(新高考)2020版高考数学二轮复习主攻40个必考点函数与导数(三十)课件理
新高考高考数学二轮复习主攻36个必考点函数与导数三十课件文2
最值问题
[典例 3] 已知函数 f(x)=ax2+ebxx+c(a>0)的导函数 f′(x) 的两个零点为-3 和 0.
(1)求 f(x)的单调区间; (2)若 f(x)的极小值为-e3,求 f(x)在区间[-5,+∞)上的 最大值.
[解] (1)f′(x)=2ax+bex-exax2 2+bx+cex =-ax2+2ae-x bx+b-c. 令 g(x)=-ax2+(2a-b)x+b-c, 因为 ex>0,所以 f′(x)的零点就是 g(x)=-ax2+(2a-b)x +b-c 的零点,且 f′(x)与 g(x)符号相同. 又因为 a>0,所以当-3<x<0 时,g(x)>0,即 f′(x)>0, 当 x<-3 或 x>0 时,g(x)<0,即 f′(x)<0, 所以 f(x)的单调递增区间是(-3,0),单调递减区间是(-∞, -3),(0,+∞).
3.(2019·全国卷Ⅱ)已知函数 f(x)=(x-1)ln x-x-1. 证明: (1)f(x)存在唯一的极值点; (2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
证明:(1)f(x)的定义域为(0,+∞), f′(x)=x-x 1+ln x-1=ln x-1x. 因为 y=ln x 在(0,+∞)上单调递增,y=1x在(0,+∞)上 单调递减, 所以 f′(x)在(0,+∞)上单调递增. 又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一 x0∈(1,2),使得 f′(x0)=0. 又当 x<x0 时,f′(x)<0,f(x)单调递减;
由 f′(x0)=0 得 ln x0=2(x0-1),
故 f(x0)=x0(1-x0).
(新高考)2020版高考数学二轮复习主攻40个必考点函数与导数(二十九)课件理
(2)因为 a∥b,所以 sin xcos x=sin x+f(x),
所以 f(x)=sin xcos x-sin x=sin x(cos x-1). 当 x∈(-π,0)时,sin x<0,cos x-1<0, 所以 sin x(cos x-1)>0,所以排除 B、C、D,选 A. (3)由题图可知直线 l 的斜率为 2,设其方程为 y=2(x-a), 0≤a≤4.由两点式可得直线 AB 的方程为 y=-2x+8,联立方 程yy==2-x2-x+a8,, 得 Q12a+2,4-a.结合四边形 OPQB 为梯 形,因此其面积 y=S(a)=12×4×4-12×(4-a)×(4-a)=-12(4 -a)2+8.故选 D. [答案] (1)D (2)A (3)D
[把脉考情] 1.函数图象的变换
考什么 2.函数图象的识辨问题 3.函数图象与性质的综合应用 在选择题或填空题中考查,试题难度中等,有时与性
考多深 质结合出现在压轴题的位置上,分值 5 分 函数图象的识辨,利用图象研究函数的零点,根据新 情境判断函数的图象,如与立体几何、平面向量等相
考多宽 结合.考查数据分析、逻辑推理、数学建模的核心素 养
4.(2018·全国卷Ⅲ)下列函数中,其图象与函数 y=ln x 的
图象关于直线 x=1 对称的是( )
A.y=ln(1-x)
B.y=ln(2-x)
C.y=ln(1+x)
D.y=ln(2+x)
解析:选 B 函数 y=f(x)的图象与函数 y=f(a-x)的图象
关于直线 x=a2对称,令 a=2 可得与函数 y=ln x 的图象关于直 线 x=1 对称的是函数 y=ln(2-x)的图象.故选 B.
新高考数学复习基础知识专题讲义40 导数与不等式、零点(解析版)
新高考数学复习基础知识专题讲义 知识点40 导数与不等式、零点知识理解一.利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围. (2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.二.证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.三.证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数.四.可以通过构造函数,将两曲线的交点问题转化为函数零点问题.五.研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.考向一 导数与零点【例1】(2021·安徽安庆市)函数()2xf x e ax a =--. (1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数. 【答案】(1)答案见解析;(2)答案见解析.考向分析【解析】(1)由题意,函数()2xf x e ax a =--,可得()2x f x e a '=-,当0a ≤时,()20xf x e a '=->,()f x 在R 上为单调增函数,此时无极值;当0a >时,令()20xf x e a '=->,解得()ln 2x a >,所以()f x 在()ln(2),a +∞上为单调增函数,令()20xf x e a '=-<,解得()ln 2x a <,()f x 在(),ln(2)a -∞上为单调减函数,所以当ln(2)x a =时,函数()f x 取得极小值()=ln(2)2ln(2)f f a a a a =-极小值,无极大值. 综上所述:当0a ≤时,()f x 无极值,当0a >时,()=ln(2)2ln(2)f f a a a a =-极小值,无极大值.(2)由(1)知当0a >时,()f x 在()ln(2),a +∞上为单调增函数,在(),ln(2)a -∞上为单调减函数,且2ln(2)f a a a =-极小值,又由()(21)xf x e a x =-+,若x →-∞时,()f x →+∞;若x →+∞时,()f x →+∞;当2ln(2)0a a a ->,即02a <<时,()f x 无零点;当2ln(2)=0a a a -,即a 时,()f x 有1个零点;当2ln(2)0a a a -<,即a >()f x 有2个零点.综上:当0a <<时,()f x 无零点;当=2a 时,()f x 有1个零点;当a >()f x 有2个零点.【举一反三】1.(2021·黑龙江哈尔滨市·哈尔滨三中)已知函数()sin xf x e x =+.(1)求曲线()f x 在点()()0,0f 处的切线方程;(2)令()()1g x f x ax =--,当[)1,2a ∈时,证明∶函数()g x 有2个零点. 【答案】(1)21y x =+;(2)证明见解析. 【解析】(1)21y x =+(2)当0x =时,()00e 01sin00g =--+=,∴0x =是()g x 的一个零点,由()e cos x g x a x '=-+,设()()cos xh x g x e a x '==-+,则()e sin xh x x '=-.因为12a ≤<,①当()0,x ∈+∞时,e 1x >,∴()1sin 0h x x '>-≥,∴()g x '在()0,∞+单调递增, ∴()()020g x g a ''>=->,∴()g x 在()0,∞+单调递增,∴()()00g x g >=,此时()g x 在()0,∞+无零点②当(],x π∈-∞-时,ax π-≥,有()e sin 1e sin 10xxg x ax x x π=-+-≥++->,此时()g x 在(],π-∞-无零点.③当(),0x π∈-时,sin 0x <,()e sin 0xh x x '=->,∴()g x '在(),0π-单调递增,又()020g a '=->,()e 10g a ππ-'=--<,由零点存在性定理知,存在唯一()0,0x π∈-,使得()00g x '=.当()0,x x π∈-时,()0g x '<,()g x 在()0,x π-单调递减;当()0,0x x ∈时,()0g x '>,()g x 在()0,0x 单调递增;又()e10g a πππ--=+->,()()000g x g <=,所以()g x 在(),0π-上有1个零点.综上,当12a ≤<时,()g x 有2个零点.2.(2021·安徽高三一模(文))已知函数f (x )=a x-ax (a >0且a ≠1). (1)当a =e 时,求函数f (x )的最值;(2)设g (x )是f (x )的导函数,讨论函数g (x )在区间(0,1)零点的个数. 【答案】(1)最小值为0,无最大值;(2)答案见解析. 【解析】(1)当a e =时,()(),,xxf x e ex f x e e '=-=-令()0,f x '=得1,x =显然()f x '在(),-∞+∞单调递增,当1x <时,()0f x '<;当1x >时,()0f x '>,所以,()f x 在(),1-∞单调递减,在()1,+∞单调递增,则()f x 的最小值为()10,f =无最大值.(2)()()ln xg x f x a a a ='=-(i )若()01,0a g x <<<在(0,1)恒成立,此时()g x 在(0,1)没有零点.(ii )若()21,(ln )0,xa g x a a >⋅>'=所以()g x 在(0,1)单调递增.()0ln g a a =-,令()ln (1),h a a a a =->因为()110,h a a-<'=所以()h a 在()1,+∞ 单调递减,故()()110,h a h <=-<所以()0ln 0g a a =-<;()()1ln ln 1g a a a a a =-=-①当1a e <≤时()(),10,g g x ≤在(0,1)没有零点.②当a e >时,()()10,g g x >在(0,1)有且只有1个零点.综上所述:若01a <<或()1,a e g x <≤在(0,1)没有零点;若(),a e g x >在(0,1) 有且只有1个零点3.(2021·山东潍坊市·高三一模)已知函数()()22sin x af x a x-=-∈R .(1)若曲线()y f x =在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线经过坐标原点,求实数a ; (2)当0a >时,判断函数()f x 在(0,)x π∈上的零点个数,并说明理由.【答案】(1)224a π=--;(2)答案不唯一,具体见解析. 【解析】(1)()222sin cos (),sin 2x x x a xf x f xππ--⎛⎫'== ⎪⎝⎭, 所以()f x 在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程为y x π=, 所以222f ππ⎛⎫= ⎪⎝⎭,即2222,2424a a πππ--==--;(2)因为()0,x π∈, 所以sin 0x >,所以220sin x ax--=可转化为22sin 0x a x --=,设2()2sin g x x a x =--, 则()22cos g x x x '=- 当,2x ππ⎡⎫∈⎪⎢⎣⎭时,()0g x '>, 所以()g x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增.当0,2x π⎛⎫∈ ⎪⎝⎭时,设()()22cos h x g x x x '==-, 此时()22sin 0h x x '=+>, 所以()'g x 在0,2x π⎛⎫∈ ⎪⎝⎭时单调递增, 又(0)20g '=-<,02g ππ⎛⎫'=>⎪⎝⎭, 所以存在00,2x π⎛⎫∈ ⎪⎝⎭使得()0g x '=且()00,x x ∈时()g x 单调递减, 0,2x x π⎡⎫∈⎪⎢⎣⎭时()g x 单调递增.综上,对于连续函数()g x ,在()00,x x ∈时,()g x 单调递减, 在()0,x x π∈时,()g x 单调递增. 又因为(0)0g a =-<,所以当20()g a ππ=->,即2a π<时,函数()g x 有唯一零点在区间0(,)x π上,当20()g a ππ=-≤,即2a π≥时,函数()g x 在区间(0,)π上无零点,综上可知,当20a π<<时,函数()f x 在(0,)π上有1个零点; 当2a π≥时,函数()f x 在(0,)π上没有零点.考向二 导数与不等式【例2】(2021·江苏苏州市)已知函数2()ln ,01f x x m x m x=++<<. (1)若()f x 在43x =时取得极值,求实数m 的值; (2)求()f x 的单调区间;(3)证明:()f x >【答案】(1)16m =;(2)单调减区间为0,2m ⎛-+ ⎪⎝⎭,单调增区间为2m ⎛⎫-++∞ ⎪ ⎪⎝⎭;(3)证明见解析.【解析】(1)由题意得222()x mx f x x+-'=, 因为()f x 在43x =时取得极值,所以403f ⎛⎫'= ⎪⎝⎭,解得16m =, 当16m =时,22212(23)(34)6()6x x x x f x x x +-+-'==,因为0x >,所以230x +>, 所以当40,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 在40,3⎛⎫⎪⎝⎭递减; 当4,3x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,则()f x 在4,3⎛⎫+∞ ⎪⎝⎭递增,所以()f x 在43x =时取得极小值, 综上16m =; (2)因为222()x mx f x x+-'=,由()0f x '=,解得10(01)2m x m --=<<<舍去,)00||2m x m m -+=>>,所以在()00,x x ∈时,()0f x '<,故()f x 在()00,x 单调递减; 在()0,x x ∈+∞时,()0f x '>,故()f x 在()0,x +∞单调递增,所以()f x的单调减区间为⎛ ⎝⎭,()f x的单调增区间为⎫+∞⎪⎪⎝⎭. (3)法一:由222(),01x mx f x m x+-'=<<,则(1)10,0f m f ''=-<=>, 由(2)知,存在唯一的0(1x ∈,使得()00f x '=,即20020x mx +-=,002m x x =- ()min 000000000222()ln ln f x f x x m x x x x x x x ⎛⎫==++=++ ⎪⎝⎭设22()ln ,g x x x x x x x ⎛⎫=++-∈ ⎪⎝⎭,22()1ln 0,g x x x x ⎛⎫'=--<∈ ⎪⎝⎭所以()g x g >=所以()f x >(3)法二:因为0x ==又01m <<,所以01x <<0ln 0x >. 