高数下册知识点
高数下册常用常见知识点
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
高等数学下册知识点
高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
高数下册知识点
高数下册知识点高等数学是大学数学的重要组成部分,它的内容涵盖了较为复杂的数学理论和方法。
在高数下册中,包含了许多重要的知识点,本文将简要介绍其中一些知识点。
1. 二重积分和三重积分二重积分和三重积分是高等数学中的重要概念,它们是求解平面区域和空间体积的有效工具。
二重积分用于平面区域上函数的面积、质量、质心等的计算,而三重积分则用于空间区域上函数的体积、质量、质心等的计算。
2. 常微分方程常微分方程是描述动力学系统中各个变量之间关系的数学方程。
在高数下册中,我们将学习一阶和二阶常微分方程的解法,包括分离变量法、齐次方程和非齐次方程等解法。
3. 线性代数线性代数是高等数学中的重要分支,它研究向量、矩阵、线性变换等概念及其相应的运算规律。
在高数下册中,我们将学习矩阵的基本运算、矩阵的逆和行列式等内容。
4. 多元函数微分学多元函数微分学是研究多元函数的变化率和极值等性质的数学分支。
在高数下册中,我们将学习多元函数的偏导数、全微分以及多元函数的极值等相关知识。
5. 无穷级数无穷级数是由无穷多个数按一定规律排列而成的一种数列。
在高数下册中,我们将学习无穷级数的收敛性和发散性,以及级数的和的计算方法,如几何级数、调和级数等。
6. 傅里叶级数傅里叶级数是将周期函数展开为三角函数的级数。
在高数下册中,我们将学习傅里叶级数的基本理论和求解方法,以及应用于信号处理、波动方程等领域。
7. 空间解析几何空间解析几何是研究空间内点、直线、平面等几何对象的性质与关系的数学分支。
在高数下册中,我们将学习空间点与直线、直线与平面之间的位置关系,以及相应的空间坐标转换等内容。
8. 级数收敛与连续函数在高数下册中,我们将探讨级数收敛与发散的判别法,以及级数的运算法则。
同时,我们还将研究连续函数的性质和判断方法,如极值、最值、连续函数与导数的关系等。
9. 可导函数的求导法则可导函数的求导法则是高等数学中求导过程中常用的法则和公式。
通过学习这些求导法则,可以简化复杂函数的求导过程,提高求导的效率。
大一高数下知识点
大一高数下知识点一、集合与函数1. 集合的基本概念集合是由确定的元素所构成的整体。
集合的元素是无序排列的。
2. 集合运算- 并集:表示将两个或多个集合中的元素全部包括在内。
- 交集:表示两个或多个集合中共有的元素。
- 差集:表示属于一个集合而不属于另一个集合的元素。
3. 函数的定义与性质函数是一个或多个自变量对应唯一的因变量的关系。
- 定义域:函数中自变量的所有可能取值构成的集合。
- 值域:函数中因变量的所有可能取值构成的集合。
- 单调性:函数的增减趋势。
- 奇偶性:函数与自变量符号的关系。
二、极限与连续函数1. 数列的极限数列的极限是指随着自变量趋近于无穷时,函数值趋于一个确定的常数。
2. 函数的极限函数的极限是指当自变量趋近于某个值时,函数值趋于一个确定的值。
3. 极限的性质与运算法则- 保号性:若函数极限存在且不为零,则函数极限的符号与极限值的符号一致。
- 夹逼准则:对于极限存在的函数,总存在一个趋近值使得函数值无限接近于极限值。
- 极限的四则运算法则。
4. 连续函数连续函数是指函数在其定义域上的每个点都存在极限,并且极限值等于函数值。
三、导数与微分1. 导数的定义导数是函数在某一点的变化速率,用于描述函数图像的斜率。
2. 导数的计算法则- 基本导数法则- 乘积法则、商法则- 链式法则3. 高阶导数与导数的应用- 高阶导数:导数的导数称为高阶导数。
- 泰勒展开式4. 微分与微分近似微分表示函数的增量与自变量的增量之间的关系,微分近似用于计算函数值的近似值。
四、积分与定积分1. 不定积分不定积分是对原函数求导的逆运算,表示求函数的原函数的过程。
2. 定积分的定义与性质定积分是将函数在区间上的各个小矩形面积的极限累加,表示函数在该区间上的总体积。
3. 定积分的计算法则- 第一类换元法- 第二类换元法- 分部积分法4. 定积分的应用- 曲线下的面积计算- 弧长计算- 物体质量与质心计算五、级数与幂级数1. 级数的定义与性质级数是将无数项按顺序相加的形式,用于表示函数的展开式。
高数下册知识点
高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
高等数学(下)知识点总结
高等数学(下)知识点总结1、二次曲面1)椭圆锥面:2)椭球面:旋转椭球面:3)单叶双曲面:双叶双曲面:4)椭圆抛物面:双曲抛物面(马鞍面):5)椭圆柱面:双曲柱面:6)抛物柱面:(二)平面及其方程1、点法式方程:法向量:,过点2、一般式方程:截距式方程:3、两平面的夹角:,,;4、点到平面的距离:(三)空间直线及其方程1、一般式方程:2、对称式(点向式)方程:方向向量:,过点3、两直线的夹角:,,;4、直线与平面的夹角:直线与它在平面上的投影的夹角,;第九章多元函数微分法及其应用1、连续:2、偏导数:;3、方向导数:其中为的方向角。
4、梯度:,则。
5、全微分:设,则(一)性质1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、微分法1)复合函数求导:链式法则若,则,(二)应用1)求函数的极值解方程组求出所有驻点,对于每一个驻点,令,,,① 若,,函数有极小值,若,,函数有极大值;② 若,函数没有极值;③ 若,不定。
2、几何应用1)曲线的切线与法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2)曲面的切平面与法线曲面,则上一点处的切平面方程为:法线方程为:第章重积分(一)二重积分:几何意义:曲顶柱体的体积1、定义:2、计算:1)直角坐标,,2)极坐标,(二)三重积分1、定义:2、计算:1)直角坐标-----------“先一后二”-----------“先二后一”2)柱面坐标,3)球面坐标(三)应用曲面的面积:第一章曲线积分与曲面积分(一)对弧长的曲线积分1、定义:2、计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,则(二)对坐标的曲线积分1、定义:设 L 为面内从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,、向量形式:2、计算:设在有向光滑弧上有定义且连续, 的参数方程为,其中在上具有一阶连续导数,且,则3、两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,,,则、(三)格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数, 则有2、为一个单连通区域,函数在上具有连续一阶偏导数,则曲线积分在内与路径无关(四)对面积的曲面积分1、定义:设为光滑曲面,函数是定义在上的一个有界函数,定义2、计算:—“一投二代三定号”,,在上具有一阶连续偏导数,在上连续,则,为上侧取“ + ”,为下侧取“级数:(二)函数项级数1、定义:函数项级数,收敛域,收敛半径,和函数;2、幂级数:3、收敛半径的求法:,则收敛半径4、泰勒级数展开步骤:(直接展开法)1)求出;2)求出;3)写出;4)验证是否成立。
