2015年北京市高考数学试卷(文科)
2015年北京市高考数学试卷(文科)
2015年北京市高考数学试卷(文科)一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}2.(5分)圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2 3.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)设a →,b →是非零向量,“a →⋅b →=|a →||b →|”是“a →∥b →”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1B .√2C .√3D .28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间 加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为 A .6升 B .8升 C .10升 D .12升二、填空题9.(5分)复数i (1+i )的实部为 . 10.(5分)2﹣3,312,log 25三个数中最大数的是 .11.(5分)在△ABC 中,a=3,b=√6,∠A=2π3,则∠B= .12.(5分)已知(2,0)是双曲线x 2﹣y 2b2=1(b >0)的一个焦点,则b= .13.(5分)如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x +3y的最大值为 .14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2√3sin2x 2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,2π3]上的最小值.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=√2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=x22﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,√e]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B 两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.2015年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.2.(5分)圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【解答】解:由题意知圆半径r=√2,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.3.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选B4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16, 因为青年教师有320人,所以老年教师有180人, 故选:C .5.(5分)执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .6【解答】解:模拟执行程序框图,可得k=0,a=3,q=12a=32,k=1 不满足条件a <14,a=34,k=2不满足条件a <14,a=38,k=3不满足条件a <14,a=316,k=4满足条件a <14,退出循环,输出k 的值为4.故选:B .6.(5分)设a →,b →是非零向量,“a →⋅b →=|a →||b →|”是“a →∥b →”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解答】解:(1)a →⋅b →=|a →||b →|cos <a →,b →>; ∴a →⋅b →=|a →||b →|时,cos <a →,b →>=1; ∴<a →,b →>=0; ∴a →∥b →;∴“a →⋅b →=|a →||b →|”是“a →∥b →”的充分条件; (2)a →∥b →时,a →,b →的夹角为0或π; ∴a →⋅b →=|a →||b →|,或﹣|a →||b →|; 即a →∥b →得不到a →⋅b →=|a →||b →|;∴“a →⋅b →=|a →||b →|”不是“a →∥b →”的必要条件;∴总上可得“a →⋅b →=|a →||b →|”是“a →∥b →”的充分不必要条件. 故选A .7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1B .√2C .√3D .2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直, 底面为正方形如图:其中PB ⊥平面ABCD ,底面ABCD 为正方形 ∴PB=1,AB=1,AD=1, ∴BD=√2,PD=√2+1=√3. PC ═PA =√2该几何体最长棱的棱长为:√3 故选:C .8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间 加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为 ( )A .6升B .8升C .10升D .12升【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8; 故选:B .二、填空题9.(5分)复数i (1+i )的实部为 ﹣1 . 【解答】解:复数i (1+i )=﹣1+i , 所求复数的实部为:﹣1. 故答案为:﹣1.10.(5分)2﹣3,312,log 25三个数中最大数的是 log 25 .【解答】解:由于0<2﹣3<1,1<312<2,log 25>log 24=2,则三个数中最大的数为log 25. 故答案为:log 25.11.(5分)在△ABC 中,a=3,b=√6,∠A=2π3,则∠B= π4.【解答】解:由正弦定理可得,a sinA =b sinB,即有sinB=bsinAa=√6×√323=√22,由b<a,则B<A,可得B=π4.故答案为:π4.12.(5分)已知(2,0)是双曲线x2﹣y2b2=1(b>0)的一个焦点,则b=√3.【解答】解:双曲线x2﹣y2b2=1(b>0)的焦点为(√1+b2,0),(﹣√1+b2,0),由题意可得√1+b2=2,解得b=√3.故答案为:√3.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y 的最大值为7.【解答】解:由z=2x+3y,得y=−23x+z3,平移直线y=−23x+z3,由图象可知当直线y=−23x+z3经过点A时,直线y=−23x+z3的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 乙 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 数学 .【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 乙;②观察散点图,作出对角线y=x ,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学; 故答案为:乙;数学.三、解答题(共80分) 15.(13分)已知函数f (x )=sinx ﹣2√3sin 2x 2.(1)求f (x )的最小正周期; (2)求f (x )在区间[0,2π3]上的最小值.【解答】解:(1)∵f (x )=sinx ﹣2√3sin 2x 2=sinx ﹣2√3×1−cosx 2=sinx +√3cosx ﹣√3=2sin (x +π3)﹣√3∴f (x )的最小正周期T=2π1=2π;(2)∵x ∈[0,2π3],∴x +π3∈[π3,π],∴sin (x +π3)∈[0,1],即有:f (x )=2sin (x +π3)﹣√3∈[﹣√3,2﹣√3],∴可解得f (x )在区间[0,2π3]上的最小值为:﹣√3.16.(13分)已知等差数列{a n }满足a 1+a 2=10,a 4﹣a 3=2 (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 【解答】解:(I )设等差数列{a n }的公差为d . ∵a 4﹣a 3=2,所以d=2 ∵a 1+a 2=10,所以2a 1+d=10 ∴a 1=4,∴a n =4+2(n ﹣1)=2n +2(n=1,2,…) (II )设等比数列{b n }的公比为q , ∵b 2=a 3=8,b 3=a 7=16, ∴{b 1q =8b 1q 2=16∴q=2,b 1=4∴b 6=4×26−1=128,而128=2n +2 ∴n=63∴b 6与数列{a n }中的第63项相等17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲 乙 丙 丁100 √ × √√217 × √ × √ 200 √√ √ ×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为2001000=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为3001000=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为2001000=0.2,同时购买甲和丙的概率为100+200+3001000=0.6,同时购买甲和丁的概率为1001000=0.1,故同时购买甲和丙的概率最大.18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=√2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC , ∴OC ⊥平面VAB , ∵OC ⊂平面MOC , ∴平面MOC ⊥平面VAB(3)在等腰直角三角形ACB 中,AC=BC=√2,∴AB=2,OC=1, ∴S △VAB =√3, ∵OC ⊥平面VAB ,∴V C ﹣VAB =13OC •S △VAB =√33,∴V V ﹣ABC =V C ﹣VAB =√33.19.(13分)设函数f (x )=x 22﹣klnx ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,√e ]上仅有一个零点. 【解答】解:(1)由f (x )=x 22−klnx(k >0)f'(x )=x ﹣kx=x 2−k x由f'(x )=0解得x=√kf (x )与f'(x )在区间(0,+∞)上的情况如下:X (0,√k )√k (√k ,+∞)f'(x ) ﹣ 0+ f (x )↓k(1−lnk)2↑所以,f (x )的单调递增区间为(√k ,+∞),单调递减区间为(0,√k );f (x )在x=√k 处的极小值为f (√k )=k(1−lnk)2,无极大值.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (√k )=k(1−lnk)2.因为f (x )存在零点,所以k(1−lnk)2≤0,从而k ≥e当k=e 时,f (x )在区间(1,√e )上单调递减,且f (√e )=0 所以x=√e 是f (x )在区间(1,√e )上唯一零点.当k >e 时,f (x )在区间(0,√e )上单调递减,且f(1)=12>0,f(√e)=e−k2<0,所以f (x )在区间(1,√e )上仅有一个零点.综上所述,若f (x )存在零点,则f (x )在区间(1,√e ]上仅有一个零点.20.(14分)已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x=3交于点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由. 【解答】解:(1)∵椭圆C :x 2+3y 2=3,∴椭圆C 的标准方程为:x 23+y 2=1,∴a=√3,b=1,c=√2,∴椭圆C 的离心率e=c a =√63;(2)∵AB 过点D (1,0)且垂直于x 轴,∴可设A (1,y 1),B (1,﹣y 1),∵E (2,1),∴直线AE 的方程为:y ﹣1=(1﹣y 1)(x ﹣2), 令x=3,得M (3,2﹣y 1), ∴直线BM 的斜率k BM =2−y 1+y 13−1=1;(3)结论:直线BM 与直线DE 平行. 证明如下:当直线AB 的斜率不存在时,由(2)知k BM =1, 又∵直线DE 的斜率k DE =1−02−1=1,∴BM ∥DE ; 当直线AB 的斜率存在时,设其方程为y=k (x ﹣1)(k ≠1), 设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y ﹣1=y 1−1x 1−2(x ﹣2),令x=3,则点M (3,x 1+y 1−3x 1−2),∴直线BM 的斜率k BM =x 1+y 1−3x 1−2−y 23−x 2,联立{x 2+3y 2=3y =k(x −1),得(1+3k 2)x 2﹣6k 2x +3k 2﹣3=0,由韦达定理,得x 1+x 2=6k 21+3k 2,x 1x 2=3k 2−31+3k 2,∵k BM ﹣1=k(x 1−1)+x 1−3−k(x 2−1)(x 1−2)−(3−x 2)(x 1−2)(3−x 2)(x 1−2)=(k−1)[−x1x2+2(x1+x2)−3] (3−x2)(x1−2)=(k−1)(−3k2+31+3k2+12k21+3k2−3) (3−x2)(x1−2)=0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.。
2015年高考北京卷文科数学
