预应力筋的理论伸长值 (mm)的计算(学习建筑)
预应力张拉伸长量计算
后张法预应力张拉伸长 量计算与测定分析一、理论伸长量计算 1、理论公式:(1)根据《公路桥涵施工技术规范》(JTJ041—2000),钢绞线理论伸长量计算公式如下:PP P E A LP L =∆ ① ()()μθμθ+-=+-kx e P P kx P 1 ②式中:P P ——预应力筋的平均张拉力(N ),直线筋取张拉端的拉力,曲线筋计算方法见②式;L ——预应力筋的长度;A P ——预应力筋的截面面积(mm 2);E P ——预应力筋的弹性模量(N/mm 2);P ——预应力筋张拉端的张拉力(N );x ——从张拉端至计算截面的孔道长度(m);θ——从张拉端至计算截面的孔道部分切线的夹角之和(rad);k ——孔道每米局部偏差对摩擦的影响系数;μ——预应力筋与孔道壁的摩擦系数。
(2)计算理论伸长值,要先确定预应力筋的工作长度和线型段落的划分。
后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,然后累加。
于是上式中:i L L L L ∆+∆+∆=∆ 21 PP i p i E A L P L i =∆P p 值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“Pp i ”更为合适; (3)计算时也可采取应力计算方法,各点应力公式如下:()()()()111--+--⨯=i i kx i i eμθσσ各点平均应力公式为:()()ii kx i pikx e iiμθσσμθ+-=+-1 各点伸长值计算公式为:pip i E x L iσ=∆ 2、根据规范中理论伸长值的公式,举例说明计算方法:某后张预应力连续箱梁,其中4*25米联内既有单端张拉,也有两端张拉。
箱梁中预应力钢束采用高强度低松弛钢绞线(Φ15.24),极限抗拉强度f p =1860Mpa ,锚下控制应力б0=0.75f p =1395Mpa 。
K 取0.0015/m ,µ=0.25。
T梁张拉计算
张拉计算、计算公式及参数依据1、计算依据:根据《公路桥涵施工技术规范》(JTJ041-2000)及 《上社大桥、罗溪中桥、西江溪大桥图纸》。
2、计算公式:①预应力筋的理论伸长值计算公式:PLA L = -P ——A p E p式中:AL —理论伸长值P p ——预应力筋的平均张拉力(N),直线筋取张拉端的拉力, 两端张拉的曲线筋。
预应力筋的长度(mm)-预应力筋的截面面积(mm 2); -预应力筋的弹性模量(N / mm 2)。
②预应力筋平均张拉力计算公式:式中:Pp —预应力筋平均张拉力(N)P —预应力筋张拉端的张拉力(N)x —从张拉端至计算截面的孔道长度(m)。
一从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad) k —孔道每米局部偏差对摩擦的影响系数:u 一预应力筋与孔道壁的摩擦系数。
AP E在此计算时,切记不能将平均张拉力按照起终点力平均求解,因 为每段钢绞线力的衰减非正比例。
同时,进行分段计算时,靠近张拉 端第一段的终点力即为第二段的起点力,每段的终点力与起点力的关 系如下式:P = P* e -(-kx+u0)P —分段终点力(N) zP —分段的起点力(N)8、X 、k 、u —意义同上其他各段的起终点力可以从张拉端开始进行逐步的计算。
3、计算参数:设计采用标准强度f pk =1860MPa 的低松弛高强度钢绞线,公称直 径15.2mm ,公称面积A P =139mm 2,弹性模量E P =1.95x105Mpa ,孔道 摩擦系数 ^=0.25, k=0.0015;单根钢绞线张拉锚下控制应力为: 8 k =0.75 f pk =1860x0.75 = 1395Mpa单根预应力筋张拉力为:1395x139 = 193905N,取193.9KN二、张拉理论伸长值计算本标段40、35、30mT 梁采用两端对称张拉,钢绞线为曲线计算, 先按图纸计算1/2片梁的张拉理论伸长值,分三段计算,A 、B 、C 段, 其中A 和C 段为直线段,B 段为曲线段。
关于预应力筋理论伸长值和张拉实际伸长值
关于预应力筋理论伸长值和张拉实际伸长值△L的计算据《公路桥涵施工技术规范》(JTJ041-2000)简称“桥施规”第12.8.3条规定:“预应力筋采用预应力控制方法张拉时,应以伸长值进行校核。
实际伸长值与理论伸长值的差值应符合设计要求,设计无规定时,实际伸长值与理论伸长值的差值应控制在6%以内,否则应暂停张拉,待查明原因并采取措施予以调整后,方可继续张拉”。
对预应力筋采用预应力控制张拉及预应力筋伸长量校核的情况,作如下介绍:一、预应力筋理论伸长值△L的计算,按“桥施规”129页(12.8 3-1)公式采用,即:△L=P P L/A P E P公式中各参数的选用:P P-------预应力筋张拉端的平均张拉力(N)直线段:P P=P(1-e-kL)/KL曲线段:P p=P[1-e-(KL+μθ)]/(KL+μθ)式中:P-------预应力筋张拉端的拉力(KN);e-------自然对数的底数e=2.718281828;K、μ------参数,按“桥施规”第339页附表G—8选用,当采用塑料波纹管时,μ值可用0.14;K值可用0.0015;θ-------从张拉端到计算截面曲线孔道的部分切线夹角之和(rad);当钢束全长中,即有平曲线孔道,或者平、竖曲线组合孔道时,可取其切线夹角θP(平曲线切线夹角),θS竖向切线夹角的平方和的平方根计算即:θ=∑n1(QP2+θs2)1/2L---------预应力筋长度,是从计算截面至张拉端前锚夹片间各直线、曲线段的长度。
钢束计算截面确定:当两端张拉时,钢束布置多是以构件中心线对称布置,是以构件中线(跨中)为计算截面;当钢束布置不是以构件中心对称布置时,应以钢束两端张拉力克服摩阻力后终点力相等处为计算截面。
预应力筋的截面面积Ap;采用厂家提供的面积。
预应力筋的弹性模量Ep;采用厂家提供的弹模。
二、预应力筋的理论伸长值△L计算:一般采用精确计算法分段计算,即按直线段、曲线段长度(X),分别计算出其伸长量(△L i)再总加起来,故:△L=∑n1△Li△Li=Pi﹒X/A p﹒E pX(=△L i)---------直线段或曲线段的长度(m)三、预应力筋张拉时,实际伸长值据“桥施规”应当为:△L=△L1+△L2-C-△a式中:△L1----------从初始加力20%σcon开始,到控制张拉力100%σcon为此,期间的实测伸长量为(mm)。
关于预应力筋理论伸长值和张拉实际伸长值-推荐下载
关于预应力筋理论伸长值和张拉实际伸长值△L的计算据《公路桥涵施工技术规范》(JTJ041-2000)简称“桥施规”第12.8.3条规定:“预应力筋采用预应力控制方法张拉时,应以伸长值进行校核。
