共顶点的等腰直角三角形
完美的明星题“点顶顶”——共顶点的两个等腰直角三角形
C = 4 . E AD= c  ̄ .
图3
基本结论 : @B E = C D; @B E 与C D 所 成 的四个角 中有
对对顶 角等于O 1 .
(主 要 证 明 △A 施
A D = AE , 助 B E 和C D的交点.
基本结论 : ① E = C D; @B E上C D .
2 0 1 3 年9 月
可 以得到以下结论 : ( G  ̄ H, . -  ̄G A H - - a ; (  ̄ F A 平分 / B F A; ③ △A G H"AA B C  ̄ AA D E . ( 2 )当G 点和日点是B E 和C D的 中点时 ,①AG = A H, G AH = a; ② △A G 日一△A B C 或 AA D E . ( 3 ) 当G 点 和日点是 c 和 /E A D的角平 分线与B E
( 主 要 证 明 △A B E △AC D
△Ac D即可得到 以上结论 )
迁移图形 : ( 如 图4 )
D
即可得到 以上结论 ) 迁移 图形 : ( 如图2 )
( 1 )当过A点作 G 3 _ B E, A 日j _ C D, 垂足分别为G , H 时, 则
B
( 2 ) 当G 点和 点是B E 和C D的中点 时 , ( 1 ) 中 的结 论
的本质 内容 ,也许 对 学生 的几何 学 习会 有 意想 不 到的
结果 .
①③依然成 立.
( 3 ) 当G 点和日 点是 日 A C 和/ _ F A D 的角平分线 与B E
笔者就共顶 点的两个 等腰 三角形 的题 型和方法做 了
过 程 中如果 能教会 学生 归纳 总结 出千 千万 万 的习题 中
中考数学专题复习教案:共顶点的等腰三角形与全等
共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
10.模型构建专题:共顶点的等腰三角形
模型构建专题:共顶点的等腰三角形——明模型,记结论◆类型一共直角顶点的等腰直角三角形1.如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM为△DCE中DE边上的高,连接BE.(1)求∠AEB的度数;(2)探究线段CM、AE、BE之间的数量关系,并说明理由.◆类型二共顶点的等边三角形2.(常州中考改编)如图,在四边形ABCD中,AB∥CD,AB=CD,AD∥BC,AD=BC,分别延长DC,BC到点E,F,使得△BCE和△CDF都是等边三角形.(1)求证:AE=AF;(2)求∠EAF的度数.参考答案与解析1.解:(1)∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,DC =EC ,∠1+∠DCB =∠2+∠DCB =90°,∴∠1=∠2.在△ACD 和△BCE 中,∵⎩⎪⎨⎪⎧DC =EC ,∠1=∠2,AC =BC ,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠ADC =∠BEC .∵△DCE 是等腰直角三角形,∴∠3=∠4=45°,∴∠ADC =180°-∠3=135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠4=135°-45°=90°;(2)AE =BE +2CM .理由如下:∵△DCE 是等腰直角三角形,CM ⊥DE ,∴△DCM 、△ECM 均为等腰直角三角形,∴DM =ME =CM ,∴DE =2CM .由(1)可知AD =BE .∵AE =AD +DE ,∴AE =BE +2CM .2.(1)证明:∵△BCE 和△CDF 是等边三角形,AB =CD ,AD =BC ,∴∠EBC =∠CDF =60°,BC =BE =AD ,CD =DF =AB ,∠5=60°.又∵AB ∥CD ,AD ∥BC ,∴∠6=∠5=∠4=60°,∴∠6+∠EBC =∠4+∠CDF ,即∠ABE =∠FDA =120°.在△ABE 和△FDA 中,∵⎩⎪⎨⎪⎧AB =FD ,∠ABE =∠FDA ,BE =DA ,∴△ABE ≌△FDA (SAS ),∴AE =AF ;(2)解:∵AB ∥CD ,∴∠4+∠BAD =180°.由(1)可知∠4=60°,∴∠BAD =120°.由(1)可知△ABE ≌△FDA ,∠FDA =120°,∴∠2=∠3,∠1+∠2=60°,∴∠1+∠3=60°.∴∠EAF =∠BAD -∠1-∠3=120°-60°=60°.。
共顶点的等腰三角形与旋转
3.同学们( )地坐在教室里。 4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。 1.世界上有多少人能亲睹她的风采呢? (陈述 句) _________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____ ___________________________________ ______ ______ ______ ______ ______ ______ ______ 4.她的光辉照耀着每一个有幸看到她 的人。 “把”字句:_______________________ ______ ______ ______ ______ ______ ______ ______ “被”字句:_______________________ ______ ______ ______ ______ ______ ______ ______
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
八年级下册 第一章 模型构建专题:“手拉手”模型——共顶点的等腰三角形(3类热点题型讲练)(解析版)
第08讲模型构建专题:“手拉手”模型——共顶点的等腰三角形(3类热点题型讲练)目录【类型一共顶点的等边三角形】 (1)【类型二共顶点的等腰直角三角形】 (11)【类型三共顶点的一般等腰三角形】 (21)【类型一共顶点的等边三角形】例题:(2023上·内蒙古呼和浩特·八年级统考期末)如图,已知点C 是AB 上一点,ACM △、CBN △都是等边三角形,连接AN 交CM 于点E ,连接BM 交CN 于点F .(1)求证:NAC BMC(2)连接EF ,判断CEF △的形状,并说明理由.【答案】(1)证明见解析(2)CEF △是等边三角形,理由见解析【分析】本题考查全等三角形的判定及性质以及等边三角形的判定和性质,(1)由等边三角形可得其对应线段相等,对应角相等,证明 SAS ACN MCB ≌,即可得证;(2)由(1)可得EAC FMC ,继而得到ACE MCF ,证明 ASA ACE MCF ≌,得CE CF ,根据等边三角形的判定即可得出结论;掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.【详解】(1)证明:∵ACM △与CBN △为等边三角形,∴60ACM BCN ,AC MC ,NC BC ,∴ACM MCN BCN NCM ,即ACN MCB ,在ACN △和MCB △中,AC MC ACN MCB NC BC,∴ SAS ACN MCB ≌;∴NAC BMC ;(2)CEF △为等边三角形.