mba数学历年真题名家详解

合集下载

MBA联考数学真题及解析

MBA联考数学真题及解析

解析文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]一、问题求解:第「15小题,每小题3分,共45分。

下列每题给出的A、B、C、D、E五个选项中,只有一项是符合试题要求的。

1、某部门在一次联欢活动中共设26个奖,奖品均价为280元,其中一等奖单价为400元,其他奖品均价为270元,一等奖的个数为(E)A6B5C4D3E2解析:设一等奖有X个,则其他奖项有26-X个。

26个奖品的均价为280 元,得知总价为26*280元。

由题意立方程400X+270 (26-X)二26*280。

计算得出X=2,所以答案为E2.某公司进行办公室装修,若甲乙两个装修公司合做,需10周完成,工时费为100万元,甲公司单独做6周后由乙公司接着做18周完成,工时费为96万元,甲公司每周的工时费为(B)A 7. 5万元B. 7万元C. 6. 5万元D. 6万元E. 5. 5万元解析:设甲公司每周工时费为X万元,乙公司每周工时费为Y万元。

由题意甲乙两个装修公司合做,需10周完成,工时费为100万元得知10(X+Y) =100,即Y二10-X .. ①又甲公司单独做6周后由乙公司接着做18周完成,工时费为96万元,得方程6X+18Y二96 ... ②将方程①带入方程②,X=7,所以答案为B3.如图1,已知AE二3AB, BF二2BC,若三角形ABC的面积为2,则三角形AEF的面积为(B)A. 14B. 12C. 10D. 8E. 6解析:做辅助线AD丄BF,垂足为D, AD即AABC和AABF的高。

VSAABC=2=?BC*AD由题知2BC二FB・•・ SAABF二?FB*AD 二BC*AD二4做辅助线FG丄AE,垂足为G, FG即AAFE和AAFB的高。

T3AB二AE, SAABF=?AB*FG=4SAAFE 二AE*FG 二*3AB*FG 二12所以答案为B4.某公司投资一个项目,已知上半年完成预算的三分之一,下半年完成了剩余部分的三分之二,此时还有8千万投资未完成,则该项目的预算为(B)A. 3亿元B. 3. 6亿元C. 3. 9亿元D. 4. 5亿元E. 5. 1亿元解析:设该项目预算为X亿元。

某mba数学历年真习题名家详解

某mba数学历年真习题名家详解

2015mba数学历年真题名家详解第二章应用题类型一商品利润与打折问题投资多种商品有赚有赔求最终净利润。

权重配比:适用于:已知每部分的权重(比例)及每部分影响的百分比来)张p58 5、6.去年今年上半年=a(1+p%)12+~~~+a(1+p%)17=(1+p%)12去年上半年。

去年下半年比上年增长:(1+p%)6-1年增长率(1+p%)12-1三大方向1增长下降并存(赚、亏)2图:一个对象资金多次进出。

表:多个对象的多因素比较3月增长季度增长年增长同期(比)增长类型二比例问题P63-23、24、25、271总量不变内部重新分配:方法:采用最小公倍数统一变化前后比例的总份额2m+n的3(a+m)/(123逆水v=v船-v水p74-17、19、214相对运动:同向v=v1-v2反向v=v1+v2 p70-2、8、10、20起点相遇:无论同向还是反向每人均跑整数圈且圈数之比等于速度之比比例技巧:p111-36两人已知相遇次数来求解每人跑的圈数(路程)两个物体在水上相遇追及,船上掉下物品所求时间均与水速无关火车t=(l1+l2)/(v1+v2)相向t=(l1+l2)/(v1-v2)同向队伍l/(v1+v0)+l/(v1-v0)+传达命令时间5变速运动p70-5p73-12p77-25、26V1(t原计划时间+t0)_=v2(t+t0)甲m模板:甲需a天乙需b天a<b两人同时开始,降速因素使得甲效率为原来的p%乙的为q%p<q最终同时完成则降速因素作用时间为(b-a)/(q%-p%)类型五杠杆交叉法应用于:一分为二、二合一第一部分a c-b整体C第二部分b a-cAbc表示属性值。

C介于ab之间1已知abc求数量p87-223浓度1234几则浓度也为原来的几分之几公式:体积为v升的溶液倒出m升补等量的水则浓度是原来的(v-m)/v 5等量交换使浓度相同:交换量=ab/(a+b)类型七集合问题两个:a并b=a+b-a交b=全集-非a非b p93-2三个:a并b并c=a+b+c-a交b-b交c-a交c+a交b交c=全集-非a非b非c p93-3、4类型八不定方程与线性规划不定方程:特征:未知数较多。