实际伸长值与理论伸长值的差值应符合设计要求,设计无规定时,实际伸长值与理论伸长值的差值应控制在6%以内,否则应暂停张拉,待查明原因并采取措施予以调整后,方可继续张拉”。
对预应力筋采用预应力控制张拉及预应力筋伸长量校核的情况,作如下介绍:一、预应力筋理论伸长值△L的计算,按“桥施规”129页(12.8 3-1)公式采用,即:△ L=P P L/A P E P公式中各参数的选用:P P-------预应力筋张拉端的平均张拉力(N)直线段:P P=P(1-e-kL)/KL曲线段:P p=P[1-e-(KL+μθ)]/(KL+μθ)式中:P-------预应力筋张拉端的拉力(KN);e-------自然对数的底数e=2.718281828;K、μ------参数,按“桥施规”第339页附表G—8选用,当采用塑料波纹管时,μ值可用0.14;K值可用0.0015;θ-------从张拉端到计算截面曲线孔道的部分切线夹角之和(rad);当钢束全长中,即有平曲线孔道,或者平、竖曲线组合孔道时,可取其切线夹角θP(平曲线切线夹角),θS竖向切线夹角的平方和的平方根计算即:θ=∑n1(QP2+θs2)1/2L---------预应力筋长度,是从计算截面至张拉端前锚夹片间各直线、曲线段的长度。
钢束计算截面确定:当两端张拉时,钢束布置多是以构件中心线对称布置,是以构件中线(跨中)为计算截面;当钢束布置不是以构件中心对称布置时,应以钢束两端张拉力克服摩阻力后终点力相等处为计算截面。
预应力筋的截面面积Ap;采用厂家提供的面积。
预应力筋的弹性模量Ep;采用厂家提供的弹模。
二、预应力筋的理论伸长值△L计算:一般采用精确计算法分段计算,即按直线段、曲线段长度(X),分别计算出其伸长量(△L i)再总加起来,故:△L=∑n1△Li△Li=Pi﹒X/A p﹒E pX(=△L i)---------直线段或曲线段的长度(m)三、预应力筋张拉时,实际伸长值据“桥施规”应当为:△L=△L1+△L2-C-△a式中:△L1----------从初始加力20%σcon开始,到控制张拉力100%σcon为此,期间的实测伸长量为(mm)。
伸长量的计算
40mT梁预应力筋理论张拉伸长值计算
一、计算公式
ΔL=P p L/EA
Pp=Pq*[1-e-(kx+uθ)]/(kx+uθ)
Pz=Pq*e-(kx+uθ)
式中:
ΔL---预应力钢筋理论伸长值
L---预应力钢筋的长度
Pp---预应力筋的平均张拉力
x---从张拉端至计算截面孔道长度
A---预应力筋的截面积
E---预应力筋的弹性模量
P---预应力筋张拉端的张拉力
θ---从张拉端至计算截面曲线孔道部分切线的夹角之和
8索,张拉控制应力(按75%控制)F=140*8*1860*0.75=1562.4KN
9索,张拉控制应力(按75%控制)F=140*9*1860*0.75=1757.7KN
弹性模量E=1.95*105 ,管道摩擦系数u=0.2,管道偏差系数k=0.0025,钢绞线单位公称面积A=140mm2复核:计算:
以下为伸长量的计算:N1束:每束8根,p=1562.4KN
N2束:每束8根,p=1562.4KN
N3束:每束9根,p=1757.7KN
N4束:每束9根,p=1757.7KN
复核:计算:。
2-预应力张拉伸长量的计算与测定_secret
预应力张拉伸长量的计算与测定在预应力筋的张拉施工中,为了保证施工质量,规范要求除了用应力控制外,还需用伸长值进行校核,使实际伸长值与理论伸长值差控制在±6%以内,因此张拉前的伸长值计算就显得十分重要了。
在此,笔者根据有关资料和自己的施工体会,对张拉应力伸长值的计算与测定谈几点看法。
1伸长值的计算预应力施工一般有先张法与后张法两种,先张法的预应力筋一般为直线,计算简便,可以作为后张法无管道摩擦的特例进行研究,因此这里着重论述后张法伸长值的计算方法。
计算伸长值的第一步,首先要确定预应力筋的工作长度和线型段落的划分。
后张法钢筋的线型一般均是既有直线,又含曲线,由于不同线形区间的平均应力会有很大差异,因此需要分段进行伸长量计算,然后再累加。
值得一提的是,在计算工作长度时,一定要考虑位于张拉千斤顶中的那部分预应力筋尺寸,这部分的伸长值对于工作长度小于20m时的情况影响不容忽视。
根据施工规范,△L=△L1+△L2+······△Ln;其中△L为预应力钢材工作长度 L的理论伸长值。
对于各区段的伸长值△L i ,其计算公式为:式中:P i——第i段的平均张拉力,N;L i ——第i 段的工作长,cm;A y——预应力筋截面面积,mm2;E y ——预应力筋弹性模量,N/mm2。
关于平均张拉力P i的计算公式,规范上有介绍,为式中:P ——预应力钢材张拉端的张拉力,N;L——从张拉端至计算截面的孔道长度,m;θ——从张拉端至计算截面曲线孔道部分切线的夹角之和。
对于圆曲线,为该段的圆心角;如果孔道在竖平面和水平面内同时弯曲时,则θ为双向弯曲夹角之矢量和,rad;K ——孔道每m局部偏差对磨擦的影响系数;µ——预应力筋与孔道壁的磨擦系数。
应该指出,这里的“P”并不是定值,而是克服了从张拉端至第i-1段的摩阻力后的剩余有效张拉力值,它随区段的增加而减小,所以表示成“P i”更为合适,如图1图中各个区段的平均张拉力分别为P1,P2,P3,P4,P i,各区段端的有效张拉力分别为P1,P2,P3,P4,P i,其计算式分别为:式中:P—初始端的张拉力;L n、错误!未指定书签。
后张法钢绞线理论伸长值计算公式说明及计算示例
后张法钢绞线理论伸长值计算公式说明及计算示例后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力,导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。
《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值的计算按照以下公式:ΔL=(1)Pp=(2)式中:ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力,注意不等于各分段的起点力与终点力的平均值(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中各曲线段的切线夹角和(rad);x—从张拉端至计算截面的孔道长度,整个分段计算时x等于L(m);k—孔道每束局部偏差对摩擦的影响系数(1/m),管道弯曲及直线部分全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。
从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。
