2019-2020年高考数学二轮复习专题1.8集合与简易逻辑、复数教学案
【2019年高考二轮课程】数学文科 全国通用版 集合与简易逻辑 教案
2019年高考二轮复习集合与简易逻辑一、高考回顾近几年对集合和逻辑的考查,一般是1-2个小题。
对集合的考查一般以一个选择题的形式出现,往往是试卷的第一题,命题特点是以集合为载体,综合函数、不等式等知识,难度为中、低档送分题目;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度也不大。
总的来说,这两个知识点均属于送分题,对大多数学生来说都不难稳稳拿到。
二、知识清单1.思维导图2.知识再现将本部分的基础知识进行呈现,对一轮复习的成果进行夯实,避免基础知识的遗忘。
三、例题精讲题型一 集合的交并补运算例1 :(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =( )A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 【答案】A【解析】由题意{0,2}A B =,故选A .【易错点】交并不分 【思维点拨】概念的应用例2 (2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =( )A .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,7【答案】C【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}AB =,故选C .【易错点】交并不分 【思维点拨】概念的应用题型二 集合的交并补与不等式结合例3:(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则( )A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =<D .AB =R【答案】A【解析】∵3{|}2B x x =<,∴3{|}2A B x x =<, 选A .【易错点】不等式解错【思维点拨】掌握常规不等式的解答例4::(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1] 【答案】A【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1].【易错点】方程解错,对数不等式不会解答 【思维点拨】基本函数和方程思想的掌握 题型三 四种命题的基本考查例5:(2015山东)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是A .若方程20x x m +-=有实根,则0m > B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤ 【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【易错点】概念混淆【思维点拨】加强对四种命题的强化。
高考数学二轮复习 专题01 集合与简单逻辑教学案 理-人教版高三全册数学教学案
专题01 集合与简单逻辑集合知识一般以一个选择题的形式出现,其中以集合知识为载体,集合与不等式、解析几何知识相结合是考查的重点,难度为中、低档;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大.1.集合的概念、运算和性质(1)集合的表示法:列举法,描述法,图示法.(2)集合的运算:①交集:A∩B={x|x∈A,且x∈B}.②并集:A∪B={x|x∈A,或x∈B}.③补集:∁U A={x|x∈U,且x∉A}.(3)集合的关系:子集,真子集,集合相等.(4)需要特别注意的运算性质和结论.①A∪∅=A,A∩∅=∅;②A∩(∁U A)=∅,A∪(∁U A)=U.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A2.四种命题(1)用p、q表示一个命题的条件和结论,¬p和¬q分别表示条件和结论的否定,那么假设原命题:假设p那么q;那么逆命题:假设q那么p;否命题:假设¬p那么¬q;逆否命题:假设¬q那么¬p.(2)四种命题的真假关系原命题与其逆否命题同真同真;原命题的逆命题与原命题的否命题同真同假.3.充要条件(1)假设p⇒q,那么p是q成立的充分条件,q是p成立的必要条件.(2)假设p ⇒q 且q ⇒/ p ,那么p 是q 的充分不必要条件,q 是p 的必要不充分条件. (3)假设p ⇔q ,那么p 是q 的充分必要条件. 4.简单的逻辑联结词“且〞、“或〞、“非〞用逻辑联结词“且〞把命题p 和命题q 联结起来,就得到一个新命题,记作“p ∧q 〞; 用逻辑联结词“或〞把命题p 和命题q 联结起来,就得到一个新命题,记作“p ∨q 〞; 对一个命题p 全盘否定,就得到一个新命题,记作“¬p 〞. 5.全称量词与存在量词 (1)全称命题p :∀x ∈M ,p (x ). 它的否定¬p :∃x 0∈M ,¬p (x 0).(2)特称命题(存在性命题)p :∃x 0∈M ,p (x 0). 它的否定¬p :∀x ∈M ,¬p (x ).考点一 集合的概念及运算例1、[2017课标3,理1]集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,那么A B中元素的个数为A .3B .2C .1D .0[答案]B[变式探究](1)集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},那么A ∩B =( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}解析:基本法:化简集合B ,利用交集的定义求解. 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0}.应选A. 速解法:验证排除法: ∵-1∈B ,故排除B 、D.∵1∉B,∴1∉A∩B,排除C.答案:A(2)集合A={0,1,2},那么集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9解析:基本法:用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.应选C.答案:C考点二充分、必要条件例2、[2017某某,理4]设θ∈R,那么“ππ||1212θ-<〞是“1sin2θ<〞的〔A〕充分而不必要条件〔B〕必要而不充分条件〔C〕充要条件〔D〕既不充分也不必要条件[答案]A[解析]πππ||012126θθ-<⇔<<1sin2θ⇒<,但10,sin2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件,选A.[变式探究](1) 函数f(x)在x=x0处导数存在.假设p:f′(x0)=0;q:x=x0是f(x)的极值点,那么( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:基本法:利用命题和逆命题的真假来判断充要条件,注意判断为假命题时,可以采用反例法.当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 答案:C(2)“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4〞是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数〞的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[变式探究]x ∈R ,那么“x 2-3x >0〞是“x -4>0〞的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:基本法:判断x2-3x>0⇒x-4>0还是x-4>0⇒x2-3x>0.注意到x2-3x>0⇔x<0或x>3,x-4>0⇔x>4.由x2-3x>0不能得出x-4>0;反过来,由x-4>0可得出x2-3x>0,因此“x2-3x>0〞是“x-4>0〞的必要不充分条件.应选B.答案:B速解法:利用反例和实数的运算符号寻找推导关系.如x=4时,满足x2-3x>0,但不满足x-4>0,即不充分.假设x-4>0,那么x(x-3)>0,即必要.应选B.答案:B考点三命题判定及否定例3、(1)设命题p:∃n∈N,n2>2n,那么綈p为( )A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n解析:基本法:因为“∃x∈M,p(x)〞的否定是“∀x∈M,綈p(x)〞,所以命题“∃n∈N,n2>2n〞的否定是“∀n∈N,n2≤2n〞.应选C.答案:C(2)命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,那么以下命题中为真命题的是( )A.p∧q B.(綈p)∧qC.p∧(綈q) D.(綈p)∧(綈q)解析:基本法:当x=0时,有2x=3x,不满足2x<3x,∴p:∀x∈R,2x<3x是假命题.如图,函数y=x3与y=1-x2有交点,即方程x3=1-x2有解,∴q:∃x∈R,x3=1-x2是真命题.∴p∧q为假命题,排除A.∵綈p为真命题,∴(綈p)∧q是真命题.选B.速解法:当x=0时,不满足2x<3x,∴p为假,排除A、C.利用图象可知,q为真,排除D,必选B.答案:B[变式探究]命题p :∃x ∈R,2x >3x;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,那么以下是真命题的是( )A .(綈p )∧qB .(綈p )∨(綈q )C .p ∧(綈q )D .p ∨(綈q )1.[2017课标1,理1]集合A ={x |x <1},B ={x |31x <},那么 A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅[答案]A[解析]由31x <可得033x <,那么0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,应选A.2.[2017课标II ,理]设集合{}1,2,4A =,{}240x x x m B =-+=。