MBA联考数学-30_真题(含答案与解析)-交互

MBA联考数学-30_真题(含答案与解析)-交互

MBA联考数学-30(总分75, 做题时间90分钟)一、问题求解(在每小题的五项选择中选择一项)已知数列an 的通项公式为an=2n,数列b n的通项公式为b n=3n+2.若数列a n和b n的公共项按顺序组成数列c n,则数列c n的前3项之和为( ).1.计算计算的值为( ).SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:B共12项,首尾两项通分,有.原题共6对,故原式=,选B.技巧:去掉,观察选项.2.已知三个不等式:①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使满足①和②的所有x都满足③,则实数m的取值范围是( ).SSS_SINGLE_SELA m>9B m<9C m≤9D 0<m≤9E (E) m=9该题您未回答:х该问题分值: 3答案:C由①得1<x<3,由②得2<x<4,联合①和②,则1<x<3.所有1<x<3的都满足不等式③,用抛物线画图法,必须满足f(1)≤0,且f(3)≤0,注意可以有等号,求出m≤9.选C.3.两个人做移火柴棍游戏.比赛规则是:两人从一堆火柴中可轮流移走1至5根火柴,但不可以不取,直到移完为止,谁最后移走火柴就算谁赢.如果开始有55根火柴,首先移火柴的人在第一次移走( )根时才能在游戏中保证获胜.SSS_SINGLE_SELA 5B 4C 3D 2E (E) 1该题您未回答:х该问题分值: 3答案:E如何保证获胜?相当于最后的火柴要取走.无论对手拿走几根,两人和只有6根可以保证.对手最后取走N根,自己取6-N根(N是1~5的范围内).所以求出55除以6的余数,得到答案1.选E.4.把整数部分是0,循环节有3位数字的纯循环小数化成最简分数后,如果分母是一个两位数的质数,那么这样的最简正分数有( )个.SSS_SINGLE_SELA 37B 32C 29D 35E (E) 36该题您未回答:х该问题分值: 3答案:E3位循环节的纯循环小数,0..显然最后最简分数的两位数质数分母只能是37,既然是可以化简的分数,那么abc就应该是27的整数倍.所以有1—36种情况,选E.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( ).5.在圆x2+y2=4上,与直线4x+3y-12=0距离最小的点的坐标是( ).SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:D此题最快的解法是画图法,所求的距离直线最短的圆上一点在第一象限,再根据位置确定选D.6.如果底面直径和高相等的圆柱的侧面积是S,那么圆柱的体积等于( ).SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:D由题得:h=2r,侧面积.体积V=2πr3=,故选D.7.一种细胞每三分钟分裂一次(一个分裂为两个),把一个这种细胞放人一个容器内,恰好一小时充满容器;如果开始时把两个这种细胞放人该容器内,那么细胞充满容器的时间为( )min.SSS_SINGLE_SELA 57B 30C 27D 45E (E) 54该题您未回答:х该问题分值: 3答案:A解三分钟分裂一次.初始容器内有两个细胞时,相当于比原来少分裂一次.所以是57分钟,选A.8.如果买6根铅笔的价钱等于买5块橡皮的价钱,而买6块橡皮要比买5根铅笔多花1.1元,则一块橡皮比一根铅笔多( )元.SSS_SINGLE_SELA 0.1B 0.2C 0.3D 0.5E (E) 以上结论均不正确该题您未回答:х该问题分值: 3答案:A已知6铅笔=5橡皮,6橡皮-5铅=1橡皮+1铅=1.1,得到:铅笔=0.5,橡皮=0.6,有橡皮-铅笔=0.1,选A.9.已知函数y=ax+b和y=ax2+bx+c(a≠O),则它们的图像可能是( ).(E) 以上结论均不正确SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:A直线斜率与抛物线开口都是由a决定,四个选项直线斜率都是正的,故a>0,抛物线开口向上,排除C、D.由A、B可知b<0,抛物线的对称轴为x=-b/a大于零,所以选A.10.有一个200m的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8 m的速度步行,乙以2.4 m/s的速度跑步,乙在第2次追上甲时用了( )s.SSS_SINGLE_SELA 200B 210C 230D 250E (E) 以上结论均不正确该题您未回答:х该问题分值: 3答案:D乙第二次追上甲,比甲多跑两圈,时间为200m×2/(2.4-0.8)=250秒.选D.11.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是( ).SSS_SINGLE_SELA a<-1B |a|≤1C |a|<1D a≥1E (E) 以上结论均不正确该题您未回答:х该问题分值: 3答案:B采用特值法求解,有a=1,显然满足题干一排除A、C、E.a=2,显然不满足题干一排除D.故选B.12.如图3.1.1所示,直角梯形ABCD的上底是5cm,下底是7cm,高是4cm,且三角形ADE、ABF和四边形AECF的面积相等,则三角形AEF的面积是( )cm2.SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:C此题梯形面积(5+7)×4/2=24,故S△ABF=S△ADE=8,求得BF=3.2,DE=4,CF=0.8,CE=3,故S△CEF=1.2,剩余S△AEF=6.8,选C.13.已知函数y=f(x)的图像与函数y=2x+1的图像关于直线x=2对称,则f(x)=( ).SSS_SINGLE_SELA 9+2xB 9-2xC 4x-3D 13-4xE (E) 以上结论均不正确该题您未回答:х该问题分值: 3答案:B从图中得到MN=NP,三角形是等腰三角形.NP2=NB2+BP2=AB2+AN2+BP2=24,MP=,取MP中点Q,NQ⊥MP,NQ=.所以选B.二、条件充分性判断解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论.阅读条件(1)和(2)后选择以下相应的选项.A:条件(1)充分,但条件(2)不充分.B:条件(2)充分,但条件(1)不充分.C:条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D:条件(1)充分,条件(2)也充分.E:条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL14.已知x1,x2是关于x的方程x2+kx-4=0(k∈R)的两实根,能确定x21-2x2=8.(1)k=2;(2)k=-3.该题您未回答:х该问题分值: 3答案:A已知x2+kx-4=0,得到x21+kx1-4=0,x21=4-kx1,则结论x21-2x2=4-kx1-2x2.(1)k=2,则x1+x2=-2,4-kx1-2x2=4-2(x1+x2)=8满足结论,(1)充分;(2)k=-3,不充分.选A.SSS_FILL15.一批旗帜有两种不同的形状,正方形和三角形,且有两种不同的颜色,红色和绿色.某批旗帜中有26%是正方形,则红色三角形旗帜和绿色三角形旗帜的比是.(1)红色旗帜占40%,红色旗帜中有50%是正方形;(2)红色旗帜占35%,红色旗帜中有60%是正方形.该题您未回答:х该问题分值: 3答案:B假设共100面旗帜.(1)正方形旗帜26面(三角旗74面),红色旗帜40面,红色的方形旗帜20面,则红色三角旗帜20面,绿色三角旗54面,所求比率=20/54,(1)不充分;(2)正方形旗帜26面(三角旗74面),红色旗帜35面,红色的方形旗帜21面,则红色三角旗帜14面,绿色三角旗60面,所求比率=14/60,(2)充分;所以选B.SSS_FILL16.数列6、x、y、16,前三项成等差数列,能确定后三项成等比数列.(1)4x+y=0;(2)x,y是方程x2+3x-4=0的两个根.该题您未回答:х该问题分值: 3答案:D注意题意,前三项成等差数列是已知条件,成等比数列是待求结论.即题目隐含2x=6+y.(1)4x+y=0,结合上述方程,求得x=1,y=-4,满足题干,条件(1)充分;(2)x2+3x-4=0.分解因式求得x=1,y=-4或者x=-4,y=1;但是2x=6+-y,所以仍然求得x=1,y=-4,满足题干,条件(2)充分.所以选D.SSS_FILL17.若a,b∈R,则|a-b|+|a+b|<2成立.(1)|a|≤1;(2)|b|≤1.该题您未回答:х该问题分值: 3答案:E显然(1)、(2)单独都不可能充分,所以答案只能是C或者E.令a=1,b=1,题干却不满足,故选E.SSS_FILL18.设有大于2小于36的三个不等自然数依次成等比数列,则它们的乘积为216.(1)这三个自然数中最大是12;(2)这三个自然数中最小是3.该题您未回答:х该问题分值: 3答案:A由(1)已知最大的自然数是12,即三个自然数分别是3,6,12,(1)充分;(2)举反例,三个数是3,9,27,满足等比数列,但乘积显然不等于216,(2)不充分.所以选A.SSS_FILL19.a=2.(1)两圆的圆心距是9,两圆的半径是方程2x2-17x+35=0的两根,两圆有a条切线.(2)圆外一点P到圆上各点的最大距离为5,最小距离为1,圆的半径为a.该题您未回答:х该问题分值: 3答案:B(1)首先由韦达定理,x1+x2=8.5.圆心距>半径的和,所以两圆相离,即有4条公切线,故(1)不充分;(2)圆外一点到圆最远点和最近点,这三个点在一条直线上,且过圆心,两个距离之差就是直径,(2)充分.所以选B.SSS_FILL20.如图3.1.2所示,圆O1和圆O2的半径分别为r1和r2,它们的一条公切线切点为A,B,则切线AB=5.(1)r1=3,r2=6;(2)圆心距为O1O2=4.该题您未回答:х该问题分值: 3答案:E两个条件联合起来,切线长为,选E.SSS_FILL21.P点落入圆(x-4)2+y2=a2(不含圆周)的概率是.(1)s,t是连续掷一枚骰子两次所得到的点数,a=3;(2)s,t是连续掷一枚骰子两次所得到的点数,a=4.该题您未回答:х该问题分值: 3答案:A由(1)得到10种情况:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(6,1),(6,2),故概率=10/36=5/18,所以选A.SSS_FILL22.将一个骰子连续抛掷三次,则p=.(1)它落地时向上的点数依次成等差数列的概率为p;(2)它落地时向上的点数依次成等比数列的概率为p.该题您未回答:х该问题分值: 3答案:C(1)骰子有1~6点,能成为等差数列的情况如下.公差为0:6种;公差为1:4种(公差为-1的也为4种);公差为2:2种(公差为-2的也为2种).,故(1)不充分.(2)骰子有1—6点,能成为等比数列的情况如下。

MBA联考数学真题解析

MBA联考数学真题解析

M B A联考数学真题解析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1. 某公司得到一笔贷款共68万元,用于下属三个工厂的设备改造,结果甲乙丙三个工厂按比例分别得到36万元、24万元和8万元。

(1)甲乙丙三个工厂按1/2:1/3:1/9的比例贷款(2)甲乙丙三个工厂按9:6:2的比例贷款2.一元二次方程x2 bx c=0的两个根之差为4(1)b=4, c=0 (2) b2 –4c=163.不等式│x -2│ │4 -x│< s无解。

(1)s≤2 (2) s >24. (a b)/(a2 b2)=-1/3(1) a2, 1, b2 成等差数列(2)1/a, 1, 1/b成等比数列5.(x/a- a/x)6的展开式的第六项是–486/x4(1)a=3 (2)a= -36. z=2x2 y2-xy 7y a的最小值为– 6。

(1)a=8 (2) a= -87. 设函数y=f(x)在区间(a,b)内有二阶导数,曲线在区间(a,b)内是凹的。

(1) 导函数y’=f’(x) 在(a,b)内单调增加(2) 存在x0∈(a,b), 使f ”(x0)>08.曲线y=e a-x在点x= x0的切线方程为x y=2(1)a=2, x0=2 (2) a=1, x0=19. 函数y= f(x)的拐点( x0, y0 )的横坐标x0=-2(1)f(x)=x3 6x2 x 1 (2) f(x)=1/2 xex10. dyIx=1=2/e dx(1)y=xe-1/x (2)y=2x2e-x11. A,B均为n阶方阵。

(A B)2=A2 2AB B2.(1) │A│≠0 (2) AB-B-A=012.α1,α2,β1,β2,β3均为n维向量。

β1,β2,β3线性相关(1) α1,α2线性相关,且β1=α1 α2 β2=α1-α2 β3=3α1 α2(2)α1,α2线性无关,且β1=α1 α2 β2= α2 β3=2α1-α213.向量组α1=(1,3,6,2)T α2=(2,1,2,-1)T α3=(1,-1,a,-2)的秩r=3(1)a=-2 (2)a≠-214. 线性方程组 -x1 -4x2 x3=1tx2-3x3=3 有无穷多解x1 3x2 (t 1)x3=0(1) t= -3 (2)t=115. A,B,C为随机事件,A发生必导致B、C同时发生。

mba数学历年真题名家详解

mba数学历年真题名家详解

2015mba数学历年真题名家详解第二章应用题类型一商品利润与打折问题投资多种商品有赚有赔求最终净利润。

权重配比:适用于:已知每部分的权重(比例)及每部分影响的百分比来求最终整体的百分率p51-1p54-10甲乙售价均为a元甲赚了p%乙亏了p%则最终的盈亏2a-a/(1+p%)-a/(1+p%)如果涨跌同样百分比则比原值小。