又由(2)()min 00002()ln f x f x x m x x ==++,所以002()f x x x >+> 【举一反三】1.(2021·贵州高三开学考试)已知函数()sin cos 1exx x f x +-=. (1)求函数()f x 在()0,π内的单调递增区间; (2)当[)0,x ∈+∞时,求证:()f x x ≤. 【答案】(1)0,6π⎛⎫ ⎪⎝⎭,5,6ππ⎛⎫⎪⎝⎭;(2)证明见解析. 【解析】(1)解析:由题意知,()12sin xxf x e -'=,()0,x π∈, 所以当()0f x '>时,解得50,,66x πππ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭, 即()f x 在()0,π的单调递增区间是0,6π⎛⎫ ⎪⎝⎭,5,6ππ⎛⎫⎪⎝⎭ (2)令()()g x f x x =-,()0x ≥,只需证()0g x ≤即可()12sin 1xxg x e-'=-令12sin ()1xxh x e -=-,则()12sin 2cos 14x xx x x h x e e π⎛⎫-- ⎪--⎝⎭'==, 当[0,]6x π∈时,()0h x '<,()h x 递减,即()g x '在06,π⎡⎤⎢⎥⎣⎦单调递减,即()()max 00g x g ='=',所以()0g x '≤,从而()g x 在[0,]6π上单调递减,即()()00g x g ≤=恒成立;当,6x π⎛⎫∈+∞⎪⎝⎭时, 由(1)知,()f x 的极大值点满足1sin 2x =,这些极大值点使得()f x 的分子值不变,但分母随x 的增大而增大(当然0x e >),∴当[,)6x π∈+∞时,max 66()1()62f x e f πππ<==,()f x x <恒成立. 综上,()f x x ≤得证.2.(2021·安徽高三一模(理))已知函数f (x )=2e x+a ln(x +1)-2. (1)当a =-2时,讨论f (x )的单调性;(2)当x ∈[0,π]时,f (x )≥sin x 恒成立,求a 的取值范围.【答案】(1)函数()f x 在(-1,0)单调递减,在()0,∞+单调递增;(2)[)1,-+∞.【解析】(1)当2a =-时()(),22ln 12,1xf x e x x =-+->-.()()22,1x f x e f x x '+'=-在()1,-+∞单调递增,且()00.f '= 当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时(),0f x '>.所以函数()f x 在(-1,0)单调递减,在()0,∞+单调递增.(2)令()()()[]sin 2ln 12sin ,0,x g x f x x e a x x x π=-=++--∈当[]0,x π∈时,()sin f x x ≥恒成立等价于()()00g x g ≥=恒成立. 由于()()[]cos 2cos ,0,1xag x f x x e x x x π=-=+-∈+'', 所以(i )当0a ≥时,()210,xg x e '≥->函数()y g x =在[]0,π单调递增, 所以()()00g x g ≥=,在区间[]0,π恒成立,符合题意.(ii )当0a <时,()2cos 1xag x e x x =+-+'在[]0,π单调递增,()0211g a a '=+-=+. ①当10a +即10a -≤<时,()()010,g x g a ≥=+≥''函数()y g x =在[]0,π单调递增,所以()()00g x g =在[]0,π恒成立,符合题意. ②当10+<a 即1a <-时()(),010,211ag a g e πππ=+<=++'+', 若()0g π'≤,即()()121a e ππ≤-++时(),g x '在()0,π恒小于0则()g x 在()0,π单调递减,()()00g x g <=,不符合题意.若()0,g π'>即()()1211e a ππ-++<<-时,存在()00,x π∈使得()00.g x '=所以当()00,x x ∈时,()0,g x '<则()g x 在()00,x 单调递减,()()00,g x g <=不符合题意.综上所述,a 的取值范围是[)1,.∞-+1.(2021·山东菏泽市·高三一模)已知函数()()()2(ln ,)xf x x kx k Rg x x e =-∈=-.强化练习(1)若()f x 有唯一零点,求k 的取值范围; (2)若()()1g x f x -≥恒成立,求k 的取值范围. 【答案】(1)1k e=或0k ≤;(2)1k .【解析】(1)由()ln f x x kx =-有唯一零点,可得方程ln 0x kx -=,即ln xk x=有唯一实根, 令()ln x h x x =,则()21ln ,xh x x-'= 由()0h x '>,得0,x e <<由()0h x '<,得,x e >()h x ∴在()0,e 上单调递增,在(,)e +∞上单调递减.()()1h x h e e∴≤=,又()10,h =所以当01x <<时,()0h x <; 又当x e >时,()ln 0,xh x x=>由()ln x h x x =得图象可知,1k e=或0k ≤. (2)()2ln 1()x x e x kx ---≥恒成立,且0x >, 1ln 2xx k e x+∴≥-+恒成立, 令()1ln 2x x x e x ϕ+=-+,则()22221(l l n n 1)x x x x e x x x e x x ϕ--'⋅==-+-, 令()2ln x x x x e μ=--,则211()(2)(2)0x x xx xe x e xe x x xμ'=--+=--+<(0)x >,()x μ∴在(0,)+∞单调递减,又()12110,10e e e e μμ-⎛⎫=-<=-< ⎪⎝⎭,由零点存在性定理知,存在唯一零点01,1x e ⎛⎫∈ ⎪⎝⎭,使()0,o x μ=即0200ln xx x e -=,两边取对数可得()000ln ln 2ln ,x x x -=+即()()0000ln ln ln ln ,x x x x -+-=+ 由函数ln y x x =+为单调增函数,可得00ln x x =-,所以当00x x <<时,()0x μ>,()0x ϕ'>,当0x x >时,()0x μ<,()0x ϕ'<,所以()x ϕ在()00,x 上单调递增,在0(,)x +∞上单调递减,()()00000001ln 11221x x x x x e x x x ϕϕ+-∴≤=-+=-+=, 所以()1,o k x ϕ≥= 即k 的取值范围为1k.2.(2021·浙江高三月考)已知函数()ln f x x =. (1)若1()1x af x e-≤-恒成立,求实数a 的值;(2)若关于x 的方程2()ln 0mf x x m x-+-=有四个不同的实数根,则实数m 的取值范围. 【答案】(1)1a =;(2)01m <<. 【解析】(I )11()()1ln 1x x g x af x e a x e --=-+=-+,1()x a g x e x-='-, 又()(1)0g x g ≤=,故1x =是()y g x =的极大值点,所以(1)10g a =-=',1a =; 另一方面,当1a =时,11()x g x e x--'=,(1)0g '=,()'g x 在区间(0,)+∞单调递减, 故()g x 在(0,1)单调递增,(1,)+∞单调递减, 所以()(1)0g x g ≤=,1()1x f x e -≤-恒成立(II )当0m >时,2()ln ln m h x x x m x =-+-,22222()1m x x mh x x x x-+-=--'=, 当0x <时,()0h x '<,()h x 在区间(,0)-∞单调递减,又(0h =, 故()h x 在区间(,0)-∞有唯一实根,① 若m ≥1,222(1)10x x m x m -+-=--+-≤, 当0x >时,()0h x '≤,()h x 在区间(0,)+∞单调递减, 故()h x 在区间(0,)+∞至多有一个实根,不符合题意,② 若01m <<,令1x ,2x (12x x <)是方程220x x m -+-=的两不同实根, 则12122,x x x x m +==,则120x x <<故()h x 在区间1(0,)x ,2(,)x +∞上单调递减,在区间12(,)x x 上单调递增.2222111111111111112()ln ln ln ln(2)22ln ln(2)x x m h x x x m x x x x x x x x x -+=-+-=-+--+=-++--()22ln ln(2)x x x x ϕ=-++--(01x <<),2112(1)()202(2)x x x x x x ϕ-'=-++=>--,()(1)0x ϕϕ<=,1()0h x <,同理可证2()0h x >.取232(11x x =+>=+331()10h x x m <++=.取241min{ln ,}4m x m =,241142m mx x ≤<<=4444411()(ln )(ln )0m h x x x x m m >++-=->.故()h x 在41(,)x x ,12(,)x x ,23(,)x x 各存在一个零点, 实数m 的取值范围是(0,1).3.(2021·湖北荆门市·高三月考)已知函数()ln 1af x x x=-+有两个不同的零点()1212,x x x x <. (1)求实数a 的取值范围;(2)记()f x 的极值点为0x ,求证:()012112ef x x x +>. 【答案】(1)10a -<<;(2)证明见解析. 【解析】解:(1)由()ln 1af x x x=-+得221'()(0)a a x f x x x x x +=--=->,∵函数()ln 1af x x x=-+有两个不同的零点1x ,2x , ∴()f x 在()0,∞+上不单调, ∴0a <,令'()0f x >得0x a <<-,'()0f x <得x a >-, 故()f x 在()0,a -上单调递增,在(),a -+∞上单调递减, 则()f x 的极大值为()()ln 0f a a -=-->, ∴01a <-<,∴10a -<<.∵0x +→时()0f x <,x →+∞时()0f x <, ∴a 的取值范围是10a -<<. (2)由(1)知()()0ln f x a =--,∵()()12f x f x =,∴1212ln 1ln 1a a x x x x -+=-+, ∴1221121211lnln ln ln 1111x x x x a x x x x --==--.令111t x =,221t x =,则2112ln ln t t a t t -=-,且12121122x x t t ++=,要证()012112ef x x x +>,只需证12(ln())2t t e a +>--. 下面先证明1212122ln ln t t t t t t +->-, 这只要证明12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭<+,设1201t m t <=<,所以只要证明2(1)ln 01m m m --<+,设2(1)()ln 1m g m m m -=-+,则22214(1)'()0(1)(1)m g m m m m m -=-=≥++,所以()g m 递增, 则()()10g m g <=成立.于是得到12121212ln ln t t t t t t a+->=--, 因此只要证明1ln()(10)e a a a -≥---<<,构造函数1()ln()h a e a a=-+-, 则2211'()e ea h a a a a +=+=,故()h a 在11,e ⎛⎫-- ⎪⎝⎭上递减,在1,0e ⎛⎫- ⎪⎝⎭上递增, 则1()0h a h e ⎛⎫≥-= ⎪⎝⎭,即1ln()e a a-≥--成立. 4.(2021·辽宁高三其他模拟(文))已知函数()ln 11x aF x x x =--+. (Ⅰ)设函数()()()1h x x F x =-,当 2a =时,证明:当 1x >时,()0h x >;(Ⅱ)若()F x 有两个不同的零点,求a 的取值范围. 【答案】(Ⅰ)证明见解析;(Ⅱ)2a >. 【解析】(Ⅰ)()()ln 22(1)1()ln 111x x h x x x x x x -=--=--++ ()()()22101x h x x x -'=>+,所以()h x 在()1,+∞上为单调递增函数, 且()10h =,当1x >时,()0h x >.(Ⅱ)设函数()()1ln 1a x f x x x -=-+,则()()()222111x a x f x x x +-+'=+, 令()()2211g x x a x =+-+,当1a ≤时,当0x >时,()0g x >,当12a <≤时,2480a a ∆=-≤,得()0g x ≥,所以当2a ≤时,()0f x '≥,()f x 在()0,∞+上为单调递增函数,此时()g x 至多有一个零点,()()11F x f x x =-至多一个零点不符合题意舍去. 当2a >时,有2480a a ∆=->,此时()g x 有两个零点,设为12,t t ,且12t t <. 又因为()12210t t a +=->,121t t =,所以1201t t <<<.得()f x 在()10,t ,()2,t +∞为单调递增函数, 在()12,t t 上为单调递减函数,且()10f =, 所以()10f t >,()20f t <, 又因为()201aaa f ee -=-<+,()201aaaf e e =>+, 且()f x 图象连续不断,所以存在唯一()11,ax e t -∈,使得()10f x =,存在唯一()22,ax t e -∈,使得()20f x =,又因为()()11F x f x x =-, 所以,当()F x 有两个不同的零点时,2a >.5.