绝密★启用前2015年普通高等学校招生全国考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本市卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|□5<x<2},B={x|□3<x<3},则A□B=A. {x|3<x<2}B. {x|5<x<2}C. {x| 3<x<3}D. {x|5<x<3}(2)圆心为(1,1)且过原点的圆的方程是(A)(x-1)2+(y-1)2=1 (B)(x+1)2+(y+1)2=1(C)(x+1)2+(y+1)2=2 (D)(x-1)2+(y-1)2=2(3)下列函数中为偶函数的是()(A)y=x²sinx (B)y=x²cosx (C)Y=|ln x| (D)y=2x(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为()(A)90 (B)100 (C)180 (D)300(5)执行如果所示的程序框图,输出的k值为(A)3 (B)4 (C)5 (D)6(6)设a,b是非零向量,“a·b=|a||b|”是“a//b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A)1 (B)(B) (D)2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为(A)6升(B)8升(C)10升(D)12升第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)复数i(1+i)的实数为(10)2-3,123,log25三个数中最大数的是(11)在△ABC中,a=3,b=,∠A=,∠B=(12)已知(2,0)是双曲线=1(b>0)的一个焦点,则b=.(13)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为(14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生。
2015年北京高考数学真题及答案(文科)
数学(文)(北京卷) 第 1 页(共 12 页)绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B =I(A ){|32}x x -<< (B ){|52}x x -<< (C ){|33}x x -<<(D ){|53}x x -<<(2)圆心为(1,1)且过原点的圆的方程是(A )22(1)(1)1x y -+-= (B )22(1)(1)1x y +++= (C )22(1)(1)2x y +++= (D )22(1)(1)2x y -+-= (3)下列函数中为偶函数的是(A )2sin y x x = (B )2cos y x x = (C )|ln |y x =(D )2x y -=(4)某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为 (A )90 (B )100 (C )180 (D )300数学(文)(北京卷) 第 2 页(共 12 页)(5)执行如图所示的程序框图,输出的k 值为(A )3 (B )4 (C )5 (D )6(6)设,a b 是非零向量.“||||⋅=a b a b ”是“∥a b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A )1 (B (C (D )2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 (A )6升 (B )8升 (C )10升(D )12升1俯视图数学(文)(北京卷) 第 3 页(共 12 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2015年北京市高考数学试卷(文科)(解析版)
C.充分必要条件
D.既不充分也不必要条件
在抽取的样本中,青年教师有 320 人,则该样本的老年教师人数为( )
7.(5 分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
类别
人数
老年教师
900
中年教师
1800
青年教师
1600
合计
4300
A.90
B.100
C.180
5.(5 分)执行如图所示的程序框图,输出的 k 值为(
2.(5 分)圆心为(1,1)且过原点的圆的标准方程是( )
A.(x﹣1)2+(y﹣1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x﹣1)2+(y﹣1)2=2
【考点】J1:圆的标准方程. 菁优网版 权所有
【专题】11:计算题;5B:直线与圆. 【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径 r= , ∴圆的方程为(x﹣1)2+(y﹣1)2=2. 故选:D. 【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
19.(13 分)设函数 f(x)= ﹣klnx,k>0. (1)求 f(x)的单调区间和极值; (2)证明:若 f(x)存在零点,则 f(x)在区间(1, ]上仅有一个零点.
20.(14 分)已知椭圆 C:x2+3y2=3,过点 D(1,0)且不过点 E(2,1)的直线与椭圆 C 交于 A, B 两点,直线 AE 与直线 x=3 交于点 M.
2015年高考数学(北京)文
2015年北京高考文科数学试题及参考答案一、选择题共8小题,每小题5分,共40分。
1.若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B =( )A :{|32}x x -<<;B :{|52}x x -<<;C :{|33}x x -<<;D :{|53}x x -<<。
A ,交集2.圆心为(1,1)且过原点的圆的方程是( )A :22(1)(1)1x y -+-=;B :22(1)(1)1x y +++=;C :22(1)(1)2x y +++=;D :22(1)(1)2x y -+-=。
D ,圆的标准方程3.下列函数中为偶函数的是( )A :2sin y x x =;B :x x y cos 2=;C :x y ln =;D :x y -=2。
B ,函数的奇偶性4.某校老年,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( )A :90;B :100;C :180;D :300。
C ,分层抽样5.执行如果所示的程序框图,输出的k 值为( )A :3;B:4;C :5;D :6。
B ,程序框图-6.设,a b 是非零向量,“||||a b a b ⋅=⋅”是“//a b ”的( )A :充分而不必要条件;B :必要而不充分条件;C :充分必要条件;D :既不充分也不必要条件。
A ,向量数量积,充要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A :1;BCD :2C ,三视图→直观图8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A :6升;B :8升;C :10升;D :12升。
,数学建模二、填空题(共6小题,每小题5分,共30分) 9.复数()i i +1的实部为________。
北京高考数学文科word解析版2015
2015年高考北京市文科数学真题一、选择题1.若集合{}52x x A =-<<,{}33x x B =-<<,则AB =( ) A .{}32x x -<<B .{}52x x -<<C .{}33x x -<<D .{}53x x -<< 答案:A解析过程:在数轴上将集合A 、B 表示出来,如图所示,由交集的定义可得,A B 为图中阴影部分, 即{}32x x -<<,选A 2.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-= 答案:D解析过程:由题意可得圆的半径为r =则圆的标准方程为()()22112x y -+-=.选D3.下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x = C .ln y x =D .2x y -= 答案:B解析过程:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D选项既不是奇函数,也不是偶函数,选B.4.某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,)A.B.C.180D.300答案:C解析过程:由题意得,总体中青年教师与老年教师比例为160016 9009=;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x=,解得180x=.选C5.执行如果所示的程序框图,输出的k值为()A.3B.4C.5D.6答案:B解析过程:初值为3a =,0k =,进入循环体后,32a =,1k =;34a =,2k =;38a =,3k =;316a =,4k =; 此时14a <,退出循环,故4k =,选B6.设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:A解析过程:||||cos ,a b a b a b ⋅=⋅<>,由已知得cos ,1a b <>=,即,0a b <>=,//a b .而当//a b 时,,a b <>还可能是π, 此时||||a b a b ⋅=-,故“a b a b ⋅=”是“//a b ”的充分而不必要条件.选A7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A .1BCD .2答案:C解析过程:四棱锥的直观图如图所示:由三视图可知,SC ⊥平面ABCD ,SA 是四棱锥最长的棱,SA ===,选C注:“累计里程”指汽车从出厂开始累计行驶的路程。
2015年北京市高考数学试卷(文科)
2015年北京市高考数学试卷(文科)一、选择题(每小题 分 共 分).若集合{}52A x x =-<<,{}33B x x =-<<,则✌∩ ( ) ✌.{}32x x -<< .{}52x x -<< .{}33x x -<<.{}53x x -<<.圆心为()1,1且过原点的圆的方程是( )✌.()()22111x y -+-=.()()22111x y +++= .()()22112x y +++=.()()22112x y -+-=.下列函数中为偶函数的是( ) ✌.2sin y x x =.2cos y x x = .ln y x =.2x y -=.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )✌.90.100.180.300.执行如图所示的程序框图,输出的k 值为( )✌.3 .4 .5 .6 .设,a b是非零向量,❽a b a b⋅=❾是❽a b//❾的()✌.充分而不必要条件 .必要而不充分条件.充分必要条件 .既不充分也不必要条件 .某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()✌.1 2 3 .2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间 加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015 年5月15日4835600注:❽累计里程❾指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为 ( ) ✌.6升 .8升 .10升 .12升二、填空题.复数()1i i +的实部为 ..13222,3,log 5-三个数中最大数的是 . .在ABC 中,23,6,3a b A π==∠=,则B ∠ . .已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b ..如图,ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为 ..高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .三、解答题(共80分).已知函数()2sin 232x f x x =-. (1)求()f x 的最小正周期;(2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值..已知等差数列{}n a 满足124310,2a a a a +=-= ( )求{}n a 的通项公式;( )设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等? .某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中❽ ❾表示购买,❽×❾表示未购买.甲 乙 丙 丁 100 × 217 × × 200 × 300× × 85 × × × 98×××( )估计顾客同时购买乙和丙的概率;( )估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;( )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?.如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC ⊥BC 且2AC BC == ,O ,M 分别为AB ,VA 的中点. ( )求证:VB ∥平面MOC ; ( )求证:平面MOC ⊥平面VAB ( )求三棱锥V ABC -的体积..设函数()2ln (0)2x f x k x k =->.( )求()f x 的单调区间和极值;( )证明:若()f x 存在零点,则()f x 在区间(e 上仅有一个零点. .