量 γ (ωc ) = 50°,增益裕量 GM ≥10dB 。

自控原理第六章

自控原理第六章

ui(t)
R2 C

Ts 1 Gc ( s) Ts 1
2013-8-1 《自动控制原理》第六章
无源滞后网络
ቤተ መጻሕፍቲ ባይዱ
22
极点分布如图所示,极点总位于零点的右边,具体位置与 β有关。若T值够大,则构成一对开环偶极子,提高了系统 的稳态性能。
1 1 滞后网络的零点 zc ,极点 pc ,零、 T T
2013-8-1 《自动控制原理》第六章 15
第二节 常用校正装置及其特性
一、超前校正装置 C
又称微分校正,分为无源超 前网络和有源超前网络
+
R1 R2
+
U 0 ( s) R2 Gc ( s ) U i ( s) R1 R2
R2 R1 R2
(a 1) T R1C
R1Cs 1 ui(t) R2 R1Cs 1 R1 R2 -
2013-8-1 《自动控制原理》第六章 17
另外从校正装置的表达式来看,采用无源超前校正 装置进行串联校正时,系统的开环增益要下降倍,为了 补偿超前网络带来的幅值衰减,通常在采用无源RC超前 校正装置的同时串入一个放大倍数Kc=1/ 的放大器。超 前校正网络加放大器后,校正装置的传递函数
Ts 1 Gc ( s) Ts 1
2013-8-1
《自动控制原理》第六章
1
第一节
控制系统校正的基本概念
一、校正的一般概念
自动控制系统工程研究 分析:建立系统的数学模型并计算其性能指标 设计:根据各项性能指标来合理的选择控制方案 和结构形式 系统的校正 用添加新的环节去改善系统性能的过程称为系统的 校正,所添加的环节称为校正装置。

自动控制原理第六章控制系统的校正

自动控制原理第六章控制系统的校正

自动控制原理第六章控制系统的校正控制系统的校正是为了保证系统的输出能够准确地跟随参考信号变化而进行的。

它是控制系统运行稳定、可靠的基础,也是实现系统优化性能的重要步骤。

本章主要讨论控制系统的校正方法和常见的校正技术。

一、校正方法1.引导校正:引导校正是通过给系统输入一系列特定的信号,观察系统的输出响应,从而确定系统的参数。

最常用的引导校正方法是阶跃响应法和频率扫描法。

阶跃响应法:即给系统输入一个阶跃信号,观察系统输出的响应曲线。

通过观察输出曲线的形状和响应时间,可以确定系统的参数,如增益、时间常数等。

频率扫描法:即给系统输入一个频率不断变化的信号,观察系统的频率响应曲线。

通过观察响应曲线的峰值、带宽等参数,可以确定系统的参数,如增益、阻尼比等。

2.通用校正:通用校正是利用已知的校准装置,通过对系统进行全面的测试和调整,使系统能够输出符合要求的信号。

通用校正的步骤通常包括系统的全面测试、参数的调整和校准装置的校准。

二、校正技术1.PID控制器的校正PID控制器是最常用的控制器之一,它由比例、积分和微分三个部分组成。

PID控制器的校正主要包括参数的选择和调整。

参数选择:比例参数决定控制系统的响应速度和稳定性,积分参数决定系统对稳态误差的响应能力,微分参数决定系统对突变干扰的响应能力。

选择合适的参数可以使系统具有较好的稳定性和性能。

参数调整:通过参数调整,可以进一步改善系统的性能。

常见的参数调整方法有经验法、试错法和优化算法等。

2.校正装置的使用校正装置是进行控制系统校正的重要工具,常见的校正装置有标准电压源、标准电阻箱、标准电流源等。

标准电压源:用于产生已知精度的参考电压,可以用来校正控制系统的电压测量装置。

标准电阻箱:用于产生已知精度的电阻,可以用来校正控制系统的电流测量装置。

标准电流源:用于产生已知精度的电流,可以用来校正控制系统的电流测量装置。

校正装置的使用可以提高系统的测量精度和控制精度,保证系统的稳定性和可靠性。

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1

第六章:控制系统校正

第六章:控制系统校正

第六章系统的性能指标与校正本章目录6.1 控制系统设计的基本思路6.2 串联校正装置的结构与特性6.3 基于频率法的串联校正设计6.4 基于根轨迹的串联校正设计小结本章简介在本书第一章,曾指出控制理论学习的两大任务是系统的分析和系统的设计。