2020新高考数学二轮复习全套教案精品
专题01集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1给出下列六个关系:(1)0∈N*(2)0∉{-1,1}(3)∅∈{0}(4)∅∉{0}(5){0}∈{0,1}(6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______.【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义),所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1,结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是()(A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是()(A)A ={(1,2)},B ={(2,1)}(B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是()(A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是()(A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(U A)∩(U B)={1,9},求集合A和B.11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是()(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为()(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么()(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为()(A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集(B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集(C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集(D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件.6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题:①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)∃x ∈{x |x ∈Z },log 2x >0;(4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是()(A)若x 是正数,则x ≠|x |(B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是()(A)(M ∩N )∪P (B)(M ∩N )∩P(C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b∈P ”,则运算“&”可以是()(A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是()(A)ab >ac (B)c (b -a )<0(C)cb 2<ab 2(D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________.9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈-(1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题01集合与常用逻辑用语参考答案练习1-1一、选择题1.B2.B3.A4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4}6.4个7.{x|-1<x<2}8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D2.A3.B4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-17.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D3.A4.C5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3}7.∀x ∈A ,x ∈A ∪B8.{0,1,2}9.{a |a ≥2}10.③.提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-xx x 所以012>-x x ,此不等式等价于x (2x -1)>0,解得x <0或21>x ,所以,原不等式的解集为{x |x <0或21>x }.12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--8143(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=-∴A 中至少有-1,21,2三个元素.(2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.专题02函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2设函数⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 则f (1)=______;若f (0)+f (a )=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f (1)=3.又f (0)=-1,所以f (a )=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a 2+2a +2=-1,即a 2-2a -3=0得a =3或a =-1(舍).综上,a =0或a =3.例3下列四组函数中,表示同一函数的是()(A)22(,t y x y ==(B)2|,|t y x y ==(C)1,112+=--=x y x x y (D)xx y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4求下列函数的定义域(1);11--=x y (2);3212-+=x x y (3);)1()3lg(0-+-=x xx y (4);2|2|12---=x x y 解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}.(2)由x 2+2x -3>0得,x >1或x <-3.所以,所求函数的定义域为{x |x >1或x <-3}.(3)由⎪⎩⎪⎨⎧=/-=/>-,01,0,03x x x 得x <3,且x ≠0,x ≠1,所以,所求函数的定义域为{x |x <3,且x ≠0,x ≠1}(4)由⎩⎨⎧=/=/≤≤-⎩⎨⎧=/-≥-⎩⎨⎧≠--≥-,4,0,112|2|01,02|2|0122x x x x x x x 且即,,得,所以-1≤x ≤1,且x ≠0.所以,所求函数定义域为{x |-1≤x ≤1,且x ≠0}.例5已知函数f (x )的定义域为(0,1),求函数f (x +1)及f (x 2)的定义域.【分析】此题的题设条件中未给出函数f (x )的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x 的取值范围;②受对应法则f 制约的量的取值范围在“已知”和“求”当中是一致的.那么由f (x )的定义域是(0,1)可知法则f 制约的量的取值范围是(0,1),而在函数f (x +1)中,受f 直接制约的是x +1,而定义域是指x 的范围,因此通过解不等式0<x +1<1得-1<x <0,即f (x +1)的定义域是(-1,0).同理可得f (x 2)的定义域为{x |-1<x <1,且x ≠0}.