已知椭圆C 2233x y +=,过点(1,0)D 且不过点(2,1)E 的直线与椭圆C 交于,A B 两点,直线AE 与直线3x =交于点M . ( )求椭圆C 的离心率;( )若AB 垂直于x 轴,求直线BM 的斜率;( )试判断直线BM 与直线DE 的位置关系,并说明理由.年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题 分 共 分).( ❿北京)若集合✌⌧﹣ <⌧< ❝, ⌧﹣ <⌧< ❝,则✌∩ ()✌. ⌧﹣ <⌧< ❝ . ⌧﹣ <⌧< ❝ . ⌧﹣ <⌧< ❝ . ⌧﹣ <⌧< ❝【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合✌⌧﹣ <⌧< ❝, ⌧﹣ <⌧< ❝,则✌∩ ⌧﹣ <⌧< ❝.故选:✌..( ❿北京)圆心为( , )且过原点的圆的方程是()✌.(⌧﹣ )♈♈♈ (⍓﹣ )♈♈♈ .(⌧)♈♈♈ (⍓)♈♈♈ .(⌧)♈♈♈ (⍓)♈♈♈ .(⌧﹣ )♈♈♈ (⍓﹣ )♈♈♈ 【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径❒,∴圆的方程为(⌧﹣ )♈♈♈ (⍓﹣ )♈♈♈ .故选: ..( ❿北京)下列函数中为偶函数的是()✌.⍓⌧♈♈♈♦♓⏹⌧ .⍓⌧♈♈♈♍☐♦⌧ .⍓●⏹⌧ .⍓﹣♈♈♈⌧【分析】首先从定义域上排除选项 ,然后在其他选项中判断﹣⌧与⌧的函数值关系,相等的就是偶函数.【解答】解:对于✌,(﹣⌧)♈♈♈♦♓⏹(﹣⌧) ﹣⌧♈♈♈♦♓⏹⌧;是奇函数;对于 ,(﹣⌧)♈♈♈♍☐♦(﹣⌧) ⌧♈♈♈♍☐♦⌧;是偶函数;对于 ,定义域为( , ∞),是非奇非偶的函数;对于 ,定义域为 ,但是 ﹣(﹣♈♈♈⌧) ♈♈♈⌧≠ ﹣♈♈♈⌧, ♈♈♈⌧≠﹣ ﹣♈♈♈⌧;是非奇非偶的函数;故选.( ❿北京)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有 人,则该样本的老年教师人数为()类别人数老年教师 中年教师 青年教师 合计 ✌. . . . 【分析】由题意,老年和青年教师的人数比为 : : ,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为 : : ,因为青年教师有 人,所以老年教师有 人,故选: ..( ❿北京)执行如图所示的程序框图,输出的 值为()✌. . . .【分析】模拟执行程序框图,依次写出每次循环得到的♋, 的值,当♋时满足条件♋<,退出循环,输出 的值为 .【解答】解:模拟执行程序框图,可得,♋,❑♋, 不满足条件♋<,♋, 不满足条件♋<,♋, 不满足条件♋<,♋, 满足条件♋<,退出循环,输出 的值为 .故选: ..( ❿北京)设,是非零向量,❽ ❾是❽❾的()✌.充分而不必要条件 .必要而不充分条件.充分必要条件 .既不充分也不必要条件【分析】由便可得到夹角为 ,从而得到∥,而∥并不能得到夹角为 ,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:( );∴时,♍☐♦ ;∴;∴∥;∴❽❾是❽∥❾的充分条件;( )∥时,的夹角为 或⇨;∴,或﹣;即∥得不到;∴❽❾不是❽∥❾的必要条件;∴总上可得❽❾是❽∥❾的充分不必要条件.故选✌..( ❿北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()✌. . . .【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中 ⊥平面✌,底面✌为正方形∴ ,✌,✌,∴ , .该几何体最长棱的棱长为:故选: ..( ❿北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)年 月 日 年 月 日 注:❽累计里程❾指汽车从出厂开始累计行驶的路程,在这段时间内,该车每 千米平均耗油量为 ()✌. 升 . 升 . 升 . 升【分析】由表格信息,得到该车加了 升的汽油,跑了 千米,由此得到该车每 千米平均耗油量.【解答】解:由表格信息,得到该车加了 升的汽油,跑了 千米,所以该车每 千米平均耗油量 ÷ ;故选: .二、填空题.( ❿北京)复数♓( ♓)的实部为﹣ .【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数♓( ♓) ﹣ ♓,所求复数的实部为:﹣ .故答案为:﹣ ..( ❿北京) ﹣♈♈♈,,●☐♑♉♉♉♉♉ 三个数中最大数的是●☐♑♉♉♉♉♉ .【分析】运用指数函数和对数函数的单调性,可得 < ﹣♈♈♈< , << ,●☐♑♉♉♉♉♉ >●☐♑ ,即可得到最大数.【解答】解:由于 < ﹣♈♈♈< , << ,●☐♑♉♉♉♉♉ >●☐♑ ,则三个数中最大的数为●☐♑♉♉♉♉♉ .故答案为:●☐♑♉♉♉♉♉ ..( ❿北京)在△✌中,♋,♌,∠✌,则∠ .【分析】由正弦定理可得♦♓⏹,再由三角形的边角关系,即可得到角 .【解答】解:由正弦定理可得,,即有♦♓⏹ ,由♌<♋,则 <✌,可得 .故答案为:..( ❿北京)已知( , )是双曲线⌧♈♈♈﹣ (♌> )的一个焦点,则♌.【分析】求得双曲线⌧♈♈♈﹣ (♌> )的焦点为(, ),(﹣, ),可得♌的方程,即可得到♌的值.【解答】解:双曲线⌧♈♈♈﹣ (♌> )的焦点为(, ),(﹣, ),由题意可得 ,解得♌.故答案为:..( ❿北京)如图,△✌及其内部的点组成的集合记为 , (⌧,⍓)为 中任意一点,则 ⌧⍓的最大值为 .【分析】利用线性规划的知识,通过平移即可求 的最大值.【解答】解:由 ⌧⍓,得⍓,平移直线⍓,由图象可知当直线⍓经过点✌时,直线⍓的截距最大,此时 最大.即✌( , ).此时 的最大值为 × × ,故答案为: ..( ❿北京)高三年级 位学生参加期末考试,某班 位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】( )根据散点图 分析甲乙两人所在的位置的纵坐标确定总成绩名次;( )根据散点图 ,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级 位学生参加期末考试,某班 位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 乙;②观察散点图,作出对角线⍓⌧,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.三、解答题(共 分).( ❿北京)已知函数♐(⌧) ♦♓⏹⌧﹣ ♦♓⏹♈♈♈.( )求♐(⌧)的最小正周期;( )求♐(⌧)在区间☯, 上的最小值.【分析】( )由三角函数恒等变换化简函数解析式可得♐(⌧) ♦♓⏹(⌧)﹣,由三角函数的周期性及其求法即可得解;( )由⌧∈☯, ,可求范围⌧∈☯,⇨,即可求得♐(⌧)的取值范围,即可得解.【解答】解:( )∵♐(⌧) ♦♓⏹⌧﹣ ♦♓⏹♈♈♈♦♓⏹⌧﹣ ×♦♓⏹⌧♍☐♦⌧﹣♦♓⏹(⌧)﹣∴♐(⌧)的最小正周期❆ ⇨;( )∵⌧∈☯, ,∴⌧∈☯,⇨,∴♦♓⏹(⌧)∈☯, ,即有:♐(⌧) ♦♓⏹(⌧)﹣∈☯﹣, ﹣ ,∴可解得♐(⌧)在区间☯, 上的最小值为:﹣..( ❿北京)已知等差数列 ♋⏹❝满足♋♉♉♉♉♉ ♋♉♉♉♉♉ ,♋♉♉♉♉♉﹣♋♉♉♉♉♉ ( )求 ♋⏹❝的通项公式;( )设等比数列 ♌⏹❝满足♌♉♉♉♉♉ ♋♉♉♉♉♉,♌♉♉♉♉♉ ♋ ,问:♌ 与数列 ♋⏹❝的第几项相等?【分析】(✋)由♋♉♉♉♉♉﹣♋♉♉♉♉♉ ,可求公差♎,然后由♋♉♉♉♉♉ ♋♉♉♉♉♉ ,可求♋♉♉♉♉♉,结合等差数列的通项公式可求(✋✋)由♌♉♉♉♉♉ ♋♉♉♉♉♉ ,♌♉♉♉♉♉ ♋ ,可求等比数列的首项及公比,代入等比数列的通项公式可求♌ ,结合(✋)可求【解答】解:(✋)设等差数列 ♋⏹❝的公差为♎.∵♋♉♉♉♉♉﹣♋♉♉♉♉♉ ,所以♎∵♋♉♉♉♉♉ ♋♉♉♉♉♉ ,所以 ♋♉♉♉♉♉ ♎∴♋♉♉♉♉♉ ,∴♋⏹ (⏹﹣ ) ⏹(⏹, ,⑤)(✋✋)设等比数列 ♌⏹❝的公比为❑,∵♌♉♉♉♉♉ ♋♉♉♉♉♉ ,♌♉♉♉♉♉ ♋ ,∴∴❑,♌♉♉♉♉♉ ∴ ,而 ⏹∴⏹∴♌ 与数列 ♋⏹❝中的第 项相等.( ❿北京)某超市随机选取 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中❽ ❾表示购买,❽×❾表示未购买.甲乙丙丁 ×× × × × × ×××× ××( )估计顾客同时购买乙和丙的概率;( )估计顾客在甲、乙、丙、丁中同时购买 种商品的概率;( )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】( )从统计表可得,在这 名顾客中,同时购买乙和丙的有 人,从而求得顾客同时购买乙和丙的概率.( )根据在甲、乙、丙、丁中同时购买 种商品的有 人,求得顾客顾客在甲、乙、丙、丁中同时购买 种商品的概率.( )在这 名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:( )从统计表可得,在这 名顾客中,同时购买乙和丙的有 人,故顾客同时购买乙和丙的概率为 .( )在这 名顾客中,在甲、乙、丙、丁中同时购买 种商品的有 (人),故顾客顾客在甲、乙、丙、丁中同时购买 种商品的概率为 .( )在这 名顾客中,同时购买甲和乙的概率为 ,同时购买甲和丙的概率为 ,同时购买甲和丁的概率为 ,故同时购买甲和丙的概率最大..( ❿北京)如图,在三棱锥✞﹣✌中,平面✞✌⊥平面✌,△✞✌为等边三角形,✌⊥ 且✌, , 分别为✌,✞✌的中点.( )求证:✞∥平面 ;( )求证:平面 ⊥平面✞✌( )求三棱锥✞﹣✌的体积.【分析】( )利用三角形的中位线得出 ∥✞,利用线面平行的判定定理证明✞∥平面 ;( )证明: ⊥平面✞✌,即可证明平面 ⊥平面✞✌( )利用等体积法求三棱锥✞﹣✌的体积.【解答】( )证明:∵ , 分别为✌,✞✌的中点,∴ ∥✞,∵✞⊄平面 , ⊂平面 ,∴✞∥平面 ;( )∵✌, 为✌的中点,∴ ⊥✌,∵平面✞✌⊥平面✌, ⊂平面✌,∴ ⊥平面✞✌,∵ ⊂平面 ,∴平面 ⊥平面✞✌( )在等腰直角三角形✌中,✌,∴✌, , ,∴△✞✌∵ ⊥平面✞✌,∴✞ ﹣✞✌ ❿△✞✌ ,∴✞✞﹣✌ ✞ ﹣✞✌ ..( ❿北京)设函数♐(⌧) ﹣ ●⏹⌧, > .( )求♐(⌧)的单调区间和极值;( )证明:若♐(⌧)存在零点,则♐(⌧)在区间( , 上仅有一个零点.【分析】( )利用♐(⌧)≥ 或♐(⌧)≤ 求得函数的单调区间并能求出极值;( )利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:( )由♐(⌧)♐(⌧) ⌧﹣由♐(⌧) 解得⌧♐(⌧)与♐(⌧)在区间( , ∞)上的情况如下:✠ ( ,) () ♐(⌧)﹣ ♐(⌧)❽❻所以,♐(⌧)的单调递增区间为(),单调递减区间为( ,);♐(⌧)在⌧处的极小值为♐() ,无极大值.( )证明:由( )知,♐(⌧)在区间( , ∞)上的最小值为♐() .因为♐(⌧)存在零点,所以,从而 ≥♏当 ♏时,♐(⌧)在区间( ,)上单调递减,且♐() 所以⌧是♐(⌧)在区间( ,)上唯一零点.当 >♏时,♐(⌧)在区间( ,)上单调递减,且,所以♐(⌧)在区间( ,)上仅有一个零点.综上所述,若♐(⌧)存在零点,则♐(⌧)在区间( , 上仅有一个零点..( ❿北京)已知椭圆 :⌧♈♈♈ ⍓♈♈♈ ,过点 ( , )且不过点☜( , )的直线与椭圆 交于✌, 两点,直线✌☜与直线⌧交于点 .( )求椭圆 的离心率;( )若✌垂直于⌧轴,求直线 的斜率;( )试判断直线 与直线 ☜的位置关系,并说明理由.【分析】( )通过将椭圆 的方程化成标准方程,利用离心率计算公式即得结论;( )通过令直线✌☜的方程中⌧,得点 坐标,即得直线 的斜率;( )分直线✌的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:( )∵椭圆 :⌧♈♈♈ ⍓♈♈♈ ,∴椭圆 的标准方程为: ⍓♈♈♈ ,∴♋,♌,♍,∴椭圆 的离心率♏ ;( )∵✌过点 ( , )且垂直于⌧轴,∴可设✌( ,⍓♉♉♉♉♉), ( ,﹣⍓♉♉♉♉♉),∵☜( , ),∴直线✌☜的方程为:⍓﹣ ( ﹣⍓♉♉♉♉♉)(⌧﹣ ),令⌧,得 ( , ﹣⍓♉♉♉♉♉),∴直线 的斜率 ;( )结论:直线 与直线 ☜平行.证明如下:当直线✌的斜率不存在时,由( )知 ,又∵直线 ☜的斜率 ☜ ,∴ ∥ ☜;当直线✌的斜率存在时,设其方程为⍓(⌧﹣ )( ≠ ),设✌(⌧♉♉♉♉♉,⍓♉♉♉♉♉), (⌧♉♉♉♉♉,⍓♉♉♉♉♉),则直线✌☜的方程为⍓﹣ (⌧﹣ ),令⌧,则点 ( ,),∴直线 的斜率 ,联立,得( ♈♈♈)⌧♈♈♈﹣ ⌧♈♈♈﹣ ,由韦达定理,得⌧♉♉♉♉♉ ⌧♉♉♉♉♉ ,⌧♉♉♉♉♉⌧♉♉♉♉♉ ,∵ ﹣ ,∴ ☜,即 ∥ ☜;综上所述,直线 与直线 ☜平行.参与本试卷答题和审题的老师有:❑♓♦♦;刘长柏;♍♒♋⏹♑❑;♦;♦●;♦♎☐⍓❑♒;双曲线;❍♋♦♒♦;吕静;♍♋☐❑;雪狼王;♍♦♦(排名不分先后)菁优网年 月 日。
2015年北京高考文科数学试题及参考答案
2015年北京高考文科数学试题及参考答案一、选择题共8小题,每小题5分,共40分。
(1)若集合A={x|-5<x <2},B={x|-3<x <3},则A B=( ) A. -3<x <2 B. -5<x <2 C. -3<x <3 D. -5<x <3 (2)圆心为(1,1)且过原点的圆的方程是( ) (A )(x-1)2+(y-1)2=1 (B )(x+1)2+(y+1)2=1 (C )(x+1)2+(y+1)2=2 (D )(x-1)2+(y-1)2=2 (3)下列函数中为偶函数的是( )(A )y=x ²sinx (B )x x y cos 2=(C )x y ln = (D )x y -=2(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( ) (A )90 (B )100 (C )180 (D )300类别 人数 老年教师 900 中年教师 1800 青年教师 1600 合计4300(5)执行如果所示的程序框图,输出的k 值为( )(A )3 (B )4 (C)5 (D)6 (6)设a ,b 是非零向量,“a ·b=IaIIbI ”是“a//b ”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )(A)1 (B )错误!未找到引用源。
