在三角形中巧用面积法解题

合集下载

在三角形中用面积法解题专题训练

在三角形中用面积法解题专题训练

。 是 …c平线 以c Z C② i 。… 所 肋 2 B ; ’ D 的分 , 一: A . … … 一” ……… 。
又因 D ̄_C 的 分 为C :_ E 平 线, zA / 所以 AD L C。 A C : AE
2 : 从而L C A B+— / C B D: C _ E:L C 1_ A A B+:
;所 B. + . + ≮\ 以 P A P / 1CD ‘ CE /\ 1

. .
两三形 中角间关D角 1A C i 个角之 内之的系C= 1/ 条 , 分_ B件 平 ,i 线 的 为我们提供了信息 ,事实上L B
D : AC AC . 已知 , D: 。 凹 B+ D由 ,


I l l 三 形内 和 利用 角 角 等于1 。 题 题训 题 8 解 专 练( 在第 0
l7 页) 2 l . 解:由 析 1 三角形的三 角和 个内 等于 1 。 得 8 , A+ 0
, ;
l 180。一21。一130。=29。 L=8一A = + C 1。所 C 1。 一 L =8, 以 0 。 0
■ 匿 ■ _ ■ j
D ’ 一 ! 一

!J 一







…பைடு நூலகம்
















1 . 1 1
5 析解 : L D . 要求 B C的度数 , 由

十 一 一 2’
于 中 出 三 形 所 图未现角 ,以
和。 我们可以 构造三角形, 然

三角形等面积法在初中数学中的应用

三角形等面积法在初中数学中的应用

三角形等面积法在初中数学中的应用作者:王斌杰来源:《试题与研究·教学论坛》2012年第13期三角形等面积法是指利用三角形面积自身相等的性质进行解题的一种方法。

此法是初中数学中常用的一种解题方法。

它具有解题便捷快速、简单易懂等特点。

现举例如下:.例1如图,在直角三角形ABC中,∠ACB=90°,AC=4,BC=3,求AB边上的高CD的长。

解析:因为AB2=AC2+BC2,所以AB=5。

又因为S△ABC=12AC·BC=6,S△ABC=12AB·CD=52CD,所以52CD=6,得CD=125。

例2在△ABC中,AB=12,BC=13,AC=5,点P是△ABC内切圆的圆心,求△ABC内切圆的半径。

解析:因为AB2+AC2=169,BC2=169,所以AB2+AC2=BC2。

所以△ABC为直角三角形。

连接AP,PC,BP。

设圆P的半径为r。

S△ABC=12AC·AB=30,S△ABC=S△ABP+S△ACP+S△BCP=12AB·r+12AC·r+12BC·r=12r(AB+AC+BC)=15r,所以15r=30,解得r=2。

例3在等腰三角形ABC中,AB=AC。

点P为BC边上的一个动点,PE垂直AC,PF垂直AB,垂足分别为E,F,求证:PE+PF为定值。

解析:连接AP,过点B作BD垂直AC于点D。

因为S△ABC=S△ABP+S△APC=12AB·PF+12AC·PE,又因为AB=AC,所以S△ABC=12AC(PE+PF)。

又因为S△ABC=12AC·BD,所以12AC(PE+PF)=12AC·BD。

所以PE+PF=BD(定值)。

小结:通过上述的例子可以看出,利用三角形等面积法的性质解题,可从不同的角度使用面积公式表示同一个三角形的面积,列出等式求出未知量。

北师版数学九年级上 应用相似三角形的面积之比解题

北师版数学九年级上  应用相似三角形的面积之比解题

北师版数学九年级 应用相似三角形的面积之比解题相似三角形的面积之比,等于相似比的平方,是相似三角形的一条非常重要的性质。

它在解题中也有着十分灵活的应用。

下面就举例加以说明,供同学们学习时参考。

1、根据面积的变化,描述边长的变化例1、把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的 。

A 、10000倍B 、1000倍C 、100倍D 、10倍分析:题目中已经说明两个三角形是相似的,所以,我们就可以直接相似三角形的性质了:相似三角形的面积之比,等于相似比的平方,也就是说,相似三角形的相似比,等于对应三角形面积比的算术平方根,即相似比=100=10,因此,边长扩大到原来的10倍。

解:选D点评:这道题可以作如下的引申:把一个三角形改成和它相似的三角形,如果面积扩大到原来的n 倍,那么边长扩大到原来的n 倍。

如果同学们能熟记这个结论,对于解这方面的选择题或者是填空题,将会大大提高解题的速度。

2、已知相似三角形的面积,求边长例2、已知:△ABC∽△A ′B ′C ′,且它们的面积分别是7cm 2和28cm 2,若AB=5cm , 则A ′B ′= 。

分析:巧用方程的思想,把性质的文字描述转化成等式。

解:设A ′B ′=xcm ,因为,△ABC∽△A ′B ′C ′, 所以,'''=''C B A ABC S S B A AB △△)(2, 因为,△ABC 的面积是7cm 2、△A ′B ′C ′的面积是28cm 2,AB=5cm , 所以,4128752==)(x , 所以,1002=x ,解得:x=10(cm ),即A ′B ′的长度为10cm 。

3、已知相似三角形的面积,求三角形的面积例3、如图1所示,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .分析:由于DE ∥MN ,EM ∥NH ,所以,∠DME=∠MHN ,∠EDM=∠NMH ,四边形AEMN 是平行四边形,所以,△DME ∽△MHN ,AE=MN ,942==MHN DEM S S MN DE △△)(,即DE:MN=2:3,因为,AE=MN , 所以,DE:EA=2:3;由于DM ∥FG ,DE ∥FM ,所以,∠DME=∠FMG ,∠EMD=∠MGF ,四边形BDMF 是平行四边形,所以,△DME ∽△FMG ,BD=FM ,4942==FMG DEM S S FM DE △△)(,即DE:FM=2:7,因为,FM=BD , 所以,DE:BD=2:7;由于DM ∥BC ,EM ∥AC ,所以,∠EDM=∠B ,∠DEM=∠A ,所以,△DME ∽△BCA , 所以,BCADEM S S BA DE △△)(=2, 设DE=2k ,则EA=3k ,BD=7k ,所以,AB=2k+3k+7k=12k , 所以,61122==k k BA DE 所以,361612==BCA DEM S S △△)(, 所以,三角形ABC 面积为:36×4=144。

小学五年级上册数学《三角形面积的计算》教案(精选7篇)

小学五年级上册数学《三角形面积的计算》教案(精选7篇)

小学五年级上册数学《三角形面积的计算》教案(精选7篇)小学五年级上册数学《三角形面积的计算》篇1教学内容:教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。

教学目标:1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

教学重点:经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

教学难点:理解三角形面积公式的推导过程。

教学准备:多媒体、教材第115页的三角形。

探究方案:一、自主准备1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?()()()2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?(2)有没有直接计算三角形面积的方法呢?(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成二、自主探究1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。

2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。

3.想一想(1)拼成平行四边形的两个三角形有什么关系?(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?(3)根据平行四边形的面积公式,怎样求三角形的面积?三、自主应用试一试:完成书上第10页的“试一试”。

四、自主质疑说一说:(1)三角形的面积公式是怎么推导的?你还有什么疑问?(2)你认为本节课应学会什么?教学过程:一、明确目标提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?二、交流提升1.出示例4的方格图及其中的平行四边形。

巧用图象面积 解决物理问题

巧用图象面积 解决物理问题

巧用图象面积解决物理问题巧用图象面积解决物理问题浙江省富阳市第二中学方明霞物理图像能形象、直观地表达物理规律、描述物理过程、反映物理量间的函数关系。

用图象法解题可以避免繁杂的中间运算过程,具有简明、快捷、准确等优点,特别是当某些物理量发生变化,用常规的解析法无法解决时,图象法可以帮助我们快而有效地解决问题。

在物理图象的学习和应用中,我们可以从坐标、斜率、截距、面积、交点、拐点等方面分析不同的图象所代表的物理意义。

本文仅从“面积”出发,阐释图象的妙用。

在物理教学中,我们会经常碰到这样的函数关系:y=ab,其中一个物理量a为恒量,在以a-b为坐标的函数图象中,图线与坐标轴围成的矩形面积代表y的大小。

而当a也发生变化时,用一般解析式解决往往比较复杂。

在以a-b为坐标的函数图象中,利用“微元”的思想方法,将图线分割成无限小段,每一小段图线都可近似为a恒定,这一小段图线围成的面积近似为矩形,表示这一小块y的大小,将所有小块叠加起来,不难发现图线与坐标轴围成的面积依然代表y的大小。