理由:∵180ACB ,60ACM BCN ,∴180606060MCF ACE ,∵NAC BMC ,即EAC FMC ,在ACE △和MCF △中,EACFMC AC MC ACE MCF,∴ASA ACE MCF ≌∴CE CF,∵60MCF ,∴CEF △是等边三角形.【变式训练】1.(2023春·全国·七年级专题练习)如图1,等边三角形BCD 和等边三角形ACE ,连接AD ,BE ,其中AC BC .(1)求证:AD BE ;(2)如图2,当点A C 、、B 在一条直线上时,AD 交CE 于点F ,BE 交CD 于点G ,求证:BG DF ;(3)利用备用图补全图形,直线AD ,BE 交于点H ,连接CH ,若3DH ,5CH ,直接写出BH 的长.【答案】(1)见解析(2)见解析(3)8BH 【分析】(1)由“SAS ”可证ACD ECB △≌△,可得AD BE ;(2)由“ASA ”可证BCG D CF ≌,可得BG DF ;(3)如图3,过点C 作CP BE 于P ,CN AD 于N ,由面积法可求CP CN ,可证60BH C CH A ,由直角三角形的性质可求 2.5PH HN ,由“AAS ”可证BCP D CN ≌,可得 5.5D N BP ,即可求解.【详解】(1)证明:BCD ∵ 和ACE △是等边三角形,BC CD ,AC CE ,60BCD ACE ,BCE DCA ,在ACD 和ECB 中,AC CE ACD ECB CD BC,()ACD ECB ≌SAS ,AD BE ;(2)证明:AC D EC B ∵ ≌,EBC ADC ,∵点C 在线段AB 上,60BCD ACE ,60DCE BCD ,在BCG 和DCF 中,90EBC ADC BC CD BCG DCF,()BCG DCF ≌ASA ,BG DF ;(3)解:如图3,过点C 作CP BE 于P ,CN AD 于N ,EBC ADC∵,DBH EBC,60DHB DCB,120BHA2.(2023上·广西南宁·八年级校考期中)数学课上,张老师带领学生们对课本一道习题层层深入研究.教材再现:如图,ABD △,AEC △都是等边三角形.求证:BE DC .(1)请写出证明过程;继续研究:(2)如图,在图1的基础上若CD 与BE 交于点O ,AB 与CD 交于点M ,AC 与BE 交于点N ,连接AO ,求证:AO 平分DOE ;(3)在(2)的条件下再探索OA ,OC ,OE 之间的数量关系,并证明.【答案】(1)证明见解析;(2)证明见解析;(3)OE OA OC ,理由见解析.【分析】(1)根据等边三角形性质得出AB AD ,AE AC ,60BAD BDA DBA CAE ,求出BAE DAC ,根据SAS 证ABE ADC △≌△即可;(2)过点A 分别作AG BE ,AH DC ,垂足为点G ,H ,由得到ABE ADC △≌△,从而ABE ADC S S ,故有AM AN ,根据角平分线判定即可求证;(3)在OE 上截取一点Q ,使得OQ OA ,证明AOQ △是等边三角形,即可证明 SAS OAC QAE ≌,从而得证.由(1)知:ABE ADC △≌△,BE ∴ABE ADC S S ,∴11··22BE AM DC AN ,∴AM AN ,由(1)知:ABE ADC△≌△, ,∴ADC ABE∴ADC BDO ABE BDO 在BOD中,为边在直线AD 右侧作等边三角形ADE .(1)如图1,当点D 在BC 边上时,连接CE ,此时AB ,CD ,CE 之间的数量关系为______,ACE ______;(2)如图2,当点D 在BC 的延长线上时,连接CE ,(1)中AB ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请写出新的结论及证明过程;(3)如图3,当点D 在射线BC 上运动时,取AC 的中点F ,连接EF ,当EF 的值最小时,请直接写出CFE 的度数.【答案】(1)CE CD AB ;60(2)不成立,CE CD AB ,证明见解析(3)30【分析】(1)根据等边三角形的性质,证明ABD ACE ≌△△,可得ACE B ,CE BD ,即可得到AB ,CD ,CE 之间的数量关系;(2)同(1)中原理证明ABD ACE ≌△△,可得AB ,CD ,CE 之间新的数量关系;(3)本题考查了等边三角形的性质,全等三角形的判定和性质,连接CE ,取AB 的中点G ,连接DG ,根据ABD ACE ≌△△,证明BDG CFE ≌,则可得EF DG ,当GD BC 时,取最小值,则EF 此时也去最小值,即可求得此时CFE 的值,见手拉手模型则考虑证全等,将EF 转换到ABD △中等量的中线看最小值,是解题的关键.【详解】(1)解:ABC ∵ 是等边三角形,ADE V 是等边三角形,,AB AC AD AE ,BAC DAE ,,60AB BC B ,BAC DAC DAE DAC ,即BAD CAE ,在BAD 与CAE V 中,AB AC BAD CAE AD AE, SAS BAD CAE △≌△,CE BD ,60ACE B ,CE DC BD DC BC AB ,即CE CD AB ,故答案为:CE CD AB ;60 ;(2)不成立,CE CD AB ,证明如下:证明:ABC ∵ 是等边三角形,ADE V 是等边三角形,,AB AC AD AE ,BAC DAE ,AB BC ,BAC DAC DAE DAC ,即BAD CAE ,在BAD 与CAE V 中,AB AC BAD CAE AD AE, SAS BAD CAE △≌△,CE BD ,CE CD BD CD BC AB ,即CE CD AB ;(3)解:如图,连接CE ,取AB 的中点G ,连接DG ,【类型二共顶点的等腰直角三角形】例题:(2023春·全国·八年级专题练习)ABC 和△ADE 都是等腰直角三角形,90BAC DAE .(1)如图1,点D 、E 在AB ,AC 上,则BD ,CE 满足怎样的数量关系和位置关系?(直接写出答案不证明)(2)如图2,点D 在ABC 内部,点E 在ABC 外部,连接BD ,CE ,则BD ,CE 满足怎样的数量关系和位置关系?请说明理由.【答案】(1)BD CE ,BD CE(2)BD CE ,BD CE ,理由见解析【分析】(1)根据等腰直角三角形结合线段的和差即可得到结论;(2)延长BD ,分别交AC 、CE 于F 、G ,证明ABD ACE ≌△△,根据全等三角形的性质、垂直的定义解答;【详解】(1)解:∵ABC 和△ADE 都是等腰直角三角形,90BAC DAE ,∴AB AC ,AD AE ,∴AB AD AC AE ,即BD CE ,∵点D ,E 在AB ,AC 上,AD AC ,∴BD CE ;(2)BD CE ,BD CE ,理由如下:延长BD ,分别交AC 、CE 于F 、G ,∵ABC 和△ADE 都是等腰直角三角形,90BAC DAE ,∴AB AC ,AD AE ,∵BAD BAC DAC ,CAE DAE DAC ,∴BAD CAE ,在ABC 和ADE V 中,AB AC BAD CAE AD AE,∴ABD ACE ≌△△,∴BD CE ,ABD ACE ,∵A F B G F C ,180AFB ABD BAC GFC ACE CGF ,∴90CGF BAF ,即BD CE ;【点睛】本题是三角形综合题,主要考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.