(B )错误!未找到引用源。
(D)2 (8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )(A )6升 (B )8升 (C )10升 (D )12升 二、填空题(共6小题,每小题5分,共30分) (9)复数()i i +1的实部为 (10)32-, 213 , log 25三个数中最大数的是(11)在△ABC 中,a=3,b=错误!未找到引用源。
【高考试题】2015年北京市高考数学试卷(文科)
【高考试题】2015年北京市高考数学试卷(文科)一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3} 2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=23.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90 B.100 C.180 D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.10.(5分)2﹣3,,log25三个数中最大数的是.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.2015年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.3.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;。
2015北京文高考数学试题
2015普通高等学校招生全国统一考试(北京文)一、选择题1.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3} 2.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2【解析】由题意可得圆的半径为r=2,则圆的标准方程为(x-1)2+(y-1)2=2.3.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos x C.y=|ln x| D.y=2-x【解析】根据偶函数的定义f(-x)=f(x),A选项为奇函数,B选项为偶函数,C选项定义域为(0,+∞)不具有奇偶性,D选项既不是奇函数,也不是偶函数,故选B.4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()A.90 B.100 C.180 D.300类别人数老年教师900中年教师 1 800青年教师 1 600合计 4 300【解析】设该样本中的老年教师人数为x,由题意及分层抽样的特点得x900=3201 600,故x=180.5.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】a·b=|a||b| cos〈a,b〉,由已知得cos〈a,b〉=1,即〈a,b〉=0,a∥b.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2【解析】四棱锥的直观图如图所示:由三视图可知,SC ⊥平面ABCD ,SA 是四棱锥最长的棱,SA 2=SC 2+AC 2=SC 2+AB 2+BC 2=3,故SA =3. 8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况. 加油时间 加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35 0002015年5月15日 48 35 600在这段时间内,该车每100千米平均耗油量为( ) 注:“累计里程”指汽车从出厂开始累计行驶的路程.A .6升B .8升C .10升D .12升【解析】因第一次邮箱加满,故第二次的加油量即为该段时间内的耗油量,故耗油量V =48升. 而这段时间内行驶的里程数S =35600-35000=600千米.故这段时间内,该车每100千米平均耗油量为48÷600×100=8升,故选B .二、填空题9.复数i(1+i)的实部为________.【解析】复数i(1+i)=i -1=-1+i ,其实部为-1.10.2-3,312,log 25三个数中最大的数是________.【解析】2-3=18<1,312=3>1,log 25>log 24=2>3,故log 25最大. 11.在△ABC 中,a =3,b =6,A =2π3,则B =________. 【解析】由正弦定理,得a sin A =b sin B ,故sin B =b sin A a =22,故B =π4.12.已知(2,0)是双曲线x 2-y 2b 2=1(b >0)的一个焦点,则b =________. 【解析】由题意知,c =2,a =1,b 2=c 2-a 2=3,故b =3.13.如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z =2x +3y 的最大值为________.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,故丙的数学成绩的排名更靠前,故填数学.三、解答题15.(本小题满分13分)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值.16.(本小题满分13分)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?【解析】⑴.设等差数列{a n }的公差为d .因a 4-a 3=2,故d =2.又a 1+a 2=10,故2a 1+d =10,故a 1=4.故a n =4+2(n -1)=2n +2,n ∈N *.⑵.设等比数列{b n }的公比为q .因b 2=a 3=8,b 3=a 7=16,故q =2,b 1=4.故b 6=4×25=128.由128=2n +2得,n =63.故b 6与数列{a n }的第63项相等.17.(本小题满分13分)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数 甲 乙 丙 丁100 √ × √ √217 × √ × √200 √ √ √ ×300 √ × √ ×85 √ × × ×98 × √ × ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解析】⑴.从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,故顾客同时购买乙和丙的概率可以估计为2001 000=0.2. ⑵.从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.故顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3. ⑶.与⑴同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,故,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.18.(本小题满分14分)如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB ;(3)求三棱锥V -ABC 的体积.【解析】⑴.因O ,M 分别为AB ,VA 的中点,故OM ∥VB .又VB ⊄平面MOC ,故VB ∥平面MOC . ⑵.因AC =BC ,O 为AB 的中点,故OC ⊥AB .又平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,故OC ⊥平面VAB .故平面MOC ⊥平面VAB .⑶.在等腰直角三角形ACB 中,AC =BC =2,故AB =2,OC =1.故等边三角形VAB 的面积S ΔVAB =3.又OC ⊥平面VAB ,故三棱锥C -VAB 的体积等于13×OC ×S ΔVAB =33.又三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,故三棱锥V -ABC 的体积为33. 19.设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-k x.由f ′(x )=0,解得x =k (负值舍去). f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表: x(0,k ) k (k ,+∞) f ′(x ) - 0 + f (x ) ↘ k (1-ln k )2 ↗故f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因f (x )存在零点,故k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,故x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(1,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,故f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.20.(本小题满分14分)已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.【解析】⑴.椭圆C 的标准方程为x 23+y 2=1.故a =3,b =1,c =2.故椭圆C 的离心率e =c a=63. ⑵.若AB 垂直于x 轴,则AB 所在的直线方程为x =1,不妨设A (1,63),B (1,-63).又E (2,1),k AE =1-63,直线AE 所在的方程为:y -1=(1-63)(x -2),联立直线AE 与直线x =3的方程,得M (3,2-63),k BM =1,故直线BM 的斜率是1. ⑶.由⑵知,当AB 垂直于x 轴时,直线BM 的斜率为1,且k DE =1,得k BM =k DE ,故直线BM 与直线DE 平行.若直线AB 不垂直于x 轴时,是否直线BM 与直线DE 保持平行的位置关系.下面来进行验证,即验证k BM =1.设A (x 1,y 1),B (x 2,y 2),1112AE y k x -=-,直线AE 的方程为()111122y y x x --=--,令x =3得,111(3,1)2y M x -+-,12121123BM y y x k x -+--=-,要证明k BM =1,只须证明1221122y y x x --=--即y 1-1-(x 1-2)y 2=(2-x 2)(x 1-2),y 1-x 1y 2+2y 2-2x 1+x 1x 2-2x 2-3=0(*),联立直线AB :y =k (x -1)与椭圆方程22(1)33y k x x y =-⎧⎨+=⎩,消y 建立关于x 的一元二次方程得,(3k 2+1)x 2-6k 2x +3k 2-3=0,212221226313331k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩.将(*)式整理得,k (x 1-1)-kx 1(x 2-1)+2k (x 2-1) -2x 1+x 1x 2-2x 2+3=0,2(k -1)(x 1+x 2)+(1-k )x 1x 2-3(k -1)=0,将x 1+x 2,x 1x 2代入上式的左边得,2(k -1)6k 21+3k 2+(1-k )3k 2-31+3k 2-3(k -1)=0=右边,因此,直线BM 的斜率为1,说明直线BM 与直线DE 的位置关系是平行.。
2015年北京高考数学文科试卷带详解
