第六章 无机材料介电性能2PPT课件

合集下载

材料的介电性能PPT课件

材料的介电性能PPT课件
27
28
软模理论:
在一定情况下 ,晶体结构的铁电相变是布里渊区中心 的横向光学晶格振动的”柔软化”结果。
柔软化:声子横光学振动频率接近于零。
29
Ti4+—氧八面体中心

rTi 4 0.64 A

rO2 1.32 A
>120℃,立方结构 a=4.0Ao1
O2--O2-间隙:

4.01 21.32 1.37 A dTi4 1.28 A
本征电击穿理论 从理论上可分为
“雪崩”电击穿理论
8
电子加速运动(动能)与晶格振动的相互作用,把
1.本征电击穿理论
能量传递给晶格。当其处于平衡时,介质中有稳 定的电导,若电子能量大到一定值而破坏平衡,
电导由稳定态变为非稳定态。
A表示单位时间内从电场获得的能量
A e2E2 m*
E—电场强度;—松弛时间 (与电子能量U有关)
P

aE
exp


bI 2 E

15
以碰撞电离后自由电子数倍增到一定值作为电 击穿判据。
通过估算:由阴极出发的初始电子,在其 向阳极运动的过程中,1cm内的电离次数 达到40次,介质便击穿。 “四十代理论”: 当介质很薄时,碰撞电离不足以发展到40代,电子雪 崩系列已进入阳极复合,此时介质不能击穿。因此便 定性解释了薄层介质具有较高击穿电场的原因。
1.环境因素对铁电体性质的影响
(1) 外部条件(电场,应力。温度,压力)的变化, 可以引起铁电体极化强度PS的变化
32
(2)铁电体相变按自由能变化来分,可分为两类。 即:一级相变二级相变
33
一级相变 在相变点上,PS突变到零; PS

材料的介电性能(精品课件)

材料的介电性能(精品课件)

精品 PPT 可修改
27
(1)损耗的形式
电导损耗:在电场作用下,介质中会有泄漏电流流过,
引起电导损耗。
极化损耗:只有缓慢极化过程才会引起能量损耗,如偶
极子的极化损耗。
游离损耗:气体间隙中的电晕损耗和液、固绝缘体中局
部放电引起的功率损耗称为游离损耗。
精品 PPT 可修改
28
(2)介质损耗的表示
当容量为C0=0A/d的平板电容器上加一交变电压 U=U0eiwt。则:
1
3 0

( N11
i
N 2 2

N33
N44 )
电子位 离子位 取向 移极化 移极化 极化
空间电 荷极化
• 上式表明,研制高介电常数的方向,应选择大的
极化率的离子,同时选择单位体积内极化质点多
的电介质。
精品 PPT 可修改
26
6.1.4 介质损耗
损耗的形式 介质损耗的表示方法 介质损耗和频率、温度的关系
-
-
----
-
Eloc E宏 P / 3 0
精品 PPT 可修改
24
(2)克劳修斯-莫索堤方程
极化强度P可以写为单位
体积电介质在实际电场作
用下所有电偶极矩的总和
第i种偶极子 电极化率
P Ni i
Ei
P 3 0
Eloc E0 Ed Ei
单位体积第 第i种偶极子
i种偶极子 平均偶极矩 数目