(2021·山西晋中市·高三二模(文))已知函数2()2ln 43()f x x ax ax a a =+-+∈R . (1)讨论函数()f x 的单调性;(2)对(1,)x ∈+∞,都有()0f x >成立,求实数a 的取值范围. 【答案】(1)答案见解析;(2)01a .【解析】(1)()22212()24(0)ax ax f x ax a x x x'-+=+-=>,令2()21(0)g x ax ax x =-+>,①当0a =时,()10g x =>,在(0,)+∞上,()0f x '>,所以()f x 单调递增.②当0a <时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x >>, 所以当()10,x x ∈时,()0f x '>,所以()f x 单调递增; 当()1,x x ∈+∞时,()0f x '<,所以()f x 单调递减. ③当0a >时,4(1)a a ∆=-, 当01a <时,4(1)0a a ∆=-,在(0,)+∞上,()0f x '>,所以()f x 单调递增.当1a >时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x <<, 所以当()10,x x ∈或()2,x x ∈+∞时,()0f x '>,所以()f x 单调递增; 当()12,x x x ∈时,()0f x '<,所以()f x 单调递减.综上可得:当0a <时,()f x 在()10,x 上单调递增,在()1,x +∞上单调递减; 当01a 时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)因为(1)0f =,根据(1)的讨论可知,当01a 时,()f x 在(0,)+∞上单调递增,所以()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立.当0a <时,()f x 在()1,x +∞上单调递减,x →+∞时,()f x →-∞, 所以存在()1,x x ∈+∞使得()0f x <,故此时不成立.当1a >时,()f x 在()()120,,,x x +∞上单调递增;在()12,x x 上单调递减,而121x x =<<=()21,x x ∈时,()f x 单调递减,此时()(1)0f x f <=,不合题意.综上可得:01a .6.(2021·湖南永州市·高三二模)已知函数()xf x ae x a =-+,a R ∈. (1)讨论()f x 在[)1,+∞上的单调性;(2)当1sin a x =-时,讨论()()2g x f x x =+-在(),ππ-上的零点个数. 【答案】(1)答案见解析;(2)有3个零点.【解析】(1)()'1xf x ae =-,[)1,x ∈+∞,当0a ≤时,'()0f x <恒成立,则()f x 在[)1,+∞上单调递减; 当0a >时,令'()0f x <,则1ln x a <,令'()0f x >,则1ln x a>, 若1ln1a ≤,即1a e≥时,()f x 在[)1,+∞上单调递增; 若1ln1a >,即10a e <<时,()f x 在11,ln a ⎡⎫⎪⎢⎣⎭上单调递减;在1ln ,a ⎡⎫+∞⎪⎢⎣⎭上单调递增;(2)当1sin a x =-时,()()()21sin sin 1xg x f x x x e x =+-=---,令()0g x =,得1sin 01x x e x e --=+,令1()sin 1x x e h x x e -=-+,则11()sin()sin ()11x x xx e e h x x x e h x e --⎛⎫---=--=--=- ⎪++⎝⎭, 所以()y h x =为奇函数,且()00h =, 所以0是()y h x =的一个零点,令1()1x x e t x e -=+,则()22'()1xxe t x e =+, 当()0,x π∈,'()0t x >,则()t x 在()0,π上单调递增,令()sin r x x =,则()r x 在0,2π⎛⎫⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减, 令1()12xx e x s x e -=-+,则()221'()021xx e s x e =-≤+恒成立,所以()s x 在()0,π上单调递减, 所以()()00s x s <=,则112x x e xe -<+,令()sin 2x u x x =-,则1'()cos 2u x x =-,当0,3x π⎛⎫∈ ⎪⎝⎭时,'()0u x >,()u x 单调递增, 当,32x ππ⎛⎫∈⎪⎝⎭时,'()0u x <,()u x 单调递减, 又()00u =,1024u ππ⎛⎫=->⎪⎝⎭,则当0,2x π⎛⎫∈ ⎪⎝⎭时,()0u x >恒成立, 即当0,2x π⎛⎫∈ ⎪⎝⎭时,sin 2x x >恒成立,所以当0,2x π⎛⎫∈ ⎪⎝⎭时,1sin 12x x e xx e -<<+恒成立,所以当0,2x π⎛⎫∈ ⎪⎝⎭时,()0h x <恒成立,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()22'()cos 01x ex h x x e =->+,所以()h x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递增, 又2211021e h e πππ-⎛⎫=-< ⎪⎝⎭+,1()01e h e πππ-=>+,所以()h x 在()0,x π∈上有且只有一个零点,设该零点为0x , 因为()y h x =为奇函数,所以在(),0x π∈-上的零点为0x -, 所以()h x 在(),x ππ∈-上有3个零点,分别为0x -,0,0x , 所以()g x 在(),x ππ∈-上有3个零点.7.(2021·全国高三开学考试(文))已知函数()sin ,[0,],0xf x ae x x x a π=++∈<. (1)证明:当1a =-时,函数()f x 有唯一的极大值; (2)当()21f x x <-恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)1a <-. 【解析】(1)证明:()e cos 1xf x a x '=++, 因为[]0,x π∈,所以1cos 0x +≥, 当1a =-时,()cos 1xf x e x '=-++,令()e cos 1,()e sin 0xxg x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<,存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π. 所以函数()f x 存在唯一的极大值()0f x . (2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<xxh x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.8.(2021·全国高三开学考试(文))已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减.(2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e xx x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=. 令()()221e e xr x x x =--,则()22e e xr x x '=-,易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=, ∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增. ∵()00r <,()20r =,∴当()0r x >时,2x >;当()0r x <时,02x <<, ∴()g x 在()0,2上单调递减,在()2,+∞上单调递增, ∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.9.(2021·湖北武汉市·高三月考)已知函数()()1ln x af x x e x -=--.(Ⅰ)当1a =时,求()f x 的最小值;(Ⅱ)证明:当01a <≤时,()ln f x a ≥恒成立. 【答案】(Ⅰ)0;(Ⅱ)证明见解析. 【解析】(Ⅰ)1a =时,1()(1)ln x f x x e x -=--,定义域为(0,)+∞,求导1)1(x xex f x -'=-,设()()g x f x '=, 121(1)0()x g x x e x-+=+'>,()f x '∴在(0,)+∞单调递增.又()10f '=,故当01x <<时,()0f x '<,()f x ∴单调递减;当1x >时,'()0f x >,()f x 单调递增.故()f x 在1x =处取得最小值()10f =.(Ⅱ)设()(1)ln ln x ah a x ex a -=---,求导()(1)11(1)x a xaa x e e x e e a e h a a '⎡⎤-=-=--⎢⎥⎣⎦. 设()()1xs x x e =-,()xe t x x=,()0x s x xe '=-<,∴0x >时,()s x 单调递减,()()01s x s <=.21()xx t x e x-'=,令()0t x '=,得1x =, 当01x <<时,()0t x '<,()t x 单调递减;当1x >时,()0t x '>,()t x 单调递增,()()1t x t e ∴≥=,故0a >,0x >时,()11axe x e e a-<<≤.即()0h a '<,()h a ∴在(0,)+∞上单调递减,则01a <≤时,()()()111ln x h a h x e x -≥=--.由(Ⅰ)知,()11ln 0x x e x ---≥,故01a <≤时,()0h a ≥.即()1ln ln x ax ex a ---≥恒成立.10.(2021·全国高三其他模拟)已知函数()()22x f x xe ax ax a =--∈R .(1)当0a >时,讨论()f x 的单调性;(2)若关于x 的不等式()()f x f x ≥--在(),-∞+∞上恒成立,求实数a 的取值范围. 【答案】(1)答案见解析;(2)(],1-∞ 【解析】(1)()()22x f x xe ax ax a =--∈R ,()()()2212x x x f x e xe ax a x e a '∴=+--=+-,x ∈R ,当0a >时,令()0f x '=,解得:ln2x a =或1x =-, 当ln21a <-,即102a e<<, 则当(),ln 2x a ∈-∞时,()0f x '>,()f x 单调递增; 当()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减; 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增;当ln 21a =-,即12a e=, 则()0f x '≥,等号不恒成立,()f x 在R 上单调递增; 当ln21a >-,即12a e>, 则当(),1x ∈-∞-时,()0f x '>,()f x 单调递增; 当()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减; 当()ln 2,x a ∈+∞时,()0f x '>,()f x 单调递增. 综上所述:当102a e<<时,()f x 在(),ln 2a -∞上单调递增,在()ln 2,1a -上单调递减,在()1,-+∞上单调递增;当12a e =时,()f x 在R 上单调递增; 当12a e>时,()f x 在(),1-∞-上单调递增,在()1,ln 2a -上单调递减,在()ln 2,a +∞上单调递增;(2)()()f x f x ≥--,即()2222x x xe ax ax xe a x ax -⎡⎤--≥----+⎣⎦, 即()220x x x e e ax ---≥,即()22x x x e e ax --≥①,当0x =时,①式恒成立,a ∈R ;当0x >时,x x e e ->,()0x xx e e -->,当0x <时,x x e e -<,()0x xx e e -->,故当0a ≤时,①式恒成立,;以下求当0x ≠时,不等式20x x e e ax ---≥恒成立时正数a 的取值范围, 令x e t =,则()()0,11,t ∈+∞,()12ln g t t a t t=--, 则()22212211a t at g t t t t -+'=+-=,令()221h t t at =-+,则244a ∆=-,当01a <≤时,0∆≤,()2210h t t at =-+≥,()0g t '≥,等号不恒成立,故()g t 在()0,∞+上单调递增, 又()10g =,故1t >,()()10g t g >=,01t <<时,()()10g t g <=,即当01a <≤时,①式恒成立;当1a >时,0∆>,()010h =>,()1220h a =-<, 故()h t 的两个零点,即()g t '的两个零点()10,1t ∈和()21,t ∈+∞,在区间()12,t t 上,()0h t <,()0g t '<,()g t 是减函数, 又121t t <<,()()110g t g ∴>=,即当1a >时,①式不能恒成立.综上所述:实数a 的取值范围是(],1-∞.11(2021·江西上饶市·高三一模(理))已知()2xx f x aexe =-.(1)若12a =,讨论()f x 的单调性; (2)x R ∀∈,()2f x a≤-,求实数a 的最小值.【答案】(1)答案见解析;(2)3e -. 