以下是笔者整理的部分图象“面积”的巧用。

一、1/v- x图象,图线与坐标轴围成的“面积”表示时间匀速直线运动中,,t与x、v成反比。

反比例函数在数学处理上往往比正比例函数复杂,因此我们通常将其转化为正比例函数,在x-1/v图象上,利用“微元”思想,我们不难发现1/v-x图线与坐标轴围成的“面积”表示时间。

例1.一只老鼠从洞口爬出后沿一直线运动,其速度大小与其离开洞口的距离成反比,当其到达距洞口为x1的A点时速度为v1,若B点离洞口的距离为x2(x2>x1),求老鼠由A运动到B所需的时间。

解析:老鼠从洞口沿直线爬出,已知爬出的速度与通过的距离成反比,则不能通过匀速运动、匀变速运动公式直接求解,但通过1/v-x图象,我们可以很简洁地得到图中阴影部分的面积即是老鼠由A运动到B所需的时间。

二、v-t图象,图线与坐标轴围成的“面积”表示位移例2.在电场强度为E的匀强电场中,有一条与电场线平行的几何线,如图中虚线所示。

七年级数学下册巧用三角形的中线求长度和面积

七年级数学下册巧用三角形的中线求长度和面积

9.微专题:巧用三角形的中线求长度和面积◆类型一求线段长【方法点拨】由中线得线段相等,再结合中线这条公共边相等解题.如图,BD为△ABC 的中线,则AD=CD,C△ABD-C△BCD=AB-BC.1.如图,已知△ABC的周长为21cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为15cm,求AC的长.◆类型二求面积【方法点拨】(1)中线把三角形分成两个面积相等的三角形.如图①,若BD为△ABC的中线,则S△ABD=S△BCD.若DE为△BCD的中线,则S△BDE=S△CDE=12S△BCD=14S△ABC.图①图②(2)若题中有中点,求面积,要考虑在三角形中连接中线,利用①中的性质求解,如T4.(3)同一三角形被不同中线分成的三角形面积也相等.如图②,BD,AE均为△ABC的中线,则S△ABD=S△BCD=S△ABE=S△ACE=12S△ABC.2.如图,AD是△ABC的中线,CE是△ACD的中线,S△AEC=3cm2,则S△ABC=________.第2题图第3题图3.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2.若S△ABC=12,则S1+S2=________.4.如图①,已知AD为△ABC中BC边上的中线.(1)试说明:S△ADB=S△ADC;(2)如图②,若O为AD的中点,连接BO和CO,设△ABC的面积为S,△ABO的面积为S1,用含S的代数式表示S1,并说明理由;(3)如图③,学校有一块面积为40m2的三角形空地ABC,按图③所示分割,其中点D、E、F分别是线段BC、AD、EC的中点,拟计划在△BEF内栽种花卉,其余地方铺草坪,则栽种花卉(阴影部分)的面积是________m2.参考答案与解析1.解:∵AB=6cm,AD=5cm,△ABD的周长为15cm,∴BD=15-6-5=4(cm).∵AD 是BC边上的中线,∴BC=8cm.∵△ABC的周长为21cm,∴AC=21-6-8=7(cm).2.12cm2 3.144.解:(1)作AE⊥BC.∵S△ADB=12BD·AE,S△ADC=12CD·AE,又AD为△ABC中BC边上的中线,∴BD=CD,∴S△ADB=S△ADC.(2)由(1)可知S△ADB=S△ADC,同理S△ABO=S△DBO=12S△ADB,∴S△ABO=14S△ABC,即S1=14S.(3)10解析:S△BEF=12S△BEC=12(S△BDE+S△CDE)=14(S△ABD+S△ACD)=14S△ABC.。

高考数学专题:解三角形中面积(周长)最值的求法

高考数学专题:解三角形中面积(周长)最值的求法

解三角形中面积(周长)最值的求法一、考法解法命题特点分析在正余弦定理的运用中,有一类题目值得关注。

这类题有一个相同的特点,即知道三角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围),但在解题方法的选择上有值得考究的地方。

解题方法荟萃求三角形面积(或周长)的最值(或范围),一般可有两种思路去解决:(1)用余弦定理+基本不等式(2)用正弦定理+三角函数的取值范围二、典型题剖析 例1 在ABC ∆中,角A,B,C 的对边分别为c b a ,,且4,41cos ==a A .(1)若6=+c b ,且b <c ,求c b ,的值.(2)求ABC ∆的面积的最大值。

【解析】 解 (1)由余弦定理A bc c b a cos 2222-+=, ∴bc bc c b 212)(162--+= ∴8=bc ,又∵,6=+c b b <c ,解方程组⎩⎨⎧==+86bc c b 得4,2==c b 或2,4==c b (舍).∴4,2==c b(2)由余弦定理A bc c b a cos 2222-+=, ∴bc c b 211622-+= ∵bc c b 222≥+ ∴332≤bc ,又415sin =A ∴3154sin 33221sin 21=⨯⨯≤=∆A A bc S ABC即c b =时三角形最大面积为3154 例2在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,2=a ,向量)s i n s i n ,1(),1),(sin(C B b B A a -=-=→→,且→a ⊥→b 。

(1)求角A ;(2)求ABC ∆面积的取值范围。

【解析】解:(1)→→⊥∴b a ,01)sin (sin 1)sin(=⨯-+⨯-∴C B B A ,0sin cos cos sin sin sin cos cos sin =--+-B A B A B B A B A , 即B A B sin cos 2sin =,因0sin ≠B , 故21cos =A ,又︒<<︒1800A , 所以︒=60A (2) 由正弦定理334sin 2==A a R C R CB R b sin 2,sin 2== 又 120=+c b A bc S ABC sin 21=∆ 60sin )sin 2()sin 2(21⨯⨯=C R B R C B sin sin 334=)120sin(sin 334B B -= ⎥⎦⎤⎢⎣⎡+=B B B sin 21cos 23sin 334[]B B B 2sin cos sin 3332+= 332cos 212sin 23332+⎥⎦⎤⎢⎣⎡-=B B 33)302sin(332+-= B )120,0( ∈B )210,30(302 -∈-∴B ]1,21()302sin(-∈- B ]3,0(∈∴∆ABC S三、达标与拓展基础过关。

三角形面积计算说课稿(通用10篇)

三角形面积计算说课稿(通用10篇)

三角形面积计算说课稿三角形面积计算说课稿(通用10篇)在教学工作者开展教学活动前,通常需要用到说课稿来辅助教学,编写说课稿助于积累教学经验,不断提高教学质量。

那么优秀的说课稿是什么样的呢?下面是小编为大家整理的三角形面积计算说课稿,仅供参考,大家一起来看看吧。

三角形面积计算说课稿篇1说教材:今天我说课的内容是苏教版第9册的“三角形面积的计算”。

在学这课之前,学生已经有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。

学习方法方面的基础有:在平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。

事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。

说教法、学法:这课我会采用分组学习的方式,事先给每组一些操作材料,让大家在操作中交流,在交流中丰富感知,并逐步形成正确的认识。

教学目标:1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

教学重点:三角形面积计算公式的推导教学难点:帮助学生认识到为什么要“÷2”说教学过程及相关意图:一、复习我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。

老师随学生回答板书:S长=ab,S正=a,S平=ah能说说这些公式是分别用什么方法得到的呢?[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。

后一问,主要是从学习方法上考虑的。

数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。

二、探索三角形面积计算的公式1、学习例4将刚才复习中的三种图形,利用课件的演示,添上一条对角线。

解三角形求解题技巧

解三角形求解题技巧

解三角形求解题技巧三角形是初中数学中的一个重点内容,其求解题目主要涉及到角度、边长、面积等方面的计算。

下面将介绍一些解三角形题目的技巧和方法。

一、根据已知条件确定解题思路在解三角形的题目中,首先需要根据已知条件来确定解题思路。

根据题目所给的已知条件,可以判断需要使用何种方法来求解。

根据已知条件可以分为以下几种情况:1. 已知两个角和一边:通过已知两个角和一边来确定三角形。

可以使用正弦定理、余弦定理来求解。

2. 已知两个边和一个夹角:通过已知两个边和一个夹角来确定三角形。

可以使用正弦定理、余弦定理来求解。

3. 已知两个边和一个高:通过已知两个边和一个高来确定三角形。

可以使用面积公式来求解。

4. 已知一个角和两个边:通过已知一个角和两个边来确定三角形。

可以使用正弦定理、余弦定理来求解。

5. 已知一个角和一个边:通过已知一个角和一个边来确定三角形。

可以使用正弦定理、余弦定理来求解。

二、应用正弦定理和余弦定理正弦定理和余弦定理是解三角形问题中最常用的方法之一。

1. 正弦定理:在一个三角形中,三个角的对边分别为a、b、c,三角形的内心到各边的垂线的长度分别为r1、r2、r3。

则有:a/sinA = b/sinB = c/sinC = 2R,其中R为三角形外接圆的半径。

通过此定理可以求解出三角形的边长和角度。

2. 余弦定理:在一个三角形中,三个角的对边分别为a、b、c。

则有:a² = b² + c² - 2bc·cosA,b² = a² + c² - 2ac·cosB,c² = a² + b² - 2ab·cosC,通过此定理可以求解出三角形的边长和角度。