离子位移极 离子结构 直流——红 温度升高极


化增强
离子松弛极 离子不紧密 直流——超 随温度变化

的材料
高频
有极大值

无机材料介电性能

无机材料介电性能
例如,BaTiO3在居里温度附近,电滞回线逐渐闭合为一 直线(铁电性消失)。
❖ 极化时间:电畴转向需要一定的时间,时间适当长一点,极 化就可以充分些,即电畴定向排列更完全。
实验表明,在相同的电场强度E作用下,极化时间长的, 具有较高的极化强度,也具有较高的剩余极化强度。
❖ 极化电压:极化电压加大,电畴转向程度高,剩余极化强度 变大。
❖ 晶体结构:同一种材料,单 晶体和多晶体的电滞回线是
不同的。右图反映BaTiO3单 晶和陶瓷电滞回线的差异。 单晶体的电滞回线很接近于
矩形,Ps和Pr很接近,而且Pr 较高;陶瓷的电滞回线中Ps与 Pr相差较多,表明陶瓷多晶体 不易成为单畴,即不易定向 排列。
五、铁电体的性能及其应用
1、介电特性 ❖ BaTiO3一类的钙铁矿型铁电
2、铁电体的基本特征 ❖ (1)铁电体的基本特征:
铁电材料在电极化中存在电滞回线; 晶体中存在电畴形式的微结构 ; 在外加电场下,晶体中的电偶极矩可转变方向; 存在居里温度Tc(常称居里点)。
❖ (2)居里温度Tc 当T>Tc时,材料由铁电相转变为顺电相,极化时电滞回 线特性消失。此时,P与E一般呈现线性关系,介电常数 随温度的变化服从居里-外斯定律:
一、铁电体
1、基本概念 ❖ 线性(非线性)介质:有外加电场时,介质的极化强度与宏
观电场的关系是线性(非线性)的,称为线性(非线性)介 质。 ❖ 自发极化:在无外电场作用的时候,晶体的正负电荷中心不 重合而呈现电偶极矩的现象称为自发极化。 ❖ 通常将晶胞里存在固有电偶极矩的晶体称为极性晶体。

❖ 铁电体:在一定温度范围内具有自发极化,且自发极化方向 能随外场作可逆转动的晶体称为铁电体。
这种结构也可看成是一组BO6八面体按 简立方图样排列而成,各氧八面体由公有 的氧离子联结,A正离子占据氧八面体之 间的空隙。钙钛矿原胞是立方的,也可畸 变成具有三角和四方对称性。

无机材料物理性能教案ppt

无机材料物理性能教案ppt
g
圆片式样体积电阻率的测量
电导的宏观参数
片状试样
电导的宏观参数
精确测定结果:
电导的宏观参数
8、表面电阻和表面电阻率
板状式样
电导的宏观参数
圆片试样
I V
r1 a r2 g
b
电导的宏观参数
直流四端电极法
适用于中高电导率的材料,能消除电 极非欧姆接触对测量结果的影响。
电导的宏观参数
在室温下测量电导率常采用简单的四探针法
匀材料,电流是均匀的, 电流密度J在各处是一 样的。
定义:单位面积通 过的电流,或单位时间 通过单位面积的电荷量。
表达式:
(A•cm-2)
3、电场强度 定义:单位长度上的电势差。 表达式: (V•cm-1)
4、电阻率:
ρ为电阻率, 为反映材料电阻性能的参数
5、电导率:
反映材料的电阻性能。
6、欧姆定律的微分形式
电导的物理特性
3、电解效应(离子电导特性) 离子的迁移伴随质量变化,离子在
电极附近发生电子得失,产生新的物 质。
法拉第电解定律:
——电解物质的量 ——电化当量
——通过的电量 ——法拉第常数
实质:类似电解质溶液中的电解。
如NaCl溶液的电解。
应用:可检验陶瓷材料是否存在离子电 导。
4、迁移率和电导率的一般表达式
载流子浓度
杂质电导:由固定较弱的离子(杂 质)的运动造成。
杂质电导中,载流子浓度取决于杂质 的数量和种类。
二、离子迁移率
❖ 离子电导的微观机构为载流子 ── 离子的扩散 。
❖ 间隙离子的扩散过程就构成了宏 观的离子“迁移”。
离子扩散机构
离子迁移率
间隙离子的势垒

第六章材料的结构与介电性能

第六章材料的结构与介电性能

第6章 材料的结构与介电性能“电介质”一词,概括了范围很广的材料。

具有介电常数的任何物质,都可以看作是电介质,至少在高频下是这样。

电介质系指在电场作用下,能建立极化的一切物质。

当在一个真空平行电容器的电极板间嵌入一块电介质时,如果在电极之间施加外电场,则可发现在介质表面上感应出了电荷,即正极板附件的介质表面上感应出了负电荷,负极板附近的介质表面上感应出了正电荷,这种表面电荷称为感应电荷,也称束缚电荷。