【解析】(1)12a =时,()212x xf x e xe =-,定义域为(),-∞+∞ ()()()211x x x x f x e x e e x e '=-+=-+-,令()1e xF x x =+-,则()1e xF x '=-,当(),0x ∈-∞,()0F x '>;当()0,x ∈+∞,()0F x '<;∴()F x 在(),0-∞递增,在()0,∞+上递减,∴()()00F x F ≤=,∴()0f x '≥,∴()f x 在(),-∞+∞上递增. (2)()()()22112xx x xf x aex e e x ae ⎡⎤=-+=-+-⎣'⎦, 由x R ∀∈,()2f x a ≤-,∴()20f a a=≤-可得0a <, 令()()12e xg x x a =+-,则()g x 在R 上递增, 由()1120g ae--=->,且当0x <时,()12g x x a <+-,∴()2121120g a a a -<-+-=, ∴()021,1x a ∃∈--使得()00g x =,且当()0,x x ∈-∞时,()0g x <即()0f x >′; 当()00,x x ∈+∞时,()0g x >即()0f x <′, ∴()f x 在()0,x -∞递增,在()0,x +∞递减, ∴002max 00()()x x f x f x aex e ==-,由()()00012e 0xg x x a =+-=,∴0012e x x a +=, 由max2()f x a≤-得0000200014e e e 2e 1x x x x x x x +-⋅≥+即001421x x -≥+, 由010x +<得2018x -≤,∴031x -≤<-,设()()1312e x x h x x +=-≤<-,则()02xxh x e-'=>, 可知()h x 在[)3,1-上递增∴3()(3)h x h e ≥-=-,即3a e ≥- ∴实数a 的最小值为3e -.12.(2021·四川成都市·石室中学高三月考(理))已知函数()()21ln 12f x x m x =+-,其中R m ∈. (1)求函数()f x 的单调区间;(2)若函数()f x 存在两个极值点1x ,2x ,且12x x <,证明:()()1211ln 444f x f x +>-. 【答案】(1)答案见解析;(2)证明见解析.【解析】(1)函数()f x 定义域为(),1-∞,且()211m x x mx x xf x -+-=-='--, 10x ->,令20x x m -+-=,判别式14m ∆=-,当0∆≤,即14m ≥时,20x x m -+-≤恒成立,所以()0f x '≤, ∴()f x 在(),1-∞上单调递减;当0∆>,14m <时,由20x x m -+=,解得1x =2x =, 若104m <<,则121x x <<, ∴()1,x x ∈-∞时,()0f x '<,()f x 单调递减;()12,x x x ∈时,()0f x '>,()f x 单调递增; ()2,1x x ∈时,()0f x '<,()f x 单调递减;若0m ≤,则121x x <≤,∴()1,x x ∈-∞时,()0f x '<,()f x 单调递减;()1,1x x ∈时,()0f x '>,()f x 单调递增;综上所述:0m ≤时,()f x 的单调递减区间为1,2⎛⎫--∞ ⎪ ⎪⎝⎭,单调递增区间为12⎛⎫ ⎪ ⎪⎝⎭;104m <<时,()f x 的单调递减区间为⎛-∞ ⎝⎭,⎫⎪⎪⎝⎭,单调递增区间为⎝⎭; 14m ≥时,()f x 的单调递减区间为(),1-∞. (2)因为函数()f x 定义域为(),1-∞,且()211m x x mx x xf x -+-=-='--, ∵函数()f x 存在两个极值点,∴()0f x '=在(),1-∞上有两个不等实根1x ,2x ,记()2g x x x m =-+-,则()()140,11,2110m g ⎧∆=->⎪⎪-<⎨⨯-⎪⎪<⎩,∴104m <<, 从而由12121,,x x x x m +=⎧⎨=⎩且12x x <,可得110,2x ⎛⎫∈ ⎪⎝⎭,21,12x ⎛⎫∈ ⎪⎝⎭,()()()()()()()22221211221212111ln 1ln 1ln 11222f x f x x m x x m x x x m x x +=+-++-=++--⎡⎤⎣⎦ ()()()212121212112ln 112ln 22x x x x m x x x x m m m ⎡⎤=+-+-++=-+⎡⎤⎣⎦⎣⎦ 构造函数()1ln 2h x x x x =-+,10,4x ⎛⎫∈ ⎪⎝⎭, 则()ln 0h x x '=<,∴()h x 在10,4⎛⎫ ⎪⎝⎭上单调递减,∴()111ln 4444h x h ⎛⎫>=-⎪⎝⎭,即证. 13.(2021·江苏连云港市·高三开学考试)已知函数()e 1=-xf x ,()sin =g x a x ,a ∈R . (1)若1a =-,证明:当0x ≥时,()()f x g x ≥; (2)讨论()()()x f x g x ϕ=-在[0,]x π∈上零点的个数.【答案】(1)证明见解析;(2)当1a ≤时,()ϕx 在[0,]π上有1个零点;当1a >时,()ϕx 在[0,]π上有2个零点.【解析】(1)令()()()1sin =-=-+xF x f x g x e x ,所以()cos '=+xF x e x 当(0,)x ∈+∞时,e 1x >,cos 1x ≥-,所以()0F x '>. 所以()F x 在[0,)+∞上单调递增. 当0x ≥,有()(0)0F x F ≥=, ∴()()f x g x ≥在[0,)x ∈+∞上恒成立.(2)()1sin ()=--∈xx e a x a R ϕ.所以()cos '=-xx e a x ϕ,设()()'=h x x ϕ,()sin xh x e a x '=+,①当0a ≤时,因为[0,]x π∈,所以sin 0-≥a x ,而10x e -≥,所以1sin 0x e a x --≥,即()0x ϕ≥恒成立,所以()ϕx 零点个数为1个.②当01a <≤时,()sin 0xh x e a x '=+≥,所以()x ϕ'在[0,]π上递增,而(0)10'=-≥a ϕ,所以()(0)0''≥=x ϕϕ,所以()ϕx 在[0,]π上递增,因为(0)0ϕ=,所以0x =是唯一零点,此时()ϕx 零点个数为1个.③当1a >时,()sin 0xh x e a x '=+≥,所以()x ϕ'在[0,]π上递增,而(0)10'=-<a ϕ,202⎛⎫'=> ⎪⎝⎭e ππϕ,所以存在0[0,]x π∈,有()00x ϕ'=, 所以当00x x <<时,()ϕx 单调递减,当0x x π<<时,()ϕx 单调递增,所以当0x x =时,()ϕx 取得最小值()0x ϕ,而()0(0)0<=x ϕϕ,()10=->e πϕπ,又因为()ϕx 图象是连续不间断的,由零点存在性定理知,()ϕx 在()0,x π上有唯一零点,又因为0x =也是零点,所以()ϕx 在[0,]π上有2个零点.综上:当1a ≤时,()ϕx 在[0,]π上有1个零点; 当1a >时,()ϕx 在[0,]π上有2个零点.14.(2021·贵州高三开学考试(理))已知函数()sin cos 1e xx x f x +-=(1)求函数()f x 在()0,π内的单调递增区间;(2)若对[)()0,,x f x ax ∞∀∈+恒成立,求实数a 的取值范围. 【答案】(1)单调递增区间是50,,,66πππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭;(2)[)1,+∞. 【解析】由题意知()()12sin ,,0,exxf x x π'-=∈,所以当()0f x '>时,解得50,,66x πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,即()f x 在()0,π的单调递增区间是50,,,66πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭(2)令()()(),0g x f x ax x =-,①当0a <时,设0,,6x π⎡⎤∈⎢⎥⎣⎦由(1)知()(),00,f x f =即()0g x >与已知矛盾 ②当0a =时,显然不成立;③当01a <<时,设0,6x π⎡⎤∈⎢⎥⎣⎦()12sin e xxg x a -='-及()140e xx g x π⎛⎫-- ⎪⎭'⎝=<' 得():g x '在06,π⎡⎤⎢⎥⎣⎦单调递减,即()()()maxmin 0010,06g g a g x g a π⎛⎫''==->==-< ⎪⎝⎭'' 此时()g x 在0,6π⎛⎫⎪⎝⎭必有一零点0x 所以当0,6x π⎛⎫∈ ⎪⎝⎭时(),0g x >与已知矛盾 ④当1a 时,设0,6x π⎡⎤∈⎢⎥⎣⎦()()()maxmin 010,0,6g x g a g x g a π⎛⎫''==-==-< ⎪⎝⎭'所以()0,g x 从而()g x 在0,6π⎛⎫⎪⎝⎭上单调递减, 即()()00g x g =恒成立下面证明1a =时,当,6x π⎛⎫∈+∞⎪⎝⎭时(),0g x 恒成立,即().f x x 由(1)知,当,6x π⎛⎫∈+∞ ⎪⎝⎭时,()max 6162e g x ππ=<恒成立, 所以().f x x ax综上,a 的取值范围为[)1,.∞+。
2020新课标高考数学(理)二轮总复习课件:1导数与不等式问题
下一页
新课标高考第二轮总复习•理科数学
1.(2019·重庆模拟)已知 a≤8,函数 f(x)=aln x-x2+5,g(x)=2x+ax. (1)若 f(x)的极大值为 5,求 a 的值 解析:(1)函数 f(x)=aln x-x2+5,函数的定义域为{x|x>0}, 函数的 f(x)的导数 f′(x)=ax-2x=a-x2x2, 当 a≤0 时,则 f′(x)<0,此时函数单调递减,无极大值,∴a>0, ∴f(x)在0, a2上单调递增,在 a2,+∞上函数单调递减. ∴函数 f(x)的极大值为 f a2=5,解得 a=2e.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)证明:当 a≥12时,不等式 f(x)>2ax+1x在区间(1,+∞)上恒成立. 解析:(2)证明:令 h(x)=f(x)-2ax-1x=a(x+1)2-ln x-2ax-1x=ax2+a-ln x-1x, 则 h′(x)=2ax-1x+x12≥x-1x+x12=x2-x 1+x12>0, ∴函数 h(x)在区间(1,+∞)上单调递增, ∴h(x)>h(1)=2a-1≥0, ∴当 a≥12时,不等式 f(x)>2ax+1x在区间(1,+∞)上恒成立.
(2 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
若 a>0,则当 x∈0,1a时,f′(x)>0;当 x∈1a,+∞时,f′(x)<0.所以 f(x)在0,1a
上单调递增,在1a,+∞上单调递减.
(6 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)当 f(x)有最大值,且最大值大于 2a-2 时,求 a 的取值范围.
高三二轮复习专题讲座函数与导数ppt课件
3
一、课标、教学要求、考试说明的解读
考试要求: 对知识的考查要求依次分为了解、理解、掌握三个层次 (在下表中分别用A、B、C表示). 了解:要求对所列知识的含义有最基本的认识,并能解 决相关的简单问题. 理解:要求对所列知识有较深刻的认识,并能解决有一 定综合性的问题. 掌握:要求系统地掌握知识的内在联系,并能解决综合 性较强的或较为困难的问题.
4
内
容
要求
函数的有关概念
A
B
C
√
函数的基本性质
√
函
指数与对数
√
指数函数的图象与性质
√
对数函数的图象与性质
√
数
幂函数
√
函数与方程
√
函数模型及其应用
√
导数的概念
√
导
导数的几何意义
√
导数的运算
√
数
利用导数研究函数的单调
√
性与极值
导数在实际问题中的应用
√
5
二、近几年高考试题分析
高考函数与导数试题的命题特点
分析:此 题 的 关 键 是 集正 合 M的 确含 理,所 义 解谓 在 定 义 域 内 x0,使 存得 f在 (x01)f(x0)f(1) 成 立 ,就 是 方 f(x程 1)f(x)f(1)有 实 数 . 解
10
此 题 在 最 初 命,第 题(4时 )个 函 数 不f (是 x) cosx,而 是
7
三、目前学生存在的问题、成因
通过这次期末调研考试,以及一轮复习中反映出的 情况来看,在函数与导数部分主要存在着以下几个 方面的问题: 1.基础知识掌握不牢,该过关的地方还没过关, 主要是由于基本概念不清、运算能力不强; 2.灵活运用知识解决问题的能力不够,主要是由 于对于所学的知识理解不透,不能举一反三; 3.转化与化归的能力较弱,主要是平时解题过程 中不注意对方法的归纳与小结.
2020浙江新高考数学二轮复习课件:专题一 2 第2讲 函数图象与性质
B.13,3
C.(1,2)
D.2,94
上一页
返回导航
下一页
专题一 集合、常用逻辑用语、函数与导数、不等式
21
解析:选 D.作出函数 f(x)=e-|x-x12|-,2xx>+0 1,x≤0的图象,如图所示:
上一页
返回导航
下一页
专题一 集合、常用逻辑用语、函数与导数、不等式
22
关于 f(x)的方程[f(x)]2-3f(x)+a=0 有 8 个不等的实数根,故 Δ=9-4a>0,a<94,由函数 f(x)图象可知 f(x)∈(1,2),令 t=f(x), 则方程[f(x)]2-3f(x)+a=0 可化为 a=-t2+3t,t∈(1,2). a=-t2+3t 表示开口向下,对称轴为直线 t=32的抛物线, 可知 a 的最大值为-322+3×32=94, a 的最小值为 2,故 a∈2,94.综上可知 a∈2,94.故选 D.
第2部分 高考热点 专题突破
专题一 集合、常用逻辑用语、函数与导 数、不等式
第2讲 函数图象与性质
数学
专题一 集合、常用逻辑用语、函数与导数、不等式
2
01
考点1
02
考点2
03
考点3ቤተ መጻሕፍቲ ባይዱ
04
专题强化训练
上一页
返回导航
下一页
专题一 集合、常用逻辑用语、函数与导数、不等式
3
函数及其表示
[核心提炼] 1.函数的三要素 定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定 义域优先”的原则. 2.分段函数 若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数 通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.