在第二章到第五章,我们从时域和频域两个角度分析了控制系统的稳定性、相对稳定性和及其性能指标。

本章考虑如何根据系统的要求或预定的性能指标对控制系统进行分析。

一个控制系统一般可分解为被控环节、控制器环节和反馈环节三个部分,其中被控部分和反馈部分一般是根据实际对象而建立的模型,不可变的,因此根据要求对控制器进行设计是控制系统设计的主要任务。

同时需要指出,由于系统设计的目的也是对系统性能的校正,因此控制器(又称补偿器或调节器)的设计有时又称控制系统的校正。

本章内容包括了无源控制器设计、有源控制器设计(PID控制器)两个内容,重点介绍控制器的结构、校正原理和设计方法。

6.1 控制系统设计的基本思路一般的控制系统均可表示为如图6-1的形式,是控制系统的不可变部分,即被控对象,为反馈环节。

未校正前,系统不一定能达到理想的控制要求,因此有必要根据希望的性能要求进行重新设计。

在进行系统设计时,应考虑如下几个方面的问题:(1)综合考虑控制系统的经济指标和技术指标,这是在系统设计中必须要考虑的。

(2)控制系统结构的选择。

对单输入、单输出系统,一般有四种结构可供选择:前馈校正、串联校正、反馈校正和复合校正,其框图如图6-2。

考虑到串联校正比较经济,易于实现,且设计简单,在实际应用中大多采用此校正方法,因此本章只讨论串联校正,典型的校正装置有超前校正、滞后校正、滞后-超前校正和PID校正等装置。

(3)控制器或校正装置的选择。

校正装置的物理器件可以有电气的、机械的、液压的和气动的等形式,选择的一般原则是根据系统本身结构的特点、信号的性质和设计者的经验,并综合经济指标和技术指标进行选择。

本书我们以电气校正装置作为控制器,详述有源和无源装置的工作原理和设计方法。

自动控制原理 第六章 控制系统的校正

自动控制原理 第六章 控制系统的校正
第6章
控制系统的校正
自动控制原理研究的内容有两方面:一方面已知控制系统的结构和参数,研究和分析 其静、动态性能,称此过程为系统分析。本书的第 3 章~第 5 章就是采用不同的方法进行 系统分析;另一方面在被控对象已知的前提下,根据实际生产中对系统提出的各项性能要 求,设计一个系统或改善原有系统,使系统静、动态性能满足实际需要,称此过程为系统 校正。本章就是研究控制系统校正的问题。 所谓校正,就是在工程实际中,根据对系统提出的性能指标要求,选择具有合适的结 构和参数的控制器,使之与被控对象组成的系统满足实际性能指标的要求。系统校正又称 系统综合。校正的实质就是在系统中加入一定的机构或装置,使整个系统的结构和参数发 生变化,即改变系统的零、极点分布,从而改变系统的运行特性,使校正后系统的各项性 能指标满足实际要求。 本章研究的主要内容是工程实际中常用的校正方法,即串联校正、反馈校正和复合校 正的设计思想和设计过程,并介绍基于 MATLAB 和 Simulink 的线性控制系统较正的一般 方法。 通过本章的学习,建立系统校正的概念,掌握校正的方法和步骤,并能利用 MATLAB 和 Simulink 对系统进行校正分析,为进行实际系统设计建立理论基础。
Mγ =
ts = K0 π
(6.11) (6.12) (6.13)
ωc
(1≤Mγ≤1.8)
K 0 = 2 + 1.5( M γ − 1) + 2.5( M γ − 1)2
系统的稳态误差或误差系数( K p , K v , K a )也是系统设计中的一个重要指标,它决定系统 的稳态误差 ess 的大小。在系统设计时,常常是根据所要求的误差系数的大小或稳态误差的 大小确定系统开环放大倍数。 带宽频率 ω b 是指闭环幅频特性 M (ω ) 衰减至零频幅值 M (0) 的 0.707 倍时的频率值。 如 图 6.2 所示,它是系统设计中的一项重要性能指标。无论采用何种校正方法,都要求系统 具有足够的带宽,以使系统能够准确复现输入信号;同时要求带宽频率不能太大,否则不 利于抑制高频噪声干扰信号。设系统输入信号 r (t ) 的带宽为 1 ~ ω M ,高频噪声干扰信号的 带宽为 ω1 ~ ω n ,通常控制系统的带宽取为 ω b = (5 ~ 10)ω M (6.14) 且使 ω1 ~ ω n 处于 (0 ~ ω b ) 范围之外,如图 6.3 所示。