束缚电荷不会形成漏导电流。

电介质在电场作用下产生感应电荷的现象,称之为电介质的极化。

电路中的电容器c 包含几何的和材料的两种因素。

对以上真空平行电容器C 0=dA ε0 式中A 为面积,d 为板极间距,ε0是真空介电常数,ε0=8.85×10-12F/m (法拉/米)。

如果在真空电容器中嵌入电介质,则 C= C 0×r C εεε00= 式中ε是电介质的介电常数,εr称相对介电常数。

由以上两式不难推出,ACdC C r ⨯==001εε εr 反映了电介质极化的能力。

本章讨论无机材料最一般的介电性能,包括介质的极化、介质的损耗、介电强度,着重讨论这些参数的物理概念及其与物质微观结构之间的关系。

§6.1 介质的极化一、极化现象及其物理量介质最重要的性质是在外电场作用下能够极化。

所谓极化,就是介质内质点(原子、分子、离子)正负电荷重心的分离,从而转变成偶极子。

在电场作用下,构成质点的正负电荷沿电场方向在有限范围内短程移动,组成一个偶极子(图6.1)。

设正电荷与负电荷的位移矢量为l ,则定义此偶极子的电偶极矩ql =μ,规定其方向从负电荷指向正电荷,即电偶极矩的方向与外电场E 的方向一致。

如果介质中含有极性分子,则这些极性分子都可看作偶极子。

在外电场作用下,这些极性分子发生转向,转向的结果是每一个极性轴趋于电场方向,所以每一个偶极子的电偶极矩μ应看作原极性分子偶极矩在电场方向的投影。

无机材料的介电性能-第2讲

无机材料的介电性能-第2讲
基本原理是基于电滞回线的极 化反转和剩余极化特性。 铁电存储器的主要形式有 铁电随机存取存储器(FRAM):直 接利用铁电薄膜的极化反转,以薄 膜的±Pr状态分别代表二进制的 “0”和“1”。 铁电场效应晶体管(FFET):在FFET中,铁电薄膜作为源 极和漏极之间的栅极,其极化状态±Pr会改变源—漏极 之间的电流,可由该电流读出所存储的信息。 铁电动态随机存取存储器(FDRAM):DRAM是基于电 荷积累的半导体存储器,在FDRAM中,利用超小型铁电 薄膜电容器的高电容率使存储量大幅度提高。
Ti4+-O2-间距大(2.005A), 故氧八面体间隙大,
因而
Ti4+离子能在氧八面体中振动。
T>120
℃, Ti4+处在各方几率相同(偏离中心的几率为
零),对称性高,顺电相。
T<120
℃ Ti4+由于热涨落,偏离一方,形成偶极矩,
按氧八面体三组方向相互传递、偶合,形成自发极化电 畴。
第六章 无机材料的介电性能
存在一个居里温度Tc(常称居里点),当T>Tc时,材料由铁电 相转变为顺电相,极化时电滞回线特性消失,P与E一般呈现 线性关系,并且介电常数随温度的变化服从居里-外斯定律:
C /(T T0 ),T TC
式中C为居里-外斯常数,T0为居里-外斯温度。对连续 相变,T0=Tc;对一级相变,T0<Tc。
第六章 无机材料的介电性能
铁电存储器的应用领:
强耐辐射能力—— 空间和航天技术应用 优异的读写耐久性—— 电视频道存储器、游戏机数 字存储器、汽车里程表和复印机计数器等应用 低电压工作和低功耗——移动电话及射频识别系统中 的存储器 高速写入和编程能力、低功耗、长耐久性等——IC卡 最理想的存储器。

材料的介电性能教学课件

材料的介电性能教学课件

添加填料
通过向介电材料中添加填料 来提高其介电性能。
表面改性
通过改变介电材料表面的性 质来提高其介电性能。
掺杂改性
通过掺杂其他物质来改善介 电材料的性能。
现有问题及解决方案
1 介电强度降低的问

通过材料改良和设计优 化来提高介电强度。
2 介电损耗过高的问

3 改进介电性能的新
方向
通过优化材料结构和表 面处理来降低介电损耗。
材料的介电性能教学课件 PPT
本课件旨在介绍材料的介电性能,涵盖介电性能的概述、介电材料的分类、 介电应用领域、介电测试技术、性能改善以及现有问题及解决方案等主题。
介电性能概述
1 介电常数的定义
2 介电损耗的定义
介电常数是材料对电场强度的响应程度的 量度。
介电损耗是材料中电能转化为热能的程度。
3 介电强度的定义
4 介电中的极化现象
介电强度是材料能够承受的最大电场强度。
极化是材料中正、负电荷偏离平衡位置的 过程。
介电材料分类
常用的介电材料
常见的介电材料包括陶瓷、塑料、橡胶等。
介电材料的特性比较
不同介电材料具有不同的介电常数、介电损耗和介电强度。
介电应用领域
介电材料在电容器中的 应用
介电材料用于制造电容器以 存储电荷。
介电材料在电子器件中 的应用
介电材料用于制造电子器件 以实现绝缘和隔离于高压设备中的 绝缘和耐压功能。
介电测试技术
1 介电常数测试
通过实验测量材料的介电常数。
3 介电强度测试
通过实验测量材料的介电强度。
2 介电损耗测试
通过实验测量材料的介电损耗。
介电材料的性能改善