Ep的理论值为Ep=(1.9~1.95)×105Mpa,而将钢绞线进行检测试验,弹性模量则常出现Ep’=(1.96~2.04)×105Mpa的结果,这是由于实际的钢绞线的直径都偏粗,而进行试验时并未用真实的钢绞线面积进行计算,采用的是偏小的理论值代入公式进行计算,根据公式Ep=可知,若Ap 偏小,则得到了偏大的Ep ’值,虽然Ep ’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL 却是符合实际的,所以要按实测值Ep ’进行计算。
公式(2)中的k 和μ是后张法钢绞线伸长量计算中的两个重要的参数,这两个值的的大小取决于多方面的因素:管道的成型方式、力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,偏差大小,弯道位置及角度等等,各个因素在施工中的变动很大,还有很多是不可能预先确定的,因此,摩擦系数的大小很大程度上取决于施工的精确程度。
如何理解现浇箱梁后张法预应力张拉计算公式
教你如何后张法预应力张拉计算后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。
1、计算公式(1)预应筋伸长值ΔL的计算按照以下公式:ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);(2)《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,对于圆曲线,为该段的圆心角,如果孔道在竖直面和水平面同时弯曲时,则θ为双向弯曲夹角之矢量和。
设水平角为α,竖直角为β,则θ=Arccos(cosα×cosβ)。
x—从张拉端至计算截面的孔道长度,分段后为每个分段长度。
k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。
注:a、钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。
所以钢绞线在使用前必须进行检测试验,计算时按实测值Ep’进行计算。
b、k和μ是后张法钢绞线伸长量计算中的两个重要的参数,其大小取决于多方面的因素:管道的成型方式、预应力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,弯道位置及角度是否正确,成型管道内是否漏浆等,计算时根据设计图纸确定。
2、划分计算分段2.1 工作长度:工具锚到工作锚之间的长度,Pp=千斤顶张拉力;2.2 波纹管内长度:计算时要考虑μ、θ,计算一段的起点和终点力。
预应力钢绞线张拉理论伸长量计算公式
预应力钢绞线张拉理论伸长量计算公式:ΔL=(PpL)/(ApEp)式中:Pp――预应力筋的平均张拉力(N)L――预应力筋的长度(mm)Ap――预应力筋的截面面积(mm2)Ep――预应力筋的弹性模量(N/mm2)Pp=P(1-e-(kx+μθ))/(kx+μθ)式中:Pp――预应力筋平均张拉力(N)P――预应力筋张拉端的张拉力(N)x――从张拉端至计算截面的孔道长度(m)θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数μ――预应力筋与孔道壁的摩擦系数注:当预应力筋为直线时Pp=P如果还不会算的话我这里有做好的EXCEL表格,你可以直接输入各种数进行计算。
理论伸长值计算公式曲线预应力筋的理论张拉伸长值△LT按以下近似公式计算:△LT=(1+exp[-(k LT+ uθ)]) Fj/(2ApEp) LT式中:Fj ——预应力筋的张拉力;Ap ——预应力筋的截面面积;Ep ——预应力筋的弹性模量;LT ——从张拉端至固定端的孔道长度(m);K ——每米孔道局部偏差摩擦影响系数;u ——预应力筋与孔道壁之间的摩擦系数;θ ——从张拉端至固定端曲线孔道部分切线的总夹角(rad)预应力束摩擦系数表预应力筋种类k u有粘结钢绞线(预埋波纹管)无粘结钢绞线25m箱梁预应力张拉计算书管理提醒:本帖被6 从【桥梁隧道】移动到本区(2007-10-25)CK0+立交桥箱梁,设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径,公称面积Ag=139mm2,弹性模量Eg=×105MP。
为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。
理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-200 2附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。
一、计算公式及参数:1、预应力平均张拉力计算公式及参数:式中:Pp—预应力筋平均张拉力(N)P—预应力筋张拉端的张拉力(N)X—从张拉端至计算截面的孔道长度(m)θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩擦的影响系数:取u—预应力筋与孔道壁的磨擦系数,取2、预应力筋的理论伸长值计算公式及参数:△L=PpL/(ApEp)式中:Pp—预应力筋平均张拉力(N)L—预应力筋的长度(mm)Ap—预应力筋的截面面积(mm2),取139mm2Ep—预应力筋的弹性模量(N/mm2),取×105N/mm2二、伸长量计算:1、N1束一端的伸长量:单根钢绞线张拉的张拉力P=×1860×139=193905NX直=;X曲=θ=×180=KX曲+uθ=×+×=Pp=193905×()/=187644N△L曲=PpL/(ApEp)=187644×(139××105)=△L直=PpL/(ApEp)=187644×(139××105)=△L曲+△L直=+=2、N2束一端的伸长量:单根钢绞线张拉的张拉力:P=×1860×139=193905NX直=;X曲=θ=×π/180=KX曲+uθ=×+×=Pp=193905×(1-)/=187653N△L曲=PpL/(ApEp)=187653×(139××105)=△L直=PpL/(ApEp)=187653×(139××105)=(△L曲+△L直)*2=(+)*2=第二章张拉时理论伸长量计算一、计算参数:1、K—孔道每米局部偏差对摩擦的影响系数:取2、u—预应力筋与孔道壁的摩擦系数:取3、Ap—预应力筋的实测截面面积:139mm24、Ep—预应力筋实测弹性模量:×105N/mm25、锚下控制应力:σk==×1860=1395N/mm26、单根钢绞线张拉端的张拉控制力:P=σkAp=193905N7、千斤顶计算长度:60cm8、工具锚长度:7cm二、张拉时理论伸长量计算:以N1束钢绞线为例:N1束一端的伸长量:式中:P—油压表读数(MPa)F—千斤顶拉力(KN)P=P1时,(1)15%σcon=时:P=-+=-+×=(3)30%σcon=时:P=-+=-+×=(4)100%σcon=时:P=-+=-+×=(5)103%σcon=时:P=-+=-+×=P=P2时,(1)15%σcon=时:P=-+=-+×203. 6= (3)30%σcon=时:P=-+=-+×=(4)100%σcon=时:P=-+=-+×=(5)103%σcon=时:。