2015年高考数学卷 北京卷 文科一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.)1.若集合{|52}A x x =-<<,{|33},B x x =-<<则A B = ( ) A. {|32}x x -<< B. {|52}x x -<< C. {|33}x x -<< D. {|53}x x -<<【参考答案】A【测量目标】集合的交集运算.【试题解析】在数轴上将集合A ,B 表示出来,如图所示,第1题图由交集的定义可得,A B 为图中的阴影部分,即{|32}x x -<<. 2.圆心为(1,1)且过原点的圆的方程是( ) A .22(1)(1)1x y -+-= B. 22(1)(1)1x y +++= C. 22(1)(1)2x y +++= D. 22(1)(1)2x y -+-= 【参考答案】 D【测量目标】圆的标准方程.【试题解析】由题意可得圆的半径为r 22(1)(1)2x y -+-=. 3.下列函数为偶函数的是( )A. 2sin y x x = B. 2cos y x x = C. ln y x = D. 2x y -= 【参考答案】 B【测量目标】函数的奇偶性.【试题解析】根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞)不具有奇偶性,D 选项既不是奇函数也不是偶函数.4. 某校老年、中年和青年的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( ) A. 90 B. 100 D. 300【参考答案】C【测量目标】分层抽样.【试题解析】由题意,总体青年教师与老年教师比例为1600169009=;设样本中老年教师人数为x ,由分层抽样的性质可得,总体与样本中青年教师的比例相等,即320169x =,解得x =180.5. 执行如图所示的程序框图,输出的k 的值为( )A. 3B. 4C. 5D. 6第5题图【参考答案】B【测量目标】程序框图.【试题解析】初值为a =3,k =0,进入循环体后,a =32,k =1;a=34,k=2;a=38,k=3;a=316,k =4;此时a <14,退出循环,故k =4. 6. 设,a b 是非零向量,“⋅=a b a b ”是“∥a b ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 即不充分也不必要条件 【参考答案】A【测量目标】充分必要条件、向量共线.【试题解析】cos ,,⋅=⋅<>a b a b a b 由已知得cos ,1,<>=a b 即,0,<>=∥a b a b 而当∥a b 时,,<>a b 还可能是π,此时,⋅=-a b a b 故“⋅=a b a b ”是“∥a b ”的充分而不必要条件.7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A. 1B.C. D. 2第7题图【参考答案】C【测量目标】三视图.【试题解析】四棱锥的直观图如图所示:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA===.注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油为()A. 6升B. 8升C. 10升D. 12升【参考答案】B【测量目标】平均耗油量.【试题解析】因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量V=48升.而这段时间内行驶的里程数S=35600-35000=600千米.所以这段时间内,该车每100千米平均耗油量为481008 600⨯=升.二、填空题(本大题共6小题,每小题5分,共30分.)9. 复数i(1+i)的实部为_______.【参考答案】-1【测量目标】复数的乘法运算、实部.【试题解析】复数i (1+i)=i-1=-1+i,其实部为-1.10.13222,3,log5-三个数中最大的数是________.【参考答案】2log5【测量目标】比较大小.【试题解析】31218-=<,1231=>,22log 5log 42>=2log 5最大.11. 在△ABC 中,a =3,b 2π3A ∠=,则B ∠=_________. 【参考答案】π4【测量目标】正弦定理.【试题解析】由正弦定理,得,sin sin a b A B =即=所以sin B =,所以π4B ∠=. 12. 已知(2,0)是双曲线2221(0)y x b b-=>的一个焦点,则b =______.【测量目标】双曲线的焦点.【试题解析】由题意知2222,1,3c a b c a ===-=,所以b =13. 如图,△ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y=+的最大值为__________.第13题图【参考答案】7【测量目标】线性规划.【试题解析】由图可知,目标函数2,33zy x =-+因此当x =2,y =1,即在点A 处时,z 取得最大值为7.14. 高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班的三位学生.第14题图从这次考试成绩看,(1)在甲、乙两人中,其语文成绩名次比其总成绩名次考前的学生是_________; (2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________. 【参考答案】甲;语文. 【测量目标】散点图. 【试题解析】(1)由图可知,甲的数学成绩排名比总成绩排名靠后;而乙的数学成绩排名比总成绩排名靠前,故填甲.(2)由图可知,比丙的语文成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的语文成绩的排名更靠前,故填语文.三、解答题(本大题共6小题,共80分.解答需写出文字说明、证明过程和演算步骤.)15. (本小题满分13分)已知函数2()sin .2x f x x =- (1)求()f x 的最小正周期;(2)求()f x 在区间2π0,3⎡⎤⎢⎥⎣⎦上的最小值. 【测量目标】(1) 三角函数的周期;(2)∴()f x 的最小正周期为2π.(2) 0≤x ≤2π3,π3∴≤π3x +≤π 当ππ3x +=,即2π3x =时,()f x 取得最小值.()f x ∴在区间2π0,3⎡⎤⎢⎥⎣⎦上的最小值为2π()3f =16. (本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?【测量目标】(1)等差数列的通项公式; (2) 等比数列的性质.【试题解析】(1)设等差数列{}n a 的公差为d . 因为43a a -=2,所以d =2.又因为12a a +=10,所以21a +d =10,故1a =4. 所以n a =4+2(n -1)=2n +2 (n =1,2,…). (2)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以q =2,14b =. 所以61642b -=⨯=128. 由128=2n +2,得n =63.所以6b 与数列{}n a 的第63项相等.17.(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四“×”表示未购买. (1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 【测量目标】(1)随机事件的概率; (2)统计表、随机事件的概率; (3) 随机事件的概率. 【试题解析】(1)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3中商品的概率可以估为1002001000+=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2, 顾客同时购买甲和丙的概率可以估计为1002003001000++=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.第18题图【测量目标】(1)线面平行的判定; (2)面面垂直的判定; (3)三棱锥的体积公式. 【试题解析】(1)因为O 、M 分别为AB ,VA 的中点, 所以OM ∥VB .又因为VB ⊄平面MOC , 所以VB ∥平面MOC .(2)因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB .所以平面MOC ⊥平面VAB .(3)在等腰直角三角形ACB 中,AC =BC 所以AB =2,OC =1.所以等边三角形VAB 的面积VAB S △又因为OC ⊥平面VAB ,所以三棱锥C -VAB 的体积等于1=33VAB OC S ⨯⨯△. 又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,所以三棱锥V -ABC 19.(本小题满分13分)设函数2()ln 2x f x k x =-,k >0. (1)求()f x 的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(上仅有一个零点.【测量目标】(1)导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值; (2)函数零点问题.【试题解析】(1)由2()ln 2x f x k x =-,(k >0)得 2'()k x kf x x x x-=-=由于'()f x =0,解得x ()f x 与'()f x 在区间(0,+∞)上的情况如下:所以()f x 的单调递减区间是(0+∞);()f x 在x 处取得极小值f =(1ln )2k k -.(2)由(1)知,()f x 在区间(0,+∞)上的最小值为f =(1ln )2k k -. 因为()f x 存在零点,所以(1ln )2k k -≤0,从而e k 卐.当k =e 时,f (x )在区间(1f =0.所以x f (x )在区间(上的唯一零点.当k >e 时,f (x )在区间(0f (1)=12>0,fe 2k -<0,所以f (x )在区间(上仅有一个零点.20.(本小题满分14分)已知椭圆C :223x y +=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由. 【测量目标】(1)椭圆的标准方程及其几何性质; (2)直线的斜率;(3)两直线的位置关系.【试题解析】(1)椭圆C 的标准方程为223x y +=1.所以a b =1,c 所以椭圆的离心率e =c a =3(2)因为AB 过点D (1,0)且垂直于x 轴,所以可设A (1,1y ),B (1,-1y ),直线AE 的方程为y -1=(1-1y )(x -2). 令x =3,得M (3,2-1y ). 所以直线BM 的斜率BM k =11231y y -+-=1.(3)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(2)可知BM k =1.又因为直线DE 的斜率DE k =1021--=1,所以BM ∥DE . 当直线AB 的斜率存在时,设其方程为y=k (x -1)(k ≠1).设11(,)A x y ,22(,)B x y ,则直线AE 的方程为y -1=111(2)2y x x ---. 令x =3,得点M (3,11132y x x +--).由2233(1)x y y k x ⎧+=⎨=-⎩,得2222(13)6330k x k x k +-+-=.所以12x x +=22613k k +,12x x =223313k k -+.直线BM 的斜率11212323BMy x y x k x +---=-. 因为BM k -1=11112121(1)3(1)(2)(3)(2)(3)(2)k x x k x x x x x x -+---------=[]121221(1)2()3(3)(2)k x x x x x x --++---=2222213312(1)31313(3)(2)k k k k k x x ⎡⎤-+-+-⎢⎥++⎣⎦-- =0所以BM k =1=DE k所以BM ∥DE.综上可知,直线BM 与直线DE 平行.。
2015年高考真题——文科数学(北京卷)含解析
0
,
a
//b
.
而当
a
//b
时,
a,b 还可能是
,此时
a
b
|
a
||
b
|
,故“
a
b
a
b
”是“ a//b
”
的充分而不必要条件. 考点:充分必要条件、向量共线. 7、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
A.1
B. 2
C. 3
D. 2
【答案】C 【解析】 试题分析:四棱锥的直观图如图所示:
2015 年 5 月15 日
48
35600
注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100 千米平均耗
油量为( )
A. 6 升
B. 8 升
C.10 升 D.12 升
【答案】B
【解析】
试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量
V 48 升. 而这段时间内行驶的里程数 S 35600 35000 600 千米. 所以这段时间内,该 车每 100 千米平均耗油量为 48 100 8 升,故选 B.
一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项 中,选出符合题目要求的一项.)
1、若集合 x 5 x 2 , x 3 x 3 ,则 ( )
A.x 3 x 2
B.x 5 x 2
C.x 3 x 3
D.x 5 x 3
【答案】A
考点:集合的交集运算.
.
【答案】 log2 5
【解析】
试题分析: 23
1
1
1 , 32
2015年高考数学真题-北京卷(文)答案