第6章 材料的介电性能

第6章 材料的介电性能
O
+ +
P

rsin


rd

r
+
+
+ +
+
dq=-dS=-Pcos2r2sind
=-2r2Pcossind
dq电荷在空腔球心O点产生的电场dE—即在P方向的投影:
1 dq dE cos 40 r 2

1 P cos 2 sin d 2 0

极化机制种类

电子的极化 离子的极化 偶极子取向极化 空间电荷极化

极化形式

位移极化 松弛极化 自发极化
1.电子,离子位移极化
电子位移极化
离子位移极化
(1)电子位移极化 电子位移极化率e 加电场后 电子轨道
在电场作用下, 电子位移形式偶极矩*
O -q
Eloc 加电场前 电子轨道 M +q -q
1 1 E0 Ed PE P 3 0 3 0
E1
1 P 3 0
?
P Pcos
E1的计算
相对于极化方向夹角为处空腔 表面上的面电荷密度 =-P=-Pcos 取d角对应的微小环球面,其 环球带面积为: dS=2rsinrd =2r2sind dS面上的总束缚电荷:
0 —真空介电常数(8.85410-12 F/m)
电位移 D 电位移是为了描述电解质的高斯定理所引入的物理量,其 定义:
D 0E P
E—电场强度 P—磁场强度
对各向同性电介质,由(6-6)和(6-7) 得
D 0 E P 0 E 0 E 0 r E E
偶极矩

《介电性能》课件

《介电性能》课件

1
极化方式
极化是一种介质对电场响应的行为,主要通过物质中存在的不同类型的极化来实现。
2
电子极化

电子极化是介电性能中最主要的极化方式之一,它跟物质的晶体结构有关。
3
离子极化
离子极化主要由离子对电场的响应来实现,它还与溶液中的离度严密相关。
4
取向极化
取向极化是一种分子极性物质的行为,是由于分子在电场中会发生偏转而导致电偶极矩变化。
介电性能是电子、医学、能源 等领域中不可或缺的物理量, 不断提升其性能已经成为科技 进步的重要推动力。
未来的研究方向
未来的研究方向是在更高频率 和更小尺寸范围内提高介电性 能,以满足现代电子和通信系 统的需求。
总结
介电性能在科技领域发挥着越 来越重要的作用,未来的研究 将有更多的技术突破和应用创 新。
应用案例
电子产品中的 应用
• 手机屏幕 • 电池 • Capacitor
医疗和生物学
• 医学成像 • 人造器官 • 生物芯片
能源相关领域
• 高压电线 • 电容器 • 传输线路
未来的发展方向
将介电性能应用到更小 的电子元器件、高频电 子学、卫星通信等领域, 并不断提升其性能和应 用价值。
结论
介电性能在各个领域中 的作用
3 应用领域
广泛应用于电容器、电缆、雷达、半导体、医学图像等领域。
介电常数
概念解释
介电常数可以理解为一种材料 的电容量,也就是材料在电场 作用下存储电荷的能力大小。
介电常数与电容
介电常数越大,所能存储的电 荷量也就越大,相应的电容器 的电容量就会变得更大。
介电性能的影响因素
介电常数受材料类型、分子体 积和分子极性等因素影响,这 些因素也会对介电性能产生影 响。