【变式训练】1.(2023春·八年级课时练习)(1)问题发现:如图1,ABC 与CDE 均为等腰直角三角形,90ACB DCE ,则线段AE 、BD 的数量关系为_______,AE 、BD 所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A ,E ,D 在同一直线上,CM 为DCE △中DE 边上的高,请判断ADB 的度数及线段CM ,AD ,BD 之间的数量关系,并说明理由.【答案】(1)AE BD ,AE BD ;(2)90ADB ,2AD CM BD ;理由见解析【分析】(1)延长AE 交BD 于点H ,AH 交BC 于点O .只要证明 SAS ACE BCD ≌,即可解决问题;(2)由ACE BCD ≌,结合等腰三角形的性质和直角三角形的性质,即可解决问题.【详解】解:(1)如图1中,延长AE 交BD 于点H ,AH 交BC 于点O ,∵ACB △和DCE △均为等腰直角三角形,90ACB DCE ,∴AC BC ,CD CE ,∴90ACE ECB BCD ECB ,∴ACE BCD ,∴ SAS ACE BCD ≌,∴AE BD ,CAE CBD ,∵90CAE AOC ,AOC BOH ,∴90BOH CBD ,∴90AHB ,∴AE BD .故答案为:AE BD ,AE BD .(2)90ADB ,2AD CM BD ;理由如下:如图2中,∵ACB △和DCE △均为等腰直角三角形,90ACB DCE ,∴45CDE CED ,∴180135AEC CED ,由(1)可知:ACE BCD ≌,∴AE BD ,135BDC AEC ,∴1354590ADB BDC CDE ;在等腰直角三角形DCE 中,CM 为斜边DE 上的高,∴CM DM ME ,∴2DE CM ,∴2AD DE AE CM BD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.2.(2023秋·山东日照·八年级校考阶段练习)已知△ABC 和△ADE 都是等腰直角三角形,点D 是直线BC 上的一动点(点D 不与B ,C 重合),连接CE .(1)在图1中,当点D 在边BC 上时,求证:BC =CE +CD ;(2)在图2中,当点D 在边BC 的延长线上时,结论BC =CE +CD 是否还成立?若不成立,请猜想BC ,CE ,CD 之间存在的数量关系,并说明理由;(3)在图3中,当点D 在边BC 的反向延长线上时,不需写证明过程,直接写出BC ,CE ,CD 之间存在的数量关系及直线CE 与直线BC 的位置关系.【答案】(1)见解析;(2)结论BC =CE +CD 不成立,猜想BC =CE -CD ,理由见解析;(3)BC CD CE ;CE BC ,理由见解析【分析】(1)证明△BAD ≌△CAE (SAS ),可得BD =CE ,即可证得BC =BD +CD =CE +CD 成立;(2)同样证明△BAD ≌△CAE (SAS ),可得BD =CE ,即可证得BC BD CD CE CD 成立,故BC =CE +CD 不成立;(3)补全图形,同样证明△BAD ≌△CAE (SAS ),利用全等三角形的性质即可作出结论:BC CD CE ;CE BC .【详解】(1)证明:∵△ABC 和△ADE 都是等腰直角三角形∴AB =AC ,AD =AE ,90BAC DAE∴90BAD DAC CAE DAC∴BAD CAE∴△BAD ≌△CAE (SAS )∴BD =CE∴BC =BD +CD =CE +CD(2)结论BC =CE +CD 不成立,猜想BC =CE -CD ,理由如下:∵90BAC DAEBAC CAD DAE CADBAD CAE又∵AB =AC ,AD =AEBAD CAE SAS BD CEBC BD CD CE CD(3)BC CD CE ;CE BC ;理由如下:补全图形如图3,∵△ABC 是等腰直角三角形,∴∠ACB =∠ABC =45°,∴∠ABD =135°,由(1)同理可得,在△ABD 和△ACE 中,AB AC BAD EAC AD AE,(1)如图1,若30CAD ,10DCB ,求DEB 的度数;(2)如图2,若A 、D 、E 三点共线,AE 与BC 交于点F ,且CF BF ,AD (3)如图3,BE 与AC 的延长线交于点G ,若CD AD ,延长CD 与AB 交于点△BNM≌△BNT (SAS ),利用全等三角形的性质,可得结论.【详解】(1)解:如图1中,90ACB DCE Q ,ACB BCD DCE BCD ,ACD BCE ,在ACD 和BCE 中,CA CB ACD BCE CD CE,ACD ≌ SAS BCE ,30CAD CBE ,10DCB ∵,901080ECB ,180803070CEB ,45CED ∵,704525DEB ;(2)如图2中,过点C 作CQ DE 于Q .∵,AD CD90ADC ,同理:ACD ≌BCE ,90ADC BEC ,90BCT ECB ∵,90ECB CBG ,BCT CBG ,在CBT 和BCG 中,90BCT CBG CB BC CBT BCG,CBT ≌ ASA BCG ,BT CG ,CT BG ,BM CG ∵,BM BT ,在BNM 和BNT 中,45BM BT NBM NBT BN BN,BNM ≌ SAS BNT ,MN NT ,CN MN CN NT CT BG .【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【类型三共顶点的一般等腰三角形】例题:(2023秋·广东·八年级校联考期末)若ABC 和ADE V 均为等腰三角形,且AB AC AD AE ,当ABC 和ADE 互余时,称ABC 与ADE V 互为“底余等腰三角形”,ABC 的边BC 上的高AH 叫做ADE V 的“余高”.(1)如图1,ABC 与ADE V 互为“底余等腰三角形”,若连接BD ,CE ,判断ABD △与ACE △是否互为“底余等腰三角形”:______(填“是”或“否”);(2)如图1,ABC 与ADE V 互为“底余等腰三角形”,当0180BAC 时,若ADE V 的“余高”是AH .①请用直尺和圆规作出AH ;(要求:不写作法,保留作图痕迹)②求证:2DE AH .(3)如图2,当90BAC 时,ABC 与ADE V 互为“底余等腰三角形”,连接BD 、CE ,若6BD ,8CE ,请直接写出AB 的长.【答案】(1)是(2)见详解(3)5【分析】(1)根据题意可得90ABC ADE ,90ACB AED ,四边形内角和为360 ,求出【变式训练】1.(2023秋·辽宁抚顺·八年级统考期末)如图,已知ABC 中,AB AC BC .分别以AB 、AC 为腰在AB 左侧、AC 右侧作等腰三角形ABD .等腰三角形ACE ,连接CD 、BE .(1)如图1,当60BAD CAE 时,①ABD △、ACE △的形状是____________;②求证:BE DC .(2)若60BAD CAE ,①如图2,当AB AD AC AE ,时,BE DC 是否仍然成立?请写出你的结论并说明理由;②如图3,当AB DB AC EC ,时,BE DC 是否仍然成立?请写出你的结论并说明理由.