三、解题步骤在解三角形问题时,可以按照以下步骤进行求解:1. 根据已知条件确定解题思路。

2. 根据已知条件选择使用合适的公式进行计算。

3. 根据公式计算出三角形的边长和角度。

利用图形面积妙解问题例析

利用图形面积妙解问题例析
韩 素娟 ( 南省安 阳市 曙光 学校) 河
我们 生 活 的世 界 是 个 丰 富多 彩 的 图形 世 界 .利 用 这 些 千 变 万 被 广 泛 地 应 用 .
化 的图形我们可 以解决很多 问题.其 中方法的优美 与巧妙 ,直观
据不完全统计 , 勾股定理的证 明方法多达 4 0多种 ,其 中 0
总之 ,人贵在创造 , 创造思维是创造力的核心. 培养有创新
意识 和创 造才能 的人 才是 中华 民族 振兴 的需 要 ,让我们 共 同从
启发 学生进行 猜想 ,作为教师 ,首先要 点燃学 生主动探 索 课堂做起 .
[ 1年 期 基 教 论 3 2 2 第3 ] 础 育 坛 5 0
方形 的面积 等于 图 2中两个正方形 面积 的和 ,即 C =a +b.由 2 面积 ( +b ( o )o—b 由此 可 验 证 平 方 差 公 式 一6 =( +b ( ) o )o一
形 面积的差( 一b) 2.图 1 2平行 四边形形 的面积等于 ( 十b ( o )n一
6 .由 于 图 l 由 图 1 ) 2是 1的 阴影 部 分 切 割 拼 接 而 成 的 ,所 以 一
的会徽就是赵爽所使用 的这个 弦图.
b等 于( 6 ( 一b ,由此可验证平方差公式 G一b =( b ( z 口+ )口 ) 2 口+ )口一
3 基 教 论 21年 期] 6 础 育 坛[ 2 第3 0
解题研究 r——一
全平方公式 ( 。一b 2 a )=a —2h+b.
( 结 图1的 法 们 以 到 下 计 仅 参 . 2 合 5 做 我 可 得 以 设 , 供 考 )
方法二 :如 图 1 3中大正方形是 由两个 小正方形和两个长 方 形组成 的.显而易见 ,其大正方形 的面积 ( o+6 于两个小 正 )等 方形 的面积 与两个全 等的长方 形的面积 的和 +2h+6.由此 a 验证 了( b 2 a a - )=a+2h+6.同样道理如 图 1 4 : 4中的边长 为 一 6 )的正方形面积等 于边 长为 。的正方 形面积减去两个长 和宽分

例谈“面积法”在“三角形角平分线模型”中的巧用

例谈“面积法”在“三角形角平分线模型”中的巧用

㊀㊀解题技巧与方法㊀㊀160㊀例谈面积法三角形角平分线模型中的巧用例谈 面积法 在 三角形角平分线模型 中的巧用Һ徐乐乐㊀王玮玮㊀(深圳市龙华区外国语学校,广东㊀深圳㊀518000)㊀㊀ʌ摘要ɔ 三角形角平分线模型 中蕴含 同高 等高的特点,巧用三角形的面积公式,可以直观㊁快速地建立起边角联系,突破难点.建构三角形角平分线模型,呈现三角形面积法在典型题中的一次㊁二次应用,结合角平分线的性质定理及逆定理可以破解难题;归纳模型的性质结论和应用题型,引导学生在解题中恰当运用三角形面积法,从而发展学生的数学思维和几何模型思想.ʌ关键词ɔ三角形面积法;角平分线的性质;几何模型一般而言,在平面几何题的求解过程中,运用三角形面积公式和由面积公式推出的相关结论来计算或者证明的方法,称之为面积法.但是,三角形面积法在日常教学中,往往容易被学生和教师忽视.在初中数学几何难题中,常会包含三角形的角平分线的有关问题,虽然用常规的方法可以解决,但是步骤烦琐㊁计算量大,有时辅助线的添加还不明了.本文通过分析 三角形角平分线模型 问题的特性,在解题时巧妙应用三角形面积法,最终收到良好的教学效果.一㊁三角形的角平分线模型在三角形的角平分线模型中,由角平分线的性质可知:角平分线上任意一点到角两边的距离相等.所以,学生能自然联想到原三角形被角平分线所分得的两个三角形的高相等,结合三角形面积法,就可以将同高(或等高)的两个三角形的面积比转化为底之比.图1㊀图2如图1,BD是әABC的角平分线,则由定义可知,øABD=øCBD=12øABC.如图2,过点D分别向边AB,BC作垂线DE,DF,则DE,DF分别是әABD和әCBD的高,由角平分线的性质可知DE=DF,则SәABDSәCBD=ABBC.我们不妨把图2称为 三角形的角平分线模型 ,它完整地呈现了三角形的性质的推导过程;从 面积法 的角度看,它直观地呈现了被角平分线分得的两个三角形的底和高,并且是较为特别的 等高 三角形.当我们建立了这样的双视角几何模型,就能够在常规的 角相等 的基础上,发展出 边成比例 的结论.从而为含有角平分线的几何难题提供了新的解题思路 构造等(同)高,巧用面积法.二㊁角平分线模型的应用1.面积法在模型中的一次应用例1㊀如图3,әABC中,ADʅBC交BC于D,AE平分øBAC交BC于E,F为BC的延长线上一点,FGʅAE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①SәAEBʒSәAEC=ABʒAC;②øDAE=øF;③øDAE=12(øABD-øACE);④øAGH=øBAE+øACB.其中正确的结论是.图3㊀图4分析㊀这个题目是八年级数学期中考试的压轴题,这是一个几何图形综合题,难度很大,学生的正确率只有10%.②③④都是关于角的结论,通过角的转化可以推导出三个结论都是正确的,此处省略.①就是典型的三角形的角平分线模型的直接应用.如图4,通过抽离出әABC,并作出边AB,AC上的高,由于角平分线的性质,高相等,因此,面积比转化为底之比,①正确.例2㊀如图5,在直线ABC的同一侧作两个等边三角形әABD和әBCE,连接AE与CD,求证:(1)AE=DC;(2)HB平分øAHC.图5㊀图6分析㊀很多老师和学生都对这个类型的题目非常熟悉,并且形象地称为 手拉手 模型,这个模型的图形特征是两个形状相同㊁大小不同的特殊图形(等边三角形㊁正方形等)绕着一个公共顶点旋转,在变化的过程中有着许多不变的结论,属于典型的动态变化过程中的不变性问题.例2中,әABD和әBCE都是等边三角形,则存在对应相等的边和角,结合公共夹角构造出新的等角,从而证得㊀㊀㊀解题技巧与方法161㊀㊀әABEɸәDBC,故AE=DC得证.第(2)问是关于角平分线的判定,此题如果采用常规的角相等去证明会十分烦琐,而采用角平分线的判定定理,如图6,作出两个全等三角形的高线,通过面积法证明就非常简便.教学中,学生常常会有强烈的顿悟感,感觉柳暗花明㊁十分巧妙.证明㊀过点B作BMʅAE,BNʅCD.(1)ȵәABD,әBCE都是等边三角形,ʑAB=BD,BE=BC,øABD=øEBC=60ʎ.ȵøABD+øDBE=øEBC+øDBE,ʑøABE=øDBC,ʑәABEɸәDBC(SAS),ʑAE=DC.(2)由(1)知әABEɸәDBC,ʑSәABE=SәDBC,即AE㊃BM2=DC㊃BN2,ʑBM=BN.又ȵBMʅAE,BNʅCD,ʑHB平分øAHC.变式㊀如图7,将әABC绕点A逆时针旋转60ʎ得到әADE,DE与BC交于点P,求证:PA+PC=PE.图7㊀图8分析㊀如图8,此题通过连接BD与CE就变成等边三角形 手拉手 模型.过点A向两边作高线,构造三角形的角平分线模型.结合三角形面积法与角平分线的性质便可证得øAPB=60ʎ;在BC边上截取PG=PA,连接AG,则әAPG为等边三角形,进而证明әAPEɸәAGC,PA+PC=PE得证.2.面积法在模型中的二次应用例3㊀如图9,әABC中,BD是øABC的平分线,求证:ABBC=ADDC.图9㊀图10分析㊀此题求证的边之比相等是典型的相似三角形问题,常规方法就是构造相似三角形,利用边的转化求证.当换个思路 用三角形的面积法,会收到意想不到的效果.如图10,过点D分别向边AB,BC作垂线,则DE,DF分别是әABD和әCBD的高,由角平分线的性质可知,DE=DF,则SәABDSәCBD=ABBC.如图11,过点B向边AC作垂线,BG是әABD和әCBD的公共高,SәABDSәCBD=ADDC,所以ABBC=ADDC.图11例4㊀(2016年深圳中考23题(1)(2)问)如图12,抛物线y=ax2+2x-3与x轴交于A,B两点,且点B的坐标为(1,0).(1)求抛物线的解析式和点A的坐标;(2)如图12,点P是直线y=x上的动点,当直线y=x平分øAPB时,求点P的坐标.图12㊀㊀图13分析㊀第(1)问为基础考查,易得点A的坐标为(-3,0),抛物线的解析式为y=x2+2x-3.对于第(2)问,将图形简化,如图13,可以理解为PO平分øAPB,这就是三角形的角平分线模型,采取与例3的相同方法,二次应用三角形面积法得PAPB=AOBO=3,将点P的坐标设为(x,x),列方程(x+3)2+x2=9(x-1)2+9x2,解得x=32(0舍去),故点P的坐标为32,32().通过上述例题发现,在三角形的角平分线模型中巧妙使用三角形的面积法,会为解题带来极大的便利.无论是一次应用还是二次应用,其依据都是同高(等高)的两个三角形的面积之比等于底之比.理解并熟练掌握三角形的角平分线模型的特点与结论,便能在复杂的问题中快速想到解题思路,通过辅助线的添加构造模型.在教学过程中,要利用基本几何模型将复杂的问题简单化,透过问题看本质,从而提高探究问题的能力和数学核心素养.ʌ参考文献ɔ[1]黄孝培.浅谈三角形面积法在初中几何问题中的基本运用[J].中国数学教育∙初中版,2019(7-8):90-93.[2]祝林华.角平分线模型的构造及应用[J].初中数学教与学,2015(07):24-26.[3]王霞,房文慧.最短路径与几何定值[J].中学数学教学参考,2020(08):41-46.。