自动控制原理(第三版)第6章 控制系统的校正

自动控制原理(第三版)第6章 控制系统的校正
如果通过调整控制器增益后仍然不能全面满 足设计要求的性能指标,就需要在系统中增加一 些参数及特性可按需要改变的校正装置,使系统 全面满足设计要求。
在研究系统校正装置时,为了方便,将系统 中除了校正装置以外的部分,包括被控对象及控 制器的基本组成部分一起称为“固有部分”。
因此控制系统的校正,就是按给定的固有部 分和性能指标,设计校正装置。
KPLeabharlann e(t) 1 TI
t
e(t)dt
0
TD
de(t) dt
u(t为) 控制器的输出; e(为t) 系统给定量与输出量的偏差
K为P 比例系数; T为I 积分时间常数; TD 为微分时间常数
相应的传递函数为
Gc
(s)
K
P
1
1 TI s
TD
s
KP
KI s
KDs
KP 为比例系数;K I为积分系数;KD 为微分系数。
(1) 原理简单,使用方便。
(2) 适应性强,可广泛应用于各种工业生产部 门,按PID控制规律进行工作的控制器早已商品化, 即使目前最新式的过程控制计算机,其基本控制 功能也仍然是PID控制。
(3) 鲁棒性强,即其控制品质对被控对象特性 的变化不太敏感。
自动控制原理
基本PID控制规律可以描述为
u(t)
自动控制原理
2. 频域性能指标
频域性能指标,包括开环频域指标和闭环频 域指标。 (1) 开环频域指标 一般要画出开环对数频率特性,并给出开环频域 指标如下:开环剪切频率c 、相位裕量 和幅值 裕量K g 。 (2) 闭环频域指标 一般给出闭环幅频特性曲线,并给出闭环频域指 标如下:谐振频率 r 、谐振峰值 M r 和频带宽度b 。

自动控制理论第六章控制系统的校正与设计

自动控制理论第六章控制系统的校正与设计

第一节 系统校正的一般方法
幅相频率特性曲线:
Im
Gc(s)=
1+aTs 1+Ts

dφ(ω) dω
=0

ωm=
1 Ta
=
1 T
·aT1
0
φm 1ω=0 α+1
2
ω=∞
α Re
两个转折频率的几何中点。
最大超前相角:
sinφm=1+(a(a––11)/)2/2
=
a–1 a+1
φm=sin-1
a–1 a+1
滞后校正部分:
(1+ T1S) (1+αT1S)
超前校正部分:
(1+ T2S)
(1+
T2 α
S)
L(ω)/dB
1
1
0 α T1
T1
-20dB/dec
φ(ω)
0