高数下册复习知识点总结
高数下册复习知识点总结高数下册复习知识点总结高数下册复习知识点总结:8空间解析几乎与向量代数1.给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。
2.向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。
3.了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。
空间曲线在坐标平面上的投影方程。
4.平面方程和直线方程及其求法。
5.平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6.点到直线以及点到平面的距离。
9多元函数微分法及其应用1.有关偏导数和全微分的求解方法,偏导要求求到二阶。
2.复合函数的链式法则,隐函数求导公式和方法。
3.空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。
4.利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。
10重积分1.二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。
2.选择合适的坐标系计算三重积分。
3.利用二重积分计算曲面的面积;利用三重积分计算立体体积;4.利用质心和转动惯量公式求解问题。
11曲面积分与曲线积分1.两类曲线积分的计算与联系;2.两类曲面积分的计算与联系;3.格林公式和高斯公式的应用。
12曲面积分与曲线积分1.常数项积分的敛散性判别:(1)正项级数;(2)交错级数;(3)一般级数2.幂级数的收敛域(1)标准型(2)非标准型幂级数的和函数,幂级数展开3.傅里叶级数的和函数以及展开式扩展阅读:高数下册总复习知识点归纳(1)高等数学(一)教案期末总复习第八、九章向量代数与空间解析几何总结向量代数定义与运算的几何表达定义向量模有大小、有方向.记作a或AB向量a的模记作a在直角坐标系下的表示aaxiayjazk(ax,ay,az)axprjxa,ayprjya,azprjzaaax2ay2az2和差cabca-b 单位向量cabaxbx,ayby,azbzaa0,则eaa设a与x,y,z轴的夹角分别为,,,则方向余弦分别为cos,cos,cosea(ax,ay,az)axayaz222方向余弦aaacosx,cosy,coszaaaea(cos,cos,cos)cos2+cos2cos21点乘(数量积)ababcos,为向量a与b的夹角abaxbxaybyazbziabaxbxjaybykazbzcabsin叉乘(向量积)为向量a与b的夹角cab向量c与a,b都垂直定理与公式垂直平行abab0abaxbxaybyazbz0a//bcosa//bab0axayazbxbybz2222交角余弦ab两向量夹角余弦cosab向量a在非零向量b上的投影axbxaybyazbzaxayazbxbybz22投影prjbaacos(ab)abbprjbaaxbxaybyazbzbxbybz222平面法向量n{A,B,C}点M0(x0,y0,z0)方程名称一般式点法式方程形式及特征直线方向向量T{m,n,p}点M0(x0,y0,z0)方程名称一般式点向式方程形式及特征A1xB1yC1zD10A2xB2yC2zD20AxByCzD0A(xx0)B(yy0)C(zz0)0xx0yy0zz0mnp高等数学(一)教案期末总复习xx1三点式yy1y2y1y3y1zz1z2z10z3z1两点式线线垂直线线平行线面平行参数式x2x1x3x1截距式面面垂直面面平行线面垂直xyz1abcA1A2B1B2C1C20A1B1C1A2B2C2ABCmnpxx0mtyy0ntzzpt0xx0yy0zz0x1x0 y1y0z1z0m1m2n1n2p1p20m1n1p1m2n2p2AmBnCp0点面距离M0(x0,y0,z0)AxByCzD0面面距离AxByCzD10AxByCzD20dAx0By0Cz0DABC222dD1D2ABC222面面夹角n1{A1,B1,C1}n2{A2,B2,C2}cos|A1A2B1B2C1C2|A1B1C1A2B2C2222222线线夹角s1{m1,n1,p1}s2{m2,n2,p2}线面夹角s{m,n,p}n{A,B,C}AmBnCpA2B2C2m2n2p2cosm1m2n1n2p1p2222m12n12p12m2n2p 2sinx(t),y(t),z(t),切“线”方程:切向量xx0yy0zz0(t0)(t0)(t0)空间(t)曲线:T((t0),(t0),(t0))法平“面”方程:(t0)(xx0)(t0)(yy0)(t0)(zz0)0切“线”方程:y(x)切向量z(x)T(1,(x),(x))xx0yy0zz01(x0)(x0)法平“面”方程:(xx0)(x0)(yy0)(x0)(zz0)0法向量切平“面”方程:Fx(x0,y0,z0)(xx0)Fx(x0,y0,z0)(yy0)F(x,y,z)0空间曲面:n(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))n(fx(x0,y0),fy(x0,y0),1)F x(x0,y0,z0)(zz0)0法“线“方程:xx0yy0zz0Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)切平“面”方程:fx(x0,y0)(xx0)fy(x0,y0)(yy0)(zz0)0法“线“方程:zf(x,y)或n(fx(x0,y0),fy(x0,y0),1)xx0yy0zz0fx(x0,y0)fy(x0,y0)1高等数学(一)教案期末总复习第十章总结重积分计算方法(1)利用直角坐标系X型Y型积分类型二重积分典型例题f(x,y)dxdydxDab2(x)1(x)f(x,y)dyf(x,y)dxP141例1、例3f(x,y)dxdyDdcdy2(y)1(y)Ifx,ydD(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段);(2)被积函数用极坐标变量表示较简单(含(x2y2),平面薄片的质量质量=面密度面积为实数)P147例5f(cos,sin)ddDd2()1()f(cos,sin)d0202(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)0I2f(x,y)dxdyD1计算步骤及注意事项f(x,y)对于x是奇函数,即f(x,y)f(x,y)f(x,y)对于x是偶函数,即f(x,y)f(x,y)D1是D的右半部分P141例2应用该性质更方便1.画出积分区域2.