高三资料专题02 函数-2020年高考数学(理)二轮专项复习
专题02 函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 则f (1)=______;若f (0)+f (a )=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f (1)=3.又f (0)=-1,所以f (a )=-1, 当a ≤0时,由a -1=-1得a =0;当a >0时,由-a 2+2a +2=-1,即a 2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( ) (A)22)(,t y x y ==(B)2|,|t y x y ==(C)1,112+=--=x y x x y (D)x x y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域 (1);11--=x y(2);3212-+=x x y(3);)1()3lg(0-+-=x xx y (4);2|2|12---=x x y解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0. 所以,所求函数的定义域为{x |x ≥2或x ≤0}.(2)由x 2+2x -3>0得,x >1或x <-3. 所以,所求函数的定义域为{x |x >1或x <-3}.(3)由⎪⎩⎪⎨⎧=/-=/>-,01,0,03x x x 得x <3,且x ≠0,x ≠1, 所以,所求函数的定义域为{x |x <3,且x ≠0,x ≠1}(4)由⎩⎨⎧=/=/≤≤-⎩⎨⎧=/-≥-⎩⎨⎧≠--≥-,4,0,112|2|01,02|2|0122x x x x x x x 且即,,得,所以-1≤x ≤1,且x ≠0.所以,所求函数定义域为{x |-1≤x ≤1,且x ≠0}.例5 已知函数f (x )的定义域为(0,1),求函数f (x +1)及f (x 2)的定义域.【分析】此题的题设条件中未给出函数f (x )的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x 的取值范围;②受对应法则f 制约的量的取值范围在“已知”和“求”当中是一致的.那么由f (x )的定义域是(0,1)可知法则f 制约的量的取值范围是(0,1),而在函数f (x +1)中,受f 直接制约的是x +1,而定义域是指x 的范围,因此通过解不等式0<x +1<1得-1<x <0,即f (x +1)的定义域是(-1,0).同理可得f (x 2)的定义域为{x |-1<x <1,且x ≠0}.例6 如图,用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出定义域.解:根据题意,AB =2x .⋅--==2π2,πxx l AD x 所以,.)2π2(π212π2222lx x x x x l x y ++-=+--=⋅⋅ 根据问题的实际意义.AD >0,x >0.解.π20,02π2,0+<<⎪⎩⎪⎨⎧>-->l x xx l x 得 所以,所求函数定义域为⋅+<<}π20|{lx x【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y =tan x ,则2ππ+≠k x ,k ∈Z . (2)不给出f (x )的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知21)1(x xxf -=,求f (x )的解析式; (2)已知221)1(xx x x f +=+,求f (3)的值;(3)如果f (x )为二次函数,f (0)=2,并且当x =1时,f (x )取得最小值-1,求f (x )的解析式; (4)*已知函数y =f (x )与函数y =g (x )=2x 的图象关于直线x =1对称,求f (x )的解析式. 【分析】(1)求函数f (x )的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.⋅-=-=1)1(111)1(2xxx xxf 通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,⋅-=1)(2x xx f 方法二.设t x =1,则tx 1=.则1111)(22-=-=t tt t t f ,所以⋅-=1)(2x x x f 这样,通过“换元”的方法也可以明确看到法则是什么. (2)用“凑型”的方法,.7)3(,2)(.2)1(1)1(2222=-=-+=+=+f x x f xx x x xx f 所以 (3)因为f (x )为二次函数,并且当x =1时,f (x )取得最小值-1, 所以,可设f (x )=a (x -1)2-1,又f (0)=2,所以a (0-1)2-1=2,所以a =3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.40元/kW·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.30元/kW·h .(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x 元/kW·h 时,用电量将增加至,4.0a x k+-故电力部门的收益为)75.055.0)(3.0)(4.0(≤≤-+-=x x a x ky .(2)易知,上年度的收益为(0.8-0.3)a ,依题意,%),201)(3.08.0()3.0)(4.02.0(+-≥-+-a x a x a且0.55≤x ≤0.75,解得0.60≤x ≤0.75.所以,当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题 1.已知函数xx f -=11)(的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( ) (A){x |x >1}(B){x |x <1}(C){x |-1<x <1} (D)∅2.图中的图象所表示的函数的解析式为( )(A))20(|1|23≤≤-=x x y (B))20(|1|2323≤≤--=x x y (C))20(|1|23≤≤--=x x y(D)y =1-|x -1|(0≤x ≤2)3.已知f (x -1)=x 2+2x ,则=)1(xf ( )(A)x x 212+(B)112-x(C)22143x x x ++(D)212x x +4.已知⎪⎩⎪⎨⎧≥<<--≤+=2,3,21,,1,3)(2x x x x x x x f 若f (x )=3,则x 的值是( )(A)0 (B)0或23 (C)3± (D)3二、填空题5.给定映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(0,1)的象是______;(3,1)的原象是______. 6.函数2||3)(--=x xx f 的定义域是______. 7.已知函数f (x ),g (x )分别由下表给出则f [g (1)]的值为______;满足f [g (x )]>g [f (x )]的x 的值是______.8.已知函数y =f (x )与函数y =g (x )=2x 的图象关于点(0,1)对称,则f (x )的解析式为______. 三、解答题9.已知f (x )=2x +x -1,⎩⎨⎧<-≥=),0(1),0()(2x x x x x g 求g (-1),g [f (1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A (0,9),其轨迹方程为y =ax 2+c (a <0),D =(6,7)为x 轴上的给定区间.为使物体落在区间D 内,求a 的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点P'(-x,-f(x))都在其图象上.又点P与点P'关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间M⊆A.如果取区间M中的任意两个值x1,x2,改变量∆x=x2-x1>0,则当∆y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当∆y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性. (1);1)(-=x xx f(2);11)(+=xx f (3)f (x )=x 3-3x ;(4);11lgxxy -+= (5)⋅+-=1212xx y 解:(1)解01≥-x x,得到函数的定义域为{x |x >1或x ≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x |x ≠0},但是,由于f (1)=2,f (-1)=0,即f (1)≠f (-1),且f (1)≠-f (-1),所以此函数为非奇非偶函数.(3)函数的定义域为R ,又f (-x )=(-x )3-3(-x )=-x 3+3x =-f (x ), 所以此函数为奇函数. (4)解011>-+xx,得-1<x <1, 又),(11lg 11lg )(1)(1lg)(x f xxx x x x x f -=-+-=+-=---+=-所以此函数为奇函数.(5)函数的定义域为R ,又)(21211212)(x f x f x xxx -=+-=+-=---, 所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称; ②f (x )是奇函数,并且f (x )在x =0时有定义,则必有f (0)=0; ③既是奇函数又是偶函数的函数,其解析式一定为f (x )=0. 判定函数奇偶性按照其定义可以分为两个步骤: ①判断函数的定义域是否关于原点对称; ②考察f (-x )与f (x )的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f (x )在R 上有定义,给出下列函数:①y =-|f (x )|;②y =xf (x 2);③y =-f (-x );④y =f (x )-f (-x ). 其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F (x )=-|f (x )|,则F (-x )=-|f (-x )|,由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.②令F (x )=xf (x 2),则F (-x )=-xf [(-x )2]=-xf (x 2)=-F (x ),所以F (x )为奇函数. ③令F (x )=-f (-x ),则F (-x )=-f [-(-x )]=-f (x ),由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.④令F (x )=f (x )-f (-x ),则F (-x )=f (-x )-f [-(-x )]=f (-x )-f (x )=-F (x ),所以F (x )为奇函数.所以,②④为奇函数.例3 设函数f (x )在R 上有定义,f (x )的值不恒为零,对于任意的x ,y ∈R ,恒有f (x +y )=f (x )+f (y ),则函数f (x )的奇偶性为______.解:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,再令y =-x ,则f (0)=f (x )+f (-x ),所以f (-x )=-f (x ),又f (x )的值不恒为零, 故f (x )是奇函数而非偶函数.【评析】关于函数方程“f (x +y )=f (x )+f (y )”的使用一般有以下两个思路:令x ,y 为某些特殊的值,如本题解法中,令x =y =0得到了f (0)=0.当然,如果令x =y =1则可以得到f (2)=2f (1),等等.令x ,y 具有某种特殊的关系,如本题解法中,令y =-x .得到f (2x )=2f (x ),在某些情况下也可令y =x1,y =x ,等等. 总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f (x )=x 2+bx +c 满足f (1+x )=f (1-x ),求b 的值,并比较f (-1)与f (4)的大小.解:因为f (1+x )=f (1-x ),所以x =1为二次函数图象的对称轴, 所以12=-b,b =-2. 根据对称性,f (-1)=f (3),又函数在[1,+∞)上单调递增, 所以f (3)<f (4),即f (-1)<f (4).例5 已知f (x )为奇函数,当x ≥0时,f (x )=x 2-2x ,(1)求f (-1)的值;(2)当x <0时,求f (x )的解析式.解:(1)因为f (x )为奇函数,所以f (-1)=-f (1)=-(12-2×1)=1.(2)方法一:当x <0时,-x >0.所以,f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x . 方法二:设(x ,y )是f (x )在x <0时图象上一点,则(-x ,-y )一定在f (x )在x >0时的图象上.所以,-y =(-x )2-2(-x ),所以y =-x 2-2x .例6 用函数单调性定义证明,函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数.证明:设),2(21+∞-∈abx x 、,且x 1<x 2 f (x 2)-f (x 1)=(ax 22+bx 2+c )-(ax 12+bx 1+c )=a (x 22-x 12)+b (x 2-x 1) =a (x 2+x 1)(x 2-x 1)+b (x 2-x 1)=(x 2-x 1)[a (x 1+x 2)+b ] 因为x 1<x 2,所以x 2-x 1>0,又因为),2(21+∞-∈abx x 、, 所以0)(,2121>++->+b x x a ab x x ,所以f (x 2)-f (x 1)>0, 函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数. 例7 已知函数f (x )是定义域为R 的单调增函数. (1)比较f (a 2+2)与f (2a )的大小;(2)若f (a 2)>f (a +6),求实数a 的取值范围.解:(1)因为a 2+2-2a =(a -1)2+1>0,所以a 2+2>2a , 由已知,f (x )是单调增函数,所以f (a 2+2)>f (2a ).(2)因为f (x )是单调增函数,且f (a 2)>f (a +6),所以a 2>a +6, 解得a >3或a <-2.【评析】回顾单调增函数的定义,在x 1,x 2为区间任意两个值的前提下,有三个重要的问题:∆x =x 2-x 1的符号;∆y =f (x 2)-f (x 1)的符号;函数y =f (x )在区间上是增还是减.由定义可知:对于任取的x 1,x 2,若x 2>x 1,且f (x 2)>f (x 1),则函数y =f (x )在区间上是增函数;不仅如此,若x 2>x 1,且函数y =f (x )在区间上是增函数,则f (x 2)>f (x 1); 若f (x 2)>f (x 1),且函数y =f (x )在区间上是增函数,则x 2>x 1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数. (1)试比较f (-2)与-f (3)的大小;(2)若mn <0,且m +n <0,求证:f (m )+f (n )>0. 解:(1)因为f (x )是奇函数,所以-f (3)=f (-3),又f (x )在区间(-∞,0)上是减函数,所以f (-3)>f (-2),即-f (3)>f (-2). (2)因为mn <0,所以m ,n 异号,不妨设m >0,n <0, 因为m +n <0,所以n <-m ,因为n ,-m ∈(-∞,0),n <-m ,f (x )在区间(-∞,0)上是减函数, 所以f (n )>f (-m ),因为f (x )是奇函数,所以f (-m )=-f (m ), 所以f (n )>-f (m ),即f (m )+f (n )>0.例9 函数f (x )是周期为2的周期函数,且f (x )=x 2,x ∈[-1,1]. (1)求f (7.5)的值;(2)求f (x )在区间[2n -1,2n +1]上的解析式.解:(1)因为函数f (x )是周期为2的周期函数,所以f (x +2k )=f (x ),k ∈Z . 