三角形面积的计算与应用

三角形面积的计算与应用

三角形面积的计算与应用三角形是几何形状中最常见的一种,计算三角形的面积是数学中的基础知识,也是应用数学在实际问题中的重要应用之一。

本文将介绍三角形面积的计算方法以及一些实际应用。

一、三角形面积的计算方法计算三角形的面积有多种方法,下面将介绍三种常用的计算方法。

1. 高乘底法高乘底法是最常见的计算三角形面积的方法。

三角形的面积等于底边长度乘以高,即S=1/2×底边长度×高。

在已知三角形底边和高的情况下,可以直接使用这个公式来计算面积。

例如,如果一个三角形的底边长度为6cm,高为4cm,那么可以通过计算得到面积S=1/2×6cm×4cm=12cm²。

2. 海伦公式对于已知三角形的三条边长a,b,c,可以使用海伦公式来计算面积。

海伦公式的表达式为S=√(p×(p-a)×(p-b)×(p-c)),其中p为三角形的半周长,即p=(a+b+c)/2。

例如,已知一个三角形的三条边长分别为3cm,4cm,5cm,先计算半周长p=(3cm+4cm+5cm)/2=6cm,然后带入海伦公式计算面积S=√(6cm×(6cm-3cm)×(6cm-4cm)×(6cm-5cm))=6cm²。

3. 两边夹角法当已知三角形的两条边长a,b和它们夹角的正弦值sinθ时,可以使用两边夹角法来计算面积。

表达式为S=1/2 × a × b × sinθ。

例如,如果一个三角形的两条边长分别为5cm和6cm,夹角的正弦值为0.8,则可以计算出面积S=1/2 × 5cm × 6cm × 0.8=12cm²。

二、三角形面积的应用三角形的面积计算不仅仅只是为了满足数学课堂上的要求,它在实际生活中也有很多应用。

1. 地理测量在地理测量中,计算不规则地形的面积是一个基本问题。

巧用相似三角形的性质解三角形面积规律问题

巧用相似三角形的性质解三角形面积规律问题

数理化 解题研究
2018年第 2O期总第 405期
使课 堂能够达到最佳 的学 习氛 围.
五 、重视初 中数 学教 学的创新 问题
现在这 个时代 最需 要 的人 才就 是 创新 型 人才 ,而 且 创新能力 的培养 也是新课 改强调 的重 中之重.因此 ,为 了 培养学生 的创新 意识 ,教 师首 先 就要有 极 大地 教育 包 容 性 ,允许学 生有 自己 的个性 见解 ,重 视学生 思维 的独 特性 和新颖性 的培养.其次数学 的教学 方法要 进行创 新 ,采 用 引导式 的教 学方法 ,促进学 生 自主的探讨 和解 决 问题 ,培 养学生独立 解决 问题 的能力.创新 是一 个 民族 兴 旺发 达 的不竭动力 ,作 为新 时期 的社 会主 义建设 者 ,初 中生 的创 新能力 的培 养十分重要.
的中点,
AB C M。的面积为 S。,△ c2 的面积为 Js:,…,△ c
的面积 为 S ,则 S = . (用 含 n的式 子表 示 )
边 三角形的性质.此题 难度 较 大 ,属 于 规律 性题 目,注 意
辅 助线 的作法 ,注意数形结合思想 的应用.
例题 2 (2016年 潍坊 市 临朐 、昌邑 一模 )如 图 3,/7,
个边 长为 1的相邻 正方 形的一边均在 同一直线上 ,点 ,

, … ,
分别为边
, , B ,…,
例 题 1 (2013·浙 江 自主招 生 )如 图 1,/7,+1个 边 长
的面积 为 S ,AB D C 的面积为 S:,… ,△ D C 的面 积为 S ,则 S = (用 含 /7,的式子表示 ).
分 析 由 /7,+1个边长 为 2的等边三角形有一条边在 同一直线上 ,则 B.,B ,B ·--- 在 一条 直线 上 ,可作 出直 线 曰 B .易求得 AAB C 的面积 ,然 后 由相似 三角形 的性 质 ,易求得 s 的值 ,同理求得 s 的值 ,继而求得 s 的值.