材料的介电性课件

材料的介电性课件

频率对介电损耗的影响
总结词
随着频率的增加,介电损耗通常会增 加。
详细描述
介电损耗是指电场能量转换为热能并 耗散在材料中的过程。在高频电场下 ,由于电子和离子的运动速度限制, 能量转换更为频繁,导致介电损耗增 加。
频率对介电强度的影晌
要点一
总结词
介电强度与频率的关系较为复杂,但通常在高频下介电强 度会有所降低。
材料的介电性课件
• 介电性基本概念 • 介电性与物质结构 • 介电性与温度 • 介电性与频率 • 介电性与应用
01
介电性基本概念
介电常数
总结词
介电常数是衡量材料介电性能的重要参数,它表示了电场中材料对电能的保持 能力。
详细描述
介电常数的大小取决于材料的种类、温度、湿度和频率等条件。在相同的条件 下,介电常数越大,表示材料对电场的屏蔽作用越强,电能被保持得越紧密。
详细描述
介电性是指材料在电场作用下,内部电荷的分布和运动行为。分子极性是指分子内部正负电荷分布不均匀,导致 分子具有电偶极矩。极性分子在电场中会发生取向极化,即分子正负电荷中心发生相对位移,与电场方向一致。 这种取向极化会导致材料表现出较高的介电常数。
晶体结构与介电性
总结词
晶体结构的紧密程度和对称性对介电性产生影响,晶体中的离子或分子的相对位置和排列方式决定了 介电常数的大小。
详细描述
离子化合物是由正负离子通过离子键结合形成的化合物。在离子化合物中,正负离子的 相互作用较强,容易发生取向极化。当电场施加时,离子间的相互作用会导致正负离子 发生相对位移,与电场方向一致,从而表现出较高的介电常数。此外,离子化合物的介
电常数还与其离子半径、晶体结构和温度等因素有关。
03

第六章无机材料的介电性能(PPT-精品)

第六章无机材料的介电性能(PPT-精品)
结构不均 匀的材料
极化的频 率范围
直流—— 光频
直流—— 红外
直流—— 超高频
直流—— 超高频
直流—— 超高频
直流—— 高频
与温度的关 能量消耗 系
无关

温度升高极 化增强
随温度变化 有极大值
随温度变化 有极大值
随温度变化 有极大值
随温度升高 而减小
很弱 有 有 有 有

电子极化


离子极化

松弛极化
M+a= -k(x+-x-)+qEoe it M-a=-k(x- - x+)+qEoe it 得: M*=M+M-/(M++M-) 弹性振子的固有频率 : o=(k/M*)1/2 离子位移极化率: e =[1/(o2- 2)]q2/M* 0 静态极化率: i =q2/M* o2= q2 k
3. 松弛极化
克劳修斯-莫索蒂方程的适用范围: 适用于分子间作用很弱的气体、非极性液体、非极性 固体、具有适当对称性的固体。
从克劳修斯-莫索蒂方程:讨论高介电常数的质点: ( r -1 )/( r +2 )= n /(3 o ) ( r -1 )/( r +2 )----- r越大其值越大
介质中质点极化率大,极化介质中极化质点数多,则介质 具有高介电常数。
6.2.3 极化机制
极化的基本形式: 第一种: 位移式极化------弹性的、瞬间完成的、不消 耗能量的极化。 第二种:该极化与热运动有关,其完成需要一定的时 间,且是非弹性的,需要消耗一定的能量。
1. 电子位移极化
电子位移极化和电子松弛极化 电子位移极化
无外电场作用

材料物理材料的介电性能PPT课件

材料物理材料的介电性能PPT课件
例如,H2O Hcl CO SO2
因无序排列对外不呈现电性。
电子云的 正电中心
电介质
极化面 电荷

+–
+
+ – + –
+

+–
+ – E0 + –
+


+ – + –
+–
+

+ –E E+ –
+–
+
无外场时,电偶极子杂乱无章的排列
3、极化机制
电子位移极化
无极分子(Nonpolar molecule) 在无外场作用下整个分子无电矩。
A、电容材料
I、存储电能
传统 电容 器
VS
电 池
超级电 容器
高能量密度 高功率密度 长循环寿命
超级电容器
• 超级电容器 (Supercapacitors),它兼有静电电容器和电池 特性,能提供比静电电容器更高的能量密度,比电池更高的功 率密度和更长的循环寿命。
A、电容材料
I、存储电能
A、电容材料
A、电容材料
I、存储电能
制备高性能的超级电容器有2个途径: A、是增大电极材料比表面积,从而增大双电层电容量; B、是提高电极材料的可逆法拉第反应的机率,从而提 高准电容容量。 实际应用中,这2种储能机理往往同时存在。
A、电容材料
I、存储电能
原理 种类 优点 缺点
研究热点
碳素材料
以双电层为主
活性炭(AC);活性炭纤维(CFA);碳纳米 管(CNTs);炭气凝胶(CAGs);石墨等
3、极化机制
离子位移极化