张p%在降p%/(1+p%)恢复原值。

降p%在升p%/(1-p%)恢复原值 p58 5、6多次资金进出问题p53-6采用图形表达资金的进出情况p53-8同期增长同比增长p55-15.去年1月份产值a每月增长p%十二月份的产值为a(1+p%)11今年上半年比去年上半年增长:(1+p%)12-1去年上半年=a+a(1+p%)+~+a(1+p%)今年上半年=a(1+p%)12+~~~+a(1+p%)17=(1+p%)12去年上半年。

去年下半年比上年增长:(1+p%)6-1年增长率(1+p%)12-1三大方向1增长下降并存(赚、亏)2图:一个对象资金多次进出。

表:多个对象的多因素比较3月增长季度增长年增长同期(比)增长类型二比例问题P63-23、24、25、271总量不变内部重新分配:方法:采用最小公倍数统一变化前后比例的总份额2某对象不变其他对象在变化。

还可用于:蒸发、稀释、增浓。

方法:将不变对象的比例份额统一,再根据变化对象的份额求出数量。

技巧:如果甲:乙=a:b甲不变乙变甲:乙=m:n则最后的总数为m+n的倍数而且还是a的倍数(am互质)3比例定理:如果a/b=c/d=e/f=(b+d+f)/(a+c+e)p65-28 a/b=(a+m)/(b+n)=m/n类型三路程问题1直线:相遇t=总路程/速度和追击t=总路程/速度差2圆圈:同向t-=周长/速度差反向t=周长/速度和3水:顺水 v=v船+v水逆水v=v船-v水 p74-17、19、214相对运动:同向 v=v1-v2反向v=v1+v2 p70-2、8、10、20起点相遇:无论同向还是反向每人均跑整数圈且圈数之比等于速度之比比例技巧:p111-36两人已知相遇次数来求解每人跑的圈数(路程)两个物体在水上相遇追及,船上掉下物品所求时间均与水速无关火车 t=(l1+l2)/(v1+v2)相向t=(l1+l2)/(v1-v2)同向队伍 l/(v1+v0)+l/(v1-v0)+传达命令时间5变速运动p70-5p73-12p77-25、26V1(t原计划时间+t0)_=v2(t+t0)在相同时间内假设速度不变求出等价路程类型四工程问题工作量:定量:可将总量看成1.或将总量看成工作时间的最小公倍数变量工作效率:工作效率为核心。

全国mba联考真题带答案及解析

全国mba联考真题带答案及解析

全国mba联考真题带答案及解析全国MBA联考真题及解析引言:全国MBA联考是中国招收研究生管理类专业学位的重要考试之一,被广大考生视为考取MBA研究生学位的重要通道。

本文将围绕全国MBA 联考的真题及解析展开讨论,帮助考生更好地备考和应对考试。

第一部分:数学分析题第一题:一件商品2018年的价格比2017年上涨了20%,2019年的价格比2018年上涨了25%,若2019年这件商品的价格是10元,则2017年的价格是多少?解析:设2017年的价格为x元,则2018年的价格为1.2x元,2019年的价格为1.25 * 1.2x = 1.5x元。

根据题意,1.5x = 10,解得x = 10 / 1.5 = 6.67。

所以2017年的价格是6.67元。

第二题:一艘游轮的顶部有一个长方形的露天阳台,阳台的长度为12米,宽度为8米。

当阳台上满载了游客,按每平方米承载20人计算,阳台上最多可以承载多少人?解析:阳台面积为12 * 8 = 96平方米。

根据题意,阳台最多可以承载96 * 20 = 1920人。

第二部分:逻辑推理题第一题:假设甲、乙、丙三人在一个岛上,该岛上只有真话与假话两种,他们之间的对话如下:甲说:“我是诚实的。

”乙说:“丙是说谎者。

”丙说:“甲是说谎者。

”问他们中到底谁是诚实的?解析:假设甲是诚实的,则乙和丙都在说谎。

但若乙和丙都在说谎,则甲也不可能说真话,与题意矛盾。

假设乙是诚实的,则甲和丙都在说谎,与甲的说法相悖。

假设丙是诚实的,则甲和乙都在说谎,与乙的说法相悖。

综上所述,他们中没有人是诚实的。

第二题:下列哪一个图形继续[ ]内的序列?△、︵、Ο、[?]解析:观察前三个图形,可以发现它们依次变为下一个图形时,顶部的三角形顺时针旋转90°,右边的元素水平翻转,底部的圆圈顺时针旋转90°。

根据这个规律,[?]的图形应该是三角形向右旋转90°的形状,即<,所以答案是<。

MBA联考数学-(八)_真题(含答案与解析)-交互

MBA联考数学-(八)_真题(含答案与解析)-交互

MBA联考数学-(八)(总分150, 做题时间90分钟)选择题1.如图,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止。

设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如下图所示,则当x=9时,点R应运动到______•**处•**处•**处•**处E.以上答案均不正确SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 由图可知,△MNR的面积为,当点R在PN上运动时,y不断增加;当点R在QP上运动时,y保持不变;当点R在QM上运动时,y不断减少。

由此可得,当x=9时,R位于Q点。

2.如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么______A.,b=6 B.,b=-6 C.a=3,b=-2D.a=3,b=6 E.以上答案均不正确SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 首先在直线y=ax+2上取一点(0,2),它关于直线y=x的对称点为(2,0),该点位于直线y=3x-b上,所以b=6;在直线y=3x-6上取一点(0,-6),它关于直线y=x的对称点为(-6,0),该点位于直线y=ax+2上,所以。

3.点P(2,3)关于原点对称的点的坐标是______• A.(2,-3)• B.(-2,3)• C.(-2,-3)• D.(2,3)• E.以上结果均不正确A B C D E该问题分值: 3答案:C[解析] 根据“关于原点对称的点,横坐标与纵坐标互为相反数”可知,点P(2,3)关于原点对称的点的坐标是(-2,-3)。

4.已知圆C与圆x2+y2-2x=0关于直线x+y=0对称,则圆C的方程为______ • A.(x+1)2+y2=1•**+y2=1•**+(y+1)2=1•**+(y-1)2=1E.以上结果均不正确SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 方法1:根据题意,(x-1)2+y2=1,圆心为P(1,0),作图易得P(1,0)关于x+y=0的对称点P'的坐标为(0,-1),从而圆C的方程为x2+(y+1)2=1。

(完整版)MBA历年试题解析

(完整版)MBA历年试题解析

2009年10月在职攻读工商管理硕士学位全国联考综合能力数学试题一.问题求解(第15~1小题,每小题3分,共45分,下例每题给 出A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑)1. 已知某车间的男工人数比女工人数多80%,若在该车间的一次技术考核中全体工人的平均成绩为75分,而女工平均成绩比男工平均成绩高20%,则女工平均成绩为()分。

(A )88 (B )86 (C )84 (D )82 (E )80[点拨]未知量设少的一方容易计算。

解:设女工人数为x ,男工平均成绩为y ,则842.170758.18.12.1=⇒=⇒=+⨯+⨯y y xx x y x y ,选(C )。

2.某人在市场上买猪肉,小贩称得肉重为4斤,但此人不放心,拿出一个自备的100克重的砝码,将肉与砝码一起让小贩用原秤复称,结果重量为25.4斤,由此可知顾客应要求小贩补猪肉()两(A )3 (B )6 (C )4 (D )7 (E )8[点拨]比例问题,但应先化为同一计量单位。

解:32405.22=⇒=x x ,应要求小贩补猪肉83240=-两。

选(E )。

3. 甲、乙两商店某种商品的进价都是200元,甲店以高于进价20%的价格出售,乙店以高于进价15%的价格出售,结果乙店的售出件数是甲店的两倍,扣除营业税后乙店的利润比甲店多5400元。

若营业税率是营业额的5%,那么甲、乙两店售出该商品各为()件(A )450,900 (B )500,1000 (C )550,1100(D )600,1200 (E )650,1300[点拨]直接设甲店售出件数,在利用利润差。

解:设甲店售出x 件,则甲店的利润为 x x x 28%52.12002.0200=⨯⨯-⨯, 乙店的利润为 x x x 37%5215.1200215.0200=⨯⨯⨯-⨯⨯,60054002837=⇒=-x x x 。