求三角形周长(面积)范围类问题解法探究

求三角形周长(面积)范围类问题解法探究

求三角形周长(面积)范围类问题解法探究楚雄第一中学赵泽民解三角形是高考的常考题型,主要出现在高考试卷 的解答题中,以解答题第17题的位置较为常见,偶尔也会 出现在选择题和填空题中.其考法主要围绕着正、余弦定 理,结合三角恒等变换,重点考査正、余弦定理的边角互 化及三角恒等变换公式的灵活应用,往往要求考生计算 边长、周长和面积的大小或范围.这类试题以中档题为主, 是考生志在必得却又容易卡壳的题目之一.本文主要以三 角形周长范围的求解为例,探讨此类题的解法,总结解题 规律,帮助考生摆脱“会而不对,对而不全”的苦恼.解决这类问题的方法主要有两种:一是利用“正弦定 理结合三角函数的值域”来求得最终范围;二是利用“余 弦定理结合基本不等式”来构造不等式使问题得到很好 的解决.在遇到此类问题时,学生往往偏向于计算量相对 较少的“余弦定理结合基本不等式”的解题思路来解决问题,但随着解题的深人,往往会遇到诸如范围被放大或缩 小的困境;另外一部分学生会考虑用“正弦定理结合三角 函数值域”的求解策略,但随着解决问题的深人往往会受 正弦定理转化的影响使问题变得“无从下手”,最终使自 己的心态从“满满的期待”转变为“满心的无奈与紧张那 么,当我们遇到这样的问题时,应该采取什么样的解题策 略呢?原题呈现:在锐角A /1SC 中,角的对边分别为 a ,6 ,c ,已知6=3,sin /l +asinfi =2(1) 求角4的大小;(2) 求周长的取值范围.对于A 4S C 周长的取值范围问题,我们驾轻就熟的往 往是“已知三角形的一个内角和其对边求周长的大小或 周长的最值”这一类问题.而本题的第(2)问却巧妙地避开① 当a 矣1时,由1矣*矣3得g U )矣0,/,U )«0,.../U ) 在[1,3]上单调递减,此时/(x K 1 )=-a -l =-2,解得a =l ;② 当时,由 1以《3得g U )>0,/,(*)>0, .•./0«:)在[1,3]上单调递增,此时/U )_=/(3)=U -l )ln 3-f -3=-2,解得a =」^±L <3,舍去;ln 3-—3③ 当l <a <3时,由 l <Cc <a 得g (;c )>0,/彳*)>0,由a <x <3得 g U )<0,/' U )<0,此时/U )在[1, a ]上单调递增,在[a , 3]上单 调递减,从而〇 )=( a_ 1) l na_ 1 _a =_2,解得a =e .综上所述,a =l 或a =e .【点拨】在例4中,/'U )的函数值符号由函数g U )z -U +D U -a )的函数值符号决定,/'U )的零点即的 零点为-1和a ,其中a 与定义域[1,3]的关系不确定,应分为 三类,即①a 矣1,②a >3,③l <a <3.总之,在解函数导数综合题的过程中,当导函数含函数g U )=ax +6,且导函数的符号由)函数值符号决定,要根据一次项系数的符号进行分类.当导函数含函数g U )z a ^+h +c ,且导函数的符号由g U )函数值符号决定,要把 握好分类讨论的层次.一般按下面次序进行讨论:首先,根 据二次项系数的符号进行分类;其次,根据方程g U )=0的 判别式A 的符号进行分类;最后,在根存在时,根据根的 大小进行分类.◊责任编辑邱艳〇Journal of Yunnan Education 65了平时复习中“练熟练透”的解题方法,把已知条件由常 规的“已知三角形的一个内角和其对边”变为“已知三角 形的一边和与这条边不相对的角”,还加上了一条限制一“A/l f i C为锐角三角形”,最终要求考生求“周长的 取值范围”,成功地把一道毫无新意的“陈题”装满了“新 酒解决该题的第(2)问时无论考生选择“余弦定理结合 基本不等式”,还是选择“正弦定理结合三角函数值域”的解题策略都会不同程度受挫,造成一定的心理负担.一、一波三折,尝试解答在解决第(2)问时,如果采用“余弦定理结合基本不 等式”的解题策略,能顺利地解决问题吗?我们又会遇到 哪些困惑呢?第一种境遇,由第(1)问很容易求得/1= |,结合已知条件6=3,我们容易想到P d+c^a cco sB或^(a+c)2 -l a c d+c o s S),但苦于B角未知导致解题受阻,进而尝试 a^/^+^-Sfcccos/l或 +c)2-26c(l+cos/4),也因没有任何解题进展而放弃,最终无奈地写下“a+c>3”这一常见结 论,出现虽“惺惺相惜,但不得不罢手”的遗憾,因为这个 题由不得考生花太多的时间尝试.第二种境遇,尝试用“正弦定理结合三角函数值域”求解,考生受制于定式思维的影响,往往第一时间想到 a=2/?sin/4, 6=2/?siaB ,c=2/?sinC ,进一步得到a+ c= 2/f (sia4+S inC),结合/I+S+C=i7,快速地达到统一角的目 标,欣喜之余,发现2/?成了解下去的拦路虎,解题受挫,产 生“放弃与坚持”的纠结.第三种境遇,考生静下心来认真审视正弦定理+sirvi=2f t的结构和已知条件“6=3,4 =,找到解sin B sinC决问题的突破口,通过尝试发现,虽然“边不是角的对边,角也不是边的对角”,但只要搭配得当,也一样可以达到2V J统一角的目标.由-sin5-可知,csin;4 sinB3sinC-可知,0sinB,进一步得到a+c=2s\n B3V T;再由csinC3sinC合三角形内角和定理可知a+c:3V T2s\nB2sinB sin B3sin(^--B)sin/?,结,化简得a+c=3V T21+cosB 3 _ 3\^3~sin B 2 21+w寻-i..B Bzsin—cos—22•一1到此,本题基本上可以算是考生2 2 B2tan—2的囊中之物了,但部分欣喜若狂的考生可能会忘记题设对“三角形为锐角三角形”这一条件的限制而出现“大意失荆州”的苦恼与失落.由A/1S C为锐角三角形可知2(I,I),进一步求得tan!£(2-\A T,l),从而求得12 4 2-^E(1,2+\A T),q+c E( 3-^?—,3V T+6),又因B 2tan—2为6=3,所以周长的取值范围为a+6+C e(i V^,3V T+9).通过上述分析与解答,我们不难发现该题虽属中档题,每一个学生都是有思路的,但在解答的过程中却总是遇到或这样或那样的解题挫折,从心理上给学生造成相当大的压力,致使学生出现求之不得、弃之可惜的犹豫,导致宝贵的作答时间白白浪费.本题命题者设置了较多的“陷阱”,稍不留神,就会出现“会而不对,对而不全”的遗憾.另外,本题解题过程看似很新,实则还是利用了常规的“正弦定理结合三角函数值域”的解题策略,只是方法和以往解题常规略有差异导致考生解题时“困难重重二、遇见真题,强化巩固变式:(2019年全国卷nUZUBC的内角的对边分别为a,6,c,已知o sin l^"=fesinA.2(1) 求 S;(2) 若A/IBC为锐角三角形,且c=l,求厶/1BC面积的取值范围.分析:(1)已知边角等式asin^^=6Sin A.结合三角形2内角和定理得到sin土1^"=cos呈,进一步可求得s in Z■,最222终求出角5.(2)由(1)求得角S,结合三角形面积公式、正弦定理,以及三角形内角和定理得到关于面积的表达式,从66 4左焱1 •中学教师202 U、2方法与策略A XB C为锐角三角形出发,可求得面积的范围.有前面的解题实践,我们很快就可以将解题策略放在“正弦定理结合三角函数求值域”这一路径上.解答:⑵由(1)可知又因为c=l,所以S A,sc=V T 4由正弦定理可知〇=csin/1sinC sinC2tanCj.因为A薦为锐角三角形,所如(+’2),S导,苧点评:在本题第(2)问的解答过程中,准确地用好正 弦定理是关键,其易错点是忽视“S C为锐角三角形”这 一题设条件,导致角4 ,C的取值偏大,从而影响最终结果.三、反思人教A版《数学》(必修五)第一章“解三角形”重点讲 了正弦定理及其变形、余弦定理及其变形和三角形面积 公式,而这些内容往往结合三角恒等变换成为高考的热 点,深受命题者青睐.近几年,这一题型的命题方式呈现考 点被细化、方法更灵活、解题“陷阱”更隐秘的特点.表面上 考生人手是容易的,但要做对、做全却并非易事.在平时的 教学中,无论是教师,还是学生都认为这道题往往是考卷 中解答题的第一题,其难度中档,是平时训练力度较大、解题方法较全的题型.在大多数学生心中这类题是志在必 得的题目,是后进生突破90分,中等生突破120分的关键 题型之一,也是考生愉悦地解决后续大题的心理基础,对 提升应考状态也至关重要.解决这类问题,定理的选择很 重要,有效的边角互化是解题的关键,方法一旦出错,便 容易在这个问题上绕弯,甚至出现“无法自拔”的解题投 人,最终是“求之不得,弃之不舍”的无奈.所以,教师在平 时讲解训练时,一定要注重对方法的总结,鼓励学生大胆 尝试,重视对一题多解和多题一解的强化.总之,所有解题 时的从容应对,都是平时解题方法的日积月累,静下心 来,用心投人,所有的问题都经不起琢磨.解三角形中的面积与周长的相关问题其难度一般属 于中档题,解题关键是灵活应用正(余)弦定理及其变形,有效地结合三角函数值域或基本不等式来找到解题的突 破口,但在解题时需破除解题定式干扰,勇于尝试.一般情况是若已知当中给定的边是角的对边(或角是边的对 角),则选择“余弦定理结合基本不等式”或“正弦定理结 合三角函数值域”都可以解决问题;但如果题设条件中限 制三角形为锐角三角形(或钝角三角形)则宜选择“正弦 定理结合三角函数值域”来解决问题;若已知三角形的边 不是已知角的对边(或已知三角形的角不是已知边的对 角),则优先选择“正弦定理结合三角函数值域”来解决问 题.在使用正弦定理时,应规避三角形外接圆半径对解题 的影响,直接使用正弦定理解决问题即可.解题时,必须注 意三角形形状对解题结果的影响,注意角的取值范围.从近几年高考题来看,命题者往往选择比较熟悉的 命题背景,在题目中布下隐秘的陷阱.如在求周长或面积 的范围时,考生往往比较熟悉最值,而命题者在考生熟悉 的解题题型上,稍加改进,就可能困住考生.譬如在已知条 件中限制三角形形状或所给的边与角并不对应等.这提醒 我们在平时的教学训练中,应有针对性地进行一题多解 和多题一解的训练.这样可有效地提髙学生V I别问题和解 决问题的效率,可有效增强学生的解题自信.在教学中,教师强化学生的解后反思意识是非常有 必要的.引导学生写好解题反思有助于学生发现解题亮 点,关注解题过程中遇到的困难,优化解题过程和解题思 路.通过对解题过程的回顾与探讨、分析与研究,领悟解题 的主要思想,关键因素,掌握数学中的基本思想和通性通 法,并能灵活地应用其去解决不同的问题.◊责任编辑邱艳〇Journal of Yunnan Education 67。