理论伸长值计算公式
理论伸长值计算公式曲线预应力筋的理论张拉伸长值△LT按以下近似公式计算:△LT=(1+exp[-(k LT+ uθ)]) Fj/(2ApEp) LT式中:Fj ——预应力筋的张拉力;Ap ——预应力筋的截面面积;Ep ——预应力筋的弹性模量;LT ——从张拉端至固定端的孔道长度(m);K ——每米孔道局部偏差摩擦影响系数;u ——预应力筋与孔道壁之间的摩擦系数;θ ——从张拉端至固定端曲线孔道部分切线的总夹角(rad)预应力束摩擦系数表预应力筋种类k u有粘结钢绞线(预埋波纹管)0.0015 0.25无粘结钢绞线0.004 0.09F=P*S F-单位N P-单位Pa S-单位mm2钢绞线的相关信息)预应力钢绞线采用抗拉强度标准值为1860MPa的高强低松弛钢绞线,弹性模量为1.95×105Mpa,7φ5钢绞线公称直径15.24mm,按美国ASTMA416M-98标准270级执行。
锚于梁端的钢束采用4根9-7φ5钢绞线;边梁和中梁锚于梁顶的钢束分别采用3根和2根7-7φ5钢绞线。
边梁的9-7φ5和7-7φ5预应力钢绞线张拉控制应力为0.72Ryb,9-7φ5钢绞线张拉力为1662KN,7-7φ5钢绞线张拉力为1312KN;中梁的9-7φ5和7-7φ5预应力钢绞线张拉控制应力为0.75Ryb,9-7φ5钢绞线张拉力为1749KN,7-7φ5钢绞线张拉力为1367KN。
施工中,不得对预应力钢绞线进行超张拉。
张拉千斤顶的型号分别为YCW250B和YCW150B,电动油泵型号为OVMZB4-500型。
采用OVM15-9和OVM15-7锚具,该锚具包括锚头、锚垫板和与之相配套的锚下螺旋筋等。
制梁所用水泥为法国产CPA42.5特种水泥,该水泥具有早期强度增长快的特点,四天强度可达90%左右。
伸长量计算公式
设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径15.2mm,公称面积Ag=140mm2,弹性模量Eg=1.95×105MP。
为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。
理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。
一、设计伸长量复核1.1计算公式及参数:1.1.1、预应力平均张拉力计算公式及参数Pp=P×(1-e- kx+μθ)/ kx+μθ式中:Pp-预应力平均张拉力(N)P—预应力筋张拉端的张拉力(N)X—从张拉端至计算截面的孔道长度(m)θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩檫的影响系数,取0.0015μ—预应力筋与孔道壁的摩檫系数,取0.151.1.2、预应力筋的理论伸长值计算公式及参数:ΔL= Pp×L/(Ap×Ep)式中:Pp—预应力筋平均张拉力(N)L—预应力筋的长度(mm)Ap—预应力筋的截面面积(mm2),取140 mm2Ep—预应力筋的弹性模量(N/ mm2),取1.95×105 N/ mm21.2伸长量计算N1束一端的伸长量:单根钢绞线张拉的张拉力P=0.75×1860×140=195300N1.2.1、X1=0.885mθ=0×π/180=0kx+μθ=0.0015×0.885+0.15×0=0.0013Pp=195300×(1-e-0.0013)/0.0013=195173.11 NΔL1= PpL/(Ap Ep)=195173.11×0.885/(140×1.95×105)=0.0063m1.2.2、X2=3.927mθ=5×π/180=0.0873 radkx+μθ=0.0015×3.927+0.15×0.0873=0.019Pp=195300×(1-e-0.0019)/0.0019=193456.35NΔL2= PpL/(Ap Ep)=193456.35×3.927/(140×1.95×105)=0.0278m1.2.3、X3=10.618mθ=0×π/180=0kx+μθ=0.0015×10.618+0.15×0=0.016Pp=195300×(1-e-0.0016)/0.0016=195143.84 NΔL3= PpL/(Ap Ep)=195143.84×10.618/(140×1.95×105)=0.0759m1.2.4、ΔL=ΔL1+ΔL2+ΔL3=0.0063m+0.0278m+0.0759m=0.110m设计值:104mm比较得:(110-104)/104=5.8%≦6%二、千斤顶张拉力与对应油表读数计算锚下控制应力:σk =0.75×1860=1395N/mm2二根钢绞线张拉控制应力:P=σk×Ap=1395×140×2=390.6KN 张拉顺序为:0→初应力(0.1σcon)→1.0σcon(持荷3分钟)→锚固1#千斤顶(表170):回归方程 X=0.0308Y+0.8042式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0308Y+0.8042=0.0308×39.06 +0.8042=2.0073 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0308Y+0.8042=0.0308×390.6 +0.8042=12.835 MPa2#千斤顶(表171):回归方程 X=0.0329Y+0.0456式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0329Y+0.0456=0.0329×39.06 +0.0456=1.2378 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0329Y+0.0456=0.0329×390.6+0.0456=12.835 MPa3#千斤顶(表168):回归方程 X=0.0312Y+0.2688式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0312Y+0.2688=0.0312×39.06+0.2688=1.4875 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0312Y+0.2688=0.0312×390.6+0.2688=12.4555 MPa4#千斤顶(表5757):回归方程 X=0.0338Y-0.3138式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0338Y-0.3138=0.0338×39.06-0.3138=1.0064 MPa 1.0σcon =1.0×390.6=390.6 KNX=0.0338Y-0.3138=0.0338×390.6-0.3138=12.8885 MPa。