例6如图,用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x ,求此框架围成的面积y 与x的函数关系式,并指出定义域.解:根据题意,AB =2x.⋅--==2π2,πxx l AD x 所以,.)2π2(π212π2222lx x x x x l x y ++-=+--=⋅⋅根据问题的实际意义.AD >0,x >0.解.π20,02π2,0+<<⎪⎩⎪⎨⎧>-->l x xx l x 得所以,所求函数定义域为⋅+<<}π20|{lx x【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y =tan x ,则2ππ+≠k x ,k ∈Z .(2)不给出f (x )的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7(1)已知211(x xxf -=,求f (x )的解析式;(2)已知221)1(xx x x f +=+,求f (3)的值;(3)如果f (x )为二次函数,f (0)=2,并且当x =1时,f (x )取得最小值-1,求f (x )的解析式;(4)*已知函数y =f (x )与函数y =g (x )=2x 的图象关于直线x =1对称,求f (x )的解析式.【分析】(1)求函数f (x )的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.⋅-=-=1)1(1111(2xxx xxf 通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,⋅-=1)(2x xx f 方法二.设t x =1,则t x 1=.则1111)(22-=-=t t ttt f ,所以⋅-=1)(2x x x f 这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,.7)3(,2)(.2)1(11(2222=-=-+=+=+f x x f xx x x x x f 所以(3)因为f (x )为二次函数,并且当x =1时,f (x )取得最小值-1,所以,可设f (x )=a (x -1)2-1,又f (0)=2,所以a (0-1)2-1=2,所以a =3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9某地区上年度电价为0.8元/kW·h ,年用电量为a kW·h .本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.40元/kW·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.30元/kW·h .(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x 元/kW·h 时,用电量将增加至,4.0a x k+-故电力部门的收益为)75.055.0)(3.0)(4.0(≤≤-+-=x x a x ky .(2)易知,上年度的收益为(0.8-0.3)a ,依题意,%),201)(3.08.0()3.0)(4.02.0(+-≥-+-a x a x a且0.55≤x ≤0.75,解得0.60≤x ≤0.75.所以,当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数xx f -=11)(的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =()(A){x |x >1}(B){x |x <1}(C){x |-1<x <1}(D)∅2.图中的图象所表示的函数的解析式为()(A))20(|1|23≤≤-=x x y (B))20(|1|2323≤≤--=x x y (C))20(|1|23≤≤--=x x y (D)y =1-|x -1|(0≤x ≤2)3.已知f (x -1)=x 2+2x ,则=1(xf ()(A)x x 212+(B)112-x (C)22143x x x ++(D)212x x +4.已知⎪⎩⎪⎨⎧≥<<--≤+=2,3,21,,1,3)(2x x x x x x x f 若f (x )=3,则x 的值是()(A)0(B)0或23(C)3±(D)3二、填空题5.给定映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(0,1)的象是______;(3,1)的原象是______.6.函数2||3)(--=x xx f 的定义域是______.7.已知函数f (x ),g (x )分别由下表给出x 123x 123f (x )131g (x )321则f [g (1)]的值为______;满足f [g (x )]>g [f (x )]的x 的值是______.8.已知函数y =f (x )与函数y =g (x )=2x 的图象关于点(0,1)对称,则f (x )的解析式为______.三、解答题9.已知f (x )=2x +x -1,⎩⎨⎧<-≥=),0(1),0()(2x x x x x g 求g (-1),g [f (1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A (0,9),其轨迹方程为y =ax 2+c (a <0),D =(6,7)为x 轴上的给定区间.为使物体落在区间D 内,求a 的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点P (-x,-f(x))都在其图象上.又点P 与点P '关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y 轴为对称轴的轴对称图形.2.一般地,设函数y =f (x )的定义域为A ,区间M ⊆A .如果取区间M 中的任意两个值x 1,x 2,改变量∆x =x 2-x 1>0,则当∆y =f (x 2)-f (x 1)>0时,就称函数y =f (x )在区间M 上是增函数;当∆y =f (x 2)-f (x 1)<0时,就称函数y =f (x )在区间M 上是减函数.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性,区间M 称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域中的每一个值时,f (x +T )=f (x )都成立,那么就把函数y =f (x )叫做周期函数,不为零的常数T 叫做这个函数的周期.4.一般的,对于函数f (x ),如果存在一个不为零的常数a ,使得当x 取定义域中的每一个值时,f (a +x )=f (a -x )都成立,则函数y =f (x )的图象关于直线x =a 对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1判断下列函数的奇偶性.(1);1)(-=x x x f (2);11)(+=x x f (3)f (x )=x 3-3x ;(4);11lg xx y -+=(5)⋅+-=1212x x y 解:(1)解01≥-x x ,得到函数的定义域为{x |x >1或x ≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x |x ≠0},但是,由于f (1)=2,f (-1)=0,即f (1)≠f (-1),且f (1)≠-f (-1),所以此函数为非奇非偶函数.(3)函数的定义域为R ,又f (-x )=(-x )3-3(-x )=-x 3+3x =-f (x ),所以此函数为奇函数.(4)解011>-+xx ,得-1<x <1,又),(11lg 11lg )(1)(1lg)(x f x x x x x x x f -=-+-=+-=---+=-所以此函数为奇函数.(5)函数的定义域为R ,又)(21211212)(x f x f xx x x -=+-=+-=---,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f (x )是奇函数,并且f (x )在x =0时有定义,则必有f (0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f (x )=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f (-x )与f (x )的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2设函数f (x )在R 上有定义,给出下列函数:①y =-|f (x )|;②y =xf (x 2);③y =-f (-x );④y =f (x )-f (-x ).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F (x )=-|f (x )|,则F (-x )=-|f (-x )|,由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.②令F (x )=xf (x 2),则F (-x )=-xf [(-x )2]=-xf (x 2)=-F (x ),所以F (x )为奇函数.