所以f (7.5)=f (-0.5+8)=f (-0.5)=41. (2)设x ∈[2n -1,2n +1],则x -2n ∈[-1,1]. 所以f (x )=f (x -2n )=(x -2n )2,x ∈[2n -1,2n +1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( ) (A)y =x 2-4x(B)y =|x |(C)xy 1(D)y =x 2+2x2.下列判断正确的是( )(A)定义在R 上的函数f (x ),若f (-1)=f (1),且f (-2)=f (2),则f (x )是偶函数 (B)定义在R 上的函数f (x )满足f (2)>f (1),则f (x )在R 上不是减函数(C)定义在R 上的函数f (x )在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f (x )在R 上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f (x )是R 上的奇函数,并且是周期为3的周期函数,又知f (1)=2.则f (2)=( ) (A)-2(B)2(C)1(D)-14.设f (x )是R 上的任意函数,则下列叙述正确的是( ) (A)f (x )f (-x )是奇函数(B)f (x )|f (-x )|是奇函数 (C)f (x )-f (-x )是偶函数 (D)f (x )+f (-x )是偶函数二、填空题5.若函数f (x )=4x 2-mx +5在区间[-2,+∞)是增函数,则m 的取值范围是______;f (1)的取值范围是______.6.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,f (x )=______.7.设函数xa x x x f ))(1()(++=为奇函数,则实数a =______.8.已知函数f (x )=x 2-cos x ,对于]2π,2π[-上的任意x 1,x 2,有如下条件:①x 1>x 2; ②;2221x x > ③|x 1|>x 2. 其中能使f (x 1)>f (x 2)恒成立的条件序号是______ 三、解答题9.已知函数f (x )是单调减函数. (1)若a >0,比较)3(aa f +与f (3)的大小; (2)若f (|a -1|)>f (3),求实数a 的取值范围.10.已知函数).,0()(2R ∈=/+=a x xa x x f (1)判断函数f (x )的奇偶性;(2)当a =1时,证明函数f (x )在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0) (1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb 2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-ab ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.(3)当a >0时,]2,(a b --∞是减区间,),2[+∞-a b是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间.(4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x (a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y =log a x 与指数函数y =a x 互为反函数. (1)定义域为(0,+∞);值域为R .(2)a >1时,对数函数为增函数;0<a <1时,对数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1. 5.幂函数y =x α(α∈R )幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数; (3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地接近y 轴,当x 趋于+∞时,图象在x 轴上方无限地接近x 轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x ∈(0,+∞)时,x α>0,所以所有的幂函数y =x α(α∈R )在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根.负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a n n |,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b =N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=;bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题. 【例题分析】例1 化简下列各式: (1)31522732-⨯;(2)031π2)27102(412-+-;(3)21)972()71()027.0(231+----;(4)log 2[log 3(log 464)];(5)4015018lg 5lg 2lg g g --+.解:(1)⋅=⨯=⨯=⨯---3432)3()2(2732123135253152 (2)⋅=-+=-+=-+--41243232)2764()49(π2)27102()412(3121315.0(3)443549310)925(49)103()972()71()027.0(21313321231-=+-=+-=+-----(4)log 2[log 3(log 464)]=log 2[log 3(log 443)]=log 2[log 33]=log 21=0.(5) .145lg 45lg4050lg 852lg40150lg 8lg 5lg 2lg ==⨯=--+g 【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值为8,试确定f (x )的解析式.解:解法一设f (x )=ax 2+bx +c (a ≠0),依题意⎪⎩⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧=--=+--=++,7,4,4,,8441,1242c b a ab ac c b a c b a 解之得解之得所以所求二次函数为f (x )=-4x 2+4x +7.解法二f (x )=a (x -h )2+k (a ≠0),为f (2)=-1,f (-1)=-1,所以抛物线的对称轴为212)1(2=-+=x , 又f (x )的最大值为8,所以8)21()(2+-=x a x f .因为(-1,-1)点在抛物线上,所以8)211(12+--=-a ,解得a =-4. 所以所求二次函数为7448)21(4)(22++-=+--=x x x x f .例3 (1)如果二次函数f (x )=x 2+(a +2)x +5在区间(2,+∞)上是增函数,则a 的取值范围是______.(2)二次函数y =ax 2-4x +a -3的最大值恒为负,则a 的取值范围是______. (3)函数f (x )=x 2+bx +c 对于任意t ∈R 均有f (2+t )=f (2-t ),则f (1),f (2),f (4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数, 画简图可知此抛物线对称轴22+-=a x 或与直线x =2重合,或位于直线x =2的左侧, 于是有222≤+-a ,解之得6-≥a . (2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a <0,且判别式∆<0”,即⎩⎨⎧<--<0)3(416,0a a a ,解得a ∈(-∞,-1).(3)因为对于任意t ∈R 均有f (2+t )=f (2-t ),所以抛物线对称轴为x =2,又抛物线开口向上,做出函数图象简图可得f (2)<f (1)<f (4).例4 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,求实数m 的范围.解:当m =0时,f (x )=-3x +1,其图象与x 轴的交点为)0,31(,符合题意; 当m <0时,注意到f (0)=1,又抛物线开口向下,所以抛物线与x 轴的两个交点必在原点两侧.所以m <0符合题意;当m >0时,注意到f (0)=1,又抛物线开口向上,所以抛物线与x 轴的两个交点必在原点同侧(如果存在),所以若满足题意,则⎩⎨⎧>-=-≥--=∆,0232,04)3(2mm a b m m 解得0<m ≤1.综上,m ∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a ≠0时,函数y =ax +b 与y =b ax 的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f (0)=1”,例5中“作直线y =1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y =1”.例6 已知幂函数)()(22123Z ∈=-+k xx f k k .(1)若f (x )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式; (2)若f (x )在(0,+∞)上是减函数,求k 的取值范围. 解:(1)因为f (x )在(0,+∞)上是增函数,所以021232>-+k k ,解得-1<k <3, 因为k ∈Z ,所以k =0,1,2,又因为f (x )为偶函数,所以k =1,f (x )=x 2. (2)因为f (x )在(0,+∞)上是减函数,所以021232<-+k k , 解得k <-1,或k >3(k ∈Z ). 例7 比较下列各小题中各数的大小 (1)21log ,0,6.0log 6.02;(2)lg2与lg(x 2-x +3);(3)0.50.2与0.20.5; (4)332与;(5)21log ,32,)21(3131;(6)a m +a -m 与a n +a -n (a >0,a ≠1,m >n >0)【分析】(1)函数y =log 2x 在区间(0,+∞)上是增函数,所以log 20.6<log 21=0, 函数y =log 0.6x 在区间(0,+∞)上是减函数,所以01log 21log 6.06.0=> 所以216.0log 06.0log 2<<. (2)由于2411)21(322>+-=+-x x x ,所以lg2<lg(x 2-x +3). (3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为9)3(,8)2(636==.根据不等式的性质有.323<(5)因为;32)21(,)728()21(,27821313131>>>即所以 比较32与log 32,只需比较3233log 与log 32,因为y =log 3x 是增函数,所以只需比较323与2的大小,因为3332289)3(=>=,所以2332>,所以2log 323>, 综上,.2log 32)21(331>>(6))1)((1)(--=+-+++--n m n m nm n n mma a a aa a aa ,当a >1时,因为m >n >0,a m >a n ,a m +n >1,所以a m +a-m>a n +a -n ;当0<a <1时,因为m >n >0,a m <a n ,a m +n <1,所以a m +a -m >a n +a -n . 综上,a m +a -m >a n +a -n .例8 已知a >2,b >2,比较a +b ,ab 的大小. 【分析】方法一(作商比较法)b a ab b a 11+=+,又a >2,b >2,所以211,211<<b a ,所以1<+abba ,所以a +b <ab . 方法二(作差比较法))]2()2([21)]2()2[(21)222(21a b b a ab b ab a ab b a ab b a -+-=-+-=-+=-+,因为a >2,b >2,所以2-a <0,2-b <0,所以a +b -ab <0,即a +b <ab . 方法三(构造函数)令y =f (a )=a +b -ab =(1-b )a +b ,将y 看作是关于a 的一次函数, 因为1-b <0,所以此函数为减函数,又a ∈(2,+∞),y 最大<f (2)=(1-b )×2+b =2-b <0,所以a +b -ab <0,即a +b <ab . 【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9 若log 2(x -1)<2,则x 的取值范围是______. 解:log 2(x -1)<2,即log 2(x -1)<log 24,根据函数y =log 2x 的单调性,可得x -1<4,所以x <5, 结合x -1>0,所以x 的取值范围是1<x <5.例10 已知A ,B 为函数y =log 8x 的图象上两点,分别过A ,B 作y 轴的平行线与函数y =log 2x 的图象交于C ,D 两点.。
2020届高考数学(理)二轮复习课件:专题6 导数的简单应用与定积分
大二轮复习
第一部 分 全程方略课件
专题6 导数的简单应用与定积分
1 高考考点聚
焦
2 核心知识整
合
3 高考真题体
验
4 命题热点突
破
5 课后强化训
练
高考考点聚焦
• 备考策略 • 本部分内容在备考时应注意以下几个方面: • (1)理解并掌握求导公式和求导法则及定积
分的计算公式及性质.
• (2)熟练掌握利用导数研究曲线切线问题、 函数的单调性、极(最)值问题的方法和规 律.
• (3)对于含参数的函数解析式或区间求极值、 最值问题,务必要对参数分类讨论.
• 2.根据函数的单调性求参数取值范围的思 路
• (1)求f ′(x). • (2)将单调性转化为导数f ′(x)在该区间上
满足的不等式恒成立问题求解.
•命题方向3 用导数研究函数的极值与 最值
• 『规律总结』 • 利用导数研究函数极值与最值的步骤
• (1)利用导数求函数极值的一般思路和步 骤.
• (2)已知切线的斜率为k,求y=f(x)的切线方 程.
• 设切点P(x0,y0),通过方程k=f ′(x0)解得x0, 再由点斜式写出方程.
• (3)已知切线上一点(非切点),求y=f(x)的 切线方程:
• 设切点P(x0,y0),利用导数求得切线斜率f ′(x0),然后由斜率公式求得切线斜率,列 方程(组)解得x0,再由点斜式或两点式写出 方程.
• 4.函数的单调性
• 在某个区间(a,b)内,如果 _______f′_(x_0)_>_0(_f′_(x_0_)<_0_) _____,那么函数y=f(x) 在这个区间内单调递增(单调递减).
• 5.函数的极值
2020版高考数学大二轮复习2.3导数的简单应用课件文
【解析】 本题主要考查导数及其应用、函数的单调性、函数的 极值与函数零点个数的证明等,考查考生的推理论证能力、运算求解 能力、抽象概括能力等,考查化归与转化思想、分类讨论思想、数形 结合思想等,考查的核心素养是逻辑推理、直观想象、数学运算.
(1)设 g(x)=f′(x),则 g(x)=cos x-1+1 x,g′(x)=-sin x+1+1 x2. 当 x∈-1,π2时,g′(x)单调递减,而 g′(0)>0,g′π2<0,可得 g′(x)在-1,π2有唯一零点,设为 α.则当 x∈(-1,α)时,g′(x)>0; 当 x∈α,2π时,g′(x)<0.
所以 g(x)在(-1,α)单调递增,在α,π2单调递减,故 g(x)在 -1,π2存在唯一极大值点,即 f′(x)在-1,π2存在唯一极大值点.
(2)f(x)的定义域为(-1,+∞). (ⅰ)当 x∈(-1,0]时,由(1)知,f′(x)在(-1,0)单调递增,而 f′(0) =0,所以当 x∈(-1,0)时,f′(x)<0,故 f(x)在 (-1,0)单调递减.又 f(0)=0,从而 x=0 是 f(x)在(-1,0]的唯一零点.
2.[2019·河北保定乐凯中学模拟]设函数 f(x)=g(x)+x2,曲线 y
=g(x)在点(1,g(1))处的切线方程为 y=2x+1,则曲线 y=f(x)在点 (1,f(1))处的切线的斜率为( )
A.2
1 B.4
C.4 D.-12
解析:因为曲线 y=g(x)在点(1,g(1))处的切线方程为 y=2x+1,
(ⅲ)当 0<a<3 时,由(1)知,f(x)在[0,1]的最小值为 f(a3)=-2a73+ b,最大值为 b 或 2-a+b.