数学mba联考试题及答案

数学mba联考试题及答案

数学mba联考试题及答案数学MBA联考试题及答案一、选择题(每题2分,共20分)1. 某公司年销售额为500万元,预计明年增长10%,那么明年的预计销售额为:A. 550万元B. 510万元C. 540万元D. 600万元答案:A2. 一项投资的年回报率为5%,如果投资100万元,一年后的收益是多少?A. 5万元B. 10万元C. 15万元D. 20万元答案:A3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B4. 如果一个数列的前四项是2, 4, 6, 8,那么这个数列的第五项是多A. 10B. 12C. 14D. 16答案:A5. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A6. 一个公司有10个员工,如果每个员工的工作效率提高了20%,那么整体工作效率提高了百分之多少?A. 10%B. 20%C. 22%D. 25%答案:C7. 如果一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 12D. 20答案:A8. 一个班级有30名学生,其中15名学生是男生,那么女生的比例是A. 1/2B. 2/3C. 3/4D. 4/5答案:A9. 一个数的立方是125,那么这个数是多少?A. 5B. 10C. 15D. 20答案:A10. 如果一个产品的成本是50元,售价是100元,那么利润率是多少?A. 50%B. 100%C. 150%D. 200%答案:B二、填空题(每题2分,共10分)11. 如果一个数的平方是36,那么这个数是________。

答案:±612. 一个直角三角形的斜边长度是13,一个直角边是5,那么另一个直角边的长度是________。

答案:1213. 一个圆的直径是14厘米,那么它的半径是________。

答案:7厘米14. 如果一个数的对数(以10为底)是2,那么这个数是________。

MBA联考数学-8_真题(含答案与解析)-交互

MBA联考数学-8_真题(含答案与解析)-交互

MBA联考数学-8(总分75, 做题时间90分钟)一、问题求解第1~15小题,下列每题给出的A、B、C、D、E五个选项中,只有一项是符合试题要求的.1.若方程(a2+c2)x2-2c(a+b)x+b2+c2=0有实根,则( ).SSS_SINGLE_SELA a,b,c成等比数列B a,c,b成等比数列C b,a,c成等比数列D a,b,c成等差数列E b,a,c成等差数列该问题分值: 3答案:B[解] 如果已知二次方程有实根,则判别式△=[-2c(a+b)]2-4(a2+c2)(b2+c2)≥0化简得-4(a2b2-2abc2+c4)≥0,即(ab-c2)2≤0所以,只有ab=c2.即a,c,b成等比数列.故本题应选B.2.从集合{0,1,3,5,7)中先任取一个数记为a,放回集合后再任取一个数记为b,若ax+by=0能表示一条直线,则该直线的斜率等于-1的概率是( ).SSS_SINGLE_SELABCDE该问题分值: 3答案:D[解] 设事件A={该直线斜率为-1},根据题意,a,b不能同时为零,所以基本事件总数为52-1.而事件A中有4个基本事件,所以故本题应选D.3.S=3+2·32+3·33+4·34+…+n·3n一( ).nSSS_SINGLE_SELABCDE该问题分值: 3答案:C=3+2·32+…+n·3n,两边同乘以3,有[解] 由Sn3S=32+2·33+…+n·3n+1n于是,所以,.故本题应选C.4.快、慢两列车的长度分别为160米和120米,它们相向行驶在平行轨道上.若坐在慢车上的人见整列快车驶过的时间是4秒,那么坐在快车上的人见整列慢车驶过的时间是( ).SSS_SINGLE_SELA 3秒B 4秒C 5秒D 6秒E 以上结论均不正确该问题分值: 3答案:A[解] 因为慢车、快车的相对速度是相同的,设快车上的人见整列慢车驶过的时间为t,则必有,得t=3.故本题应选A.5.停车场有10个车位排成一行.现已停着7辆车,则恰有3个连接的车位是空着的概率为( ).SSS_SINGLE_SELABCDE该问题分值: 3答案:A[解] 不妨将10个车位依次编号为1,2,…,10,则基本事件总数为.而3个空车位恰好是连接在一起的情形,只有(1 2 3),(2 3 4),(3 4 5),…,(8 9 10)共8个.所以,所求概率为故本题应选A.6.王女士以一笔资金分别投于股市和基金,但因故需抽回一部分资金.若从股市中抽回10%,从基金中抽回5%,则其总投资额减少8%;若从股市中抽回15%,从基金中抽回10%,则其总投资额减少130万元.其总投资额为( ).SSS_SINGLE_SELA 1000万元B 1500万元C 2000万元D 2500万元E 3000万元该问题分值: 3答案:A[解] 设王女士投资股市x万元,投资基金y万元.由题意,有即解得x=600,y=400.故其投资总额为x+y=1000万元.故本题应选A.7.不等式的解集为( ).SSS_SINGLE_SELA (-∞,-2)BCDE (-2,5)该问题分值: 3答案:D[解] 原不等式等价于即所以不等式的解集为.故本题应选D.8.如图10-2,设罪犯与警察在一开阔地上相隔一条宽0.5公里的河,罪犯从北岸A点处以每分钟1公里的速度向正北逃窜,警察从南岸B点以每分钟2公里的速度向正东追击.则警察从B点到达最佳射击位置(即罪犯与警察相距最近的位置)所需的时间是( ).SSS_SINGLE_SELA 分B 分C 分D 分E 分该问题分值: 3答案:D[解] 如图30-2,设警察从B点到达最佳位置C需t分钟,这时警察距罪犯d 公里,则所以当时,d可取得最小值.故本题应选D.9.要使方程3x2+(m-5)x+m2-m-2=0的两根x1,x2分别满足0<x1<1和1<x2<2,实数m的取值范围应是( ).SSS_SINGLE_SELA -2<m<1B -4<m<-1C -4<m<-2DE -3<m<1该问题分值: 3答案:A[解] 设f(x)=3x2+(m-5)x+m2-m-2=0.其图象为开口向上的抛物线,抛物线与x轴的交点为x1,x2(如图30-1).由题意,有解得-2<m<-1.故本题应选A.10.设AB为圆C的直径,点A、B的坐标分别是(-3,5)、(5,1),则圆C的方程是( ).SSS_SINGLE_SELA(x-2)2+(y-6)2=80B(x-1)2+(y-3)2=20C(x-2)2+(y-4)2=80D(x-2)2+(y-4)2=20Ex2+y2=20该问题分值: 3答案:B[解] 由题设,圆C的直径,半径.圆心坐标为.所以,圆C的方程为(x-1)2+(y-3)2=20.故本题应选B.11.如图10-1,在△ABC中,∠A=90°,正方形DEFM接于△ABC,若△CEF,△DBM的面积S△CEF =1,S△DBM=4,则正方形DEFM的边长为( ).SSS_SINGLE_SELA 1B 2C 2.5D 3E 3.2该问题分值: 3答案:B[解] 设正方形DEFM的边长为x,则又△CEF∽△DBM,所以x:BM=CF:x,得x2=CF·BM利用①式,有,即.所以x=2.故本题应选B.12.已知|a|=5,|b|=7,ab<0.则|a-b|=( ).SSS_SINGLE_SELA 2B -2C 12D -12E ±2该问题分值: 3答案:C[解] 由|a|=5,|b|=7,且ab<0.所以a=-5,b=7或a=5,b=-7.在两种情形,都有|a-b|=12故本题应选C.13.甲、乙两个储煤仓库的库存煤量之比为10:7.要使这两仓库的库存煤量相等,甲仓库需向乙仓库搬入的煤量占甲仓库库存煤量的( )SSS_SINGLE_SELA 10%B 15%C 20%D 25%E 30%该问题分值: 3答案:B[解] 设甲仓库的库存煤量为10a吨,乙仓库的库存煤量为7a吨,要使这两仓库的库存煤量相等,两仓库应各存吨.所以,甲仓库需向乙仓库搬入的煤量为10a-8.5a=1.5a吨.占甲仓库原库存煤量的.故本题应选B.14.一个班组里有5名男工和4名女工.若要安排3名男工和2名女工担任不同的工作,则不同的安排方法共有( ).SSS_SINGLE_SELA 300种B 480种C 720种D 1440种E 7200种该问题分值: 3答案:E[解] 由题意,不同的安排方法有故本题应选E.15.装配一台机器需要甲、乙、丙三种部件各一件,现库中存有这三种部件共270件,分别用甲、乙、丙库存件数的装配了若干台机器,那么原来库中存有甲种部件( ).SSS_SINGLE_SELA 80件B 90件C 100件D 110件E 120件该问题分值: 3答案:C[解] 设原来库中存有甲种、乙种、丙种部件的个数为x、y、z,则x+y+z=270解得x=100.故本题应选C.二、条件充分性判断第16~25小题,要求判断每题给出的条件(1)和(2)能否充分支持题干所陈述的结论.A、B、C、D、E五个选项为判断结果,请选择一项符合试题要求的判断.A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL16.a>1.(1) (2) a>|x-3|+|x-2|该问题分值: 3答案:B[解] 由条件(1),有2a-1≤0,所以.条件(1)不充分.由条件(2),a>|x-3|+|x-2|≥|(x-3)-(x-2)|=1.条件(2)充分.故本题应选B.SSS_FILL17.(1) x:y:z=2:3:5 (2) 3x-y+2=24该问题分值: 3答案:C[解] 条件(1)、(2)单独都不充分.当两个条件合在一起时,由条件(1),设=,则x=2k,y=3k,z=5k,代入条件(2),得6k-3k+5k=24解得k=3.所以x=6,y=9,z=15.于是故本题应选C.SSS_FILL18.一件含有25张一类贺卡和30张二类贺卡的邮包的总重量(不计包装重量)为700克.(1) 一张一类贺卡重量是一张二类贺卡重量的3倍(2) 一张一类贺卡与两张二类贺卡的总重量是克该问题分值: 3答案:C[解] 设一类贺卡每张重z克,二类贺卡每张重y克,由条件(1),有x=3y;由条件(2),有,可以看出,两个条件单独都不充分.两个条件合在一起时,解方程组得x=20,.于是,25张一类贺卡和30张二类贺卡的总重量为=700(克).故本题应选C.SSS_FILL19.1千克鸡肉的价格高于1千克牛肉的价格.(1) 一家超市出售袋装鸡肉与袋装牛肉,一袋鸡肉的价格比一袋牛肉的价格高30%(2) 一家超市出售袋装鸡肉与袋装牛肉,一袋鸡肉比一袋牛肉重25%该问题分值: 3答案:C[解] 条件(1)、(2)单独都不充分,两个条件联合在一起时,设一袋牛肉重x千克,价格为y元,则一袋鸡肉重1.25千克,价格为1.3y元.因为,即一千克鸡肉价格比一千克牛肉的价格高.故本题应选C.SSS_FILL20.钱袋中装有伍分和壹角的硬币若干,则壹角硬币的个数比伍分硬币的个数少.(1) 伍分和壹角硬币共有伍元(2) 将相当于伍分硬币数目一半的壹角硬币从袋中取出,钱袋中恰剩3元该问题分值: 3答案:C[解] 设钱袋中伍分硬币有x个,壹角硬币有y个,由条件(1),有0.05x+0.1y=5,不能确定各类硬币个数,条件(1)不充分.由条件(2),有.类似条件(1)的分析,条件(2)也不充分.两个条件联合在一起.解方程组得x=40,y=30.x>y.故本题应选C.SSS_FILL21.已知α,β是方程3x2-8x+a=0的两个非零实根,则可确定a=2.(1) α和β的几何平均值为2(2) 和的算术平均值为2该问题分值: 3答案:B[解] 由题意,.由条件(1),,所以,解得a=12.故条件(1)不充分.由条件(2),.即,而.代入求得a=2.条件(2)充分.故本题应选B.SSS_FILL22.整数数列a,b,c,d中,a,b,c成等差数列,b,c,d成等比数列.(1)b=10,d= 6a (2)b=-10,d=6a该问题分值: 3答案:E[解] 条件(1)和条件(2)中对于数C没有限制.无法判定题干中结论是否成立.两个条件也不能联合.故本题应选E.SSS_FILL23.三角形ABC的面积保持不变.(1) 底边AB增加了2厘米,AB上的高h减少了2厘米(2) 底边AB扩大了1倍,AB上的高h减少了50%该问题分值: 3答案:B[解] 设△ABC中,边AB=a,AB边上的高为h.由条件(1),△ABC面积=(a+2)(h-2)≠故条件(1)不充分.由条件(2),△ABC面积不变,条件(2)充分.故本题应选B.SSS_FILL24.(2x2+x+3)(-x2+2x+3)<0.(1) x∈[-3,-2] (2) x∈(4,5)该问题分值: 3答案:D[解] 设f(x)=2x2+x+3,因为判别式△=1-4×2×3<0所以,对任意的x∈(-∞,+∞),恒有f(x)=2x2+x+3>0.故只需判断题干中-x2+2x+8<0是否成立.因为-x2+2x+3=(-x+3)(x+1),可得-x2+2x+3<0的解集为(-∞,-1)∪(3,+∞).由条件(1),x∈[-3,-2](-∞,-1).所以(2x2+x+3)(-x2+2x+3)<0成立.条件(1)充分.由条件(2),x∈(4,5)(3,+∞).类似地分析可知条件(2)充分.故本题应选D.SSS_FILL25.直线3x-4y+k=0与圆C:(x-4)2+(y-7)2=9相切.(1) k=1 (2) k=31该问题分值: 3答案:D[解] 圆C的半径r=3,圆心坐标为(4,7).圆心(4,7)到直线3x-4y+k=0的距离由条件(1),k=1,可知.直线与圆C相切.条件(1)充分.由条件(2),k=31,可知,直线与圆C相切,条件(2)充分.故本题应选D.1。