伸长量计算
1、计算公式及说明:预应力钢绞线张拉理论伸长值计算公式(参照《公路桥涵施工技术规范》JTJ041-200 0)ΔL=(PpL)/(ApEp)………………①①式中:Pp――预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见公式②;L――预应力筋的长度(mm)Ap――预应力筋的截面面积(mm2)Ep――预应力筋的弹性模量(Mpa)Pp=P(1-e-(kx+μθ))/(kx+μθ)……②②式中:Pp――预应力筋平均张拉力(N)P――预应力筋张拉端的张拉力(N)x――从张拉端至计算截面的孔道长度(m)θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数(1/m)μ――预应力筋与孔道壁的摩擦系数对公式的两点说明:(1)、因为预应力筋大多呈曲线布置,因此Pp的计算通常采用公式②进行,对于曲线筋还应根据不同的曲率半径进行分段,分别计算相应的Pp和ΔL。
(2)、对于②式中的θ,由它的符号解释可知,曲线孔道部分切线的夹角之和应等于曲线所对应的圆心角,根据几何关系得出:θ=L/R(rad),式中L是从张拉端至计算截面曲线孔道的长度(m),R是该段曲线孔道的曲率半径(m)。
2、基础数据选定由工程概况介绍及技术规范和钢绞线的规格选定下列数据:系数k及μ值表孔道成型方式k μ(钢绞线)预埋金属螺旋管道0.0015 0.20~0.25采用值0.0015 0.20钢绞线强度:钢绞线截面积:Ap=140mm2钢绞线弹性模量:Ep=195000Mpa二、理论伸长值计算本例通过对中梁N1钢绞线的计算进行说明,钢绞线的设计见下图,由图可知,钢绞线成直线和曲线交错对称布置,因此选定半幅钢绞线分成AB,BC,CD三段分别计算伸长值,另外半幅伸长值与此相等。
对于中梁N1钢绞线:钢绞线股数:n=7股1、张拉控制力计算钢绞线总的截面积:Ap=7*140=980mm2钢绞线弹性模量:Ep=195000Mpa钢绞线强度:单束钢绞线张拉控制应力σcon=0.75×1860=1395Mpa单束钢绞线张拉控制力:P1=1395*140=195300N超张拉张拉力:1.03P1×7=1.03*195300*7=1408113N2、分段起、终点力及平均张拉力计算,列表如下注:(rad)=3.543/29=0.1223、伸长量计算,将已知数据代人公式①,计算出△LAB=1397477.51*10124/(980*195000)=74.03mm△LBC=1366490.10*3543/(980*195000)=25.33mm△LCD=1345199.27*1074/(980*195000)=7.56mm△L/2=74.03+25.33+7.56=106.92mm总伸长量:△L=2*106.92=214mm同理可知,初应力推算伸长值:△L2=(214/1.03)*0.1=21mm,式中张拉1.03时的伸长量为214,张拉至0.1时的应力为21mm。
预应力伸长值计算公式
《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值ΔL的计算按照以下公式(1):ΔL= Pp×L /(Ap×Ep)ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2):Pp=P(1-e -(kx+μθ))kx+μθP—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);50m腹板束L Q′θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad);x—从张拉端至计算截面的孔道长度,分段后为每个分段长度或为公式1中L值;k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响理论伸长值计算中,如果采取的是两端张拉,钢绞线对称布置,在进行伸长量计算时是计算一半钢绞线的伸长值然后乘以二的方法;如果是一端锚固一端张拉,计算时应从张拉端计算至锚固端;而对于非对称结构,钢绞线不对称布置,在计算钢绞线的伸长值时,计算原则是从两侧向中间分段计算,至某一点时钢绞线的受力基本相等即可,而不是简单的分中计算.1955年,铁路部门研制成功我国第一片跨度12米的预应力混凝土铁路桥梁,1956年建成28孔24米跨的新沂河大桥,从而开始了预应力混凝土技术在我国铁路上应用的篇章。
四十多年来,经过铁路系统工程技术人员的辛勤努力,预应力砼技术不断扩大,技术水平不断提高,制造架设跨度32米以下桥梁三万多孔,桥梁跨度不断突破,大跨径桥梁不断涌现,其中有代表性的工程有主跨为168米的攀枝花金沙江铁路连续钢构桥,顶推法施工的跨度80米连续箱梁桥杭州钱塘江二桥,此外在南昆铁路线上新建了一大批各种类型的铁路桥梁。
后张法钢绞线理论伸长值计算公式说明及计算示例
后张法钢绞线理论伸长值计算公式说明及计算示例后张法钢绞线理论伸长值计算公式说明及计算示例后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力,导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。
《公路桥梁施工技术规范》(JTJ041-2000)中关于预应筋伸长值的计算按照以下公式:ΔL=(1)=(2)式中:ΔL —各分段预应力筋的理论伸长值(mm);—各分段预应力筋的平均张拉力,注意不等于各分段的起点力与终点力的平均值(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中各曲线段的切线夹角和(r ad);x—从张拉端至计算截面的孔道长度,整个分段计算时x等于L(m);k—孔道每束局部偏差对摩擦的影响系数(1/m),管道弯曲及直线部分全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。
从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。
Ep 的理论值为Ep=(1.9~1.95)×105Mpa,而将钢绞线进行检测试验,弹性模量则常出现Ep’=(1.96~2.04)×105Mpa的结果,这是由于实际的钢绞线的直径都偏粗,而进行试验时并未用真实的钢绞线面积进行计算,采用的是偏小的理论值代入公式进行计算,根据公式Ep=可知,若Ap偏小,则得到了偏大的Ep’值,虽然Ep’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL却是符合实际的,所以要按实测值Ep’进行计算。
预应力张拉伸长量计算公式