《材料的介电性能》课件

《材料的介电性能》课件

电容和电感的应用
电容的应用
在电子设备中,电容被广泛应用于滤 波、去耦、旁路、调谐等场合,以实抑制电磁 干扰、阻尼振荡和磁性元件等,同时 也在无线通信、电力传输等领域有广 泛应用。
电容和电感的计算方法
电容的计算方法
根据电容的定义,可以通过测量电容器极板上的电荷量和电压来计算电容的大小。此外,还可以通过介质常数、 电极面积和间距等参数来计算电容。
生物医学应用
介电材料在生物医学领域也有广泛应用,如制备生物传感器、药物载 体和组织工程支架等。
THANKS
感谢观看
《材料的介电性能》ppt课件
contents
目录
• 介电性能概述 • 介电常数 • 介质损耗 • 电容和电感 • 介电性能的应用
01
介电性能概述
介电性能的定义
介电性能是指材料在电场作用下表现 出的性质,包括电导率、介电常数、 介质损耗等。
它反映了材料对电场的响应和作用, 是材料在电气工程领域应用的重要基 础参数之一。
集成电路封装
在集成电路的封装过程中,介电材料用于绝缘和 保护内部电路,同时提供导热性能。
在电力工程中的应用
1 2
绝缘子
高压输电线路中的绝缘子要求材料具有高介电强 度和良好的耐老化性能,以确保电力传输的安全 。
高压设备绝缘
在电力变压器、开关设备等高压电气设备中,介 电材料用于绝缘和支撑,确保设备正常运行。
常数越大。
温度
温度对介电常数有一定影响, 温度升高,介电常数可能减小