mba联考数学真题及答案解析

mba联考数学真题及答案解析

mba联考数学真题及答案解析MBA联考数学真题及答案解析随着社会竞争日益激烈,越来越多的人开始意识到教育在职业发展中的重要性。

而在这条求学之路中,MBA已经成为越来越多人的选择。

作为MBA考试的重要一环,数学考试一直以来都是考生们的心头难题。

下面我们就来看几道常见的MBA联考数学题目以及解析,希望对广大考生有所帮助。

题目一:某公司的销售收入和利润随时间的变化关系如下表所示:时间(月份) 1 2 3 4 5 6销售收入(万元)10 15 20 25 30 35利润(万元) 2 3 4 6 7 10请根据以上数据回答以下问题:1. 该公司平均每月的利润是多少?2. 该公司的销售收入和利润之间的相关性如何?3. 如果该公司每月的利润增长率保持不变,预计第7个月的利润是多少?解析:1. 平均每月利润可通过利润总和除以月份得出。

(2+3+4+6+7+10)/ 6 = 5万元,该公司平均每月的利润为5万元。

2. 销售收入与利润之间的相关性可以通过计算相关系数来判断。

在这里,我们使用皮尔逊相关系数:利润和销售收入的样本协方差除以利润和销售收入的标准差的乘积。

样本协方差:(2-5)(10-25)+(3-5)(15-25)+(4-5)(20-25)+(6-5)(25-25)+(7-5)(30-25)+(10-5)(35-25) = -20利润的标准差:√((2-5)²+(3-5)²+(4-5)²+(6-5)²+(7-5)²+(10-5)²)/6 = √18/6 = 1.732销售收入的标准差:√((10-25)²+(15-25)²+(20-25)²+(25-25)²+(30-25)²+(35-25)²)/6 = √300/6 = 7.746相关系数 = -20 / (1.732*7.746) ≈ -0.78因此,销售收入和利润之间呈强负相关。

MBA数学真题及其详细答案解析

MBA数学真题及其详细答案解析

解析(A)设甲乙码头相距 S ,船在静水中的速度为V1 ,水流速度为V2 ,则往返一次所需的
时= 间 t1
V1
S + V2
+ V1
S − V2
,现往返一次所需= 时间 t2
S+S V1 +1.5V2 V1 −1.5V2
t1= − t2
2V1S V12 − V22
− V12
2V1S
− (1.5V2 )2
1997-2017 管理类 MBA 综合考试数学真题及详细答案解析
前言:
1997-2017 年:共 39 套真题 第一部分 2009-2017 年:共 15 套真题 第二部分 1997-2008 年:共 24 套真题
本文件总结了中国自 1997 年开始有 MBA 考试以来的所有数学真 题及其详细答案解析。由于目前(2017 年)MBA 综合考试中数学部分 的命题形式(25 道题,每题 3 分)是从 2009 年开始确定的,因此本 文分为两大部分。第一部分为 2009-2017 年所有 10 月份和 1 月份考 试的真题和详细的答案解析(2014 年以后取消了 10 份的考试),第 二部分为 1997-2008 年所有 10 月份和 1 月份考试的真题及答案。这 里需要指出的是 2007 年以前的 MBA 数学考试还包含了高等数学部分 的内容,本文件剔除了 1997-2006 年真题中高等数学部分内容,只保 留了现在大纲还要求的内容。
从而 a = 400 元, b = 600 元, 2 × 480 − (400 + 600) = −40 元,即商店亏了 40 元。
2. 某国参加北京奥运会的男女运动员比例为 19:12,由于先增加若干名女运动员,使男女
运动员比例变为 20:13,后又增加了若干名男运动员,于是男女运动员比例最终变为