③令F (x )=-f (-x ),则F (-x )=-f [-(-x )]=-f (x ),由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.④令F (x )=f (x )-f (-x ),则F (-x )=f (-x )-f [-(-x )]=f (-x )-f (x )=-F (x ),所以F (x )为奇函数.所以,②④为奇函数.例3设函数f (x )在R 上有定义,f (x )的值不恒为零,对于任意的x ,y ∈R ,恒有f (x +y )=f (x )+f (y ),则函数f (x )的奇偶性为______.解:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,再令y =-x ,则f (0)=f (x )+f (-x ),所以f (-x )=-f (x ),又f (x )的值不恒为零,故f (x )是奇函数而非偶函数.【评析】关于函数方程“f (x +y )=f (x )+f (y )”的使用一般有以下两个思路:令x ,y 为某些特殊的值,如本题解法中,令x =y =0得到了f (0)=0.当然,如果令x =y =1则可以得到f (2)=2f (1),等等.令x ,y 具有某种特殊的关系,如本题解法中,令y =-x .得到f (2x )=2f (x ),在某些情况下也可令y =x1,y =x ,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4已知二次函数f (x )=x 2+bx +c 满足f (1+x )=f (1-x ),求b 的值,并比较f (-1)与f (4)的大小.解:因为f (1+x )=f (1-x ),所以x =1为二次函数图象的对称轴,所以12=-b ,b =-2.根据对称性,f (-1)=f (3),又函数在[1,+∞)上单调递增,所以f (3)<f (4),即f (-1)<f (4).例5已知f (x )为奇函数,当x ≥0时,f (x )=x 2-2x ,(1)求f (-1)的值;(2)当x <0时,求f (x )的解析式.解:(1)因为f (x )为奇函数,所以f (-1)=-f (1)=-(12-2×1)=1.(2)方法一:当x <0时,-x >0.所以,f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x .方法二:设(x ,y )是f (x )在x <0时图象上一点,则(-x ,-y )一定在f (x )在x >0时的图象上.所以,-y =(-x )2-2(-x ),所以y =-x 2-2x .。
2019-2020年高三数学第二轮复习集合与简易逻辑学案
2019-2020年高三数学第二轮复习集合与简易逻辑学案一、考试要求1. 理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
能掌握有关的术语和符号,能正确地表示一些较简单的集合。
2. 理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;二、考点扫描1 •集合中元素特征:确定性,互异性,无序性;集合按元素特征分类:数集,点集。
2、两类关系:(1)元素与集合的关系,用或表示;(2)集合与集合的关系,用,,=表示,当AB时,称A是B的子集;(3)当AB时,称A是B的真子集。
如果一个集合A有n个元素(Crad(A)=n ),那么它有个个子集,_____ 个非空真子集注:(1)元素与集合间的关系用___________ 符号表示;(2)集合与集合间的关系用___________ 符号表示3、集合运算:交,并,补,定义:A n B={x|x € A且x € B},A U B={x|x € A,或x€ B}, C U A= {x|x € U,且xA}o4命题:(1)复合命题的形式:p且q, p或q,非p ;p或q(记作“ p V q”);p且q(记作“ p A q”);非p(记作、q” )(2)或”、“且”、“非”的真值判断:1) “非p”形式复合命题的真假与P的真假相反;2) “ p且q”形式复合命题当P与q同为真时为真,其他情况时为假;3) “ p或q”形式复合命题当p与q同为假时为假,其他情况时为真(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。
其中互为逆否的两个命题同真假,即等价。
因此,四种命题为真的个数只能是偶数个。
5、分条件与必要条件(1)定义:对命题“若p则q”而言,当它是真命题时,p是q的充分条件,q是p的必要条件,当它的逆命题为真时,q是p的充分条件,p是q的必要条件,两种命题均为真时,称p是q的充要条件。
2019-2020年高考数学二轮复习专题1.1集合与简易逻辑与数学文化教学案
2019-2020年高考数学二轮复习专题1.1集合与简易逻辑与数学文化教学案一.考场传真1. 【xx课标1,理1】已知集合A={x|x<1},B={x|},则A. B. C.D.【答案】A【解析】由可得,则,即,所以{|1}{|0}{|0}A B x x x x x x=<<=<I I,{|1}{|0}{|1}A B x x x x x x=<<=<U U,故选A. 2.【xx课标3,理1】已知集合A=,B=,则AB中元素的个数为A.3 B.2 C.1 D.0【答案】B3.【xx课标II,理】设集合,。
若,则()A. B. C. D.【答案】C4.【xx天津,理4】设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】【解析】πππ||012126θθ-<⇔<<,但,不满足,所以是充分不必要条件,选A.5.【xx课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B6.【xx 北京,理6】设m ,n 为非零向量,则“存在负数,使得”是“”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】若,使,即两向量反向,夹角是,那么0cos1800m n m n m n ⋅==-<r r r rr rT ,若,那么两向量的夹角为 ,并不一定反向,即不一定存在负数,使得,所以是充分不必要条件,故选A.7.【xx 浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积, . 【答案】 【解析】二.高考研究 【考纲解读】 1.考纲要求1.了解集合的含义,元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法、描述法)描述不同的具体问题.了解“若则”形式的逆命题,否命题和逆否命题,会分析四种命题的相互关系.了解逻辑联接词“或”、“且”、“非”的含义.2.理解集合之间的包含与相等的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 能使用韦恩(Venn )图表达集合的关系与运算. 理解命题的概念.理解充分条件、必要条件、充要条件的意义.理解全称量词和存在量词的意义.3.体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.能正确地对含有一个量词的命题进行否定.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.4.解决问题的创新题常分三步:①信息提取,确定划归方向;②对所提取的信息进行加工,探求解决方法;③将涉及到的知识进行转换,有效地输出,其中信息的提取与划归是解题的关键,也是解题的难点.5.增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.2.命题规律从近几年高考题来看,集合的运算考查比较频繁,新课标用韦恩图表达集合的关系与运算,集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大,对数学文化应结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式.3.学法导航1.活用“定义法”解题,重视“数形结合”涉及本单元知识点的高考题,综合性大题不多,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了. 定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.2.有意识地在各模块复习中渗透数学思维方法数学是理性思维的学科,高考尤其强调“全卷要贯穿思维能力的考查”简易逻辑用于可以和各章融合命题,正是这一理性思维的体现,学生只有在思维能力上有所提高才能让数学学习有一个质的飞跃。
2019年高考数学二轮复习(1)集合教案