选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3.确定积分次序原则:积分区域分块少,累次积分好算为妙4.确定积分限方法:图示法先积一条线,后扫积分域5.计算要简便注意:充分利用对称性,奇偶性高等数学(一)教案期末总复习三重积分(1)利用直角坐标投影投影法截面法bay2(x)f(x,y,z)dVdxy1(x)dyz2(x,y)z1(x,y)f(x,y,z)dzP159例1P160例2xrcos(2)利用柱面坐标yrsinzz相当于在投影法的基础上直角坐标转换成极坐标适用范围:1积分区域表面用柱面坐标表示时方程简单;如旋转体○If(x,y,z)dvP161例3空间立体物的质量质量=密度面积22222被积函数用柱面坐标表示时变量易分离.如f(xy)f(xz)○f(x,y,z)dVdzdabr2()r1()f(cos,sin,z)dxcosrsincos(3)利用球面坐标ysinrsinsinzrcosdvr2sindrdd适用范围:1积分域表面用球面坐标表示时方程简单;如,球体,锥体.○P16510-(1)2222被积函数用球面坐标表示时变量易分离.如,f(xyz)○Idd11222(,)1(,)f(sincos,sinsin,cos)2sind(4)利用积分区域的对称性与被积函数的奇偶性高等数学(一)教案期末总复习第十一章总结曲线积分与曲面积分积分类型参数法(转化为定积分)第一类曲线积分(1)L:y(x)IIf(x,y)ds计算方法典型例题(t)Iaf(x,y(x))1y"(x)dx曲形构件的质量(2)L:y(t)质量=线密度xr()cos弧长(3)rr()()L:f((t),(t))b"2(t)"2(t)dt2Lx(t)P189-例1P190-3yr()sinIf(r()cos,r()sin)r2()r"2()d平面第二类曲线积分(1)参数法(转化为定积分)x(t)L:(t单调地从到)y(t)P196-例1、例2、例3、例4LPdxQdy{P[(t),(t)](t)Q[(t),(t)](t)}dt(2)利用格林公式(转化为二重积分)条件:①L封闭,分段光滑,有向(左手法则围成平面区域D)②P,Q具有一阶连续偏导数结论:LPdxQdy(DQP)dxdyxy满足条件直接应用IPdxQdy应用:有瑕点,挖洞L不是封闭曲线,添加辅助线变力沿曲线所做的功P205-例4P214-5(1)(4)(3)利用路径无关定理(特殊路径法)等价条件:①QP②xy③PdxQdy0LLPdxQdy与路径无关,与起点、终点有关P211-例5、例6、例7④P dxQdy具有原函数u(x,y)(特殊路径法,偏积分法,凑微分法)(4)两类曲线积分的联系IPdxQdy(PcosQcos)dsLL空间第二类曲线积分(1)参数法(转化为定积分)PdxQdyRdz{P[(t),(t),(t)](t)Q[(t),(t),(t)](t)R[(t),(t),(t)](t)}dtIP dxQdyRdz(2)利用斯托克斯公式(转化第二类曲面积分)L条件:①L封闭,分段光滑,有向②P,Q,R具有一阶连续偏导数PdxQdyRdzL变力沿曲线所做结论:的功QpRQPR()dydz()dzdx()dxdyyzzxxyP240-例1 高等数学(一)教案期末总复习应用:满足条件直接应用不是封闭曲线,添加辅助线第一类曲面积分投影法:zz(x,y)投影到xoy面If(x,y,z)dv曲面薄片的质量Dxy质量=面密度类似的还有投影到yoz面和zox面的公式面积(1)投影法Pdydzp(x(y,z),y,z)dydz1○Dyz:zz(x,y),为的法向量与x轴的夹角前侧取“+”,cos0;后侧取“”,cos0Qdzdxp(x,y(x,z),z)dzdx2第二类曲面积分○Dyz:yy(x,z),为的法向量与y轴的夹角右侧取“+”,cos0;左侧取“”,cos02If(x,y,z)dvf(x,y,z(x,y))1zx2zydxdyP217-例1、例2P226-例2IPdydzQdzdxR3QdxdyQ(x,y,z(x,y))dxdy○Dyz流体流向曲面一侧的流量:xx(y,z),为的法向量与x轴的夹角上侧取“+”,cos0;下侧取“”,cos0(2)高斯公式右手法则取定的侧条件:①封闭,分片光滑,是所围空间闭区域的外侧②P,Q,R具有一阶连续偏导数结论:PdydzQdzdzRdxdy(PQR)xyzP231-例1、例2应用:满足条件直接应用不是封闭曲面,添加辅助面(3)两类曲面积分之间的联系PdydzQdzdxRdxdy(PcosQcosRcos)dSP228-例3转换投影法:dydz( 所有类型的积分:z)dxdyxdzdx(z)dxdyy1定义:四步法分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高数(下册)复习资料完整
高等数学(向量代数—>无穷级数)知识点向量与空间几何向量:向量表示((a^b));向量运算(向量积);向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程(参数方程和投影方程)平面方程:点法式(法向量)、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量)、参数式;直线夹角;平面交线(法向量积)切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等);复合函数求导(Jacobi行列式);多元函数极值:偏导数判定;拉格朗日乘数法(条件极值)重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分(参数方程);格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开)Fourier级数:傅里叶系数(高次三角函数积分);奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础)方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度(grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—>二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—>三重积分;曲面外侧定向;曲面补齐;向量表达(通量)散度(div):通量的体积元微分;物理意义(有源场(电场)) 环流量与旋度斯托克斯公式:闭合曲线—>曲面积分;向量积定向;行列式表达;向量表达;物理意义(环通量)旋度(rot):行列式斯托克斯公式;物理意义(有旋场(磁场))向量代数定义 定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则a ae a=a e 222(,,)=++x y z x y z a a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =⋅,θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=⋅b