数学试题答案一、选择题(每小题5分,共40分)1.【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.2.【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.3.【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sin x;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cos x;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.4.【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.【点评】本题考查分层抽样,考查学生的计算能力,比较基础.5.【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当k=4时满足条件s>15,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=1,s=1,s=s+(k﹣1)2=1,不满足条件s>15,k=2,s=s+(k﹣1)2=2,不满足条件s>15,k=3,s=s+(k﹣1)2=6,不满足条件s>15,k=4,s=s+(k﹣1)2=15,不满足条件s>15,k=5,s=s+(k﹣1)2>15,输出k=5.故选:C.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义.7.【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC═该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键8.【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.二、填空题9.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.10.【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log 25>log 24=2,即可得到最大数.【解答】解:由于0<2﹣3<1,1<<2,log 25>log 24=2,则三个数中最大的数为log 25.故答案为:log 25.【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,属于基础题.11.【分析】由正弦定理可得sin B ,再由三角形的边角关系,即可得到角B .【解答】解:由正弦定理可得,=,即有sin B ===,由b <a ,则B <A ,可得B =.故答案为:.【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.【分析】求得双曲线x 2﹣=1(b >0)的焦点为(,0),(﹣,0),可得b 的方程,即可得到b 的值.【解答】解:双曲线x 2﹣=1(b >0)的焦点为(,0),(﹣,0),由题意可得=2,解得b =.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.13.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.【点评】本题考查了对散点图的认识;属于基础题.三、解答题(共80分)15.【分析】(1)由三角函数恒等变换化简函数解析式可得f (x )=2sin(x +)﹣,由三角函数的周期性及其求法即可得解;(2)由x ∈[0,],可求范围x +∈[,π],即可求得f (x )的取值范围,即可得解.【解答】解:(1)∵f (x )=sin x ﹣2sin 2=sin x ﹣2×=sin x +cos x ﹣=2sin(x +)﹣∴f (x )的最小正周期T ==2π;(2)∵x ∈[0,],∴x +∈[,π],∴sin(x +)∈[0,1],即有:f (x )=2sin(x +)﹣∈[﹣,2﹣],∴可解得f (x )在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.16.【分析】(I )由a 4﹣a 3=2,可求公差d ,然后由a 1+a 2=10,可求a 1,结合等差数列的通项公式可求(II )由b 2=a 3=8,b 3=a 7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b 6,结合(I )可求【解答】解:(I )设等差数列{a n }的公差为d .∵a 4﹣a 3=2,所以d =2∵a 1+a 2=10,所以2a 1+d =10∴a 1=4,∴a n =4+2(n ﹣1)=2n +2(n =1,2,…)(II )设等比数列{b n }的公比为q ,∵b 2=a 3=8,b 3=a 7=16,∴∴q =2,b 1=4∴=128,而128=2n +2∴n =63∴b 6与数列{a n }中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.18.【分析】(1)利用三角形的中位线得出OM ∥VB ,利用线面平行的判定定理证明VB ∥平面MOC ;(2)证明:OC ⊥平面VAB ,即可证明平面MOC ⊥平面VAB (3)利用等体积法求三棱锥V ﹣ABC 的体积.【解答】(1)证明:∵O ,M 分别为AB ,VA 的中点,∴OM ∥VB ,∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴VB ∥平面MOC ;(2)∵AC =BC ,O 为AB 的中点,∴OC ⊥AB ,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB(3)在等腰直角三角形ACB 中,AC =BC =,∴AB =2,OC =1,∴S △VAB =,∵OC ⊥平面VAB ,∴V C ﹣VAB =•S △VAB =,∴V V ﹣ABC =V C ﹣VAB =.【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.19.【分析】(1)利用f '(x )≥0或f '(x )≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f (x )=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X(0,)()f'(x)﹣0+f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.20.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a =,b =1,c =,∴椭圆C 的离心率e ==;(2)∵AB 过点D (1,0)且垂直于x 轴,∴可设A (1,y 1),B (1,﹣y 1),∵E (2,1),∴直线AE 的方程为:y ﹣1=(1﹣y 1)(x ﹣2),令x =3,得M (3,2﹣y 1),∴直线BM 的斜率k BM ==1;(3)结论:直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(2)知k BM =1,又∵直线DE 的斜率k DE ==1,∴BM ∥DE ;当直线AB 的斜率存在时,设其方程为y =k (x ﹣1)(k ≠1),设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y ﹣1=(x ﹣2),令x =3,则点M (3,),∴直线BM 的斜率k BM =,联立,得(1+3k 2)x 2﹣6k 2x +3k 2﹣3=0,由韦达定理,得x 1+x 2=,x 1x 2=,∵k BM ﹣1=16/16===0,∴k BM =1=k DE ,即BM ∥DE ;综上所述,直线BM 与直线DE 平行.【点评】本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.。
2015年普通高等学校招生全国统一考试北京卷文科数学(2015年北京市高考文科数学)
2015年普通高等学校招生全国统一考试数学(文)(北京卷)第一部分(选择题共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}答案:A解析:在数轴上将集合A,B表示出来,如图所示.由交集的定义可得,A∩B为图中阴影部分,即{x|﹣3<x<2}.2.圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=2答案:D解析:由题意可得圆的半径为r=√2,则圆的标准方程为(x﹣1)2+(y﹣1)2=2.3.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2﹣x答案:B解析:根据偶函数的定义f(﹣x)=f(x),A选项为奇函数,B选项为偶函数,C选项定义域为(0,+∞)不具有奇偶性,D选项既不是奇函数也不是偶函数.故选B.4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320A.90B.100C.答案:C解析:方法一:由题意,总体中青年教师与老年教师的比例为1600900=169.设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320x =169,解得x=180.故选C.方法二:由已知分层抽样中青年教师的抽样比为3201600=15,由分层抽样的性质可得老年教师的抽样比也等于15,所以样本中老年教师的人数为900×15=180.故选C.5.执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.6答案:B解析:初值为a=3,k=0.进入循环体后,a=32,k=1;a=34,k=2;a=38,k=3;a=316,k=4,此时a<14,退出循环,故k=4.6.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:a·b=|a||b|cos<a,b>,若a·b=|a||b|,则cos<a,b>=1,即<a,b>=0,a∥B.而当a∥b时,<a,b>还可能是π,此时a·b=﹣|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件,选A.7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.√2C.√3D.2答案:C解析:四棱锥的直观图如图所示.由三视图可知,SB⊥平面ABCD,SD是四棱锥最长的棱,SD=√xx2+xx2=√xx2+xx2+xx2=√3. 8.注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升答案:B解析:因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量V=48升.而这段时间内行驶的里程数s=35600﹣35000=600(千米).所以在这段时间内,该车每100千米平均耗油量为48600×100=8(升).故选B.第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)9.复数i(1+i)的实部为__________.答案:﹣1解析:复数i(1+i)=i﹣1=﹣1+i,其实部为﹣1.10.2﹣3,312,log25三个数中最大的数是__________.答案:log25解析:2﹣3=18<1,312=√3,log25>log24=2>√3,所以log25最大.11.在△ABC中,a=3,b=√6,∠A=2π3,则∠B=__________.答案:π4解析:由正弦定理,得xsin x =xsin x,即√32√6sin x,所以sin B=√22.所以∠B=π4.12.已知(2,0)是双曲线x2﹣x2x2=1(b>0)的一个焦点,则b=__________.答案:√3解析:由题意知c=2,a=1,b2=c2﹣a2=3.又b>0,所以b=√3.13.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为__________.答案:7解析:由题图可知,目标函数y=﹣23x+x3,因此当x=2,y=1,即过点A时z取最大值为7.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是__________; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是__________. 答案:①乙 ②数学 解析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前.故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前.故填数学.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数f (x )=sin x ﹣2√3sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,2π3]上的最小值. 解:(1)因为f (x )=sin x +√3cos x ﹣√3=2sin (x +π3)−√3,所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间[0,2π3]上的最小值为f (2π3)=﹣√3.16.(本小题13分)已知等差数列{a n }满足a 1+a 2=10,a 4﹣a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为D .因为a 4﹣a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n ﹣1)=2n +2(n =1,2,…). (2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4.所以b 6=4×26﹣1=128. 由128=2n +2得n =63.所以b 6与数列{a n }的第63项相等.17.(本小题13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,=0.2.所以顾客同时购买乙和丙的概率可以估计为2001000(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.=0.3.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000(3)与(1)同理,可得:=0.2,顾客同时购买甲和乙的概率可以估计为2001000=0.6,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.1.顾客同时购买甲和丁的概率可以估计为1001000所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.18.(本小题14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC,且AC=BC=√2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V﹣ABC的体积.解:(1)因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=√2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB=√3.又因为OC⊥平面VAB,所以三棱锥C﹣VAB的体积等于13OC·S△VAB=√33.