【答案】(1)①等边三角形;②证明见解析(2)①成立,理由见解析;②不成立,理由见解析【分析】(1)①根据有一个内角是60度的等腰三角形是等边三角形即可求解;②根据等边三角形的性质可得AB AD ,AE AC ,60DAB CAE ,证明BAE DAC ≌ ,根据全等三角形的性质即可证明;(2)①证明BAE DAC ≌ ,根据全等三角形的性质即可得出结论;②根据已知可得BAE 与DAC △不全等,即可得出结论.【详解】(1)①∵ABD △是等腰三角形,ACE △是等腰三角形,60BAD CAE∴ABD △、ACE △是等边三角形,故答案为:等边三角形.②证明:∵ABD △、ACE △是等边三角形,∴AB AD ,AE AC ,60DAB CAE ,∵DAC DAB BAC ,BAE CAE BAC ,∴DAC BAE ,在△BAE 与△DAC 中,∵AB AD BAE DAC AE AC,∴ SAS BAE DAC ≌ .∴BE DC .(2)①当AB AD ,AE AC 时,成立.理由:如图,∵AB AD ,BAE DAC ,AE AC ,∴ SAS BAE DAC ≌ ,∴BE DC ;②当AB DB ,AC EC 时,不成立.理由:如图,∵60BAD CAE ,∴AB DB AD ,AC EC AE ,∴BAE 与DAC △不全等,∴BE DC .【点睛】本题考查全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质等,熟练掌握全等三角形的判定与性质是解题的关键.2.(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,ABC 和CDE 为“同源三角形”,AC BC ,CD CE ,ACB 与DCE 为“同源角”.(1)如图1,ABC 和CDE 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”ABC 和CDE 上的点B ,C ,D 在同一条直线上,且90ACE ,则 EMD ______°.(3)如图3,ABC 和CDE 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明PCQ △是等腰直角三角形.【答案】(1)AD BE ,详见解析(2)45(3)详见解析【分析】(1)由“同源三角形”的定义可证ACD BCE ,然后根据SAS 证明≌ACD BCE V V 即可;(2)由“同源三角形”的定义和90ACE 可求出45DCE ACB ,由(1)可知≌ACD BCE V V ,得ADC BEC ,然后根据“8”子三角形即可求出EMD 的度数;(3)由(1)可知≌ACD BCE V V ,可得CAQ CBP ,BE AD .根据SAS 证明ACQ BCP △≌△,可得CQ CP ,ACQ BCP ,进而可证结论成立.【详解】(1)AD BE .理由:因为ABC 和CDE 是“同源三角形”,所以ACB DCE ,所以ACD BCE .在ACD 和BCE 中,,,,AC BC ACD BCE CD CE所以 SAS ACD BCE △≌△.所以AD BE .(2)∵ABC 和CDE 是“同源三角形”,∴ACB DCE .∵90ACE ,∴45DCE ACB .由(1)可知≌ACD BCE V V ,∴ADC BEC .∵MOE COD ,∴45EMD DCE .故答案为:45;(3)由(1)可知≌ACD BCE V V ,所以CAQ CBP ,BE AD .因为AD ,BE 的中点分别为Q ,P ,所以AQ BP .在ACQ 和BCP 中,,,,CA CB CAQ CBP AQ BP所以 SAS ACQ BCP △≌△,所以CQ CP ,ACQ BCP .又因为90BCP PCA ,所以90ACQ PCA .所以90PCQ ,所以PCQ △是等腰直角三角形.【点睛】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.3.(2023上·浙江宁波·八年级统考期末)规定:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①,在ABC 与ADE V 中,AB AC ,当BAC BAD BAE 、、、满足条件____时,ABC 与ADE V 互为“兄弟三角形”;(2)如图②,在ABC 与ADE V 互为“兄弟三角形”,AB AC ,BE CD 、相交于点M ,连AM ,求证:MA 平分BMD(3)如图③,在四边形ABCD 中,180BAD BCD ,AD AB ,AC BC DC ,求BAD 的度数.【答案】(1)BAE BAC BAD ;(2)见解析(3)60BAD【分析】(1)顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.据此推导出BAC BAD BAE 、、的关系便可;(2)过点A 作AM BE 于点M ,作AN CD 于点N ,再证明ABE ACD ≌得AM AN ,再根据角平分线的判定定理得结论;(3)延长CD 至E ,使得DE BC ,连接AE ,证明ABC ADE △≌△,进而得ACE △是等边三角形,便可得60BAD CAE .【详解】(1)∵在ABC 与ADE V 中,AB AC ,∴当BAC DAE 时,ABC 与ADE V 互为“兄弟三角形”,∵BAE DAE BAD ,∴BAE BAC BAD ,故当BAE BAC BAD 时,ABC 与ADE V 互为“兄弟三角形”,故答案为BAE BAC BAD ;(2)过点A 作AH BE 于点H ,作AN CD 于点N ,∵在ABC 与ADE V 互为“兄弟三角形”,AB AC ,∴BAC DAE ,AD AE ,∴BAE CAD ,∴ SAS ABE ACD ≌,∴AH AN (全等三角形的对应高相等),∴MA 平分BMD ;(3)延长CD 至E ,使得DE BC ,如图③,∵180BAD BCD ,∴360180180 ABC ADC ,∵180ADC ADE ,∴ABC ADE ,∵AB AD ,∴ SAS ABC ADE ≌,∴AC AE BAC DAE ,,∴BAD CAE ,∵AC BC DC DE DC CE ,∴AC CE AE ,∴60CAE ,∴60BAD .【点睛】此题考查了新定义,等腰三角形的定义,等边三角形的判定与性质,角平分线的判定,全等三角形的判定和性质,构造等边三角形和全等三角形是解本题的关键.。
善归类 细分析 悟通法 促提高——对一类“共顶点等腰直角三角形”
A A B C 外作正方形 C D E F ,连接 B F 、 A D . ( 1 ) ① 猜想图 4中线段 B F 、 A D的数量关系及所
在直 线 的位置关 系 ,直接 写 出结 论 ;
② 将 图 4中的正方形 C D E F ,绕着点 C按顺 时针 ( 或逆时针)方 向旋转任意角度 ,得到如 图 5 、图 6
1 . 基 本 图形
问题 1 :如 图 1 ( 或图 2 ), 已知 △AC B、 △E ∞ 都是 等腰直 角三 角形 , A C B =LE C D =9 0 。 ,连 接
B E、AD. 证明 :
( 1 ) B E= AD;
仪 务教育数学课程标准 ( 2 0 1 1 年版) 》 指出 ,数 学知识 的教学 , 要重视知识的 “ 生长点”与 “ 延伸点” , 把每堂课 教学 的知识置于整体 的知识 体系 中.因此 ,
即 LBC F= AC D.