a叉乘(向量积)b ac ⨯=θsin b a c =θ为向量a 与b 的夹角向量c 与a ,b 都垂直 zyxz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行 //0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔== 交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y za b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影cos()b a bprj a a a b b∧⋅==222x x y y z zb x y za b a b a b prj a b b b ++=++空间曲面∑:0),,(=z y x F法向量000000000((,,),(,,),(,,))x y z n F x y z F x y z F x y z = 切平“面”方程:000000000000(,,)()(,,)()(,,)()0x x x F x y z x x F x y z y y F x y z z z -+-+-=法“线“方程:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- ),(y x f z = 0000((,),(,),1)x y n f x y f x y =--或0000((,),(,),1)x y n f x y f x y =-切平“面”方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x法“线“方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x 重积分 积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕP141—例1、例3(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单(含22()x y α+,α为实数)21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤0θπ≤≤2πθπ≤≤P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)P141—例2应用该性质更方便所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高数下册总复习知识点.pptx
F ( x, G( x,
y, z) y, z)
0 ,
0
(取 x为参数)
i jk
取T Fx Fy Fz
切线方程为
Gx Gy Gz M
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为
Fy Gy
Fz Gz
M
(x
x0 )
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
2、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式 a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz
ax2
函数连续
函数可导
有极限
函数可微 偏导数连续
4、多元复合函数求导法则
中间变量均为一元函数的情形
定理1 若函数
在点t处可导,z f (u, v)
在点 处偏导连续, 则复合函数 z f ( (t), (t))
在点 t 可导, 且有链式法则
dz z du z dv dt u dt v dt
z
u v
1
旋 转 椭 球 面
z
o
y
x
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
x2 a2
y2 a2
z2 c2
高数下知识点总结
高数下知识点总结一、微积分1. 函数和极限函数是自然界和社会现象中的一般规律性联系的数学抽象。
以实数域为定义域和值域的实函数是微积分的主要研究对象。
极限是微积分的基本概念,它是描述函数在某点附近的性质的数学工具。
在微积分中,我们讨论函数在某一点的极限,以及函数在无穷远处的极限和无穷大的极限等各种情况。
2. 导数和微分导数是函数在某一点的变化率的极限,用来描述函数的局部性质。
微分是导数的几何意义,它是关于函数的线性逼近的一种数学方法。
在微积分中,我们讨论导数的定义、求导法则、高阶导数、微分和微分中值定理等内容。
3. 积分和微积分基本定理积分是导数的逆运算,它描述了函数在一定区间内的总体变化量。
微积分基本定理是微积分中的核心定理,它建立了积分和导数之间的联系。
在微积分中,我们讨论不定积分、定积分、变限积分、积分中值定理等内容。
4. 微分方程微分方程是微积分的一个重要应用领域,它是描述自然和社会现象中变化规律的数学模型。
微分方程可以分为常微分方程和偏微分方程两大类,涵盖了许多重要的理论和方法。
在微积分中,我们讨论微分方程的基本概念、解的存在唯一性、解的性质、微分方程的分类和常见的解法等内容。
二、矩阵论1. 矩阵和行列式矩阵是线性代数的基本工具,它是一个按照矩形排列的数的集合。
行列式是矩阵的一个重要性质,它是由矩阵的元素按照一定规则组合而成的一个数。
在矩阵论中,我们讨论矩阵的基本操作、矩阵的性质、矩阵的代数运算、矩阵的逆、行列式的性质和展开等内容。
2. 线性方程组线性方程组是矩阵论的一个重要应用领域,它是由线性方程组成的一种数学模型。
线性方程组的解是矩阵的一个重要性质,它描述了线性方程组的解空间和解的个数。
在矩阵论中,我们讨论线性方程组的标准形、增广矩阵、线性方程组的解的性质、线性方程组的解的分类和解的存在唯一性等内容。
3. 特征值和特征向量特征值和特征向量是矩阵的一个重要性质,它描述了矩阵的变换规律和对称性质。
(完整版)高数下册常用常见知识点
(完整版)⾼数下册常⽤常见知识点⾼等数学(下)知识点⾼等数学下册常⽤常见知识点第⼋章空间解析⼏何与向量代数(⼀)向量及其线性运算1、向量,向量相等,单位向量,零向量,向量平⾏、共线、共⾯;2、线性运算:加减法、数乘;3、空间直⾓坐标系:坐标轴、坐标⾯、卦限,向量的坐标分解式;4、利⽤坐标做向量的运算:设),,(z y x a a a a =ρ,),,(z y x b b b b =ρ,则 ),,(z z y y x x b a b a b a b a ±±±=±ρρ, ),,(z y x a a a a λλλλ=ρ;5、向量的模、⽅向⾓、投影:1)向量的模:222z y x r ++=ρ;2)两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3)⽅向⾓:⾮零向量与三个坐标轴的正向的夹⾓γβα,,4)⽅向余弦:rz r y r x ρρρ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5)投影:?cos Pr a a j uρρρ=,其中?为向量a ρ与u ρ的夹⾓。