2020届新课标高考数学二轮专题复习讲义全套打包下载2函数与导数
专题二函数与导数第1讲函数的概念、图象与性质[记牢方能用活]一、函数与映射的相关结论1.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.2.映射的个数若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有n m个.二、函数的表示方法及分段函数1.表示函数的常用方法:解析法、图象法、列表法.2.分段函数:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.三、函数的图象及应用1.描点法作图的方法步骤(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质,即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换四、函数的性质及应用1.利用性质判断函数的奇偶性一般情况下,在相同定义域内,有下列结论成立:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,偶函数×偶函数=偶函数,奇函数×奇函数=偶函数,奇函数×偶函数=奇函数.2.函数单调性判断的常用方法(1)定义法:要注意函数的定义域;(2)图象法:作出函数图象,从图象上直观判断;(3)复合函数法:同增异减;(4)性质法:增+增=增,减+减=减,增-减=增,减-增=减;(5)导数法.3.几种常见抽象函数的周期调研1函数的表示、分段函数a.分段函数求值问题1.(2019·山西太原三中模拟)设函数f (x )=⎩⎨⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则实数m 的值为( )A .-2B .8C .1D .2答案:D 解析:当m ≥2时,m 2-1=3,∴m =2或m =-2(舍);当0<m <2时,log 2m =3,∴m =8(舍).∴m =2.故选D.2.(2018·江苏,9,5分)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0, 则f (f (15))的值为________.答案:22 解析:由函数f (x )满足f (x +4)=f (x )(x ∈R),可知函数f (x )的周期是4,所以f (15)=f (-1)=⎪⎪⎪⎪⎪⎪-1+12=12,所以f (f (15))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.b .分段函数的不等式问题3.(2017·全国Ⅲ,15,5分)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫-14,+∞ 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1, 解得x >-14,∴-14<x ≤0;当0<x ≤12时,原不等式为2x +x +12>1,显然成立; 当x >12时,原不等式为2x +2x -12>1,显然成立. 综上可知,x >-14.小提示:分段函数的有关方程、不等式问题,都需对函数表达式分段讨论,只有解析式明确后,才能解方程、解不等式,关键是对自变量的分类讨论,得到函数表达式.[对点提升]1.若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤2,log a x -12,x >2的值域为R ,则f (22)的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-∞,-54 C.⎣⎢⎡⎭⎪⎫-54,+∞ D.⎣⎢⎡⎭⎪⎫-54,-12 答案:D 解析:当x ≤2时,f (x )∈[-1,+∞),依题意可得当x >2时,函数f (x )的取值必须包含(-∞,-1),如图所示,可知函数在区间(2,+∞)上单调递减,得0<a <1.当x =2时,log a 2<0,且log a 2-12≥-1,即-12≤log a 2<0,所以f (22)=log a 22-12=32log a 2-12,即f (22)∈⎣⎢⎡⎭⎪⎫-54,-12.故选D.2.已知函数f (x )=⎩⎨⎧ln (x +1),x >0,-x 2+3x ,x ≤0,若不等式|f (x )|-mx +2≥0恒成立,则实数m 的取值范围为________.答案:[-3-22,0] 解析:原不等式恒成立等价于不等式mx ≤|f (x )|+2恒成立.在平面直角坐标系中画出y=|f(x)|+2的大致图象,如图所示,则不等式恒成立即是函数y=mx的图象恒在函数y=|f(x)|+2的图象的下方.下面考虑函数y=x2-3x+2(x≤0)的图象的切线的斜率,且此切线过原点.设切点为P(a,b)(a<0),则b=a2-3a+2,y′=2x-3,于是切线方程为y-b=(2a-3)(x-a).因为切线过原点,所以-b=(2a-3)·(-a),即-(a2-3a+2)=-2a2+3a,所以a2=2.又因为a<0,所以a=- 2.此时切线的斜率k=2a-3=-3-2 2.结合图象可知,所求实数m的取值范围为[-3-22,0].调研2函数的图象及应用a.由解析式辨识图象1.(2019·全国Ⅰ,5,5分)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()解析:∵f(-x)=sin(-x)-xcos(-x)+(-x)2=-f(x),∴f(x)为奇函数,排除A.当x=π时,f(π)=π-1+π2>0,排除B,C.故选D.小提示:函数图象的辨识方法1.由函数的定义域判断图象的左右位置,由函数的值域判断图象的上下位置;2.由函数的单调性判断图象的变化趋势;3.由函数的奇偶性判断图象的对称性;4.由函数的周期性识辨图象;5.由函数图象上的特征点排除不符合要求的图象.b.函数零点与图象的综合2.(2016·全国Ⅱ,12,5分)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑i=1m(x i+y i)=( )A .0B .mC .2mD .4m答案:B 解析:由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x 的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴ i =1m(x i +y i )=0×m 2+2×m2=m .故选B.小提示:凡是两函数交点坐标之和(或积)等问题,都与图象的性质有关,数形结合法是解题关键,准确判断函数的对称性(对称轴、对称中心),借助对称性解决问题.[对点提升]1.(2019·全国Ⅲ,7,5分)函数y =2x 32x +2-x在[-6,6]的图象大致为( )答案:B2.(2016·山东,15,5分)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m的取值范围是________.答案:(3,+∞)解析:f(x)的大致图象如图所示,要满足存在b∈R,使得方程f(x)=b有三个不同的根,只需4m-m2<m,又m>0,所以m>3.调研3函数的性质及应用a.利用函数性质求值问题1.(2018·全国Ⅱ,11,5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.-50 B.0C.2 D.50答案:C解析:∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).又f(1-x)=f(1+x),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数,得f(0)=0.又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.小提示:本题中函数既有对称中心,又有对称轴,则其表现出周期性.若函数f(x)有对称轴为x=a和x=b,则T=2|a-b|;若有对称中心为(a,0),(b,0),则T=2|a-b|;若有对称中心为(a,0),对称轴为x=b,则T=4|a-b|.b.利用函数性质比较大小2.(2019·全国Ⅲ,11,5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()答案:Cc.由单调性求参数3.(2019·北京,13,5分)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.答案:-1 (-∞,0] 解析:∵f (x )=e x +a e -x (a 为常数)的定义域为R , ∴f (0)=e 0+a e -0=1+a =0,∴a =-1. ∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -a e x . ∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立. 又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0]. 小提示:利用对称性、单调性比较大小,应先将自变量转化为同一单调区间,不等式的求解可利用数形结合,褪掉抽象符号f .[对点提升]1.(2019·江西南昌第一中学模拟)已知函数f (x )=(e x +e -x )ln 1-x1+x -1,若f (a )=1,则f (-a )=________.答案:-3 解析:∵y =ex+e -x 是偶函数,y =ln1-x 1+x在(-1,1)上为奇函数,∴φ(x )=(ex+e -x )·ln1-x1+x为奇函数. ∵f (a )=φ(a )-1=1,∴φ(a )=2. ∴f (-a )=φ(-a )-1=-φ(a )-1=-3.2.(2019·四川成都外国语学校阶段考)函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是________.答案:(-4,4] 解析:因为函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,所以当x ∈[2,+∞)时,x 2-ax +3a >0且函数g (x )=x 2-ax +3a 为增函数,即a2≤2且f (2)=4+a >0,解得-4<a ≤4.提醒 完成专题训练(五)第2讲基本初等函数、函数与方程[记牢方能用活]一、一元二次方程ax2+bx+c=0(a>0)的实根分布二、指数函数与对数函数的图象与性质三、函数的零点1.函数的零点与方程的根、函数图象的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.判断函数零点个数的常用方法(1)解方程法:令f(x)=0,如果有解,则有几个解就有几个零点.(2)利用零点存在性定理:利用该定理不仅要求函数图象在[a,b]上的图象是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)数形结合法:转化为两个相应函数图象的交点的个数问题,有几个交点就有几个零点.四、应用函数模型解决实际问题的一般程序读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.调研1 幂函数与二次函数 a .幂函数的性质1.(2018·上海,7,5分)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=________.答案:-1 解析:本题主要考查幂函数的性质. ∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减, ∴α<0,故α=-1. b .二次函数的性质2.(2019·浙江,16,4分)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是________.答案:43 解析:由题意,得f (t +2)-f (t ) =a (t +2)3-(t +2)-(at 3-t ) =a [(t +2)3-t 3]-2=a (t +2-t )[(t +2)2+(t +2)·t +t 2]-2 =2a (3t 2+6t +4)-2 =2a [3(t +1)2+1]-2. 由|f (t +2)-f (t )|≤23, 得|2a [3(t +1)2+1]-2|≤23, 即-23≤2a [3(t +1)2+1]-2≤23, 23≤a [3(t +1)2+1]≤43,∴23·13(t +1)2+1≤a ≤43·13(t +1)2+1.设g (t )=43·13(t +1)2+1,则当t =-1时,g (t )max =43.∴当t =-1时,a 取得最大值43,满足题意. 小提示:幂函数y =x α(α∈R)的性质及图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); 2.如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数; 3.如果α<0,则幂函数的图象在区间(0,+∞)上为减函数;4.当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数. [对点提升]1.(2019·河南濮阳二模)已知函数f (x )=(m 2-m -1)·x m 2+2m -3是幂函数,且其图象与两坐标轴都没有交点,则实数m =( )A .-1B .2C .3D .2或-1答案:A 解析:∵函数f (x )=(m 2-m -1)x m 2+2m -3 是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,f (x )=x 5,其图象与两坐标轴有交点,不合题意;当m =-1时,f (x )=1x 4,其图象与两坐标轴都没有交点,符合题意,故m =-1,故选A.2.(2019·河南南阳模拟)设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A .(-∞,0] B.⎣⎢⎡⎭⎪⎫0,57 C .(-∞,0)∪⎝ ⎛⎭⎪⎫0,57 D.⎝ ⎛⎭⎪⎫-∞,57 答案:D 解析:由题意,f (x )<-m +4对于x ∈[1,3]恒成立,即m (x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f (x )<-m +4等价于m <5x 2-x +1.∵当x =3时,5x 2-x +1取最小值57,∴若要不等式m <5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m <57,因此,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,57,故选D. 调研2 指数、对数函数 a .指数式、对数式的大小比较1.(2019·全国Ⅰ,3,5分)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a答案:B 解析:因为a =log 20.2<0,b =20.2>1,0<c =0.20.3<1,所以b >c >a .故选B.2.(2019·天津,6,5分)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案:A 解析:因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.小提示:指数式、对数式的大小比较,常利用函数的单调性或中间值进行比较,要根据具体式子的特点,选择恰当的函数,有时还需要借助幂函数比较.对于比较的式子,要先化简转化,再比较大小.b .指数函数、对数函数的图象与性质3.(2018·上海,11,5分)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝⎛⎭⎪⎫q ,-15.若2p +q =36pq ,则a =________. 答案:6 解析:本题主要考查指数式的运算.由已知条件知,f (p )=65,f (q )=-15,所以⎩⎨⎧2p2p+ap =65,①2q 2q+aq=-15,②①+②,得2p (2q +aq )+2q (2p +ap )(2p +ap )(2q +aq )=1,整理得2p +q =a 2pq ,又2p +q =36pq ,∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,得a =6. c .对数式的大小比较4.(2019·安徽安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .(1,e 1e)答案:D 解析:f (x )=log a x 的定义域与值域相同, 等价于方程f (x )=log a x =x 有两个不等的实数解. ∵log a x =x ,∴ln xln a =x , ∴ln a =ln xx 有两个不等实数解,问题等价于直线y =ln a 与函数y =ln xx 的图象有两个交点. 作函数y =ln xx 的图象,如图所示.根据图象可知,当0<ln a <1e ,即1<a <e 1e时,直线y =ln a 与函数y =ln xx 的图象有两个交点.故选D.[对点提升]1.(2019·湖北华中师大第一附属中学模拟)设a =2 01612 017,b =log 20162 017,c =log 2 017 2 016,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >a >cD .c >b >a答案:A 解析:∵a =2 01612 017>2 0160=1,1=log 2 0162 016>b =log 20162 017>log 2 016 2 016=12,c =log 2 017 2 016<log 2 017 2 017=12,所以a >b >c .故选A.2.(2019·山东淄博模拟)已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R ,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A .2e -1B .e 2-12 C .2-ln 2 D .2+ln 2答案:D调研3 函数的零点 a .零点个数的判断1.(2018·全国Ⅲ,15,5分)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.答案:3 解析:由题意可知,当3x +π6=k π+π2(k ∈Z)时,f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6=0.∵x ∈[0,π], ∴3x +π6∈⎣⎢⎡⎦⎥⎤π6,19π6,∴当3x +π6取值为π2,3π2,5π2时,f (x )=0, 即函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为3.2.(2017·江苏,14,5分)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎨⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.答案:8 解析:由于f (x )∈[0,1),则只需考虑1≤x <10的情况. 在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,p ,q ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =q p ,则10n =⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lgx ∉Q ,因此lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期x ∉D 部分的交点.