( 具体证 明过 程省 略 ,留给读 者 思考. ) 3 .中考链 接
例 1 ( 2 0 1 3 年辽宁 ・ 营 口卷)如 图 4 ,A A B C为
等腰 直 角三 角形 , AC B=9 0 。 ,点 F是 AC边上 的一 个 动点 ( 点 F与 点 A、C不 重 合 ) ,以 C F为 一 边 在
所 以 △
△AC D( S AS ) .
所以 B F=A D, C B F= C A D . 由 LB HC= A HO, C B H+ B 日C=9 0 。 , 得 C A D+LA HO=9 0 。 . 所 以 AO H:9 0 。 . 所 以B F_ L A D.
作者简介 :沈岳夫 ( 1 9 6 3 一) ,男,浙江绍兴人 ,中学高级教 师 ,主要从事数 学教育和数学解题研 究
八年级数学 共顶点的等腰(等边)三角形导学案
共顶点的等腰(等边)三角形问题探讨五、精练――当堂训练、提升能力1.如图,已知△ABC,△ADE是等边三角形,点E恰在CB的延长线上,求证:∠ABD=∠AED.2.如图,A点在y轴正半轴上,以OA为边作等边△AOC,点B为x的正半轴上一动点,连AB,在第一象限作等边△ABE.在点B运动过程中,∠ACE的大小是否发生变化?若不变求出其值;若变化,请说明理由.3.如图,在平面直角坐标系中,△AOP为等边三角形,A(0,1),点B为y轴上一动点,以BP为边作等边△PBC.(1)求证:OB=AC;(2)求∠CAP的度数;(3)当B点运动时,AE的长度是否发生变化?4.已知等腰直角△ABC和等腰直角△ADE,∠BAC=∠EAD=90°,AB=AC,AD=AE,F为BE和CD的交点.(1)求证:BE⊥CD;.(2)求∠AFE的度数5.如图,点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =120°,求∠BCE 的 度数.B6.如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B (a ,b ),且a,b满足(20b -=.D 为y 轴上一动点,以AD 为边作等边三角形ADC ,CB 交y 轴于E .(1)如图1,求A 点的坐标;(2)如图2,D 在y 轴正半轴上, C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由;(3)如图3,点D 在y 轴的负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连AE .试求CE ,OD ,AE 三者的数量关系,并证明你的结论。
共顶点的等腰三角形
E
D
C
B
A
P
O
D C
B
A P
O
D
C
B
A
P
O
D
C
B
A 共顶点的等腰三角形
方法与技巧:
(1)如果两个等腰三角形共顶点,那么图中一定有SAS 的全等三角形,这种全等叫做手拉手全等 (2)图中有一个等腰三角形,为了解决问题,可以根据题意,添加恰当的辅助线,构造手拉手全等 强化练习:
1、已知:如图,∠ACB=∠DCE=90°,CA=CB ,CD=CE ,求证:(1)AD=BE (2)AD ⊥BE
2、 已知:OA=OC ,OB=OD ,∠AOC=∠BOD ,直线AB 、CD 相交于点P (1)如图1,若∠AOC=∠BOD=900
,则∠APD= (2)如图2,若∠AOC=∠BOD=600,则∠APD=
(1)如图3,若∠AOC=∠BOD=a ,则∠APD= ,请证明你的结论。
3﹑如图,在△ABC 中,AB=AC ,∠BAC=90°,∠ADB=45°,(1)求∠ADC 的度数(2)求证:AD 平分∠BDC
4﹑如图,在△ABC 中,AB=AC ,∠BAC=120°,∠ADB=30,(1)求∠ADC 的度数(2)求证:AD 平分∠BDC
5﹑如图,在△ABC 中,AB=AC ,∠BAC=∠ADB=60°,(1)求∠ADC 的度数(2)求证:AD 平分∠
BDC
B D
C B A D
C
B
A。
共顶点的等腰三角形问题课件
边长性质
总结词
共顶点的等腰三角形具有特定的边长关系,即两腰相等,底 边与其中一腰不等。
详细描述
由于是等腰三角形,两腰的长度必然相等。而共顶点的两个 等腰三角形共享一个顶点,因此它们的边长关系也是固定的 。具体来说,两腰相等,而底边与其中一腰的长度不等。
面积性质
总结词
共顶点的等腰三角形具有特定的面积关系,即两个等腰三角形的面积之和等于以底边为基的三角形的 面积。
02
等腰三角形两腰之间的角称为顶 角,底边与两腰之间的角称为底 角。
共顶点的等腰三角形的特性
共顶点的等腰三角形是指两个或多个 等腰三角形共用一个顶点,且各等腰 三角形的腰和底边分别相等。
共顶点的等腰三角形具有轴对称性, 即沿对称轴对折后,两侧图形能够完 全重合。
共顶点的等腰三角形的分类
根据共顶点的等腰三角形的数量,可分为双共顶点的等腰三角形和多共顶点的等 腰三角形。
共顶点的等腰三角形 问题课件
目录
• 共顶点的等腰三角形的基本概念 • 共顶点的等腰三角形的性质 • 共顶点的等腰三角形的构造方法 • 共顶点的等腰三角形的应用 • 共顶点的等腰三角形的习题与解析
01
共顶点的等腰三角形的基本概念
等腰三角形的定义
01
等腰三角形是两边长度相等的三 角形,其中两个等长的边称为腰 ,另一边称为底边。
高难度习题
题目5
已知等腰三角形ABC,AB=AC,D为BC延长线上一点 ,E、F为AD上两点,且∠BEC=160°,∠BDC=5°。求 ∠EDF的度数。
题目6
已知等腰三角形ABC,AB=AC,D为BC延长线上一点 ,E、F、G为AD上三点,且∠BEC=170°,∠BDC=10° 。求∠DEFG的度数。
初中数学经典几何模型05-手拉手模型构造全等三角形(含答案)
初中数学经典几何模型专题05 手拉手模型构造全等三角形【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1 图2图3 图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图41、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=√2,AG=1,则EB=________________.5、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别在线段AD、AB上,若将正方形AEFG 绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。
6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④BE2=2(AD2+AB2)其中结论正确的个数是_______【基础训练】1、已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.如图1,当点D在边BC上时,求证:△ABD≌△ACE;直接判断结论BC=DC+CE是否成立(不需要证明);如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.2、如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.若DE=13,BD=12,求线段AB的长.3、如图,点A、B、C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.下面结论:△ABE≌△DBC;∠DMA=60°;△BPQ为等边三角形;MB平分∠AMC.其中正确的有____________4、如图1,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.求证:BE=AD;用含α的式子表示∠AMB的度数;当α=90°时,取AD、BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【巩固提升】1、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.2、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.3、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.4、如图,△ABC和△EDC都是等腰直角三角形,C为它们的公共直角顶点,连接AD、BE,点F为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,试判断线段BE、CF的关系,并证明你的结论;(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变时,请探究BE、CF的关系并直接写出结论.5、如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为.6、如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)专题05 手拉手模型构造全等三角形答案【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
共顶点的等腰三角形问题
等腰三角形的两条腰相等,如果两个等腰三角形共顶点且顶角相等,那么 将两条腰分配到不同的两个三角形中会得到全等三角形,会发现某些线段在数 量和位置上有着特殊的关系.