压力
压力对介电常数的影响较小, 但在高压下,介电常数可能会
有所变化。
频率
在高频电磁场下,介电常数与 电磁波的频率有关,频率越高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 由自发极化方向相同的晶胞所组成的小区域便称为电畴,分 隔相邻电畴的界面称为畴壁。
A-A:180°畴壁 B-B:90 °畴壁
铁电体中电畴是不能在空间任意取向的,只能沿着晶体的 某几个特定晶向取向,取决于该种铁电体原型结构的对称性。
TEM observation of domains in BaTiO3 ceramics
“压峰效应”:为了降低居里点处的介电常数的峰值, 即降低非线性。
2、铁电体的应用
6.5 压电性
❖ 压电性:某些介质在机械力作用下发生电极化或电极化的变 化,这样的性质称为压电性。具有压电性的介质称为压电体。
6.4 铁电性
❖ 1920年 法国人瓦拉赛克(Valasek) 发现即酒石酸钾钠 (NaKC4H4O6·4H2O)的铁电现象;
❖ 20世纪50年代以来 铁电体种类急剧增加,早年是科学家实 验室中的珍品,被当作研究结构相变的典型材料;
❖ 20世纪80年代以来 铁电体作为一类新型功能材料而崭露头 角。
一、铁电体
化强度)
剩余极化强度 Pr
矫顽电 场强度
Ec
2、电滞回线的影响因素: ❖ 极化温度:极化温度的高低影响到电畴运动和转向的难易。
矫顽场强和饱和场强随温度升高而降低。 极化温度较高,可以在较低的极化电压下达到同样的效
果,其电滞回线形状比较瘦长。
❖ 环境温度:环境温度的变化对材料的晶体结构有影响,从而 使内部自发极化发生改变,尤其是在相变处(晶型转变温度 点)更为显著。
2、铁电体的基本特征 ❖ (1)铁电体的基本特征:
铁电材料在电极化中存在电滞回线; 晶体中存在电畴形式的微结构 ; 在外加电场下,晶体中的电偶极矩可转变方向; 存在居里温度Tc(常称居里点)。
❖ (2)居里温度Tc 当T>Tc时,材料由铁电相转变为顺电相,极化时电滞回 线特性消失。此时,P与E一般呈现线性关系,介电常数 随温度的变化服从居里-外斯定律:
体具有很高的介电常数,可 以用来制造小体积大容量的 陶瓷电容器。 ❖ 为了提高室温下材料的介电 常数,可添加其他钙铁矿型 铁电体形成固溶体。
❖ 在实际生产中需要解决调整居里点和居里点处介电常数的峰 值问题,这就是所谓“移峰效应”和“压峰效应”。
“移峰效应”:在铁电体中引入某种添加物生成固溶体, 改变原来的晶胞参数和离子间的相互联系,使居里点向 低温或高温方向移动。
钛酸钡自发极化的机制与其晶体结构密切相关!
BaTiO3晶体在温度 变化过程中由于晶 体结构的变化,介 电系数也随着变化, 在相变温度点出现 介电系数的跃迁。 这是由于在这些温 度上产生了结构的 变化。
BaTiO3单晶的介电常数与温度的关系
三、铁电畴
❖ 铁电体的自发极化被电场重新定向后,晶体内部会产生退极 化场,电耦极矩在退极化电场的作用下形成退极化能。为降 低系统的能量,晶体内就会分裂出一系列自发极化方向不同 的小区域,使其各自所建立的退极化电场互相补偿,直到整 个晶体对内、对外均不呈现电场为止。
这种结构也可看成是一组BO6八面体按 简立方图样排列而成,各氧八面体由公有 的氧离子联结,A正离子占据氧八面体之 间的空隙。钙钛矿原胞是立方的,也可畸 变成具有三角和四方对称性。
钛酸钡、钛酸铅、锆钛酸铅和KxNa1xNbO3等铁电压电陶瓷具有钙钛矿结构。
二、钛酸钡自发极化的微观机理
❖ 铁电体的位移性理论: 自发极化主要是由晶体中某些 离子偏离平衡位置,使单位晶 胞中出现偶极矩,偶极矩之间 的相互作用使偏离平衡位置的 离子在新的位置上稳定下来, 同时晶体结构发生了畸变。
1、基本概念 ❖ 线性(非线性)介质:有外加电场时,介质的极化强度与宏
观电场的关系是线性(非线性)的,称为线性(非线性)介 质。 ❖ 自发极化:在无外电场作用的时候,晶体的正负电荷中心不 重合而呈现电偶极矩的现象称为自发极化。 ❖ 通常将晶胞里存在固有电偶极矩的晶体称为极性晶体。
❖ 铁电体:在一定温度范围内具有自发极化,且自发极化方向 能随外场作可逆转动的晶体称为铁电体。
❖ 铁电性:材料在一定温度范围内具有自发极化,且其自发极 化可以因外电场作用而转向,材料的这种特性称为铁电性。
❖ 铁电体一定是极性晶体,但并非所有极性晶体都具有铁电性!
铁电材料的电滞回线 因铁电体介电常数值特别的高,也称为“强介材料”或“强介体” 铁电体的标识性特征是其电极化与外电场的关系表现为电滞回线!
例如,BaTiO3在居里温度附近,电滞回线逐渐闭合为一 直线(铁电性消失)。
❖ 极化时间:电畴转向需要一定的时间,时间适当长一点,极 化就可以充分些,即电畴定向排列更完全。
实验表明,在相同的电场强度E作用下,极化时间长的, 具有较高的极化强度,也具有较高的剩余极化强度。
❖ 极化电压:极化电压加大,电畴转向程度高,剩余极化强度 变大。
❖ 晶体结构:同一种材料,单 晶体和多晶体的电滞回线是
不同的。右图反映BaTiO3单 晶和陶瓷电滞回线的差异。 单晶体的电滞回线很接近于
矩形,Ps和Pr很接近,而且Pr 较高;陶瓷的电滞回线中Ps与 Pr相差较多,表明陶瓷多晶体 不易成为单畴,aTiO3一类的钙铁矿型铁电
C /(T T0 ), T TC
式中C为居里-外斯常数,T0为居里-外斯温度。对连续相 变,T0=Tc;对一级相变,T0<Tc。
知识回顾:钙钛矿结构
钙钛矿结构 perovskite structure
具有钙钛矿结构的铁电、压电陶瓷属 于ABO3型, 其中A为一价或二价金属离子, 而B为四价或五价金属。半径较小的B正离 子位于氧八面体中心,半径较大的A正离 子和氧离子分别位于顶角、面心。
铌酸钾晶体中的电畴
➢在外电场作用下,铁电畴总是要趋于与外电场方向一致,这称 为电畴的“转向”。实际上电畴运动是通过在外电场作用下新畴 的出现、发展以及畴壁的移动来实现的,而且由于转向时引起较 大内应力,这种转向不稳定。
四、电滞回线的形成
1、电滞回线是铁电畴在外电场作用下运动的宏观描述。
饱和极化强 度Ps(自发极
相关文档
最新文档