(⼆)数量积,向量积 1、数量积:θcos b ab a ρρρρ=?1)2a a a ρρρ=?2)?⊥b a ρρ0=?b a ρρ z z y y x x b a b a b a b a ++=?ρρρ?=⼤⼩:θsin b aρρ,⽅向:c b a ρρρ,,符合右⼿规则 1)0ρρρ=?a a⾼等数学(下)知识点2)b a ρρ//?0ρρρ=?b a z y xzy xb b b a a a k j ib a ρρρρρ=?运算律:反交换律 b a a b ρρρρ?-=?(三)曲⾯及其⽅程 1、曲⾯⽅程的概念:0),,(:=z y x f S2、旋转曲⾯:(旋转后⽅程如何写)yoz ⾯上曲线0),(:=z y f C ,绕y 轴旋转⼀周:0),(22=+±z x y f 绕z 轴旋转⼀周:0),(22=+±z y x f3、柱⾯:(特点)0),(=y x F 表⽰母线平⾏于z 轴,准线为==0 0),(z y x F 的柱⾯4、⼆次曲⾯(会画简图)1)椭圆锥⾯:22222z by a x =+ 2)椭球⾯:1222222=++cz a y a x 3)*单叶双曲⾯:1222222=-+czb y a x4)*双叶双曲⾯:1222222=--czb y a x 5)椭圆抛物⾯:z by a x =+2222 6)*双曲抛物⾯(马鞍⾯):z b y a x =-2222 7)椭圆柱⾯:12222=+b ya x 8)双曲柱⾯:12222=-b y a x 9)抛物柱⾯:ay x =2(四)空间曲线及其⽅程1、⼀般⽅程:==0),,(0),,(z y x G z y x F2、参数⽅程:===)()()(t z z t y y t x x ,如螺旋线:===bt z t a y t a x sin cos3、空间曲线在坐标⾯上的投影==0(五)平⾯及其⽅程(法向量) 1、点法式⽅程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =ρ,过点),,(000z y x2、⼀般式⽅程:0=+++D Cz By Ax (某个系数为零时的特点)截距式⽅程:1=++czb y a x3、两平⾯的夹⾓:),,(1111C B A n =ρ,),,(2222C B A n =ρ,222222212121212121cos CB AC B A C C B B A A ++?++++=θ ?∏⊥∏21 0212121=++C C B B A A ?∏∏21// 212121C C B B A A ==4、点),,(0000z y x P 到平⾯0=+++D Cz By Ax 的距离:222Cz By Ax d +++++=(六)空间直线及其⽅程(⽅向向量)1、⼀般式⽅程:=+++=+++0022221111D z C y B x A D z C y B x A2、对称式(点向式)⽅程:pz z n y y m x x 000-=-=-⽅向向量:),,(p n m s =ρ,过点),,(000z y x3、参数式⽅程:+=+=+=pt z z nty y mt x x 0004、两直线的夹⾓:),,(1111p n m s =ρ,),,(2222p n m s =ρ,222222212121212121cos pn m p n m p p n n m m ++?++++=⊥21L L 0212121=++p p n n m m21//L L212121p p n n m m ==5、22222sin p n m C B A CpBn Am ++?++++=∏//L 0=++Cp Bn Am∏⊥L pCn B m A ==第九章多元函数微分法及其应⽤(⼀)基本概念1、距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,⽆界集。
高数下知识点总结大全(通用8篇)
高数下知识点总结大全(通用8篇)高数下知识点总结大全篇11.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的`特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
高数下 知识点总结
高数下知识点总结高数是大学数学的重要组成部分,主要涉及函数、极限、微分和积分等内容。
下面是高数的一些重要知识点总结,包括基本概念、定理及其应用。
基本概念:1. 函数:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
常见的函数有多项式函数、指数函数、对数函数等。
2. 极限:描述函数在某一点或无穷远处的趋势。
正式定义了极限的分析方法和计算方法。
3. 连续性:函数在某一区间上的连续性意味着在该区间上函数图像上不存在断点,且图像可以一笔画出。
4. 导数:描述函数在某一点的变化率,也可以理解为函数图像在该点的切线斜率。
常用于求函数的最值、凹凸性等问题。
5. 积分:描述函数在某一区间上的累积效应,可以从导数的逆过程理解。
常用于计算曲线下面积、求函数的平均值等。
定理与应用:1. 介值定理:若函数f(x)在区间[a,b]上连续,且f(a)和f(b)异号,则在(a,b)存在一点c,使得f(c)=0。
该定理的重要意义在于可以用来证明方程存在根的情况。
2. 零点定理:若函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在区间(a,b)内至少有一个实数根。
该定理为介值定理的特殊情况,用于求解方程的根。
3. 极值定理:若函数f(x)在区间[a,b]上连续且可导,若在x=c 的邻域内f'(x)>0(或f'(x)<0),则f(x)在x=c处有极小值(或极大值)。
该定理为求函数的极值提供了判定条件。
4. 拉格朗日中值定理:对于在[a,b]上连续且可导的函数f(x),存在一个c在(a,b)内,使得f'(c) = (f(b)-f(a))/(b-a)。
该定理常用于证明不等式或计算函数的近似值。
5. 微分中值定理:若函数f(x)在[a,b]上连续且可导,存在一个c在(a,b)内,使得f'(c) = f(b)-f(a)/(b-a)。
该定理常用于求函数的导数值。
高数下册知识点
高数下册知识点高等数学下册包含了许多重要的知识点,这些知识点不仅在数学领域有着广泛的应用,也为其他学科的学习和研究提供了重要的工具。
以下是对高数下册一些关键知识点的详细介绍。
一、多元函数微分学多元函数微分学是研究多元函数的导数和微分的学科。
其中,偏导数是重点之一。
对于多元函数 z = f(x, y),偏导数∂z/∂x 表示固定 y 时,函数 z 对 x 的变化率;∂z/∂y 则表示固定 x 时,函数 z 对 y 的变化率。
全微分是另一个重要概念。
如果函数 z = f(x, y)在点(x, y)处的全增量Δz 可以表示为Δz =AΔx +BΔy +o(ρ)(其中ρ =√(Δx² +Δy²),A、B 与Δx、Δy 无关),则称函数 z 在点(x, y)处可微分,AΔx +BΔy 称为函数 z 在点(x, y)处的全微分,记为 dz =AΔx +BΔy。
