高斯光束的透镜变换实验 免费哦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 高斯光束的透镜变换实验
一 实验目的
1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.
二 实验原理
众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:
()2
2
2()
[
]2()
00
,()
r z kr i R z A A r z e e
z ωψωω---=
⋅ (6)
式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:
()z ωω= (7)
000()Z z R z Z Z z ⎛⎫
=+ ⎪⎝⎭
(8)
1
z
tg Z ψ-= (9) 其中,2
00Z πωλ
=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22
()
r z e ω-的形式从中心向外平滑的减小,
因而光斑半径()z ω随坐标z 按双曲线:
22
00
()1z z
Z ωω-= (10)
规律而向外扩展,如图四所示
高斯光束以及相关参数的定义
图四
(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:
2
2()
r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。
(D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。即表示为:
00
()
lim
z z z
ωθλ
πω→∞
== (12)
高斯光束可以用复参数q 表示,定义2111
i q R πω
=-,由前面的定义,可以得到0q z iZ =+,因而(6)式可以改写为
2200(,)kr q
iZ A r q A e q
-= (13)
此时,
11Re()R q =,211Im()q
πωλ=-。 高斯光束通过变换矩阵为A B M C D ⎛⎫
= ⎪⎝⎭的光学系统后,其复参数2q 变换为:
121Aq B
q Cq D
+=+ (14)
因而,在已知光学系统变换矩阵参数的情况下,采用高斯光束的复参数表示法可以简洁快速的求得变换后的高斯光束的特性参数。
三、实验仪器
He-Ne 激光器, 光学导轨, 光电二极管, CCD , CCD 光阑,偏振片,高斯光束变换透镜组件, 图像采集卡、BEAMVIEW 光束分析与测量软件
四 实验内容:
高斯光束的变换矩阵
(1)将He-Ne 激光器开启,调整高低和俯仰,使其输出光束与导轨平行。可通过前后移动一个带小孔的支杆实现。
(2)启动计算机,运行BeamView 激光光束参数测量软件。 (3)He-Ne 激光器输出的光束测定及模式分析。
使激光束垂直入射到CCD 靶面上,在软件上看到形成的光斑图案,在CCD 前的CCD 光阑中加入适当的衰减片。可利用激光光束参数测量软件分析激光束的模式,判定其输出的光束为基模高斯光束还是高阶横模式(作为前面模式分析实验内容的一部分)。
(4)由图像确定He-Ne 激光器输出是基模光斑。前后移动CCD 探测器,利用激光光束参数测量软件观测不同位置的光斑大小,光斑最小位置处即是激光束的束腰位置。
(5)在光斑束腰位置后面L1处放置一透镜,观察透镜后激光光束的变化情况,并测量处透镜后的束腰位置及光斑大小, (6)由式(14)给出A B M C D ⎛⎫
=
⎪⎝⎭
变换矩阵。 注意事项:射入CCD 的激光不能太强,以免烧坏芯片。 思考题:
实验测量的变换矩阵与理论值的差异主要来源于那些地方?