又因为三棱锥V﹣ABC的体积与三棱锥C﹣VAB的体积相等,所以三棱锥V﹣ABC的体积为√33.19.(本小题13分)设函数f(x)=x22﹣k ln x,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,√e]上仅有一个零点.解:(1)由f(x)=x22﹣k ln x(k>0)得f'(x)=x﹣xx=x2−xx.由f'(x)=0解得x=√x.f(x)与f'(x)在区间(0,+∞)所以,f(x)的单调递减区间是(0,√x),单调递增区间是(√x,+∞);f(x)在x=√x处取得极小值f(√x)=x(1−ln x)2.(2)由(1)知,f(x)在区间(0,+∞)上的最小值为f(√x)=x(1−ln x)2.因为f(x)存在零点,所以x(1−ln x)2≤0,从而k≥e.当k=e时,f(x)在区间(1,√e)上单调递减,且f(√e)=0,所以x=√e是f(x)在区间(1,√e]上的唯一零点.当k>e时,f(x)在区间(0,√e)上单调递减,且f(1)=12>0,f(√e)=e−x2<0,所以f(x)在区间(1,√e]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,√e]上仅有一个零点.20.(本小题14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.解:(1)椭圆C的标准方程为x 23+y2=1.所以a=√3,b=1,c=√2.所以椭圆C 的离心率e =xx=√63.(2)因为AB 过点D (1,0)且垂直于x 轴,所以可设A (1,y 1),B (1,﹣y 1). 直线AE 的方程为y ﹣1=(1﹣y 1)(x ﹣2). 令x =3,得M (3,2﹣y 1). 所以直线BM 的斜率k BM =2−x 1+x 13−1=1.(3)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(2)可知k BM =1. 又因为直线DE 的斜率k DE =1−02−1=1,所以BM ∥DE.当直线AB 的斜率存在时,设其方程为y =k (x ﹣1)(k ≠1). 设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y ﹣1=x 1−1x 1−2(x ﹣2).令x =3,得点M (3,x 1+x 1−3x 1−2).由{x 2+3x 2=3,x =x (x −1)得(1+3k 2)x 2﹣6k 2x +3k 2﹣3=0. 所以x 1+x 2=6x 21+3x2,x 1x 2=3x 2−31+3x 2,直线BM 的斜率k BM =x 1+x 1−3x 1−2−x 23−x 2.因为k BM ﹣1=x (x 1−1)+x 1−3−x (x 2−1)(x 1−2)−(3−x 2)(x 1−2)(3−x 2)(x 1−2)=(x −1)[−x 1x 2+2(x 1+x 2)−3](3−x 2)(x 1−2)=(x −1)(−3x 2+31+3x 2+12x 21+3x 2−3)(3−x 2)(x 1−2)=0.所以k BM =1=k DE ,所以BM ∥DE.综上可知,直线BM 与直线DE 平行.。
2015年北京市高考数学试卷文科【精编】
2015年北京市高考数学试卷(文科)一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3} 2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=23.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.10.(5分)2﹣3,,log25三个数中最大数的是.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.2015年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.3.(5分)下列函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.【点评】本题考查分层抽样,考查学生的计算能力,比较基础.5.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义.7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC═该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.二、填空题9.(5分)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.10.(5分)2﹣3,,log25三个数中最大数的是log25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log25>log24=2,即可得到最大数.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,属于基础题.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.【点评】本题考查了对散点图的认识;属于基础题.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【分析】(I)由a4﹣a3=2,可求公差d,然后由a1+a2=10,可求a1,结合等差数列的通项公式可求(II)由b2=a3=8,b3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S=,△VAB∵OC⊥平面VAB,∴V C=•S△VAB=,﹣VAB=V C﹣VAB=.∴V V﹣ABC【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)()f'(x)﹣0+f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率k BM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM=,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2=,x1x2=,∵k BM﹣1====0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.【点评】本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.第21页(共21页)。
2015年高考真题:文科数学(北京卷)试卷(含答案)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.)1、若集合{}52x x A =-<<,{}33x x B =-<<,则A B = ( )A .{}32x x -<<B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<【答案】A考点:集合的交集运算.2、圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=【答案】D【解析】试题分析:由题意可得圆的半径为r =()()22112x y -+-=. 考点:圆的标准方程.3、下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=【答案】B【解析】试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B.考点:函数的奇偶性.4、某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .300【答案】C【解析】 试题分析:由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =.考点:分层抽样.5、执行如图所示的程序框图,输出的k 的值为( )A .3B .4C .5D .6【答案】B考点:程序框图.6、设a ,b 是非零向量,“a b a b ⋅= ”是“//a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】试题分析:||||cos ,a b a b a b ∙=∙<> ,由已知得cos ,1a b <>= ,即,0a b <>= ,//a b .而当//a b 时,,a b <> 还可能是π,此时||||a b a b ∙=- ,故“a b a b ⋅= ”是“//a b ”的充分而不必要条件.考点:充分必要条件、向量共线.7、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1B .2【答案】C【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=考点:三视图.8、某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升【答案】B试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 考点:平均耗油量. 二、填空题(本大题共6小题,每小题5分,共30分.)9、复数()1i i +的实部为 .【答案】-1【解析】试题分析:复数(1)11i i i i +=-=-+,其实部为-1.考点:复数的乘法运算、实部.10、32-,123,2log 5三个数中最大数的是 .【答案】2log 5【解析】试题分析:31218-=<,1231=>,22log 5log 42>>>2log 5最大. 考点:比较大小.11、在C ∆AB 中,3a =,b =23π∠A =,则∠B= . 【答案】4π 【解析】试题分析:由正弦定理,得sin sin a b A B =,=所以sin B =所以4B π∠=. 考点:正弦定理.12、已知()2,0是双曲线2221y x b -=(0b >)的一个焦点,则b = .试题分析:由题意知2,1c a ==,2223b c a =-=,所以b =考点:双曲线的焦点. 13、如图,C ∆AB 及其内部的点组成的集合记为D ,(),x y P 为D 中任意一点,则23z x y =+的最大值为 .【答案】7考点:线性规划.14、高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .【答案】乙、数学【解析】试题分析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.考点:散点图.三、解答题(本大题共6小题,共80分.解答须写出文字说明、证明过程和演算步骤.)15、(本小题满分13分)已知函数()2sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2)考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.16、(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等.【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d.因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22n a n n =+-=+ (1,2,)n = . (Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =.所以6b 与数列{}n a 的第63项相等.考点:等差数列、等比数列的通项公式.17、(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?【答案】(1)0.2;(2)0.3;(3)同时购买丙的可能性最大.【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由统计表读出顾客同时购买乙和丙的人数200,计算出概率;第二问,先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100+200,再计算概率;第三问,由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100+200+300,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=. (Ⅲ)与(Ⅰ)同理,可得: 顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=, 顾客同时购买甲和丁的概率可以估计为1000.11000=, 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.考点:统计表、概率.18、(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C A =B =O ,M 分别为AB ,V A 的中点.(Ⅰ)求证:V //B 平面C MO ;(Ⅱ)求证:平面C MO ⊥平面V AB ;(Ⅲ)求三棱锥V C -AB 的体积.【答案】(1)证明详见解析;(2)证明详见解析;(3【解析】试题分析:本题主要考查线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑推理能力、转化能力、计算能力.第一问,在三角形ABV 中,利用中位线的性质得//OM VB ,最后直接利用线面平行的判定得到结论;第二问,先在三角形ABC 中得到OC AB ⊥,再利用面面垂直的性质得OC ⊥平面VAB ,最后利用面面垂直的判定得出结论;第三问,将三棱锥进行等体积转化,利用C VAB V ABC V V --=,先求出三角形VAB 的面积,由于OC ⊥平面VAB ,所以OC 为锥体的高,利用锥体的体积公式计算出体积即可.