多元复合函数求导法则也是必须掌握的。
比如,如果函数 u =φ(x, y),v =ψ(x, y),而 z = f(u, v),那么通过链式法则可以求出∂z/∂x 和∂z/∂y。
隐函数求导法则在解决一些方程所确定的隐函数的导数问题时非常有用。
二、重积分重积分包括二重积分和三重积分。
二重积分的概念可以通过曲顶柱体的体积来引入。
在直角坐标系下,计算二重积分通常可以将其化为累次积分。
在极坐标系下,对于一些具有圆形或扇形对称性的区域,使用极坐标计算二重积分会更加简便。
三重积分与二重积分类似,也有其定义和计算方法。
在直角坐标系下,三重积分可以化为三次累次积分;在柱面坐标系和球面坐标系下,对于具有相应对称性的区域,使用这些坐标系计算三重积分会更高效。
重积分在计算物体的质量、重心、转动惯量等方面有着广泛的应用。
三、曲线积分与曲面积分曲线积分分为对弧长的曲线积分和对坐标的曲线积分。
对弧长的曲线积分的物理意义可以理解为曲线形构件的质量。
对坐标的曲线积分与变力沿曲线做功的问题密切相关。
高等数学下知识点总结6篇
高等数学下知识点总结6篇高等数学下知识点总结6篇借鉴经验和教训,对自己的工作和生活进行反思和总结,从而不断进步。
深入学习,专攻某一领域有利于个人成长和职业发展。
下面就让小编给大家带来高等数学下知识点总结,希望大家喜欢!高等数学下知识点总结1第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
大一高数下册期中知识点
大一高数下册期中知识点大一高等数学是大学数学的基础课程之一,下册主要包含了微分学和积分学的内容。
下面将对下册的期中考试涉及的知识点进行整理和总结。
一、微分学1. 函数的极限与连续- 函数的极限定义及性质- 无穷大与无穷小量- 函数的连续定义及其性质- 初等函数的连续性2. 导数与微分- 导数的定义及其性质- 导数基本公式与运算法则- 高阶导数与高阶微分- 隐函数与参数方程的导数- 反函数与逆函数的导数3. 微分中值定理- 罗尔中值定理- 拉格朗日中值定理- 柯西中值定理- 极值与最值的判定4. 函数的图形与曲线的凸性- 函数的单调性与绝对值函数- 函数的凸性与凹性- 曲线的拐点与渐近线二、积分学1. 不定积分- 不定积分的概念与性质- 基本积分表- 代换法与分部积分法- 三角函数的积分2. 定积分- 定积分的概念与性质- 牛顿—莱布尼茨公式- 计算定积分的方法(分割求和法、叠加法、定积分的性质)- 定积分在几何学与物理学中的应用3. 积分学的应用- 长度、曲线、平面图形的面积和体积的计算- 常微分方程的初等解法- 物理问题与积分的应用:质心、转动惯量、功与能量、压力与弹力以上就是大一高数下册期中考试涉及的主要知识点。
在备考期中考试时,同学们可以重点复习这些内容,理解并掌握每个知识点的概念、性质和应用方法,进行大量的练习题和习题课。
只有通过不断地巩固和实践,才能真正掌握这些知识,并顺利应对期中考试的挑战。
希望这篇文章对你的学习有所帮助,祝你期中考试顺利!。
高等数学下册知识点归纳
高等数学下册知识点归纳高等数学下册知识点归纳高等数学是数学各个分支中最重要的一门学科之一,包括微积分、线性代数、概率论、常微分方程等多个分支。
本文主要对高等数学下册中的主要知识点进行归纳概括,以方便学生复习和总结。
1. 多元函数微积分多元函数微积分是高等数学的重点内容之一,包括多元函数的极限、连续、可微、偏导数、全微分及其应用、重积分等知识。
其中,偏导数和全微分是多元函数微积分的基础,重积分则是其最具实际意义的应用之一。
2. 常微分方程常微分方程是一种描述自然现象和工程问题的重要数学模型,包括一阶和二阶常微分方程及其组合形式。
常微分方程的解法有解析法和数值法两种,解析法主要包括分离变量法、同解叠加法、常系数线性齐次方程组等方法。
数值法则包括欧拉法、改进欧拉法、四阶龙格-库塔法等。
3. 线性代数线性代数是研究向量空间及其线性变换的数学分支,是数学领域中最重要的基础学科之一。
线性代数主要包括向量、矩阵及其运算、线性变换及其矩阵表示、特征值、特征向量以及相似矩阵等内容。
4. 概率论概率论是研究随机现象的概率和统计规律的一门学科,具有广泛的应用背景,包括生命科学、物理学、金融学等领域。
概率论主要包括概率空间、随机变量及其分布、多维随机变量及其联合分布、独立性、条件概率、贝叶斯公式、随机过程以及极限定理等内容。
5. 复变函数复变函数是指定义在复平面上的函数,是一种比实函数更为复杂的函数。
复变函数包括全纯函数及其导数、几何意义、级数展开、奇点、留数、调和函数以及边值问题等内容。
6. 傅里叶级数与变换傅里叶级数与变换是一种将非周期函数表示成一系列正弦和余弦函数或复指数函数的方法。
傅里叶级数是周期函数的展开,傅里叶变换是非周期函数的展开。
傅里叶级数和变换在信号处理、图像处理、量子力学等众多领域中有着广泛应用。
7. 向量场与曲线积分向量场与曲线积分是研究向量场在平面和空间中的性质以及曲线上的曲面积分的一门学科。
向量场主要研究向量函数在区域内的变化规律,曲线积分是将向量场沿着曲线的积分。
(完整版)(完整版)高等数学下知识点全,推荐文档
lim
y0
f
( x0 ,
y0
y) y
f
( x0 ,
y0 )
3、 方向导数:
f l
f cos f cos
x
y
其中 ,
为 l 的方向角。
4、 梯度: z f (x, y) ,则 gradf (x0 , y0 ) f x (x0 , y0 )i f y (x0 , y0 ) j 。
z2 c2
1
x2 a 双叶双曲面: 2
y2 b2
z2 c2
1
x2 a 双曲抛物面(马鞍面): 2
y2 b2
z
5)
x2 a 椭圆柱面: 2
y2 b2
1
x2 a 双曲柱面: 2
y2 b2
1
6) 抛物柱面: x 2 ay
(二) 平面及其方程
1、 点法式方程: A(x x0 ) B( y y0 ) C(z z0 ) 0
y
sin
,
f (x, y, z) d v
f ( cos , sin , z)dd dz
z z
3) 球面坐标 (三) 应用
曲面 S : z f (x, y) , (x, y) D 的面积:
2、 计算: 1) 直角坐标
D
(
x,
y)
1(
x) a
y x
2 b
(
x)
,
f (x, y)dxdy
b
dx
2 (x) f (x,y) d y
a
1 ( x)
D
D
(
x,
y)
1(
y) c
x y
2 d
(
y)
高数下知识点总结
高数下知识点总结高等数学下的知识点是数学的一大分支,它贯穿了数学的各个领域,包含了微积分、线性代数、概率论等多个分支。
下面将从微积分、线性代数和概率论三个方面,为大家总结高等数学下的主要知识点。
微积分微积分是高等数学的重要分支。
它主要研究函数的极限、连续性、可微性以及积分等方面的问题。
微积分的一些基本知识点如下:1.导数的概念导数是一个函数在某一点的变化率,它的定义为:如果函数f(x)在x点处的导数存在,那么f(x)在x点处可导,其导数f’(x)等于:f’(x) = lim (f(x+h) - f(x)) / h (h→0)2.导函数和求导法则导函数是导数的函数,它表示在每个点上的导数。