三角形等面积法在初中教学中的应用

三角形等面积法在初中教学中的应用

三角形等面积法在初中教学中的应用摘要:关于三角形等面积法是近些年初中数学的一种常规解题思路,它的优势在于可以更加快速的找到解题关键,将一些晦涩难懂的知识点变得简单化。

本文将结合现有的一些典型例题,利用三角形等面积法解决相关问题,以此来培养学生的数学思维,提高学生的解题能力。

关键词:三角形等面积法;初中数学;具体应用前言:在现有的初中数学教学中,采用三角形等面积法是一个比较快捷实用的方法,结合几年的教学经验可以发现,即便部分几何题目的问题并没有涉及到三角形的面积计算,但是我们却可以按照图形进行数形结合,将其与实际问题相联系,进而解决这类问题一、分析三角形之间的相关联系,提升学生简单几何的能力在解决三角形的面积时,通常会利用到三角形的边长以及角度之间的关系。

尤其是在一些几何题目当中可能会让你求解一些与已知条件看似毫无关系的边长和角度,此时,很多同学就会将问题复杂化,但实际上如果你仔细观察就会发现,这道题很可能就是利用了三角形的等面积公式,将一个复杂的几何问题转变为一个解方程的题目,而这类题型的实际目的就是让学生发现图形中图形之间的关系,培养学生的数学几何能力,采用“以数解形”的思想,了解几何题背后的实际含义。

例题1如图,直角三角形ABC中,∠ACB=90°BC=4,AC=4,求CD的长度图1解:∵根据勾股定理可知,AB²=AC²+BC²∴AB=4又∵S△ABC=AB*CD/2=AC*BC/2即4*CD/2=4*4/2∴CD=4二、熟悉三角形的基本属性,培养学生的空间想象能力在一些复杂的几何题目中,通常会将圆、平行四边形等图形与三角形结合起来,此时学生不仅要熟知三角形的一些基本定理,尤其是等腰三角形、等边三角形等特殊图形,要充分利用45°、60°等角度。