2019年高考数学二轮复习(1)集合教案【专题要点】1 •集合的含义与表示(1 )通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2 )能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 .集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3 •集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用【考纲要求】1. 集合部分的考点主要是集合之间的关系和集合的交并补运算;2. 掌握集合的表示法和用图示法表示集合之间的关系【知识纵横】『确定性概念T元素性质T彳互异性i无序性例举法表示方法 ------ 、{描述法|图示法集合属于关系关系----- 、彳|包含关系' 命题及其关系、交集T且" 充要条件运算一_彳并集t或'一一、逻辑联结词〉■常用逻辑用语补集T非,存在量词与[ 全称量词j【教法指引】集合是数学中最基本的概念之一,集合语言是现代数学的基本语言,因此集合的概念以及集合之间的关系是历年高考的必考内容之一,本部分的考查一般有两种形式:一是考查集合的相关概念,集合之间的关系,题型以选择题、填空题为主;二是考查集合语言、集合思想的理解与应用,这多与其他知识融为一体,题型也是一般以选择填空为主,单纯的集合问题以解答题形式出出现的几率较小,多是与函数、不等式等联系。
在复习中还要特别注意,新课标的中特别强调表达与描述同一问题的三种语言“自然语言、图形语言、集合语言”之间的关系,因此要注意利用韦恩图数轴函数图象相结合的作用, 另外集合新定义信息题在近 几年的命题中时有出现。
【典例精析】1. 对集合中有关概念的考查例1第二十九届夏季奥林匹克运动会将于 2008年8月8日在北京举行,若集合 A={参加北 京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员 },集合C={参加北京奥 运会比赛的女运动员},则下列关系正确的是 ( )A. ABB. BC C. A A B=C D . B U C=A 分析:本例主要考查子集的概念及集合的运算•解析:易知选 D.点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合 间的关系,寻根溯源还是元素间的关系.2. 对集合性质及运算的考查 例2.已知,,,贝V ()A.B .C .D .分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用. 解析:由,,,故选B.点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考 查数集和点集这两类集合,数集应多结合对应的数轴来理解, 点集则多结合对应的几何图形或平面直角坐标系来理解.3. 对与不等式有关集合问题的考查f]M = 4 x x +3 o $, N ={xx, _3}例3 .已知集合 I x -1. ,则集合为 ()A.B .C. D .分析:本题主要考查集合的运算, 同时考查解不等式的知识内容. 可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算. M ={x-3 <x c l }, N ={x x, —3},…,•••故选C.点评:同不等式有关的集合问题是高考命题的热点之一, 也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.4. 对与方程、函数有关的集合问题的考查例4.已知全集,集合, ,则集合中元素的个数为 ()A. 1B . 2C . 3D. 4分析:本题集合A 表示方程的解所组成的集合, 集合B 表示在集合A 条件下函数的值域, 故应先把集合A 、B 求出来,而后再考虑. 解析:因为集合,所以,所以故选B.点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根, 或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合, 正确进行集合运算.2019 年高考英语 Module 1 British and American English习检测(含解析)外研版必修5I .单项填空解析:依题意: 课后达标复1. It doesn' t make ______ ___difference whether you find the information on ________ Internet or in the library.A.a;/ B.a;aC.the ;the D.a;the2. Production of the car increased ___ ___ 10% in July, xx _______ the same month of last year.A.in ;pared to B.by;pared withC.in ;pared with D.by;paring to3. When we finally __________ to get home after the tiring long journey, we could hardly move a step further.A .triedB.succeededC .attempted D.managed4 . I have a lot__ _____ mon with Paul. His hobbies and interests aresimila r_ __mine.A .in ;to B.in ;withC .of;to D.of ;with5 . It rained heavily in the south in the summer of xx ,________ ___ serious floodingin several provinces.A.caused B.having causedC.causing D.to cause6. The good result _____________ the correct methods, that is to say, correctmethods _______ good result.A.lies ;lead B.leads to ;lie inC.lies in ;lead to D.lies to ;lead to7.All the people _____ at the party were his supporters.A.present B.thankfulC.interested D.important8. The _______ look on Tom ' s face suggested that he _________ his manager 's idea.A.confusing ;wouldn't quite understandB.confused ;hadn't quite understoodC.confusing ;hadn't quite understoodD.confused ;shouldn't quite understand9. Many children seldom municate with adults nowadays ,________ it difficult for their parents to know what they are thinking about.A.making B.makesC.made D.to make10. It ' s quite ________ that the aging population in China will cause a heavypressure on the whole society in the future.A.surprising B.obviousC.impossible D.funny11._______ with his sister, Tomis even more sensitive, and more easily troubledby emoti onal and relati on ship problems.A . pari ng B.paredC . pare D.To pare12.The preside nt spoke at the bus in ess meet ing for n early an hourwithout his no tes.A. bringing up B.referri ng toC . look ing for D.trying on1 3. Peter 's tireless efforts, the concert achieved huge success.A. In favour of B.Tha nks toC . In spite ofD.Accord ing to1 4. Do you have much difficulty yourself while talking with anAmerica n?A. to make ; understandB. making ; understandC. to make ; understoodD. making ; understood15. —Dad, you see, a cellph one is so useful no wadays. Should I get one?—Absolutely. _______A. I don ' t get it.B. How are you getting on?C. That' s a good point.D. I don ' t think so.n.