求导法则包括常数法则、幂法则、和法则、积法则及商法则等。
它们的具体表达式如下:常数法则:(C)' = 0幂法则:(x^n)' = nx^(n-1)和法则:(f+g)' = f' + g'积法则:(fg)' = f'g + fg'商法则:(f/g)' = (f'g - fg') / g^23.泰勒级数泰勒级数是一种用无穷级数表示定义在某个区间上的函数的方法。
在x=a处做泰勒级数展开,可以得到:F(x) = F(a) + F'(a)(x-a) + F''(a)(x-a)^2/2! + … + F^n(a)(x-a)^n/n!+ Rn其中,Rn为余项,具体根据不同的误差估计方法而定。
4.不定积分不定积分是取定被积函数后的无界函数的通式。
它的表达式为:∫f(x) dx = F(x) + C其中,C为常数,是不定积分的任意常数。
线性代数线性代数作为数学的一个分支,主要研究向量空间、线性变换及其表示、矩阵、行列式、特征值、特征向量等内容。
线性代数的一些基本知识点如下:1.向量及其代数运算向量是具有大小和方向的有向线段,它的加法满足结合律和交换律。
大一下高数下册知识点
大一下高数下册知识点1. 二元一次方程- 二元一次方程的含义和示例- 解二元一次方程的方法:代入法、消元法、等系数法 - 二元一次方程在实际问题中的应用2. 二次函数- 二次函数的定义和性质- 二次函数的图像特征:顶点、对称轴、开口方向- 二次函数的最值和相关概念- 二次函数的应用:抛物线运动、经济学模型等3. 函数的极限与连续性- 函数极限的定义和基本性质- 无穷小量和无穷大量的概念- 函数的连续性定义和连续函数的性质- 利用函数极限和连续性求解实际问题4. 一元函数的导数- 导数的定义和几何意义- 导数的计算方法:基本导数公式、导数的四则运算、链式法则和反函数求导法- 函数的增减与极值判定- 导数在实际问题中的应用:速度、加速度等5. 微分学基本定理- 微分学基本定理的表述和意义- 函数的微分与导数的关系- 平均值定理和介值定理- 利用微分学基本定理求解实际问题6. 不定积分- 不定积分的定义和基本性质- 基本积分公式和换元积分法- 分部积分和有理函数的积分- 利用不定积分求解定积分和实际问题7. 定积分- 定积分的定义和几何意义- 定积分的性质和运算法则- 反常积分的概念和计算方法- 定积分在几何学、物理学等领域的应用8. 微分方程- 微分方程的基本概念和分类- 一阶线性微分方程的求解方法- 高阶线性微分方程的特征根法和常数变易法 - 微分方程在生物学、经济学等领域的应用9. 多元函数的偏导数与全微分- 多元函数的限定和偏导数的定义- 偏导数的计算方法和几何意义- 多元函数的全微分和全微分近似- 隐函数与显函数的偏导数计算10. 多元函数的极值与条件极值- 多元函数的极值概念和判定条件- 梯度和海森矩阵的计算和应用- 多元函数的条件极值和拉格朗日乘数法- 多元函数极值在实际问题中的应用以上是大一下高数下册的一些重要知识点概述,理解并掌握这些知识点是学好高数课程的基础。
通过学习和应用这些知识点,我们可以解决实际问题,并在数学领域或其他领域中发挥作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = ,则 ),,(z z y y x x b a b a b a b a ±±±=± ,),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a =⋅1)2a a a =⋅2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c ⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a2)b a //⇔0=⨯b azy x z y xb b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1) 椭圆锥面:22222z by a x =+ 2) 椭球面:1222222=++c z b y a x 旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+cz b y a x 4) 双叶双曲面:1222222=--c z b y a x 5) 椭圆抛物面:z by a x =+2222 6) 双曲抛物面(马鞍面):z by a x =-2222 7) 椭圆柱面:12222=+b y a x 8) 双曲柱面:12222=-by a x 9)抛物柱面:ay x =2(四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程 1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥Lp C n B m A ==第九章 多元函数微分法及其应用(一) 基本概念 1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
2、 多元函数:),(y x f z =,图形:3、 极限:A y x f y xy x =→),(lim ),(),(00 4、 连续:),(),(lim 00),(),(00y x f y x f y xy x =→ 5、 偏导数: xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(00000006、 方向导数:βαcos cos yf x f l f ∂∂+∂∂=∂∂其中βα,为l 的方向角。
7、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x ),(),(),(000000+=。
8、 全微分:设),(y x f z =,则d d d z z z x y x y∂∂=+∂∂ (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:2、 闭区域上连续函数的性质(有界性定理,最大最小值定理,介值定理)3、 微分法1) 定义:u x2) 复合函数求导:链式法则 z若(,),(,),(,)z f u v u u x y v v x y ===,则 v y z z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z v y u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 3) 隐函数求导:两边求偏导,然后解方程(组)(三) 应用1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令 ),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-BAC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值;② 若02<-BAC ,函数没有极值; ③ 若02=-B AC ,不定。