预应⼒张拉伸长量计算公式预应⼒张拉伸长量计算公式预应⼒筋理论伸长值△Lcp按以下公式计算:(由张拉10%到100%的伸长值)△Lcp = 0.9 Fpm Lp / Ap Ep式中:0.9 ——系数(由10% ~ 100%的伸长值折减系数)Fpm——预应⼒筋的平均张拉⼒NLp ——预应⼒筋的计算长度mmAp ——预应⼒筋的截⾯⾯积mm2Ep ——预应⼒筋的弹性模量=1.95×105 N/mm2 式中的“Fpm——预应⼒筋的平均张拉⼒N”较难求得。
由张拉⼒和第⼆项摩擦损失求得。
摩擦损失⼜有⼀个公式去求得:δl2=δcon*(1-1/e(kx+uθ))。
(kx+uθ)是指数。
15.24钢绞线公称⾯积钢铰线应是15.24mm的是美国标准,截⾯⾯积是140mm2,单位重是1.102每⽶。
15.2mm2的是中国的标准,截⾯是⼀样的为140mm2,单位重是1.101每⽶。
钢绞线张拉伸长量的计算桥梁结构常⽤钢绞线的规格⼀般是ASTM A416、270级低松弛钢绞线,公称直径为15.24mm,标准强度为1860MPa,弹性模量为195000MPa,桥梁施⼯中张拉控制应⼒(本⽂中⽤Ycon表⽰)⼀般为标准强度的75%即1395MPa。
本⽂重点介绍曲线布置的钢绞线伸长量计算,并给出CASIO fx-4800P计算器的计算程序,另外简要介绍千⽄顶标定的⼀些注意问题。
参照技术规范为《公路桥涵施⼯技术规范》(JTJ 041-2000)(以下简称《桥规》)。
⼀、直线布置的钢绞线伸长量计算:直线布置的钢绞线伸长量计算有两种计算⽅式:1、按照《桥规》第129页公式12.8.3-1计算,其中Pp平均张拉⼒在直线布置时即为张拉控制⼒,其余参数按照实际使⽤的钢绞线相应参数代⼊即可。
2、简化公式公式中Pp(单位:N)/Ap(单位:mm2)即平均张拉⼒/截⾯⾯积就是平均张拉应⼒(单位为MPa),本⽂中⽤Y表⽰,则公式可以简化为⊿L=Y*L/Ep。
预应力计算书
预应力张拉计算书第一章 设计伸长量复核一、计算公式及参数:1、预应力平均张拉力计算公式及参数:P 平=P ×{1-e -(kL+μθ)}/(KL+μθ)式中:P p —预应力筋平均张拉力(N ) P —预应力筋张拉端的张拉力(N ) X —从张拉端至计算截面的孔道长度(m )θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad )k —孔道每米局部偏差对摩檫的影响系数,取0.002 μ—预应力筋与孔道壁的摩檫系数,取0.142、预应力筋的理论伸长值计算公式及参数:()P P p E A l p l =∆式中:P p —预应力筋平均张拉力(N ) L —预应力筋的长度(mm )A p —预应力筋的截面面积(mm 2),取140 mm 2E p —预应力筋的弹性模量(N/ mm 2),取1.95×105 N/ mm 2二、伸长量计算:1、N1束一端的伸长量:单根钢绞线张拉的张拉力P=0.75×1860×140=195300NX=15.812/2=7.906mθ=11.4×π/180=0.19897radkx+μθ=0.002×7.906+0.14×0.19897=0.0436678P p=195300×(1-e-0.0436678)/0.0436678=191097NΔL= P p L/(A p E p)=191097×7.906/(140×1.95×105)=55.3mm 与设计比较(55.3-57.1)/57.1=-3.15%2、N2束一端的伸长量:单根钢绞线张拉的张拉力P=0.75×1860×140=195300NX=15.821/2=7.9105mθ=12.8×π/180=0.2234radkx+μθ=0.002×7.9105+0.14×0.2234=0.047097P p=195300×(1-e-0.047097)/0.047097=190772NΔL= P p L/(A p E p)=190772×7.9105/(140×1.95×105)=55.27mm 与设计比较(55.27-57.1)/57.1=-3.2%第二章张拉时理论伸长量计算一、计算参数:1、K—孔道每米局部偏差对摩檫的影响系数:取0.0022、μ—预应力筋与孔道壁的摩檫系数:取0.143、A p—预应力筋的实测截面面积:140 mm24、E p—预应力筋实测弹性模量:2.02×105 N/ mm25、锚下控制应力:σk=0.75R y b=0.75×1860=1395 N/ mm26、锚圈口摩阻损失:3.3%σk7、单根钢绞线张拉端的张拉控制力:P=103.3%×σk A p=201745N8、千斤顶计算长度:56cm9、工作锚长度:7cm10、限位板计算长度:2.5cm11、工具锚计算长度:不计二、张拉时理论伸长量计算:1、N1束一端的伸长量:X=15.812/2=7.906mL=7.906+(0.56+0.07+0.025)=8.561mθ=11.4×π/180=0.19897radkx+μθ=0.002×7.906+0.14×0.19897=0.0436678P p=201745×(1-e-0.0436678)/0.0436678=197404NΔL= P p L/(A p E p)=197404×8.561/(140×2.02×105)=59.8mm 2、N2束一端的伸长量:X=15.821/2=7.9105mL=7.9105+(0.56+0.07+0.025)=8.566mθ=12.8×π/180=0.2234radkx+μθ=0.002×7.9105+0.14×0.2234=0.047097P p=201745(1-e-0.047097)/0.047097=197068NΔL= P p L/(A p E p)=197068×8.566/(140×2.02×105)=59.7mm 第三章千斤顶张拉力与对应油表读数计算一、钢绞线的张拉控制应力:12根钢绞线束:σcon=103.3σk=103.3%×2343=2420.32KN二、1523号千斤顶张拉、0050号油表时:千斤顶回归方程:P=-0.35+0.01035F式中:P——油压表读数(MP a)F——千斤顶拉力(KN)(1)、10%σcon=242.032 KN时:P=-0.35+0.01035F=-0.35+0.01035×242.032=2.16MP a(2)、40%σcon=968.13KN时:P=-0.35+0.01035F=-0.35+0.01035×968.13=9.67 MP a(3)、70%σcon=1694.22KN时:P=-0.35+0.01035F=-0.35+0.01035×1694.22=17.19 MP a (4)、100%σcon=2420.32KN时:P=-0.35+0.01035F=-0.35+0.01035×2420.32=24.7 MP a三、1524号千斤顶张拉、0054号油表时:千斤顶回归方程:P=0.21+0.01022F:式中: P——油压表读数(MP