同时也要熟悉相关图形的定理,做到活学活用,最后看能否利用等面积法将几何问题转换为简单方程,进而更快速的求解题目。

人教版数学八年级上册期末思维点拨:巧解三角形典型例题

人教版数学八年级上册期末思维点拨:巧解三角形典型例题

思维点拨:巧解三角形典型例题【例1】如图,五角星ABCDE,求∠A+∠B+∠C+∠D+∠E的度数和.【思考与分析】我们可以连结DE,在由三角形ACF和三角形DEF构成的图形中,∠A+∠C=∠CED+∠EDA,从而把五角星ABCDE的五个内角放到了三角形BED中,根据三角形内角和定理即可求出∠A+∠B+∠C+∠D+∠E的度数.解:连结DE,由以上结论可知:∠A+∠C=∠CED+∠EDA,又因为在三角形BED中,∠B+∠BEC+∠BDA+∠CED+∠EDA=180°,所以∠B+∠BEC+∠BDA+∠A+∠C=180°.即∠A+∠B+∠C+∠D+∠E=180°.【例2】如图,求∠1+∠2+∠3+∠4+∠5的度数和.【思考与分析】我们按照例1的思路,连结CD,那么在三角形AEF和三角形DCF所构成的图形中,∠3+∠4=∠EDC+∠DCA,这样就把∠1、∠2、∠3、∠4、∠5同时放到了三角形BDC中,即可求出∠1+∠2+∠3+∠4+∠5的度数和.解:连结CD,那么∠3+∠4=∠EDC+∠DCA,又因为在三角形BDC中,∠1+∠5+∠2+∠EDC+∠DCA=180°,所以∠1+∠5+∠2+∠3+∠4=180°,即∠1+∠2+∠3+∠4+∠5=180°.【小结】按照这种思路,以上两题还有多种解法,大家不妨试一试,看能找到多少种解法.【例3】如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,以下四个式子中正确的选项是〔〕.【思考与解】因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-12BAC在三角形ABC中,易知∠BAC=180°-〔∠2+∠3〕,所以∠1=90°-12[180°-〔∠2+∠3〕]=12〔∠3+∠2〕.又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=12〔∠3+∠2〕-∠2=12〔∠3-∠2〕.所以应选C.【例4】如图,点D为三角形ABC内的一点,∠ABD=20°,∠ACD=25°,∠A =35°.你能求出∠BDC的度数吗?【思考与解】延长BD,与AC交于E点,因为∠DEC是三角形ABE的外角,所以∠DEC=∠A+∠ABD=35°+20°=55°.又因为∠BDC是三角形CDE的外角,所以∠BDC=∠DEC+∠ACD=55°+25°=80°.【小结】记准一些常用的结论,有助于我们快速地、正确地解题.【例5】如图,∠B=10°,∠C=20°,∠BOC=110°,能求出∠A的度数吗?【思考与分析】要求∠A的度数,我们可以设法让∠A成为某个与角相关的三角形的内角.我们可延长BO交AC于D,那么∠A、∠B即为三角形ABD的两个内角.根据三角形外角的性质,欲求∠A的度数,可先求∠ODC的度数,由∠BOC=110°,∠C=20°即可求出∠ODC的度数.解:延长BO交AC于D.因为∠BOC是三角形ODC的外角,所以∠BOC=∠ODC+∠C.因为∠BOC=110°,∠C=20°,所以∠ODC=110°-20°=90°.因为∠ODC是三角形ABD的外角,所以∠ODC=∠A+∠B.因为∠B=10°,所以∠A=90°-10°=80°.【例6】如图,点D是三角形ABC内一点,连结BD、CD,试说明∠BDC>∠BAC.【思考与分析】∠BDC和∠BAC在两个不同的三角形内,而且不能直接比拟它们的大小,必须做辅助线把这两个角联系起来.我们延长BD交AC于P,或连结AD并延长交BC于Q,都可以利用三角形外角的性质解题.解:延长BD交AC于P,那么∠BDC>∠DPC,∠DPC>∠BAC,所以∠BDC>∠BAC.【反思】我们还可以连结AD并延长交BC于Q,如图,请大家试一试,看能不能得到一样的结论.【例7】三角形ABC的一个内角度数为40°,且∠A=∠B,你能求出∠C的外角的度数吗?【思考与分析】在三角形ABC中,∠A=∠B,因此三角形ABC是一个等腰三角形,我们必须要讨论40°的角是三角形ABC的顶角还是底角,应分两种情况解答.解:〔1〕设∠α=40°,当∠α是等腰三角形的顶角时,那么∠α的外角等于180°-40°=140°,而∠C=∠α,所以∠C的外角的度数为140°.〔2〕设∠α=40°,当∠α是等腰三角形的底角时,∠A=∠B=∠α=40°,此时∠C的外角=∠A+∠B=80°.【例8】非直角三角形ABC中,∠A=45°,高BD和CE所在的直线交于H,你能求出∠BHC的度数吗?【思考与分析】三角形的形状不同,高的交点的位置也就不同.高的交点的位置可能在三角形的内部,也可能在三角形的外部,因此我们应该分两种情况进展讨论.解:〔1〕当三角形ABC为锐角三角形时,如图1所示.因为BD、CE是三角形ABC的高,∠A=45°,所以∠ADB=∠BEH=90°,∠ABD=90°-45°=45°.所以∠BHC=∠ABH+∠BEH=45°+90°=135°.〔2〕当三角形ABC为钝角三角形时,如图2所示.因为H是三角形的两条高所在直线的交点,∠A=45°,所以∠ABD=90°-45°=45°.所以在直角三角形EBH中,∠BHC=90°-∠ABD=90°-45°=45°.由〔1〕、〔2〕可知,∠BHC的度数为135°或45°.【小结】我们在解题中,经常遇到题目中某些条件交代不清,此时,我们一定要注意分情况考虑,用分类讨论的方法使解完整.【例9】如图,三角形ABC中,∠B=∠C=2∠A,你能求出∠A的度数吗?【思考与分析】我们由三角形内角和可知,∠A+∠B+∠C=180°,又因为∠B=∠C=2∠A,可得∠A+∠B+∠C=∠A+2∠A+2∠A=180°,即可求出∠A 的度数.我们还可以用方程来解这道题,根据三角形内角和定理与∠B=∠C=2∠A 这两个条件求未知量∠A的度数.用方程解决问题,我们必须在弄清题中数量和未知数量的关系的根底上,要抓住题中的不变量,建立等量关系.题中的不变量是三角形内角和等于180°,其等量关系是∠A+∠B+∠C=180°,然后我们用数学语言把这个等量关系式转化为方程.设∠A的度数为x,那么可以用2x分别表示∠B、∠C的度数,将这个等式转化为方程x+2x+2x=180°,即可求出∠A的度数.解法一:因为∠B=∠C=2∠A,∠A+∠B+∠C=180°,所以∠A+∠B+∠C=∠A +2∠A+2∠A=180°,即∠A=36°.解法二:设∠A的度数为x,那么∠B、∠C的度数都为2x,列方程得x+2x +2x=180°,解得x=36°,即∠A=36°.【例10】判断适合以下条件的三角形ABC是锐角三角形、钝角三角形还是直角三角形.〔1〕∠A=80°,∠B=25°;〔2〕∠A-∠B=30°,∠B-∠C=36°;【思考与分析】根据角判断三角形的形状,我们只需求出三角形中各角的度数就可以了,此题判断三角形是否是锐角三角形、钝角三角形、直角三角形,只需求出三角形中最大角的度数即可.〔1〕题通过直接计算就可以求出∠C的度数,〔2〕〔3〕题不便于直接计算,可以运用方程思想抓住等量关系,列方程进展求解.解:〔1〕因为∠A=80°,∠B=25°,所以∠C=180°-80°-25°=75°,所以三角形ABC是锐角三角形.〔2〕设∠B=x°,那么∠A=〔30+x〕°,∠C=〔x-36〕°,所以x°+〔30+x〕°+〔x-36〕°=180°,解得x=62,所以最大角∠A=92°,所以三角形ABC是钝角三角形.〔3〕设∠A=x°,∠B=2x°,∠C=6x°,那么x°+2x°+6x°=180°,解得x =20,所以∠C=120°,所以三角形ABC是钝角三角形.【小结】利用方程求角度是我们常用的方法之一.在三角形中,给出的条件不能直接求出结果,且各角之间有相互关系,我们可以设其中一个角为未知数,再把其它角用此未知数表示,然后列方程即可求解.1.利用高线与边垂直的性质求度数【例11】△ABC的高为AD,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【思考与分析】由于AD为底边BC上的高,过A做底边BC的垂线时,垂足D可能落在底边BC上,也有可能落在BC的延长上.因此,我们需要分情况讨论.解:〔1〕当垂足D落在BC边上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.〔2〕当垂足D落在BC的延长线上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.所以∠BAC为90°或50°.【小结】由于三角形可以分为锐角三角形、直角三角形与钝角三角形,在题目所给条件中如果没有确切说明三角形的具体类型时,我们就要分类讨论,以防遗漏.2. 利用三角形面积公式求线段的长度【例12】如图,△ABC中,AD,CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,你能求出AB的长吗?【思考与分析】由于三角形面积等于底与高乘积的一半.因此,三角形的面积就有三种不同的表达方式.我们假设设△ABC的三边长分别为a,b,c,对应边上的高分别为h a,h b,h c,那么三角形的面积S=12ah a=12bh b=12ch c.此题中三角形的两条高与其中一条高所对应的边,求另一条边,利用三角形面积S△ABC=12BC·AD=12AB·CE,解决十分方便.解:S△ABC =12BC·AD=12AB·CE1 2×5×3=12AB·4,解得AB=154〔cm〕.【小结】用同一个三角形不同的面积表达式建立等式求线段的长度,是一种很重要的方法,在今后的学习中,我们应注意这种方法的运用.【例13】如图,AD、AE分别是三角形ABC的中线、高,且AB=5cm,AC=3cm,那么三角形ABD与三角形ACD的周长之差为,三角形ABD与三角形ACD的面积之间的关系为.【思考与解】〔1〕三角形ABD与三角形ACD的周长之差=〔AB+BD+AD〕-〔AD+CD+AC〕=AB+BD-CD-AC.而BD=CD ,所以上式=AB-AC=5-3=2〔cm 〕.〔2〕因为S 三角形ABD =12BD×AE ,S 三角形ACD =12CD×AE ,而BD=CD ,所以S 三角形ABD =S 三角形ACD .【例14】如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于为AB 上的一点,CF ⊥AD 于H.以下判断正确的有〔 〕.〔1〕AD 是三角形ABE 的角平分线.〔2〕BE 是三角形ABD 边AD 上的中线.〔3〕CH 为三角形ACD 边AD 上的高.个 个 个 个【思考与解】由∠1=∠2,知AD 平分∠BAE ,但AD 不是三角形ABE 内的线段,所以〔1〕不正确;同理,BE 虽然经过三角形ABD 边AD 的中点G ,但BE 不是三角形ABD 内的线段,故〔2〕不正确;由于CH ⊥AD 于H ,故CH 是三角形ACD 边AD 上的高,〔3〕正确.应选A.【例15】如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC=12cm ,AC=5cm.〔1〕求三角形ABC 的面积.〔2〕求CD 的长.【思考与分析】求直角三角形的面积,有两种方法:①S △=12ab 〔a 、b 为两条直角边的长〕;②S △=12ch 〔c 为直角三角形斜边的长,h 为斜边上的高〕.由此可知ab =ch ,在a 、b 、c 、h 四个量中,其中三个量,就可以求出第四个量. 解:〔1〕在直角三角形ABC 中,∠ACB =90°,BC=12cm ,AC=5cm , 所以S △ABC =12AC×BC =30〔cm 2〕.〔2〕因为CD是AB边上的高,所以S△ABC =12AB×CD,即12×13×CD=30.解得CD=6013cm.【例16】如图1所示,你能求出∠A+∠B+∠C+∠D+∠E+∠F的度数吗?【思考与解】我们可以连结EF,把∠A+∠B+∠C+∠D+∠E+∠F的度数转化为求四边形BCEF的内角和.如图2所示.因为∠A+∠D+∠AOD=∠OFE+∠EOF+∠OEF=180°,所以∠A+∠B+∠C+∠D+∠E+∠F=∠OFE+∠OEF+∠C+∠B+∠E+∠F=360°.【例17】如图3,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?【思考与分析】要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,那么三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.【反思】此题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.【例18】三角形的第一个内角是第二个内角的倍,第三个内角比这两个内角的和大30°,求这三个内角的度数.【思考与分析】题中的量是“第一个内角是第二个内角的倍,第三个内角比这两个内角的和大30°〞,未知量是这三个角的度数.题中没有给出三角形内角的度数.但第一个内角和第三个内角与第二个内角的度数相关联,所以解这道题的关键是求出第二个内角的度数.要想解决这个问题,不妨设第二个内角的度数为x,利用方程思想来解.根据三角形的内角和为180°,由此我们可以得到这样的等式关系:第一个内角+第二个内角+第三个内角=180°.当我们用数学语言表示第二个内角为x,第一个内角为,第三个内角为x+1.5x+30°,利用代换法,将上述的等量关系转化为方程:+〔x+1.5x+30°〕=180°.通过解这个方程就能使问题得到解决.解:设这个三角形的第二个内角的度数为x,那么第一个内角的度数为,第.三个内角的度数为〔x++30°〕,列方程可得+〔x+1.5x+30°〕=180°,解得x=30°.所以三角形的三个内角分别为45°,30°,105°.【例19】如图,在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【思考与分析】我们欲求∠DBC的度数,因为∠DBC是直角三角形DBC 的一个内角,因此问题转化为求∠C的度数,由条件知三角形ABC的三个内角关系为∠C=∠ABC=2∠A,又根据三角形内角和定理有等量关系:∠A+∠ABC+∠C=180°,从而我们用一个角的度数来表示另外两个角,代入这个等量关系求三个内角的度数,即用方程的方法解决问题.可设∠A=x,那么∠C=∠ABC=2x,代入上述等量关系得方程x+2x+2x=180°,可解得x的值,从而可求得∠DBC的度数.解:设∠A=x,∠C=∠ABC=2x,在三角形ABC中,x+2x+2x=180°,解得x=36°,那么∠C=72°.因为BD是AC边上的高,所以∠BDC=90°.在直角三角形BDC中,∠DBC=90°-72°=18°.下载后可自行编辑修改,页脚下载后可删除。

在三角形中巧用面积法解题

在三角形中巧用面积法解题

现 提供 部 分 习题供 同学 们练 习 : 1如图, 、 已知 AA C和 AB C A B D , G与 B 交 于 点 0 且 直 线 D ,
AA C的面积为 B

A D∥B 图 中 四个小 三 角形 的 面 积分 别 为 5 、2S、 , 判 断 C, lS 、3岛 试
s 和 的大 小 关 系 , 说 明理 由。 , 并
高, 试判断 B F和 C E的大小关系 , 明理由。 并说




解 析 : 接 P 、 B P , 题 意 得 SAP C+SAP C +. 连 A P 、C 由 B A s
AP B=SAA C, 以 日c ・ A B 所 肋 + c ・咫 + B ・P F=
÷ B h又因为 A A B , P + + = 。 c・ , B= C: C 所以 D 船 h
PF :h。