2) 条件极值:求函数),(y x f z=在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+= ——— Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(00y x L L y x ϕ 2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的 切线方程为:)()()(000000t z z z t y y y t x x x '-='-='-法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为: 0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 性质:(6条)3、 几何意义:曲顶柱体的体积。
4、 计算: 1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,21()()(,)d d d (,)d dy cy Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分1、 定义:∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算: 1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一” 2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标⎪⎪⎩⎪⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x 2(,,)d (sin cos ,sin sin ,cos )sin d d d f x y z v f r r r r r φθφθφφφθΩΩ=⎰⎰⎰⎰⎰⎰(三) 应用 曲面D y x y x f z S∈=),(,),(:的面积:y x yz x z A Dd d )()(122⎰⎰∂∂+∂∂+=第十一章 曲线积分与曲面积分 (一) 对弧长的曲线积分1、 定义:1(,)d lim (,)ni i i Li f x y s f s λξη→==⋅∆∑⎰2、 性质:1) [(,)(,)]d (,)d (,)d .L LLf x y x y s f x y sg x y s αβαβ+=+⎰⎰⎰2)12(,)d (,)d (,)d .LL L f x y s f x y s f x y s =+⎰⎰⎰ ).(21L L L +=3)在L 上,若),(),(y x g y x f ≤,则(,)d (,)d .L L f x y s g x y s ≤⎰⎰4)l sL =⎰d ( l 为曲线弧 L 的长度)3、 计算:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),(),(βαψϕ≤≤⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d [(),( ,()Lf x y s f t t t βαφψαβ=<⎰⎰(二) 对坐标的曲线积分1、 定义:设 L 为xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义∑⎰=→∆=nk kk k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk k k kLy Q y y x Q 1),(lim d ),(ηξλ.向量形式:⎰⎰+=⋅LL y y x Q x y x P r F d ),(d ),(d2、 性质:用-L 表示L 的反向弧 , 则⎰⎰⋅-=⋅-L L r y x F r y x F d ),(d ),(3、 计算:设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(,)d (,)d {[(),()]()[(),()]()}dLP x y x Q x y y P t t t Q t t t t βαφψφφψψ''+=+⎰⎰4、 两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,)()()(cos 22t t t ψϕϕα'+''=,)()()(cos 22t t t ψϕψβ'+''=,则d d (cos cos )d LLP x Q y P Q s αβ+=+⎰⎰.(三) 格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数, 则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂LD y Q x P y x y P x Q d d d d 2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,则y Px Q ∂∂=∂∂ ⇔曲线积分 d d LP x Q y +⎰在G 内与路径无关 ⇔曲线积分d d 0LP x Q y +=⎰⇔ y y x Q x y x P d ),(d ),(+在G 内为某一个函数),(y x u 的全微分(四) 对面积的曲面积分 1、 定义: 设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,定义i i i i ni S f S z y x f ∆=∑⎰⎰=→∑),,(lim d ),,(1ζηξλ2、 计算:———“一单二投三代入”),(:y x z z =∑,xy D y x ∈),(,则yx y x z y x z y x z y x f S z y x f y x D yx d d ),(),(1)],(,,[d ),,(22++=⎰⎰⎰⎰∑(五) 对坐标的曲面积分1、 预备知识:曲面的侧,曲面在平面上的投影,流量2、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰1(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰3、 性质:1)21∑+∑=∑,则12d d d d d d d d d d d d d d d d d d P y z Q z x R x yP y z Q z x R x y P y z Q z x R x y∑∑∑++=+++++⎰⎰⎰⎰⎰⎰2)-∑表示与∑取相反侧的有向曲面 , 则d d d d R x y R x y -∑∑=-⎰⎰⎰⎰4、 计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“ + ”,∑为下侧取“ - ”.5、 两类曲面积分之间的关系:()S R Q P y x R x z Q z y P d cos cos cos d d d d d d ⎰⎰⎰⎰∑∑++=++γβα其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。