完形填空(xx •山东烟台高三诊断性测试)Before graduation from college , my son began toseek a job.He targeted a pany which planned to__[ only one person. However, there were over 20 can didates , among whomwas my son.l__2_ him ,“ It ' s difficult to get into the pany. Don ' t_ 3__too much for fear that you would feel disappo in ted whe n you fail. ” My son said smilingly ,“_ 4__I try , there will be hope !”Of the can didates , on ly three could__5_ the final round , which would later decide the one to be employed.Everything seemed to__6__quite well and my son__7__the first round and en tered the fin al. Un expectedly , the final in terview wasunbelievably__8_ , and all of them were asked to go home and wait for the__9__of _the in terview.One morning , my son__10__a text from the pany that he was not employed.Before I__11 what to say to fort him , I was told that after noon that my son receivedanother__12__saying he was employed.__13__the first text was also part of the testin the in terview. The three men received the same text that morning and only my son' s_14 was satisfy ing to the pany, so he was employed .I asked myson__15一they replied.My son told me thatone__16__silent , one said “good—bye” and he sa id“thank you ”.Only then did I know my son' s “_17 ” came in that way. That is : don' t forget to say “thank you” to those who even__18 you.Saying “thank you” shows your__19 for others ' work,therefore ,you will get the upper hand in terms of__20__pared with others un der the same con diti ons.1. A.employ C.manage 2. A.interrupted C.reminded 3.A.spend C.waste 4.A.As if C.Even if 5.A.enter C.change 6. A.move C.fit 7. A.passed C.left 8.A.challenging C.perfect 9. A.course C.answer 10. A.prepared C.copied 11. A.figured out C.set off 12. A.gift C.text 13. A.Ridiculously C.Cleverly 14.A.reply C.reason 15.A.when C.how 16. A.got C.made 17.A.hope C.plan 18.A.cheat C.dislike 19.A.pity C.respect 20.A.chances C.lessons 川•阅读理解WhenI first told people I was:“ Why?” The second was:is that ?”B.supportD.interviewB.promisedD.followedB.expectD.wishB.As soon asD.As long asB.surviveD.judgeB.goD.stayB.earnedD.startedB.simpleD.secretB.planD.resultB.receivedD.wroteB.took upD.worked onB.noteD.ruleB.ActuallyD.SadlyB.questionD.beliefB.whatD.whomB.keptD.wentB.dreamD.aimB.hateD.disappointB.doubtD.desireB.skillsD.salarieswas going to work in Cameroon, the It 'sin Af rica ;you'll die!”most mon reactionThe third: “WhereSo let me give some an swers. I was offered a job that looked in teresti ng in a part of the world I ' d never been to before. I ' d also long had an interest in Africa, so I decided it was time to find out the reality.A small amount of research showed that in more than 40 years since gaining independence, Cameroon has been a peaceful country with no wars. Not only were there no wars but Camero on is a food exporter to the regi on.Now, after three years, I can say that these have healthiest years of my life! No malaria or any of the other frightening diseases you read about when Africa is men ti on ed.The worst thi ng that ever happe ned to me was a bout of food pois oning —once.So what is it like to teach here? Well surpris in gly not so differe nt fromteach ing any where else.Most stude nts e to us with a bit of En glish in their heads.Camero on is a bili ngual country with French and En glish as official la nguages, while there are also close to 200 local eth nic Ian guages in a country of 16 milli on people. French is the dominant language, spoke n by about 80% of the populati on.The local school system is very traditi onal and somewhat strict. Perhaps not surpris in gly whe n there can be up to 150 stude nts in the classroom ( of which maybe 30 have the books, and there are probably seats for 70)Like any where, stude nts appreciate it if you know a bit about their coun try, and not just Roger Milla (top scorer of the 1990 World Cup, in case you' re wonderin g). It helps if you know the n ames of the ten prov in ces, know who the first preside nt was, or can say a word in a local la nguage.So in conclusion: Cameroon isn ' t just football. Nor is it war, poverty and disease. It ' s just life and people, like anyw here else.1. On hearing the writer ' s decision, most people ____________ .A. didn ' t understand himB. considered it as a jokeC. admired himD. laughed at him2. Accord ing to the passage, Camero on is _______ .A. a country full of diseasesB. peaceful after liberationC. a poor country, especially lack of foodD. quite different from others in education3. What can we infer from the passage?A. Food export may lead to many frighte ning diseases.B. Most students in Cameroon do not need books.C. Cameroon is not as bad as people monly believed.D. There must be a lot of people suffering from food poisoning.4. What does the underlined word “dominant ” in the sixth paragraph mean?A. Leading.B. Easy.C. Only.D. Wonderful.课后达标检测251. 单项填空I •解析:选 0考查冠词。
2019-2020年高考数学二轮复习专题01集合与简易逻辑教学案文
2019-2020年高考数学二轮复习专题01集合与简易逻辑教学案文一.考场传真1.【xx 年全国新课标1】已知集合,,则( ) A. B. C. D.2.【xx 年安徽】已知{}{}|10,2,1,0,1A x x B =+>=--,则( )A.B.C.D.3.【xx 年福建】若集合,则的子集个数为( )A .2B .3C .4D .164.【xx 年陕西】设全集为, 函数的定义域为, 则为( ) A. [-1,1] B. (-1,1) C. D.5.【xx 年四川】设,集合是奇数集,集合是偶数集.若命题,则( ) A. B. C. D.6.【xx 年陕西】设, 为向量, 则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件二.高考研究【考纲解读】1.了解集合的含义,元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法、描述法)描述不同的具体问题.了解“若则”形式的逆命题,否命题和逆否命题,会分析四种命题的相互关系.了解逻辑联接词“或”、“且”、“非”的含义.2.理解集合之间的包含与相等的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 能使用韦恩(Venn)图表达集合的关系与运算. 理解命题的概念.理解充分条件、必要条件、充要条件的意义.理解全称两次和存在量词的意义.3.体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.能正确地对含有一个量词的命题进行否定.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.【命题规律】从近几年高考题来看,集合的运算考查比较频繁,新课标用韦恩图表达集合的关系与运算,高考试卷中的相应内容页明显增加,应引起足够的重视. 有时也会出现一块创新的“试验田”.全称命题与特称命题,是新课标教材的新增内容,是考查的重点.高考题型是选择题或填空题. 有时在大题的条件或结论中出现.一.基础知识整合(一)集合的概念及表示1.集合:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).2.集合中元素的3个性质:互异性、确定性、无序性.3.集合的3种表示方法:列举法、描述法、图像法.4.集合的分类:无限集、有限集。
2019-2020年高考数学第二轮专题复习集合与简易逻辑教案
2019-2020年高考数学第二轮专题复习集合与简易逻辑教案一、【重点知识结构】二、【高考要求】1. 理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的述语和符号,能正确地表示一些较简单的集合.2. 理解|ax+b|<c,|ax+b|>c(c>0)型不等式的概念,并掌握它们的解法.了解二次函数、一元二次不等式及一元二次方程三者之间的关系,掌握一元二次不等式及简单分式不等式的解法.3. 理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义和判定.4. 学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品质;学会判断和推理,解决简易逻辑问题,培养逻辑思维能力.三、【高考热点分析】集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.四、【高考复习建议】概念多是本章内容的一大特点,一是要抓好基本概念的过关,一些重点知识(如子、交、并、补集及充要条件等)要深刻理解和掌握;二是各种数学思想和数学方法在本章题型中都有较好体现,特别是数形结合思想,要善于运用韦氏图、数轴、函数图象帮助分析和理解集合问题.五、【例 题】【例1】 设}13|{},13|{,,22++==+-==∈y y b b B x x a a A R y x ,求集合A 与B 之间的关系。
解:由4545)23(1322-≥--=+-=x x x a ,得A=∴A=B 【例2】 已知集合A=,集合B=,若BA ,求实数p的取值范围。
专题01 集合与简单逻辑(教学案)-2019年高考文数二轮复习精品资料
2019年高考文科数学二轮复习精品资料专题01 集合与简单逻辑(教学案)2019届全国高考数学复习备考建议一、2019年全国高考数学继续坚持以习近平新时代中国特色社会主义思想为指引,坚持“一体四层四翼”的命题指导思想,注重顶层设计,明确“立德树人、服务选才、引导教学”这一高考核心功能;明确“必备知识、关键能力、学科素养、核心价值”四层考查内容以及“基础性、综合性、应用性、创新性”四个方面的考查要求,强化对空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、应用意识和创新意识的全面考查。
二、回归课本.课本是根基,在进行复习时,要回归课本,发挥课本例题或习题的作用,注重基础,抓牢基础,充分利用课本弄清问题的来龙去脉,对知识追根溯源。
三、把握复习重心,不忽略边缘线知识.在复习过程中应在核心考点函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等主干知识上花主要精力,同时,不要忽略一些边缘性的知识。
四、命题者依然坚守“重视通性通法,淡化技巧”。
因此高考数学备考不宜过难过偏,要多从归纳解题通法的角度去进行教学备考。
五、从2018年评卷情况来看,大部分考生对基础知识、基本技能掌握较好,文、理平均分分别比去年有所提高.存在主要问题有:数学语言的表述不严谨,使用数学理论解决实际问题的能力较薄弱,如2018年全国卷理科20题,很多考生不能从实际问题的背景材料中提取有效的数据信息.因此,在教学过程中要高度重视独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力的培养,特别重视使用数学方法解决实际问题的教学。
六、不要盲目追求题量,而应注重引导学生经历数学知识的发生过程,以及问题的发现、提出、分析和解决的全过程,充分挖掘典型问题的内在价值与迁移功能,培养学生思维的灵活性与创新性。
七、要充分利用高三的各种形式的考试和练习,优化答题策略、思考答题技巧,培养好的答题习惯和书写习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学二轮复习专题1.8集合与简易逻辑、复数教学案
集的含义,及集合之间
列举法、描述合的并集、交集。
能判断并证明命题成立的充分条件、必要条件、充A .A B =|2x x ⎧
⎫<⎨⎬⎩
⎭
B .A B =∅
C .A
B 3|2x x ⎧⎫=<⎨⎬⎩
⎭
D .A
B=R
【答案】A
【解析】由320x ->得32x <
,所以33
{|2}{|}{|}22
A B x x x x x x ⋂=<⋂<=<,选A . 【对点训练】【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P
A .)2,1(-
B .)1,0(
C .)0,1(-
D .)2,1(
【答案】A
【典例2】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>
D .A
B =∅
【答案】A
【对点训练】【2017山东,理1】设函数A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( ) (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D
【解析】由240x -≥得22x -≤≤,由10x ->得1x <, 故A
B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.