常见的有共顶点的等腰直角三角形和等边三角形,我们一起来探究.
类型一:共顶点的等腰三角形问题
如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,求
∵△ABC和△ADE为等腰直 ∴BC=EF
角三角形
∴BC-FC=EF-FC
B
C
E ∴AE=ED,∠ACE=∠EFD 即BF=CE
∠1=90°-∠2=∠3
∴BF=FD
D
∴△ACE≌△EFD
∴△BFD是等腰直角三角形
∴CE=FD,EF=AC
∴∠DBE=45°.
类型二:共顶点的等边三角形
如图所示,△ACM和△BCN都为等边三角形,连接AN、BM,求证:
N
B
M
A
2 1
3
C
证明: ∵△ACM和△BCN都为等边三角形, ∴∠1=∠3=60° ∴∠1+-∠2=∠3+- ∠2 即∠ACN=∠MCB ∵CA=CM,CB=CN ∴△CAN≌△CMB(SAS) ∴AN=BM
如果两个等腰三角形共顶点且顶角相等,那么将两条腰分配到不同的两个 三角形中会得到全等三角形,并且我们会发现:改变两个三角形的相对位置并 不会改变所得的三角形的全等关系.
证:⑴BE=CF;⑵求证:BE⊥CF;
C
⑵证明:∵△EAB≌△FAC
EM
B
∴∠2=∠4
∵∠2+∠3+∠5=90°
A
∴∠4+∠5+∠3=∠2Байду номын сангаас∠5+∠3 =90°
中考数学复习:专题4-16 双等腰直角三角形问题前解法分析
专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。
共顶点等腰三角形产生相似三角形模型(整理者14232)
共顶点等腰三角形产生相似三角形模型今天研究一个难度较低但结论还比较有趣的模型。
前面研究过两个有点类似的模型,当时起名个人是从模型构造出发分别叫旋转放缩对称直角三角形和互补旋转放缩等腰三角形模型,现在想想既复杂拗口,又没点穿本质,还不如直接叫共顶点直角三角形产生等腰三角形和共顶点等腰三角形产生直角三角形模型好点。
所以今天这个就直接叫共顶点等腰三角形产生相似三角形模型了。
模型构造:一:任意作一等腰三角形ABC,∠A为顶角。
然后将其绕A旋转180°得△AED。
二:将△AED绕A进行旋转及放缩,得到新的等腰三角形AED三:连BD,CE(注意对应,不是BE和CD),分别作其中垂线,交于F点。
结论:△DFB∽△EFC,且∠DFB=∠EFC=180°-∠BAC。
证明:由边角边基本全等模型易证△EAB∽△DAC①则有BE=DC,可推出△EFB≌△CFD②,从而∠EFB=∠CFD即∠DFB=∠CFE,△DFB ∽△EFC。
接下来推为什么产生的两新的相似的等腰三角形顶角和原等腰三角形顶角互补:由①,∠ADG=GEH,则∠GHE=∠DAE;由②,∠HEI=∠FCI,则∠EHI=∠EFC。
又∠EHI+∠GHE=180°,则有∠EFC+∠DAE=∠EFC=∠BAC=180°。
由于等腰△ABC形状可以改变,△ADE可以任意旋转放缩,给出的图形是否以偏概全结论是否任意情况都成立呢?应该是都成立的。
尽管形状改变,过程和推导都大同小异,仅再举一情形进行证明。
在此图延长BE和DC交于G。
由△AED≌△ADC,可推∠EGD=∠BAC。
再由△EBF≌△CDF,可推∠GDF+∠EBF=180°,所以在四边形GBFD中,∠BFD+∠EGD=∠BFD+∠BAC=180°。
模型应用:。
共顶点的等腰直角三角形
共顶点的等腰直角三角形哎,今天咱们聊聊一个有趣的话题,等腰直角三角形。
这听起来有点数学味道,不过别担心,我会让它变得轻松有趣,保证你听了之后也想说,“这玩意儿还真挺有意思!”想象一下,一块蛋糕被切成两半,结果发现这两半又完全相同,就像等腰直角三角形的两个直角边一样,都是一模一样的!是不是觉得挺可爱的?嘿,数学里的那些点、线、面,看似冰冷的符号,其实背后藏着不少温暖的故事呢。
说到等腰直角三角形,首先得提它那两个相等的边。
哦,想象一下,你和你的好朋友,身高一样,穿着同样的衣服,走到街上,回头率简直爆表。
可不是因为你们长得特别好看,而是那种一模一样的感觉,真让人忍不住想多看几眼。
再说,直角三角形嘛,那个90度的角就像是我们生活中的“转折点”,每次遇到问题,往往就能从这个“角度”找到新的解决办法。
嘿,谁说生活一定要直线前进?偶尔拐个弯,也许会发现更美的风景。
等腰直角三角形还有个特性,最短的边和最长的边之间的关系就像朋友之间的默契。
就拿咱们的好朋友小明和小红来说吧。
小明总是喜欢说,“小红,你这儿有点儿不对劲。
”小红呢,总是可以一眼看出小明心里的小九九。
这个直角三角形里的斜边就像是小明的那些心思,虽说藏得深,但总能被小红一眼看穿。
哈哈,数学真的是生活的缩影,处处都能找到共鸣。
再说说它的面积吧。
记得小时候,我总是和同学们一起比赛,谁能算出这个三角形的面积。
公式就是底乘高除以二,听上去简单,但做起来可得小心翼翼。
这就像我们的生活,有时候简单的道理却难以实践。
就像把生活中的小烦恼变成一大堆的困扰,搞得自己晕头转向。
没事儿,学会把问题化繁为简,运用好这等腰直角三角形的思想,就能轻松应对。
在学校里,老师总是喜欢用等腰直角三角形教我们那些抽象的知识。
嘿,那时候总觉得它是数学课上的“明星”,大家都想在课堂上表现得特别棒。
想想那种感觉,心里乐滋滋的。
可是到了现实生活中,有时我发现,等腰直角三角形的“明星”光环就没那么耀眼了。
专题六:共顶点的等腰直角三角形
手拉手模型:共点的双等腰直角三角形一、共直角顶点的双等腰直角三角形手拉手的含义:如图,已知两个共直角顶点O的等腰Rt△AOB和等腰Rt△COD正面看向△AOB,将之扶正,保持头部O在上,则A为“左手”,B为“右手”;同理,正面看向△COD,将之扶正,保持头部O在上,则C为“左手”,D为“右手”.紧接着进行拉手操作,理应产生两种情形,即“左手拉左手,右手拉右手”和“左手拉右手,右手拉左手”,分而治之!情形一:左手拉左手,右手拉右手(手拉手全等模型)连接左手A与左手C,连接右手B与右手D,请证明下列结论:(1)形的角度:如图1,△AOC≌△BOD.(2)线的角度:如图1,AC=BD且AC⊥BD.(3)角的角度:如图2,若AC和BD相交于点E,则OE平分∠BEC,即∠BEO=∠CEO=1/2∠BEC=45°.情形二:左手拉右手,右手拉左手(婆罗摩笈多模型)连接左手A与右手D,连接右手B与左手C,则又构成了所谓“婆罗摩笈多模型”,请证明下列结论:(1)如图1,S△AOD=S△BOC.(2)如图2,取BC中点M,连接MO并延长交AD于N,则ON⊥AD,且OM=1/2AD.(中线变高)(3)如图3,过点O作ON⊥AD于N,延长NO交BC于M,则M为BC中点,且OM=1/2AD.(高变中线)二、共45°底角顶点的双等腰直角三角形如图,等腰Rt△AOB和等腰Rt△COD共底角顶点O,且公共顶点O、直角顶点与另一底角顶点均按相同顺序排列(如此图均为顺时针方向排列). 若将两直角顶点A、C和另两个底角顶点B、D相连,则构成了经典的“手拉手相似模型”,如下图.请证明:(1)形的角度:旋转相似必成对△AOB∽△COD(老相似),△AOC∽△BOD(新相似).(2)线的角度:AC、BD的数量关系为AC:BD=OA:OB=OC:OD=1:根号2;AC、BD的位置关系为两线夹的锐角=45°.