2008年-2018年MBA MPAcc MEM数学真题+答案详解

2008年-2018年MBA MPAcc MEM数学真题+答案详解
3
B. 65 元
C. 75 元
D. 85 元
E. 135 元
各个流量段所需缴费数额见下表: 流量段 所需缴费额 0-20 GB 0元 20-30 GB 30-40 GB >40GB
10 1=10 元
10 3=30 元
5 5=25 元
所以小王应该缴费 0+10+30+25=65 元。
4. 如图,圆 O 是三角形 ABC 的内切圆,若三角形 ABC 的面积与周长的大小之比为 1: 2 ,则圆 O 的面积为( ) A. B.
1 Lr ,即三角形的面 2
积等于三角形周长与内切圆半径乘积的一半。如果读者没记住该结论,不妨尝试特殊值方法。
5. a − b = 2, a − b = 26 ,求 a + b = ( )
3 3
2
2
4
A. 30 解析: (E)
B. 22
C. 15
D. 13
E. 10
利用特殊值方法, 观察第二个条件 a − b = 26 , 即两个立方数的差为 26, 很容易想到 27-1=26,
An BnCn Dn 的面积为 S n ,且 S1 = 12 ,求 S1 + S2 + S3 + L =
A. 16 B. 20 C. 24 D. 28 E. 30
5
解析: (C) 容易得出
S A2 B2C2 D2 S A1B1C1D1
1 SA B C D 1 = , 333 3 = , 2 S A2 B2C2 D2 2
3 3
即 a = 3, b = 1 ,从而有 a + b = 10 。
2 2
6. 将 6 张不同的卡片 2 张一组分别装入甲、乙、丙三个袋中,若指定的两张卡片要放在同一组, 则不同的装法有( )种 A. 9 B. 18 C. 24 D. 36 E. 72

(完整版)MBA历年试题解析

(完整版)MBA历年试题解析

(完整版)MBA历年试题解析2009年10月在职攻读工商管理硕士学位全国联考综合能力数学试题一?问题求解(第1~15小题,每小题3分,共45分,下例每题给出A、B、C、D、E五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑)1. 已知某车间的男工人数比女工人数多80%,若在该车间的一次技术考核中全体工人的平均成绩为75分,而女工平均成绩比男工平均成绩高20%,则女工平均成绩为()分。

(A)88 (B)86 (C)84 (D)82 (E)80[点拨]未知量设少的一方容易计算。

解:设女工人数为x,男工平均成绩为y,则1.2y x y 1.8x75 y 70 1.2y 84,选(C)。

x 1.8x2. 某人在市场上买猪肉,小贩称得肉重为4斤,但此人不放心,拿出一个自备的100克重的砝码,将肉与砝码一起让小贩用原秤复称,结果重量为425斤,由此可知顾客应要求小贩补猪肉()两(A)3 (B)6 (C)4 (D)7 (E)8[点拨]比例问题,但应先化为同一计量单位。

解:——x 32,应要求小贩补猪肉40 32 8两。

选(E)。

2.5 403. 甲、乙两商店某种商品的进价都是200元,甲店以高于进价20%的价格出售,乙店以高于进价15%的价格出售,结果乙店的售出件数是甲店的两倍,扣除营业税后乙店的利润比甲店多5400元。

若营业税率是营业额的5%那么甲、乙两店售出该商品各为()件(A) 450, 900 (B) 500, 1000 (C) 550, 1100(D)600, 1200 (E)650, 1300[点拨]直接设甲店售出件数,在利用利润差。

解:设甲店售出X件,则甲店的利润为200 0.2x 200 1.2x 5% 28x ,乙店的利润为200 0.15 2x 200 1.15 2x 5% 37x,37x 28x 5400 x 600。

选(D)。

4. 甲、乙两人在环形跑道上跑步,他们同时从起点出发,当方向相反时每隔48秒相遇一次,当方向相同时每隔10分钟相遇一次。

MBA联考数学真题及解析

MBA联考数学真题及解析

一、问题求解:第1~15小题,每小题3分,共45分,下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑。

1.电影开演时观众中女士与男士人数之比为5:4,开演后无观众入场,放映一小时后,女士的20%,男士的15%离场,则此时在场的女士与男士人数之比为(A )4:5 (B)1:1 (C)5:4 (D)20:17 (E)85:64答案:D解析:设电影开始时,女为a 人,男为b 人,有已知条件,a=5x ,b=4x ,从而5x×0.84x×0.85=43.4=20172.某商品的成本为240元,若按该商品标价的8折出售,利润率是15%,则该商品的标价为(A)276元 (B)331元 (C)345元 (D)360元 (E)400元答案:C解析:设标价为a 元,则售价为0.8a ,由已知0.8a−240240=0.15解得a=345(元)3.三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁,他们的年龄之和为(A )21 (B )27 (C )33 (D )39 (E )51答案:C解析:设三个儿童的年龄依次为P1,P2,P3(P1<6),若P1=2,则P2=2+6,P3=8+6,不合题意.若P1=3,则P2=3+6,P3=9+6,不合题意.取P1=5,则P2=5+6=11,P3=11+6=17,即P1,P2,P3皆为质数,符合题意要求,则三个儿童年龄和为5+11+17=334.在右边的表格中,每行为等差数列,每列为等比数列,x+y+z=答案:A解析:由x ,54,32为等差数列,52,54,y 为等比数列及32,34,z 为等比数列,得 54 - x=32 - 54,y=54×12 , z=34×12 即 x=1 , y = 58 , z=38 ,1+58+38=25.如图1,在直角三角形ABC 区域内部有座山,现计划从BC 边上的某点D 开凿一条隧道到点A ,要求隧道长度最短,已知AB 长为5km ,则所开凿的隧道AD 的长度约为(A )4.12km (B)4.22km (C)4.42km (D)4.62km (E)4.92km答案:D解析:由已知BC=√52+122=13,从而12×5×12=12×AD ×13解得:AD=6013≈4.62 6.某商店举行店庆活动,顾客消费达到一定数量后,可以在4种赠品中随机选取2件不同的赠品,任意两位顾客所选的赠品中,恰有1件品种相同的概率是(A ) 1/6 (B ) 1/4 (C )1/3 (D )1/2 (E )2/3答案:E解析:将4种赠品分别用1,2,3,4编号,任意2位顾客任选赠品的总可能性为C 42C 42=36(种)A1表示2位顾客所选赠品中恰有意见相同,且相同赠品为1号赠品,则A1包含的可能性为C 32C 21=6种,从而P(A1)=16. 以此类推,A i (i=2,3,4,)表示2位顾客所选赠品中恰有一件相同,且相同,且相同赠品为i 号赠品,则P(A2)=P(A3)=P(A4)= 16 从而所求概率为4×16=23 7.多项式x3+ax2+bx -6的两个因式是x -1和x -2,则其第三个一次因式为(A)x -6 (B)x -3 (C)x+1 (D)x+2 (E)x+3答案:B解析:若x 3+a x 2+bx -6=(x -1)(x -2)(x -m),令x=0则有(-1)×(-2)×(-m )= -6 即m=38.某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,110,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为(A )45 (B )50 (C )52 (D )65 (E )100答案:B解析:如图4所示,公司员工可被分为8部分,为书写方便,这里A 、B 、C 分别代表仅有本科毕业证,仅有计算机等级证,仅有汽车驾驶证人数,A+AB+AC+ABC=130B+AB+BC+ABC=110由已知条件:C+AC+BC+ABC=90A+B+C=140ABC=30前三个方程得A+B+C+3ABC+2(AB+AC+BC)=330从而 140+90+2(AB+AC+BC )=330AB+AC+BC=50(人)9.甲商店销售某种商品,该商品的进价为每价90元,若每件定价为100元,则一天内能售出500件,在此基础上,定价每增加1元,一天便能少售出10出,甲商店欲获得最大利润,则该商品的定价应为(A )115元 (B )120元 (C )125元 (D )130元 (E )135元答案:B解析:设定价为100+a (元),由已知条件,利润l=(100+a )(500-10a )-90(500-10a )= -10a 2+400a+5000= - 10[(a −20)2-900]即当a=20时,利润最大.10.已知直线ax -by+3=0(a>0,b>0)过圆x2+4x+y2-2y+1=0的圆心,则a -b 的最大值为答案:D解析:所给圆为(x +2)2+(y −1)2=22,由已知条件 -2a -b+3=0,即b=3-2a因此ab=a (3-2a )=-2a 2+3a=-2[(a −34)2- 916]即当a = 34 ,b = 3- 2a = 32 时,ab=98为其最大值. 11.某大学派出5名志愿者到西部4所中学支教,若每所中学至少有一名志愿者,则不同的分配方案共有(A )240种 (B )144种 (C )120种 (D )60种 (E )24种答案:A解析:由题意知其中一所学校应分得2人,另外3所各一人.第一步,选一所学校准备分得2人,共有C 41种选法第二步,从5人中选2人到这所学校,共有C 52种选法第三步,安排剩下3人去3所学校,共有3种方式由乘法原理,不同分配方案为C 41C 52×3=240(种)12.某装置的启动密码是由0到9中的3个不同数字组成,连续3次输入错误密码,就会导致该装置永久关闭,一个仅记得密码是由3个不同数字组成的人能够启动此装置的概率为(A )1/120 (B )1/168 (C ) 1/240 (D )1/720 (E )3/1000答案:C解析:设Ai (i=1,2,3,)表示第i 次输入正确,则所求概率P=P (A 1∪A 1̅̅̅A 2∪A 1̅̅̅ A 2A 3)=P(A 1)+P(A 1̅̅̅A 2)+P(A 1A 2A 3)=110×9×8 + 71910×9×8 × 1719+71910×9×8×718719×1718=3720=124013.某居民小区决定投资15万元修建停车位,据测算,修建一个室内车位的费用为5000元,修建一个室外车位的费用为1000元,考虑到实际因素,计划室外车位的数量不少于室内车位的2倍,也不多于室内车位的3倍,这笔投资最多可建车位的数量为(A )78 (B )74 (C )72 (D )70 (E )66答案:B解析:设建室内停车位x 个,室外停车位y 个,由题意求满足{5000x +1000y ≤1500002x ≤y ≤3x的最大x+y 即7x ≤150,8x ≤150,则x 可能取值为19,20,21,取x=19,得y=55,19+55=74为满足题意的最多车位数.14.如图2,长方形ABCD 的两条边长分别为8m 和6m ,四边形OEFG 的面积是4m2,则阴影部分的面积为(A )32m2 (B )28 m2 (C )24 m2 (D )20 m2 (E )16 m2答案:B解析:白色区域面积为12BF ?CD + 12 FC ?AB -4=12CD?BC −4=20,从而阴影面积为6×8−20=28(m 2)15.在一次竞猜活动中,设有5关,如果连续通过2关就算成功,小王通过每关的概率都是1/2,他闯关成功的概率为答案:E解析:用Ai (i=1,2,3,4,5)表示第i 关闯关成功,则小王的过关成功率P(A 1A 2∪A 1̅̅̅A 2A 3∪A 1A 2̅̅̅A 3A 4∪A 1 ̅̅̅̅A 2̅̅̅A 3A 4∪A 1A 2 ̅̅̅̅̅A 3̅̅̅A 4A 5∪A 1̅̅̅A 2A 3̅̅̅A 4A 5∪A 1̅̅̅ A 2 ̅̅̅̅̅A 3̅̅̅A 4A 5)= 12 ? 12 + 12 ? 12 ? 12 + 2 ?12 ? 12 ? 12 ? 12 + 3 ? 12 ? 12 ? 12 ? 12 ?12 = 14 + 18 + 18 + 332= 1932在此处键入公式。