T2
T2
ω
+20dB/dec
ω
第一节 系统校正的一般方法
(2) 有源滞后—超前
R2
校正装置 传递函数为:
ur R1
GGcc(式(ss))中==K:(K1(cc1(+(1+1aK+T+TTcT01=S1S1S)SR)()()12(1R(+1+1+1+RT+TaT33T2S2S2S)S))) T1=
a=
1+sinφm 1–sinφm
第一节 系统校正的一般方法
(2) 有源超前校正装置
R2 C
R3
Gc(s)=
R3[1+(R1+R2)Cs] R1(1+R2Cs)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点:简单,也比较容易对信号进行各种必要形式的变换。
(1)无源串连校正 (2)有源串连校正
2、反馈校正
如果从系统的某个元件输出取得反馈信号,构成反馈回路并在反馈回路内

置传
递函数Leabharlann 为GRc(s()s )+的 校
正元
件,则
+
称这
种校正
形式
C(s)

反馈
校正
。如图
所示
-
G1(s) -
G2 (s)
Gc (s)
谢谢大家! 再见!
选择系统的执行元件、测量元件、放大器等,这些是构成控制器 的基本元件,它们连同被控制对象,组成了控制系统的基本部分。
-控制系统的不可变部分或原有部分
在大多数情况下,仅靠调整系统不可变部分的放大器增益不能同时满 足给定的各项性能指标,有时系统甚至是不稳定的。这时,必须在系统中 引入一些附加装置来校正系统的特性,使其全面满足各项性能指标。
在反馈控制回路中,加入前馈校正通路,组成有机整体。
R(s) Gc (s)
E(s) G0 (s)
-
C(s)
H (s)
(a)前馈校正(对给定值处理)
Gc (s)
N (s)
C (s) G(s)
(b)前馈校正(对扰动的补偿)
校正的另外一种方法 -根轨迹法校正
1、基本原理 -增加系统的开环零极点可以改变根轨迹的形状
第六章 控制系统的综合与校正
§6-1 关于控制系统校正的概念 一.问题的提出
控制系统的组成:被控对象+控制器 控制系统设计的基本要求: (1)选择性能指标
性能指标通常与系统的控制精度、相对稳定性及响应速度有关。 ①时域特征量:ζ、σ%、ts 、tr及ess ②频域特征量:Lg、γ、Mp 和ωb
(2)进行系统的初步设计
-校正
二.常用校正方法介绍
1、串连校正
如 果 校 正 元 件 与 系 统 的不 可 变 部 分 串 联 起 来 ,如 图 所 示, 则 称 这 种 形 式 的 校 正 为串 联 校 正 。
R(s) + -
Gc (s)
C(s)
G0 (s)
H(s)
串联校正系统方框图
图 中 的G0 (s)与Gc (s)分 别 表 示 不 可 变 部 分 及校 正 元 件 的 传 递 函 数 。
H(s)
反馈校正系统方框图
优点:(1)所需元件数较串联校正少。
因为反馈信号通常由系统输出端或放大器的输出级供给,信号是从高功率点 传向低功率点,一般无需附加放大器。
(2)可以抑制系统参数波动及非线性因素对系统性能的影响。
在性能指标要求较高的控制系统中,常常兼用串联校正和反馈校正两种方式。
3、复合校正
(1)增加开环极点:根轨迹右移 效果:降低系统的稳定性,增大系统的调节时间。
(2)增加开环零点:根轨迹左移 效果:提高系统的稳定性,减小系统的调节时间,改善系统的暂态性能指标。
2、基本思想:-根据性能指标的要求确定闭环主导极点。
通常闭环系统的主导极点位置不在系统的根轨迹上。通过引入零极点位置适 当的校正装置,以改变原来系统的根轨迹形状,迫使已校正系统根轨迹通过希望 主导极点位置,并使系统的实际主导极点位置与希望主导极点位置重合,然后根 据闭环主导极点的位置确定放大系数和其他参数。
相关文档
最新文档