情形二:逆序脚拉脚1.如图,等腰Rt△AOB和等腰Rt△COD共底角顶点O,且公共顶点O、直角顶点与另一底角顶点逆序排列(如下图中O、A、B为逆时针排列,而O、C、D为顺时针排列). 不妨将B、D看作两个等腰Rt三角形的两只脚,连接两脚,即形成了经典的“脚拉脚模型”(也叫“脚勾脚模型”).请证明下列结论:(1)取拉脚线BD上的中点M,分别与两直角顶点相连,则有结论AM=CM且AM⊥CM2. 若将双等腰直角三角形弱化为两个逆序等腰三角形共底角顶点,且顶角互补,再连接另一组底角顶点并取中点,则该中点与两顶角顶点构成直角三角形.请证明:如上图,△ABO中,AB=AO,△COD中,CO=CD,且∠OAB+∠OCD=180°,取BD中点,则有AM⊥CM.【举一反三练习】1.【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找P A,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找P A,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).2.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.3.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.4.在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).思考1:以上三问中△BFG的位置均为特殊位置,若将△BFG绕点B旋转,在旋转过程中,以上结论(CP⊥PG,PG= PC)还成立吗?【思考2】如果将菱形和等边三角形换成其他图形呢,结论还成立吗?如图,正方形ABCD与正方形BEFG,点P为DF中点,连接AP、EP,则AP与EP有怎样的位置关系和数量关系?。
“共顶点的两个相似等腰三角形”的解法提炼与拓展应用
2020年10月10H理科考试研究•数学版•23•“共顶点的两个相似等腰三角形”的鮮法提炼与柘展应用陈敏燕(宁海县桃源初级中学浙江宁波315600)摘要:本文通过研究一类"共顶点的两个相似等腰三角形”,发现两个固定不变的结论,并从三个方面研究了模型在实际解题中的应用,训练巩固学生对问题结构的理解.关键词:解法提炼;基本图形;旋转变换;拓展应用1问题提出题目如图1,在443(7和ZUEF中,<B4C=厶EAF,AB=AC,AE=AF,连接EB,CF交于点D,连接仙.(1)求证-CF=BE-(2)求证:/ID平分厶EDC.图1证明(1)因为厶BAC=厶EAF,所以ABAC+A BAF=厶EAF+Z.BAF.即LCAF=厶BAE.因为AC=AB,AF^AE,所以△CAFg^BAE.所以CF=BE.(2)如图1,过点4作/IM丄BE于点M,作4/V丄FC于点N,因为△CAF^A BAE,所以S^CAF=S△砂所以*CF•AN=*BE•AM.因为CF=BE,所以AN=AM.所以AD平分厶EDC.思路分析从已知条件中可以抽象成△/1EF绕着点A旋转而形成的一道试题,主要考查全等的判定和性质、角平分线的逆定理等核心知识,在证明AD平分厶EDC时,巧用面积法证明高线相等,再根据角平分线性质的逆定理得出结论.模型提炼本题从图形的直观中可以发现“共顶图2点的两个相似等腰三角形”,其中一个三角形(A/IEF)绕着顶点旋转、相似变换得到对应的三角形(MBC);从图形的内部结构中可以发现两个固定不变的结论△CAFMBAE,从而得到CF=BE,AD平分厶EDC.笔者由此出发,纵观近几年各省、市的中考题目,发现很多试题通过此结论为纽带解决一些难度较大的问题,供同行参考.2模型应用2.1直接应用2.1.1共顶点的两个等腰直角三角形例题1(2017年河南)如图2,在Rt LABC中,Z.A=90°,AB=AC,点D,E分别在边AB,AC±.,AD= 4E,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图2中,线段PM与P/V的数量关系是______,位置关系是______;(2)探究证明:把△仙E绕点逆时针方向旋转到图3的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△/!£>£绕点虫在平面内自由旋转,若AD=4,AB=10,请直接写出△PM/V面积的最大值.解析⑴PM=PN,PM丄PN.(2)厶PMN是等腰直角三角形.理由如下:由旋转,可得厶BAD=厶CAE.因为4B=<4C,4D=/1E,所以△ABDMACE.所以BD=CE,厶ABD NACE.作者简介:陈敏燕(1984-),女,浙江宁海人,本科,中学一级教师,研究方向:解题规律研究.BN• 24 •理科考试研究•数学版2020年10月10日因为M,N,P 分别为DE,BC,DC 的中点, 所以MP,NP 分别为△ DCE,^BCD 的中位线.所以 MP //EC 且 MP = ~EC, NP //BD 且 =^BD.所以 PM = PN,厶MPD =乙ECD,厶DPN = 180° -厶 BDC =厶 DBC + 厶 DCB.所以厶MPNECD + 乙DBC + 厶DCB =^ECA +乙 ACD + 厶 DBC +Z.DCB.所以 /LMPN =厶ABD +AACD + 厶DBC + 厶DCB = 厶 ABC + 厶 4CB=90°.因为PM = PN ,所以ZXPMN 是等腰直角三角形.(3 )如图4,由(2 )证得 E l 一一怛_丿△ PMN 是等腰直角三角形,所以 '、'麦〈\S&PMN = ~Y PN2 =所以当点D 在B4的延长线b ----將一c时,最长,即△PMN 的面积 图4最大.故"MN 的最大面积为為疔=*(4 +10)2 =詈.A思路分析本题是“共顶点的两个特殊的等腰直角三角形”,从而挖掘隐含的两个全等三角形,以此为路,顺其而下,解决问题.2. 1.2共顶点的两个等边三角形例题2 如图5,在等边A ABC 中,40是厶ABC 的角平 分线,。
八数下(BS)-解题技巧专题:共顶点的等腰三角形