【典例3】【2017课标3,理1】已知集合A={
}
22
(,)1x y x y +=│
,B={}
(,)x y y x =│,则A B 中元素的个数
为( ) A .3
B .2
C .1
D .0
【答案】B
【对点训练】若集合{13}A =,,集合B 为集合A 的子集,则满足条件的集合B 的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个 【答案】D
【解析】集合{13}A =,的子集有: {}{}{},1,3,1,3∅.共有4个. 故选D.
【典例4】【2018届湖北省鄂东南联盟期中】对于任意两集合
,定义
且
,
记,则
__________.
【答案】 【解析】
,
,所以
【对点训练】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是( )
A .)1,(-∞
B .]1,(-∞
C .),1(+∞
D .),1[+∞ 【答案】A
【解析】由}1|{≥=x x A 有{}
1U C A x x =<,而R B A C U = )(,所以1a <,故选A.
【考向预测】本部分内容在高考题中主要以选择题和填空题的形式出现,试题难度为中低档.集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查不等式、解析几何等知识;三是以创新题的形式考查考生分析、解决集合问题的能力.
预测2018年高考本部分内容将继续保持稳定,集合板块将以考查运算为主,试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查. 热点二 常用逻辑用语
【典例5】【2017浙江卷6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】C
【解析】由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即
5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C .
【对点训练】【2017·天津卷改编】设θ∈R ,则“ππ||1212θ-<”是“1
sin 2
θ<”的 条件. 【答案】充分而不必要条件 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ
||1212
θ-<,所以是充分不必要条件.
【典例6】【2018届河南省漯河市12月模拟】已知l , m 是空间两条不重合的直线, α是一个平面,则“m α⊥,
l 与m 无交点”是“//l m , l α⊥”的( )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充分必要条件
D. 既不充分也不必要条件 【答案】B
【对点训练】“直线l 与平面α内的两条直线都垂直”是“直线l 与平面α垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】B. 【解析】
根据线面垂直的判定:l 与α内的两条相交直线垂直l α⇔⊥,故是必要不充分条件,故选B. 【典例7】【2017课标1,理3】设有下面四个命题
1p :若复数z 满足1
z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;
3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .
其中的真命题为 A.13,p p
B .14,p p
C .23,p p
D .24
,p p
【答案】B
【对点训练】已知命题
p :函数|1|x y e -=的图像关于直线1x =对称,q
) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∨⌝ 【答案】A
【解析】函数|1|
x y e -=的图像如图所示:由图形可知图像关于直线1x =对称,所以命题p 正确;
q 正确,所以p q ∧正
确.
【考向预测】逻辑用语板块将考查充分条件和必要条件,试题类型以选择题为主,通常以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大.但由于知识载体丰富,因此题目有一定综合性.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.从近5年命题看,其在试卷中的位置逐步后移,难度较以往略大. 热点三 复数
【典例8】【2017浙江,12】已知a ,b∈R,2
i 34i a b +=+()(i 是虚数单位)则22a b += ,ab= .
【答案】5,2
【解析】由题意可得2
2
234a b abi i -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241
a b ⎧=⎨=⎩,则225,2a b ab +==
【对点训练】【2018届四川省内江市高中高三第一次模拟】已知复数21a i
i
++(i 是虚数单位)是纯虚数,则实数a =( )
A .-2
B .-1
C .0
D .2 【答案】A
【解析】
222122a i a a i i ++-=++,由21a i i ++是纯虚数得2
0,22
a a +=∴=-,故选A .
【典例9】【2018届宁夏银川一中高三第五次月考】已知复数,满足()224z i i -=+,则复数z 等于( ) A. 2i B. -2i C. 2+i D. -2i+ 2 【答案】A
A . 【对点训练】若复数z 满足232z z i +=+,其中i 为虚数单位,则z =( ) A. 12i - B. 12i + C. 12i -- D. 12i -+ 【答案】B
【典例10】已知i 为虚数单位,在复平面内,复数
321i
i
-+对应的点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 【解析】
()()()()
3213215=1112i i i i
i i i -⋅---=
++⋅-,在第四象限. 【对点训练】复数22i
z i
-=
+(其中i 为虚数单位)的共轭复数在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】A
【考向预测】从近几年高考命题看,复数往往有一道选择题或填空题,属于容易题.主要考查的方向有两个,一是复数的概念及运算,如复数的实部、虚部、纯虚数、复数的相等、共轭复数等概念以及复数的运算;二是复数的几何意义及其应用,如复数对应的点的位置(坐标),复数与方程的综合问题等.偶有与其它知识综合的简单题,以考查复数的运算居多.。