a)F——千斤顶拉力(KN)(1)、10%σcon=242.032KN时:P=0.21+0.01022F=0.21+0.01022×242.032=2.68 MP a (2)、40%σcon=968.13KN时:P=0.21+0.01022F=0.21+0.01022×968.13=10.10 MP a (3)、70%σcon=1694.22KN时:P=0.21+0.01022F=0.21+0.01022×1694.22=17.52 MP a (4)、100%σcon=2420.32KN时:P=0.21+0.01022F=0.21+0.01022×2420.32=24.95 MP a 四、1525号千斤顶张拉、0077号油表时:千斤顶回归方程:P=-0.47+0.01024F:式中: P——油压表读数(MP a)F——千斤顶拉力(KN)(1)、10%σcon=242.032KN时:P=-0.47+0.01024F=-0.47+0.01024×242.032=2.0 MP a (2)、40%σcon=968.13KN时P=-0.47+0.01024F=-0.47+0.01024×968.13=9.44 MP a (3)、70%σcon=1694.22KN时:P=-0.47+0.01024F=-0.47+0.01024×1694.22=16.88 MP a (4)、100%σcon=2420.32KN时:P=-0.47+0.01024F=-0.47+0.01024×2420.32=24.31 MP a 五、1526号千斤顶张拉、0064号油表时:千斤顶回归方程:P=-0.05+0.01021F:式中: P——油压表读数(MP a)F——千斤顶拉力(KN)(1)、10%σcon=242.032KN时:P=-0.05+0.01021F=-0.05+0.01021×242.032=2.42 MP a (2)、40%σcon=968.13KN时P=-0.05+0.01021F=-0.05+0.01021×968.13=9.83 MP a (3)、70%σcon=1694.22KN时:P=-0.05+0.01021F=-0.05+0.01021×1694.22=17.24 MP a (4)、100%σcon=2420.32KN时:P=-0.05+0.01021F=-0.05+0.01021×2420.32=24.66 MP a。
预应力伸长量计算公式
预应力伸长量计算公式1. 基本公式。
- 预应力筋的理论伸长值ΔL(mm)按下式计算:- Δ L = (PpL)/(ApEp)- 式中:- Pp:预应力筋的平均张拉力(N),直线筋取张拉端的拉力;对于曲线筋,按下式计算:- Pp=frac{P(1 - e^-(kx+μθ))}{kx+μθ}- 其中,P为预应力筋张拉端的张拉力(N),x为从张拉端至计算截面的孔道长度(m),θ为从张拉端至计算截面曲线孔道部分切线的夹角之和(rad),k为孔道每米局部偏差对摩擦的影响系数,μ为预应力筋与孔道壁的摩擦系数,e为自然对数的底,e = 2.71828。
- L:预应力筋的长度(mm)。
- Ap:预应力筋的截面面积(mm^2)。
- Ep:预应力筋的弹性模量(N/mm^2)。
2. 计算步骤示例。
- 假设我们有一预应力筋,张拉端张拉力P = 100000N,从张拉端至计算截面的孔道长度x = 10m,从张拉端至计算截面曲线孔道部分切线的夹角之和θ = 0.5rad,孔道每米局部偏差对摩擦的影响系数k = 0.0015,预应力筋与孔道壁的摩擦系数μ = 0.25,预应力筋的长度L = 10000mm,预应力筋的截面面积Ap = 100mm^2,预应力筋的弹性模量Ep = 200000N/mm^2。
- 首先计算曲线筋的平均张拉力Pp:- Pp=frac{P(1 - e^-(kx+μθ))}{kx+μθ}- 代入数值:kx+μθ=0.0015×10 + 0.25×0.5=0.14- Pp=frac{100000×(1 - e^-0.14)}{0.14}- 先计算e^-0.14≈0.8694- 则Pp=(100000×(1 - 0.8694))/(0.14)=(100000×0.1306)/(0.14)≈93285.71N - 然后计算理论伸长值Δ L:- Δ L=(PpL)/(ApEp)- 代入数值:Δ L=(93285.71×10000)/(100×200000)- Δ L=(932857100)/(20000000)≈46.64mm。
伸长量计算公式
设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径15.2mm,公称面积Ag=140mm2,弹性模量Eg=1.95×105MP。
为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。
理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。
一、设计伸长量复核1.1计算公式及参数:1.1.1、预应力平均张拉力计算公式及参数Pp=P×(1-e- kx+μθ)/ kx+μθ式中:Pp-预应力平均张拉力(N)P—预应力筋张拉端的张拉力(N)X—从张拉端至计算截面的孔道长度(m)θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩檫的影响系数,取0.0015μ—预应力筋与孔道壁的摩檫系数,取0.151.1.2、预应力筋的理论伸长值计算公式及参数:ΔL= Pp×L/(Ap×Ep)式中:Pp—预应力筋平均张拉力(N)L—预应力筋的长度(mm)Ap—预应力筋的截面面积(mm2),取140 mm2Ep—预应力筋的弹性模量(N/ mm2),取1.95×105 N/ mm21.2伸长量计算N1束一端的伸长量:单根钢绞线张拉的张拉力P=0.75×1860×140=195300N1.2.1、X1=0.885mθ=0×π/180=0kx+μθ=0.0015×0.885+0.15×0=0.0013Pp=195300×(1-e-0.0013)/0.0013=195173.11 NΔL1= PpL/(Ap Ep)=195173.11×0.885/(140×1.95×105)=0.0063m1.2.2、X2=3.927mθ=5×π/180=0.0873 radkx+μθ=0.0015×3.927+0.15×0.0873=0.019Pp=195300×(1-e-0.0019)/0.0019=193456.35NΔL2= PpL/(Ap Ep)=193456.35×3.927/(140×1.95×105)=0.0278m1.2.3、X3=10.618mθ=0×π/180=0kx+μθ=0.0015×10.618+0.15×0=0.016Pp=195300×(1-e-0.0016)/0.0016=195143.84 NΔL3= PpL/(Ap