mba数学真题及答案大全解析

mba数学真题及答案大全解析

mba数学真题及答案大全解析MBA数学真题及答案大全解析引言:在现代商业领域,数学扮演着至关重要的角色。

无论是市场分析、财务管理还是战略决策,数学都可以为企业提供精确的数据和方法,帮助他们做出明智的决策。

因此,对MBA学生来说,掌握数学是至关重要的。

在备考MBA入学考试时,数学部分是考生需要重点准备的内容之一。

本文将为大家提供MBA数学真题及答案的大全解析,帮助大家更好地备考。

第一部分:初级数学题目1. 如下列出的数字序列:2,4,6,8,10,12...,请问下一个数字是多少?答案:14。

这题是一个等差数列题目,每个数字是前一个数字加2,所以下一个数字是12+2=14。

解析:初级数学题目主要考察的是基本的数学计算能力和思维逻辑能力。

对于这类题目,考生需要灵活运用数学运算方法,有时还需要一些直觉和观察力。

第二部分:中级数学题目2. 甲、乙、丙三个人在一家公司中的工资比例分别为4:5:6,如果甲的工资是1000美元,那么乙的工资是多少?答案:乙的工资是1250美元。

由题目可知,甲、乙、丙的工资比例为4:5:6。

设乙的工资为x,那么有4/5=1000/x,求得x=1250。

解析:中级数学题目通常涉及到一些实际问题,需要考生根据题目提供的条件进行计算和分析。

这类题目主要考察考生的应用能力和解决实际问题的能力。

第三部分:高级数学题目3. 一家公司在上个季度的销售额为5000万美元,在这个季度增长了20%,请问这个季度的销售额是多少?答案:这个季度的销售额是6000万美元。

增长率为20%,即销售额增加了原来的20%,所以5000*0.2=1000,5000+1000=6000,所以这个季度的销售额是6000万美元。

解析:高级数学题目通常涉及到复杂的数学运算和推理,需要考生具备较强的数学基础和逻辑思维能力。

这类题目主要考察考生的分析能力和判断能力。

第四部分:综合数学题目4. 一家公司拟在下个季度的三个月内推出一款新产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载mba数学历年真题名家详解地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容2015mba数学历年真题名家详解第二章应用题类型一商品利润与打折问题投资多种商品有赚有赔求最终净利润。

权重配比:适用于:已知每部分的权重(比例)及每部分影响的百分比来求最终整体的百分率p51-1p54-10甲乙售价均为a元甲赚了p%乙亏了p%则最终的盈亏2a-a/(1+p%)-a/(1+p%)如果涨跌同样百分比则比原值小。

张p%在降p%/(1+p%)恢复原值。

降p%在升p%/(1-p%)恢复原值p58 5、6多次资金进出问题p53-6采用图形表达资金的进出情况p53-8同期增长同比增长p55-15.去年1月份产值a每月增长p%十二月份的产值为a(1+p%)11今年上半年比去年上半年增长:(1+p%)12-1去年上半年=a+a(1+p%)+~+a(1+p%)今年上半年=a(1+p%)12+~~~+a(1+p%)17=(1+p%)12去年上半年。

去年下半年比上年增长:(1+p%)6-1年增长率(1+p%)12-1三大方向1增长下降并存(赚、亏)2图:一个对象资金多次进出。

表:多个对象的多因素比较3月增长季度增长年增长同期(比)增长类型二比例问题P63-23、24、25、271总量不变内部重新分配:方法:采用最小公倍数统一变化前后比例的总份额2某对象不变其他对象在变化。

还可用于:蒸发、稀释、增浓。

方法:将不变对象的比例份额统一,再根据变化对象的份额求出数量。

技巧:如果甲:乙=a:b甲不变乙变甲:乙=m:n则最后的总数为m+n的倍数而且还是a的倍数(am互质)3比例定理:如果a/b=c/d=e/f=(b+d+f)/(a+c+e)p65-28 a/b=(a+m)/(b+n)=m/n类型三路程问题1直线:相遇t=总路程/速度和追击t=总路程/速度差2圆圈:同向t-=周长/速度差反向t=周长/速度和3水:顺水v=v船+v水逆水v=v船-v水p74-17、19、214相对运动:同向v=v1-v2反向v=v1+v2 p70-2、8、10、20起点相遇:无论同向还是反向每人均跑整数圈且圈数之比等于速度之比比例技巧:p111-36两人已知相遇次数来求解每人跑的圈数(路程)两个物体在水上相遇追及,船上掉下物品所求时间均与水速无关火车t=(l1+l2)/(v1+v2)相向t=(l1+l2)/(v1-v2)同向队伍l/(v1+v0)+l/(v1-v0)+传达命令时间5变速运动p70-5p73-12p77-25、26V1(t原计划时间+t0)_=v2(t+t0)在相同时间内假设速度不变求出等价路程类型四工程问题工作量:定量:可将总量看成1.或将总量看成工作时间的最小公倍数变量工作效率:工作效率为核心。