解题技巧专题:共顶点的等腰三角形——形成精准思维模式,快速解题◆类型一共顶点的等腰直角三角形1.如图,已知△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证:(1)AF=AD;(2)EF=BD.◆类型二共顶点的等边三角形3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有()A.0个B.1个C.2个D.3个第3题图第4题图4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________.5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC全等吗?请说明理由;(2)试说明AE∥BC的理由;(3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.参考答案与解析1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE .(2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE .2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD .(2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD .3.D4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°.5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD ,∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,∴△DBC ≌△EAC (SAS).(2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .(3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC和△EAC 中,∵⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .。
两个等腰直角三角形共一个顶点
两个等腰直角三角形共一个顶点情形一:两个等腰直角三角形共直角顶点,必定含一对全等三角形:EA EE A D ADB(1)C BDC(2)B(3)CE为BC上两点,1.如图,在Rt∆ABC中,AB=AC,∠BAC=90︒,D、∠DAE=45︒,F为∆ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③S∆ADE=A、①②③④C、①③④1AD⋅EF;④CE2+BE2=2AE2,其中正确的是4AFB、①②④D、②③B DE2、如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)。
若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;C3.已知:PA=2,PB=4,以AB为直角边作等腰直角三角形ABD,且P、D两点在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值及相应∠APB的大小.DA情形二:形式1,如图两个等腰直角三角形共45°顶点,求AD和CE的关系P B4.在△ABC和△DCE中,AB=AC,DC=DE,∠BAC=∠EDC=90°,点E在AB上,连AD,DF⊥AC于点F。
试探索AE、AF、AC的数量关系;并求出∠DAC的度数。
A DFEB C(2)情形三:形式2,如图两个等腰直角三角形共45°顶点,F为EC中点,求DF和AF的关系5.如图:等腰Rt△ABC和等腰Rt△EDB,AC=BC,DE=BD,∠ACB=∠EDB=90°,E为AB是一点,P为AE的中点。
⑴连接PC,PD;则PC,PD的位置关系是;数量关系是;并证明你的结论。
⑵当E在线段AB上变化时,其它条件不变,作EF⊥BC于F,连接PF,试判断△PCF的形状;在点E运动过程中,△PCF是否可为等边三角形?若可以,试求△ACB与△EDB的两直角边之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
证明方法: 延长OM 至点K,使得OM KM,连结BK
OA OB AOD KBO OD BK AOD OBK (SAS)
3 1
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
AOC BOD(SAS)
交叉拉手(手拉手全等模型) 静态视角:
结论二(线的角度): AC BD, AC BD(8字形)
证明方法:AOC BOD AC BDA 在APQ与BPO中 PAQ PBO, APQ BPO AQP BOP 90 即AC BD
或同理证明DQC DOC 90也可
OD BI OC
OI AD
1 2 90
3 1
同侧拉手(婆罗摩笈多模型)
结论三: 为BC中点,且OM 1 AD(高变中线)
2
BMI CMO IBM OCM BI OC IBM OCM(AAS)
OM IM 1 OI 1 AD 22
结论三:过点O作ON AD与点N,延长NO交BC于点M,
则M 为BC中点,且OM 1 AD(高变中线) 2
过点B作BI // OC,交OM的延长线于点I
BI // OC IBO COB 180 AOD COB 180 IBO AOD AOB 90 3 2 90 ON AD
1 3 OA OB AOD IBO AOD OBI(ASA)
交叉拉手(手拉手全等模型) 静态视角:
结论三(角的角度): QO平分BQC,即BQO CQO 45
证明方法:
过点O作OM BD于点M 过点O作ON AC于点N AOC BOD SAOC SBOD,AC BD OM ON 点O在BQC的角平分线上 即QO是BQC的角平分线
交叉拉手(手拉手全等模型) 静态视角:
BM CM,即M为BC中点
配套练习1.
BE AQ
BQ BE EQ AQ 2OQ
交叉拉手(手拉手全等模型) 动态视角:
AOC旋转得到BOD 旋转中心:点O 旋转方向:顺时针 旋转角度:AOB COD 90
PART 02
同侧拉手
同侧拉手(婆罗摩笈多模型)
结论一:SAOD SBO(C 等底等高)
证明方法一: CNO DMO CON DOM OC OD CON DOM(AAS) CN DM
同侧拉手(婆罗摩笈多模型)
结论一: SAOD SBO(C 等底等高)
证明方法二: BF AE
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
证明方法: 延长OM至点K,使得OM KM,连结BK(倍长中线) 易证BKM COM(SAS) KBM OCM BK // OC KBO BOC 180 AOD BOC 360 AOB COD 180 KBO AOD
手拉手模型之————
有公共顶点的等腰直角三角形
亦墨数学 小派老师
交叉拉手
01 结论一 02 结论二 03 结论三 04 结论四
目录
同侧拉手
01 结论一 02 结论二 03 结论三
PART 01
交叉拉手
交叉拉手(手拉手全等模型) 静态视角:
结论一(形的角度):
AOC BOD
证明方法:
OC OD AOC BOD OA OB
2
3 2 90 1 2 90 即ON AD
AD OK ,OK 2OM AD 2OM 即OM 1 AD
2
同侧拉手(婆罗摩笈多模型)
结论二:取BC中点M,连结MO并延长交AD于点N, 则ON AD,且OM 1 AD(中线变高)
2
倍长中线后连结CK也同理可证
同侧拉手(婆罗摩笈多模型)
结论四(线的角度): BQ AQ 2OQ,CQ DQ 2OQ,
证明方法:
在BQ上取一点E,使得OE BQO 45,OE OQ
OQ
E OQ是等腰直角三角形
EQ 2OQ,EOQ 90 AOB EOQ EOB QOA
BO AO EOB QOA EO QO BOE AOQ(SAS)