Ep)=195143.84×10.618/(140×1.95×105)=0.0759m1.2.4、ΔL=ΔL1+ΔL2+ΔL3=0.0063m+0.0278m+0.0759m=0.110m设计值:104mm比较得:(110-104)/104=5.8%≦6%二、千斤顶张拉力与对应油表读数计算锚下控制应力:σk =0.75×1860=1395N/mm2二根钢绞线张拉控制应力:P=σk×Ap=1395×140×2=390.6KN 张拉顺序为:0→初应力(0.1σcon)→1.0σcon(持荷3分钟)→锚固1#千斤顶(表170):回归方程 X=0.0308Y+0.8042式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0308Y+0.8042=0.0308×39.06 +0.8042=2.0073 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0308Y+0.8042=0.0308×390.6 +0.8042=12.835 MPa2#千斤顶(表171):回归方程 X=0.0329Y+0.0456式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0329Y+0.0456=0.0329×39.06 +0.0456=1.2378 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0329Y+0.0456=0.0329×390.6+0.0456=12.835 MPa3#千斤顶(表168):回归方程 X=0.0312Y+0.2688式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0312Y+0.2688=0.0312×39.06+0.2688=1.4875 MPa1.0σcon =1.0×390.6=390.6 KNX=0.0312Y+0.2688=0.0312×390.6+0.2688=12.4555 MPa4#千斤顶(表5757):回归方程 X=0.0338Y-0.3138式中: X——油压表读数(MPa)Y——千斤顶拉力(KN)0.1σcon =0.1×390.6=39.06 KNX=0.0338Y-0.3138=0.0338×39.06-0.3138=1.0064 MPa 1.0σcon =1.0×390.6=390.6 KNX=0.0338Y-0.3138=0.0338×390.6-0.3138=12.8885 MPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、预应力筋的理论伸长值L ∆ (mm)的计算:
P
P P E A L P L =
∆ 式中:P P ——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,
两端张拉的曲线筋,计算方法见附后。
L ——预应力筋的长度(mm);
A P ——预应力筋的截面面积(mm2);
E P ——预应力筋的弹性模量(N /mm2)。
关于P p 的计算:
P p = P[1-e -(kx+uθ)]/(kx+uθ):
P :张拉端钢绞线张拉力。
将钢绞线分段计算后,为每分段的起点张拉力P q 。
即为前段的终点张拉力P z =P q * e -(kx+uθ)(N )
X :从张拉端至计算截面的孔道长度(m );
θ:从张拉端至计算截面曲线孔道部分切线的切角之和(rad ); K :孔道每m 局部偏差对摩擦的影响系数;
U :预应力钢材与孔道壁的摩擦系数;
2、计算中有关数据
A P1=140×3=420mm 2;A P2=140×4=560mm 2
R by =1860Mpa
σk = 0.75R by =1395Mpa
E g =1.95×105Mpa
K=0.0015;U=0.25
3、20m 预制箱梁中跨(0度)N1#钢绞线伸长量计算如下:
(1)考虑到实际施工中采用穿心式千斤顶,所以钢绞线长度应计入千斤顶长度,YDC1500型千斤顶回程后的长度为450mm 。
(2)钢绞线
箱梁钢绞线为对称布置,为方便计算,以下计算取半块箱梁考虑。
直线段长L 1:0.72+0.45=1.17m;
曲线段长L 2:0.786m;θ = 0.0314159rad
直线段长L 3:4.315m ;
曲线段长L 4:3.05m;θ =0.087266rad
直线段长L 5:0.929m ;
4、P p 的计算
P =σcon ×420 =бk ×560 = 1395×560=781200N
P p1 =P q [1-e -(kx+uθ)]/(kx+uθ)
=781200×(1-0.998246539)/0.001755
=780514.9N
P p2 =P q [1-e -(kx+uθ)]/(kx+uθ)
=781200×0.998246539×(1-0.9910077)/0.009033
=776318.68N
P p3 =P q[1-e-(kx+uθ)]/(kx+uθ)
=781200×0.998246539×0.9910077×(1-0.993548402)/0.0064725
=770322.08N
P p4 =P q[1-e-(kx+uθ)]/(kx+uθ)
=781200×0.998246539×0.9910077×0.993548402×(1-0.973953712)/0.0263915
=757788.25N
P p5 =P q[1-e-(kx+uθ)]/(kx+uθ)
=781200×0.998246539×0.9910077×0.993548402×0.973953712×(1-0.99860747)/0.0013935
=747311.84N
5、钢绞线理论伸长值计算
①当σ=σcon时
直线L1部分:
△L = P p1×L1/(A p×E p)
=780514.9×1170/(560×1.95×105)
=8.36mm
曲线L2部分:
△L = P p2×L2/(A p×E p)
=776318.68×786/(560×1.95×105)
=5.59mm
直线L3部分:
△L = P p3×L3/(A p×E p)
=770322.08×4315/(560×1.95×105)
=30.4mm
曲线L4部分:
△L = P p4×L4/(A p×E p)
=757788.25×3050/(560×1.95×105)
=21.2mm
直线L5部分:
△L = P p5×L5/(A p×E p)
=747311.84×929/(560×1.95×105)
=6.36mm
∑△L = (8.36+5.59+30.4+21.2+6.36)×2=143.8mm
②当σ= 0.15σcon时
△L = 0.15×143.8=21.6mm
③当σ= 0.3σcon时
△L=0.3×143.8=43.1mm。