解 : JA =A× ,SA = × , 析因 s ÷曰CRA C 1cB 为△ c D B C
所 以 B x D= C c× C 即 1 ×C B , 3 D=1 5 得 ∞ =6 2× , O

例 2在 AA C中 ,B > C B C 分 别 是 A 、B边 上 的 B A A , D、E CA

都 市 家教 6 6
关 于 小 学 语 文 阅 读 教 学 的思 考
224 江 苏省连 云 港 市连 岛小 学 陈 芸 20 1 阅 读教 学 是语 文 教 学 不 可缺 少 的 环 节 , 具 备 听 、 、 、 它 说 读 写训 练 的综 合 性 , 既是 识 字 的重 要 途 径 , 又是 写作 的必 备 前 提 , 也是 提 高学 生 语 文 水 平 的手 段 。新 课 程 标 准 指 出 : 阅读 教 学 “ 要 让学 生 充 分地 读 , 在读 中整 体 感 知 , 读 中有 所 感悟 , 读 中 在 在 培养 语感 , 在读 中受 到 情 感 的 熏 陶。 那 么 , 们 如 何 才 能 做 好 ” 我 小学 生 的 阅读 教学 呢 , 者认 为 应从 以下几 方 面 着 手 。 笔

三角形面积公式边长乘边长乘夹角的正弦值

三角形面积公式边长乘边长乘夹角的正弦值

三角形是初中数学中非常重要的一个概念,它的面积是解题的基础。

想要求解三角形的面积,我们通常会使用公式“三角形面积 = 1/2 x 底边长 x 高”,但是在一些特殊情况下,如果我们知道三角形的两边长度和它们夹角的正弦值,我们也可以通过另外一种公式来求解三角形的面积。

本文将介绍这种方法,并且演示它的应用。

1. 三角形面积公式之夹角正弦公式通过学习三角函数的知识,我们知道正弦函数代表的是一个角的对边与斜边的比值。

对于三角形ABC来说,如果我们知道了边AB和边AC的长度以及它们夹角的正弦值,那么可以使用以下公式来计算三角形ABC的面积:S(ABC) = 1/2 x AB x AC x sin(∠BAC)2. 具体步骤那么,当我们知道边长和夹角的正弦值时,具体该如何求解三角形的面积呢?下面将详细介绍具体的步骤:第一步:确定已知量我们需要明确已知的量,即边AB的长度、边AC的长度,以及它们夹角的正弦值。

在解题之前,确保这些数值都已经获得。

第二步:计算面积接下来,根据公式S(ABC) = 1/2 x AB x AC x sin(∠BAC),将已知的量带入公式,即可得出三角形ABC的面积。

3. 应用举例为了更好地理解这个三角形面积公式,下面通过一个具体的实例来演示其应用:例题:已知三角形ABC中,边AB的长度为5cm,边AC的长度为7cm,∠BAC的正弦值为0.6,求三角形ABC的面积。

解:根据已知量,利用夹角正弦公式直接计算即可得到结果:S(ABC) = 1/2 x 5 x 7 x 0.6 = 1/2 x 35 x 0.6 = 10.5三角形ABC的面积为10.5平方厘米。

通过以上实例,我们可以看到,夹角正弦公式对于求解三角形面积非常有效,并且在一定的条件下,可以帮助我们更加灵活地解决三角形相关的问题。

4. 总结夹角正弦公式是求解三角形面积的一种常用方法,它适用于已知两边长和它们夹角的正弦值的情况下。

通过本文的介绍和举例,相信读者对于这种方法有了更深入的理解。

规范审答导课例2 三角形中的面积、中线问题

规范审答导课例2 三角形中的面积、中线问题

三角形中的面积、中线问题典例 (10分)(2023·新课标Ⅱ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 面积为3,D 为BC 的中点,且AD =1.(1)若∠ADC =π3,求tan B ;(2)若b 2+c 2=8,求b ,c .问题1:如何利用△ABC 的面积为3?——→思路由于D 是BC 的中点,所以S △ABC =2S △ADC .问题2:已知△ABC 中的两边及其夹角,如何解这个三角形?——→思路用余弦定理求出已知角的对边,然后利用正弦定理或余弦定理求解其他边和角.问题3:如何利用三角形的中线解三角形?——→思路由于cos ∠ADB =-cos ∠ADC ,所以可以利用余弦定理构建方程求解.(1)第1步:由三角形面积公式求a因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12×AD ×DC sin ∠ADC =2×12×1×DC ×32=3,解得DC =2,所以BD =DC =2,a =4. 1分第2步:由余弦定理求c因为∠ADC =π3,所以∠ADB =2π3. 在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ·BD cos ∠ADB =1+4+2=7,所以c =7. 2分第3步:求sin B ,cos B法一:在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ·DC ·cos ∠ADC =1+4-2=3,所以b = 3.在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714, 3分 所以sin B =1-cos 2B =2114. 4分法二:在△ABD 中,由正弦定理,得c sin ∠ADB=AD sin B , 所以sin B =AD sin ∠ADB c =2114, 3分所以cos B =1-sin 2B =5714. 4分第4步:由同角三角函数的基本关系求结果所以tan B =sin B cos B =35. 5分(2)第1步:由余弦定理求a因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ·BD =-AD 2+DC 2-b 22AD ·DC, 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3,所以a =2 3. 6分第2步:由余弦定理及三角形面积公式求bc在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc , 7分所以S △ABC =12bc sin ∠BAC=12bc1-cos 2∠BAC =12bc1-(-2bc )2 =12 b 2c 2-4=3,解得bc =4. 9分第3步:结合已知条件建立方程组求结果则由⎩⎪⎨⎪⎧bc =4,b 2+c 2=8,解得b =c =2. 10分1.得步骤分:对于解题过程中是得分点的,有则给分,无则没分,对于得分点步骤一定要写全.第(1)问中反复利用余弦定理和正弦定理解三角形.公式利用正确得分,公式应用错误不得分.2.得关键分:对于解题过程中的关键点,有则给分,无则没分,解题时一定要写清得分的关键点.第(1)问中利用中线的性质,得到S△ABC=2S△ADC,这是解题的关键之一.第(2)问中,由∠ADB+∠ADC=π,故cos∠ADB=-cos∠ADC,这也是解题的关键点,写出这些关键点,不但可得关键分,这也是解题继续的保证.3.得计算分:第(1)问和第(2)问题,都有利用三角形的面积公式及正、余弦定理进行计算,结果正确得分,错误则没分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在三角形中巧用面积法解题
所谓面积法是指借助图形面积自身相等的性质、可拆分的性质和可比的性质进行解题的一种方法。

在中学阶段它是数学中一种常用的解题方法。

并且具有解题便捷快速、简单易懂等特点。

现分类举例如下,希望同学们在今后的做题中有所启发。

一、利用面积自身相等的性质解题
例1 如图,在直角三角形ABC 中,AB=13,AC=12,BC=5,求AB 边上的高AD 的长。

C
A
B
D
例2 在ABC 中,AB >AC,BD 、CE 分别是AC 、AB 边上的高,试判断BF 和CE 的大小关系,并说明理由。

D
F
C
B
E
A。

小结:利用一个图形面积自身相等的性质解题,就是从不同的角度使用面积公式来表示同一个图形的面积,列出等式求出未知的量。

二、利用面积的可比性解题
例3 如图,由图中已知的小三角形的面积的数据,可得ABC 的面积为 。

D
C B A
小结:我们知道等底等高的两三角形的面积相等,等底不等高的两三角形面积的比等于其对应高的比,等高而不等底的两三角形面积的比等于其对应底的比。

三、利用面积的可分性解题
例 4 如图,已知等边三角ABC ,P 为ABC 内一点,过P 作
,,,PD BC PE AC PF AB ABC ⊥⊥⊥的高为h.试说明PD PE PF h ++=。

A
B
C
D P
F
E
小结:用面积的可分性解题,一般要将图形分成若干个小三角形,利用其整体等于部分之和建立关于条件和结论的关系式,从而方便快捷地解决问题。

现提供部分习题供同学们练习:
1、如图,已知ABC 和BDC ,AC 与BD 交于点o,且直线AD ∥BC,图中四个小三角形的面积分别为1S 、2S 、3S 、4S ,试判断2S 和4S 的大小关系,并说明理由。

D
B A
O
C
S4
S3
S1
S2
2、如图,四边形ABCD 中,对角线BD 上有一点O ,OB :OD=3:2,S AOB =6,S COD =1,试求S AOD 与S BOC 的面积比。

D
A
C
B O
3、 如图,P 是等腰三角形ABC 底边BC 上的任一点,PE AB ⊥于E,PF AC ⊥于F ,BH 是等腰三角形AC 边上的高。

猜想:PE 、PF 和BH 间具有怎样的数量关系?
B
C
4、其它练习题见《培优竞赛新方法》112-116部分习题。

相关文档
最新文档