试题解析:(Ⅰ)因为,O M 分别为AB ,VA 的中点,所以//OM VB .又因为VB ⊄平面MOC ,所以//VB 平面MOC.(Ⅱ)因为AC BC =,O 为AB 的中点,所以OC AB ⊥.又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,所以OC ⊥平面VAB.所以平面MOC ⊥平面VAB.(Ⅲ)在等腰直角三角形ACB 中,AC BC ==所以2,1AB OC ==.所以等边三角形VAB 的面积VAB S ∆=又因为OC ⊥平面VAB ,所以三棱锥C-VAB 的体积等于133VAB OC S ∆⨯⨯=. 又因为三棱锥V-ABC 的体积与三棱锥C-VAB 的体积相等,所以三棱锥V-ABC 的体积为3. 考点:线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式.19、(本小题满分13分)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(2)证明详见解析.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e k f -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.20、(本小题满分14分)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【答案】(1(2)1;(3)直线BM 与直线DE 平行. 【解析】 试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;第二问,由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与x=3相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;第三问,分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c =所以椭圆C 的离心率c e a ==. (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-. (Ⅲ)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =. 又因为直线DE 的斜率10121DE k -==-,所以//BM DE . 当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠. 设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--. 令3x =,得点1113(3,)2y x M x +--. 由2233(1)x y y k x ⎧+=⎨=-⎩,得2222(13)6330k x k x k +-+-=. 所以2122613k x x k +=+,21223313k x x k-=+.考点:椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年北京市高考数学试卷(文科)一、选择题(每小题5分,共40分)1.若集合{}52A x x =-<<,{}33B x x =-<<,则A ∩B=( ) A .{}32x x -<< B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<2.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++=D .()()22112x y -+-=3.下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=4.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .3005.执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .66.设,a b 是非零向量,“a b a b ⋅=”是“a b // ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1BCD .28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升 D .12升二、填空题9.复数()1i i +的实部为 .10.13222,,log 5-三个数中最大数的是 .11.在ABC 中,23,3a b A π==∠=,则B ∠= . 12.已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b = .13.如图,ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为 .14.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .三、解答题(共80分)15.已知函数()2sin 2x f x x =-. (1)求()f x 的最小正周期;(2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.16.已知等差数列{}n a 满足124310,2a a a a +=-=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等? 17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300√ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC ⊥BC 且AC BC ==O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB (3)求三棱锥V ABC -的体积.19.设函数()2ln (0)2x f x k x k =->.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点. 20.已知椭圆C :2233x y +=,过点(1,0)D 且不过点(2,1)E 的直线与椭圆C 交于,A B 两点,直线AE 与直线3x =交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.2015年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(2015•北京)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.2.(2015•北京)圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)^^^2+(y﹣1)^^^2=1 B.(x+1)^^^2+(y+1)^^^2=1 C.(x+1)^^^2+(y+1)^^^2=2 D.(x﹣1)^^^2+(y﹣1)^^^2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)^^^2+(y﹣1)^^^2=2.故选:D.3.(2015•北京)下列函数中为偶函数的是()A.y=x^^^2sinx B.y=x^^^2cosx C.y=|lnx|D.y=2﹣^^^x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)^^^2sin(﹣x)=﹣x^^^2sinx;是奇函数;对于B,(﹣x)^^^2cos(﹣x)=x^^^2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣^^^x)=2^^^x≠2﹣^^^x,2^^^x≠﹣2﹣^^^x;是非奇非偶的函数;故选B4.(2015•北京)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.5.(2015•北京)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.6.(2015•北京)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选A.7.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC==该几何体最长棱的棱长为:故选:C.8.(2015•北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.二、填空题9.(2015•北京)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.10.(2015•北京)2﹣^^^3,,log_____25三个数中最大数的是log_____25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣^^^3<1,1<<2,log_____25>log24=2,即可得到最大数.【解答】解:由于0<2﹣^^^3<1,1<<2,log_____25>log24=2,则三个数中最大的数为log_____25.故答案为:log_____25.11.(2015•北京)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.12.(2015•北京)已知(2,0)是双曲线x^^^2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.13.(2015•北京)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D 中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.14.(2015•北京)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.三、解答题(共80分)15.(2015•北京)已知函数f(x)=sinx﹣2sin^^^2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin^^^2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.16.(2015•北京)已知等差数列{a n}满足a_____1+a_____2=10,a_____4﹣a_____3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b_____2=a_____3,b_____3=a7,问:b6与数列{a n}的第几项相等?【分析】(I)由a_____4﹣a_____3=2,可求公差d,然后由a_____1+a_____2=10,可求a_____1,结合等差数列的通项公式可求(II)由b_____2=a_____3=8,b_____3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{a n}的公差为d.∵a_____4﹣a_____3=2,所以d=2∵a_____1+a_____2=10,所以2a_____1+d=10∴a_____1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b_____2=a_____3=8,b_____3=a7=16,∴∴q=2,b_____1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等17.(2015•北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.18.(2015•北京)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S=,△VAB∵OC⊥平面VAB,=•S△VAB=,∴V C﹣VAB=V C﹣VAB=.∴V V﹣ABC19.(2015•北京)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)()f'(x)﹣0+f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(2015•北京)已知椭圆C:x^^^2+3y^^^2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x^^^2+3y^^^2=3,∴椭圆C的标准方程为:+y^^^2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y_____1),B(1,﹣y_____1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y_____1)(x﹣2),令x=3,得M(3,2﹣y_____1),∴直线BM的斜率k BM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x_____1,y_____1),B(x_____2,y_____2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM=,联立,得(1+3k^^^2)x^^^2﹣6k2x+3k^^^2﹣3=0,由韦达定理,得x_____1+x_____2=,x_____1x_____2=,∵k BM﹣1====0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.参与本试卷答题和审题的老师有:qiss;刘长柏;changq;w3239003;wkl197822;sdpyqzh;双曲线;maths;吕静;caoqz;雪狼王;cst(排名不分先后)菁优网2017年2月3日。