可直接设效率。

总效率=各效率代数和(效率的正负)工作时间通过效率来求解变效率:对工作时间的影响(变速度)牛吃草问题:多对象依次轮流工作:技巧:对于多种完成方式的工程问题分别列出每种完成方式进行比较得到甲m天=乙n天降速因素作用时间=完成需要时间的差/效率的差模板:甲需a天乙需b天a<b两人同时开始,降速因素使得甲效率为原来的p%乙的为q%p<q最终同时完成则降速因素作用时间为(b-a)/(q%-p%)类型五杠杆交叉法应用于:一分为二、二合一第一部分a c-b整体C第二部分b a-cAbc表示属性值。

C介于ab之间1已知abc求数量p87-22已知ac及数量比求b p87-1改进方法:两部分数值之和=总体数值3已知ab及数量比求c p87-3改进方法:总平均值=两部分数值之和/总人数类型六浓度问题浓度=溶质/溶液=溶质/(溶质+溶剂)溶液只研究两种成分组成的混合物。

浓度:表示溶质占总体的百分比1稀释问题、浓缩、加浓:比例统一法.2两种混合:杠杆原理p91-13容器相互倒溶液:每倒一次相当于混合一次用杠杆原理求出数量比p91-2技巧:若用纯水稀释溶液可根据前后浓度倍数关系口算纯水的量4等量置换:用纯水等量置换溶液。

溶液总量不变,溶质为原来的几分之几则浓度也为原来的几分之几公式:体积为v升的溶液倒出m升补等量的水则浓度是原来的(v-m)/v5等量交换使浓度相同:交换量=ab/(a+b)类型七集合问题两个:a并b=a+b-a交b=全集-非a非b p93-2三个:a并b并c=a+b+c-a交b-b交c-a交c+a交b交c=全集-非a非b非c p93-3、4类型八不定方程与线性规划不定方程:特征:未知数较多。

方程较少。

一般考试:三个未知数。

两个方程。

借助:奇偶性、倍数、整除、质数、合数、大小范围、个位自由未知量的个数=未知量个数-方程数模板:由题得到:a1x+b1y+c1z=d1a2x+b2y+c2z=d2先消去一个未知量得到a3x+b3y=d3再借助特征讨论取值p96-3对于不定方程的分式,先裂项变形使分子为常数在讨论分母的取值至少至多问题1总量固定分析某对象的至少(至多)问题:思路:某对象至少(多)转换为其余对象最多(少)p98-1 2表达式型:采用整体代换讨论范围。

模板:a1x+b1y+c1z=d1 求a2x+b2y+c2z的至少(多)线性规划:在约束条件(方程、不等式)下。

求表达式最值(优化)模板:题干得到两个一次方程或不等式A1x+b1y>=c1A2x+b2y>=c2来分析a3x+b3y的最值p96-1、4、5、7关键点:当线性规划中出现小数,要讨论小数附近的两个整数值。

解法:先由两个不等式(方程)求出未知数的值。

若未知数为整数则直接得到答案。

若未知数为小数则需讨论小数附近的两个整数(可根据实际意义快速确定)类型九分段计费问题类型十应用题最值问题平均值定理:算术平均值大于等于几何平均值乘积为定值,和有最小值。

和为定值,乘积有最大值当n个数相等时取到最值p101-1、2、5二次函数Y=ax2+bx+c.顶点(-b/(2a),(4ac-b2)/4a)最值类型十一:其他问题N支队单循环比赛:1总共比赛c n2场2每支队比赛n-1场每支队跟其他各赛一场年龄问题:差值恒定、同步增长对于年龄问题若出现所谓的矛盾则某人在几年前未出生第三章方程不等式以计算为主,注意绝对值已知解集的范围来求参数。

含绝对值的不等式1公式法2平方法3图像法高次不等式:穿线法分式:1f(x).>0←==》f(x)g(x)>02移项类型一韦达定理Ax3+bx2+cx+d= 0 x1 x2xx1+x2+x3=-b/ax1x2x3=-d/ax1x2+x2x3+x1x3=c/a类型二根的特征1符号特征两正跟、两负根、一正一负根(可用韦达定理判断)2取值范围:画抛物线图像根据边界点函数值的正负确定根的区间p138-1 p140-4F(m)*f(n)<0《—+》(m,n)产生根(此时无需考虑开口方向对称轴判别式)对于ax2+bx+c=0一根比k大一根比k小=→af(k)<03有理根、无理根、整数根ax2+bx+c=0 abc属于q 判别式:完全平方数:有理根。

不是完全平方数:无理根。

整数根:判别式为完全平方数。

两根之和属于整数、两根之积属于整数整数根:可进行因式分解。

分解后根据系数整除情况来判断类型三解集为任意实数或空集F(x)>a解为空集 f(x)<=a解为R p144-51二次不等式Ax2+bx+c>(=)(<=)0解为Ra>(<)0判别式<=0注:若未指定二次不等式,则不要忘记讨论a为零的情况。

P145-1、2对于条件充分性判断题,尽量不要找正面肯定充分的特值。

取一个值充分不代表这个条件必然充分。

尽量找不满足题干的特值。

只要取一个值不充分则这个条件就不充分2有最值表达式的模板:f(x)最大值为m最小值为nF(x)<a解为R a>mF(x)<=a解为R a>=mF(x)>a解为R a<nF(x)> =a解为R a<=n条件范围落入题干范围即充分类型四关于解集计算类型五特殊方程及不等式1有关指数对数方程及不等式p149-2 p152-5a-n=1/a n(1三类公式同底对数(加减)Log a m+-log a nLog am bn=n/m logab 特殊m=n m=1 n=1 n=-1换底公式Log a b=log c b/log c特殊c=b log a b =1/ log a b(2两种图像:a与x同区间对数为正。

a与x不同区间对数为负(3不等式2根号:(平方根)p151-1、2Y=根号下ax+b画图直接根据定义域画图曲线与直线相切,两者联立方程使判别式=0即可Y=y0+-根号下【r2-(x-x0)2】+上半圆-下半圆X=x0+-根号下【r2-(y-y0)2】+右半圆-左半圆3分式方程不等式:分母分式不等式gx/fx>a通过移项通分合并p149-3 p151-3p152-6类型六函数的最值类型七其他问题柯西不等式:Ax+by=1 cx+dy=1 a/c不等于b/d(ac+bd)2<=(a2+b2)(c2+d2)当且仅当ad=bc时等号成立第四章数列一A n与s n的关系1已知a n求s n裂项、重组、首尾配对、错位相减2已知s n求a n p187-1A k+a k+1+……a m(m>k) =s m-s p188-3二等差数列1通项A k+(n-k)dDx+a1-d 一次函数斜率d2前n项和首尾及项数已知的求和(a1+an)/2 *n用于首项公差项数已知na1+n(n-1)/2*dd/2*n2+(a1-d/2)n二次函数3性质Am+an=ak+atSn/s2n-sn/……仍为等差公差n2dA k/b k=s2k-1/t2k-1A1/an/n/d.sn已知其中任意三个可求其2个三等比数列1通项:An/ak=q n-k2前n项和3性质等比数列六个参数。

A1/an/n/q/sn/s已知任意三个可求其余三个类型一判断数列1定义法:差值为定值等差比值为定值等比2三个数:等差a+c=2b等比ac=b2等差数列与等比数列的转化关系:若{an}为等差数列a{an}为等比数列新公比为a d若{an}为等比数列则log a an为等差数列an>0新公差log a q 等差数列通过指数运算后变为等比数列。

等比数列通过对数运算后变为等差数列等差数列:通项关于n的一次函数求和sn关于n的二次函数且常数项为0等比数列:通项:以q为底的指数函数求和:snF(n)-f(n-1)=常数为等差数列F(n)/f(n-1)=常数为等比数列等差数列整式多项式:sn比an仅高一次方等比数列:sn=a1/(1-q)-q(1-q)*anA n+1=qa n+d 构造(a n+1-c)=q(a n-c)a n+1=q a n+c(1-q)an+1-an=fna2-a1=f1a3-a2=f2……An-an-1=fn-1 相加An=a1+f1+f2+……fn-1构造:等差bn-bn-1=常数等比bn/bn-1=常数类似:等差an+1-an=fn an=a1+f1+f2+……fn-1 等比an+1/an=fn an=a1f1f2……fn-1 类型二告知数列求参数类型三元素求和错位相减公比为1/2或2的求和技巧1/2+(1/2)2+……(1/2)8=1-(1/2)822+23+……+28=29-22对公比为1/2或2的求和为最大项*2-最小项An与sn互相转化a n=a*n+b sn=a/2n2+(b+a/2)nSn=an2+bn an=2a*n+(b-a){a n}为等比数列公比为q则{a n2}公比为q2{1/a n}为公比数列公比为1/q {!a n!}为等比数列。

相关文档
最新文档