画出函数草图.图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程解的个数为8.b .由零点个数求参数3.(2019·浙江,9,4分)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( )A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >0答案:C解析:由题意,b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.即以上两个函数的图象恰有3个交点,根据选项进行讨论. ①当a <-1时,1-a >0,可知g (x )在(-∞,0)上单调递增; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知g (x )在(0,+∞)上单调递增.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故A ,B 排除. ②当a >-1,即a +1>0时, 因为g ′(x )=x [x -(a +1)](x ≥0), 所以当x ≥0时,由g ′(x )<0可得0<x <a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在有3个交点的情况,不合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在有3个交点的情况,不合题意,舍去.综上,-1<a <1,b <0.故选C.4.(2018·全国Ⅰ,9,5分)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)答案:C 解析:令h (x )=-x -a ,则g (x )=f (x )-h (x ). 在同一坐标系中画出y =f (x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y=h(x)的图象,可知当直线y=-x-a过点(0,1)时,有2个交点,此时1=-0-a,a=-1.当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合题意;当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意.综上,a的取值范围为[-1,+∞).故选C.小提示:已知函数零点的个数求参数范围的方法已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围.[对点提升]1.(2019·黑龙江哈师大附中模拟)若函数y=f(x)(x∈R)是奇函数,其零点分别为x1,x2,…,x2 017,且x1+x2+…+x2 017=m,则关于x的方程2x+x-2=m的根所在区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案:A解析:因为函数y=f(x)(x∈R)是奇函数,故其零点x1,x2,…,x2 017关于原点对称,且其中一个为0,所以x1+x2+…+x2 017=m=0.则关于x 的方程为2x+x-2=0,令h(x)=2x+x-2,则h(x)为(-∞,+∞)上的增函数.因为h(0)=20+0-2=-1<0,h(1)=21+1-2=1>0,所以关于x的方程2x +x-2=m的根所在区间是(0,1).2.(2019·河南安阳二模)设函数f(x)=ln(x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是()A.[0,1] B.[-1,0]C.[0,2] D.[-1,1]答案:A解析:令f(x)=0,可得ln(x+1)=-a(x2-x),令g(x)=ln(x+1),h(x)=-a(x2-x).∵f(x)在区间(0,+∞)上无零点,∴g(x)=ln(x+1)与h(x)=-a(x2-x)的图象在y轴右侧无交点.显然当a=0时符合题意;当a<0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图1所示,显然两函数图象在y轴右侧必有一交点,不符合题意;当a>0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图2所示,若两函数图象在y轴右侧无交点,则h′(0)≤g′(0),即a≤1.综上,0≤a≤1.故选A.调研4函数模型及综合应用a.函数关系在实际问题中的应用1.(2019·全国Ⅱ,4,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1 (R+r)2+M2r2=(R+r)M1R3.设α=rR.由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A.M 2M 1RB.M 22M 1RC.33M 2M 1R D.3M 23M 1R答案:D 解析:由α=r R ,得r =αR ,代入M 1(R +r )2+M 2r 2=(R +r )·M 1R 3,整理得3α3+3α4+α5(1+α)2=M 2M 1. 又∵3α3+3α4+α5(1+α)2≈3α3,∴3α3≈M 2M 1,∴α≈3M 23M 1, ∴r =αR ≈3M 23M 1R .故选D.b.函数模型在实际问题中的应用2.(2019·湖北荆门模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱 1 000元,存入银行,年利率为 2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1 000元选择合适方式存满5年,可以多获利息( )(参考数据:1.022 54=1.093,1.022 55=1.118,1.040 15=1.217) A .176元 B .104.5元 C .77元 D .88元答案:B 解析:将1 000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为1 000×1.040 15=1 217(元),故共得利息1 217-1 000=217(元).将1 000元存入银行,不选择复利的计算方法,则存满5年后的利息为1 000×0.022 5×5=112.5(元),故可以多获利息217-112.5=104.5(元),故选B.小提示:在实际应用中,对数量关系的理解很重要,若考查图象问题,可由特殊值、特殊信息来验证;若考查求值计算,应用方程思想,把条件转化为条件方程.[对点提升4](2019·江苏盐城中学期末)我校为丰富师生课余活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S (平方米)的矩形健身场地AMPN .如图,点M 在AC 上,点N 在AB 上,点P 在斜边BC 上.已知∠ACB =60°,|AC |=30米,|AM |=x 米,x ∈[10,20].设矩形健身场地AMPN 每平方米的造价为37kS元,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k 为正常数).(1)试用x 表示S ,并求S 的取值范围; (2)求总造价T 关于面积S 的函数T =f (S );(3)如何选取|AM |,使总造价T 最低(不要求求出最低造价)?解:(1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |·tan ∠PCM =3(30-x ),∴矩形AMPN 的面积S =|PM |·|AM |=3x (30-x ),x ∈[10,20], ∴2003≤S ≤225 3.(2)矩形健身场地AMPN 造价T 1=37k S ,又∵△ABC 的面积为12×30×tan 60°×30=4503, ∴草坪造价T 2=12kS (4503-S ).∴总造价T =T 1+T 2=25k S +5 400k 3S,2003≤S ≤225 3. (3)∵S +2163S ≥1263,当且仅当S =2163S ,即S =2163时等号成立,此时3x (30-x )=2163,解得x =12或x =18.∴选取|AM |为12米或18米时总造价T 最低.提醒 完成专题训练(六)第3讲 导数及其应用(单调性与极值)[记牢方能用活]一、导数的运算及几何意义函数f(x)在点P(x0,y0)处的切线方程,是指点P(x0,y0)即为切点,切线为y -y0=f′(x0)(x-x0);而过点P(x0,y0)的切线方程,则点P(x0,y0)不一定是切点,设切点为P′(x1,y1),写出切线表达式y-y1=f′(x1)(x-x1),将P(x0,y0)代入切线方程求解x1,从而得到切线方程.二、导数与函数单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,f(x)为常数函数,函数不具有单调性.三、函数的极值设函数y=f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有f(x)>f(x0),则f(x0)是函数y=f(x)的一=f(x0).极大值与极小值统称为极值.个极小值,记作y极小值四、函数的最值1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2.设函数f(x)在[a,b]上连续,在(a,b)内可导,先求f(x)在(a,b)内的极值;再将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.极值点不一定是最值点,最值点也不一定是极值点,但如果连续函数在开区间(a,b)内只有一个极值点,那么极大值点就是最大值点,极小值点就是最小值点.调研1导数的运算及几何意义a.导数的运算求值1.(2019·福建福州八县联考)已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(1)+ln 1x,则f(1)=()A.-e B.2 C.-2 D.e答案:B解析:由已知,得f′(x)=2f′(1)-1x,令x=1得f′(1)=2f′(1)-1,解得f′(1)=1,则f(1)=2f′(1)=2.b.导数的几何意义2.(2019·全国Ⅰ,13,5分)曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案:y=3x解析:y′=3(2x+1)e x+3(x2+x)e x=e x(3x2+9x+3),∴斜率k=e0×3=3,∴切线方程为y=3x.c.应用导数的几何意义求参数3.(2019·全国Ⅲ,6,5分)已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1 B.a=e,b=1C.a=e-1,b=1 D.a=e-1,b=-1答案:D解析:y′=a e x+ln x+1,k=y′|x=1=a e+1,∴切线方程为y-a e=(a e+1)(x-1),即y=(a e+1)x-1.又∵切线方程为y=2x+b,∴⎩⎪⎨⎪⎧ a e +1=2,b =-1,即⎩⎪⎨⎪⎧a =e -1,b =-1.故选D . 小提示:1.第1题中的f ′(1)理解为常数,求导后构造方程.2.第3题中应用点(1,a e)既在直线上,也在曲线上,可列方程组⎩⎪⎨⎪⎧f ′(1)=2,f (1)=2+b求值. [对点提升]1.(2019·广东深圳二模)已知函数f (x )=ax 2+(1-a )x +2x 是奇函数,则曲线y =f (x )在x =1处的切线的倾斜角为( )A .π4B .3π4 C.π3D .2π3答案:B 解析:由函数f (x )=ax 2+(1-a )x +2x 是奇函数,得f (-x )=-f (x ),可得a =0,则f (x )=x +2x ,f ′(x )=1-2x 2,故曲线y =f (x )在x =1处的切线斜率k =1-2=-1,可得所求切线的倾斜角为3π4,故选B .2.(2019·山东名校调研)已知曲线y =e x +a 与y =x 2恰好存在两条公切线,则实数a 的取值范围是( )A .[2ln 2-2,+∞)B .(2ln 2,+∞)C .(-∞,2ln 2-2]D .(-∞,2ln 2-2)答案:D 解析:由题意可设直线y =kx +b (k >0)为它们的公切线,联立⎩⎪⎨⎪⎧y =kx +b ,y =x2可得x 2-kx -b =0,由Δ=0,得k 2+4b =0.①由y =e x +a 求导可得y ′=e x +a ,令e x +a =k ,可得x =ln k -a ,∴切点坐标为(ln k -a ,k ln k -ak +b ),代入y =e x +a 可得k =k ln k -ak +b .②联立①②可得k 2+4k +4ak -4k ln k =0.化简得4+4a=4ln k-k.令g(k)=4ln k-k,则g′(k)=4k-1,令g′(k)=0,得k=4,令g′(k)>0,得0<k<4,令g′(k)<0,得k>4.∴g(k)在(0,4)上单调递增,在(4,+∞)上单调递减,∴g(k)max=g(4)=4ln 4-4,且当k→0时,g(k)→-∞,当k→+∞时,g(k)→-∞.∵有两条公切线,∴方程4+4a=4ln k-k有两解,∴4+4a<4ln 4-4,∴a<2ln 2-2.故选D.调研2利用导数研究函数的单调性a.含参函数单调性的讨论1.(2017·全国Ⅰ,21,12分)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)f(x)的定义域为(-∞,+∞),f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1).(ⅰ)若a≤0,则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减.(ⅱ)若a>0,则由f′(x)=0,得x=-ln a.当x∈(-∞,-ln a)时,f′(x)<0;当x∈(-ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.(2)(ⅰ)若a≤0,由(1)知,f(x)至多有一个零点.(ⅱ)若a>0,由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-lna)=1-1a+ln a.①当a=1时,由于f(-ln a)=0,故f(x)只有一个零点;②当a∈(1,+∞)时,由于1-1a+ln a>0,即f(-ln a)>0,故f(x)没有零点;③当a∈(0,1)时,1-1a+ln a<0,即f(-ln a)<0.又f(-2)=a e-4+(a-2)e-2+2>-2e-2+2>0,故f(x)在(-∞,-ln a)上有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0 (a e n 0+a -2)-n 0>e n 0-n 0>2 n 0-n 0>0. 由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)上有一个零点. 综上,a 的取值范围为(0,1). 小提示:单调区间的讨论,常伴随着求导后的因式分解,讨论含参因子的符号变化,也常有对极值点和定义域的讨论.第(2)问中函数有两零点,不但要求极小值f (-ln a )<0,而且需要寻找极值点两侧存在两个自变量x 1,x 2满足其值为正值,此两点的判断是难点.b .利用单调性解决零点个数2.(2019·全国Ⅰ,20,12分)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点;(2)f (x )有且仅有2个零点. 证明:(1)设g (x )=f ′(x ), 则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2. 当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α. 则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0.所以g (x )在(-1,α)上单调递增,在⎝ ⎛⎭⎪⎫α,π2上单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点.(2)f (x )的定义域为(-1,+∞).①当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)上单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)上单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.②当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)上单调递增,在⎝ ⎛⎭⎪⎫α,π2上单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)上单调递增,在⎝ ⎛⎭⎪⎫β,π2上单调递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点.③当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点.④当x ∈(π,+∞)时,ln(x +1)>1.所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点. 小提示:此问题中两零点的证明与上一题处理方式不同.利用零点存在性定理,结合函数单调性.[对点提升]1.(2019·河南安阳模拟)已知函数f (x )与其导函数f ′(x )的图象如图,则函数g (x )=f (x )e x 的单调减区间为( )A .(0,4)B .⎝ ⎛⎭⎪⎫0,43C .(0,1),(4,+∞)D .(-∞,1),⎝ ⎛⎭⎪⎫43,+∞答案:C 解析:由题意可知导函数是二次函数,原函数是三次函数,由g (x )=f (x )e x ,得g ′(x )=e xf ′(x )-e xf (x )e 2x =f ′(x )-f (x )e x ,由题图可知,当x ∈(-∞,0)时,f ′(x )-f (x )>0,g ′(x )>0,当x ∈(0,1)时,f ′(x )-f (x )<0,g ′(x )<0,当x∈(1,4)时,f ′(x )-f (x )>0,g ′(x )>0,当x ∈(4,+∞)时,f ′(x )-f (x )<0,g ′(x )<0.∴函数g (x )=f (x )e x 的单调减区间为(0,1),(4,+∞).故选C.2.(2019·湖南娄底二模)已知函数f (x )=ln x -ax +a 在x ∈[1,e]上有两个零点,则a 的取值范围是( )A .⎣⎢⎡⎭⎪⎫e 1-e ,-1B .⎣⎢⎡⎭⎪⎫e 1-e ,1C.⎣⎢⎡⎦⎥⎤e 1-e ,-1 D .[-1,e)答案:A 解析:f ′(x )=1x +a x 2=x +ax 2,当a ≥-1时,f ′(x )>0,f (x )在[1,e]上单调递增,不合题意.当a ≤-e 时,f ′(x )<0,f (x )在[1,e]上单调递减,也不合题意.当-e<a <-1时,当x ∈(1,-a )时,f ′(x )<0,f (x )在[1,-a )上单调递减;x ∈(-a ,e)时,f ′(x )>0,f (x )在(-a ,e]上单调递增.又f (1)=0,所以f (x )在[1,e]上有两个零点,只需f (e)=1-a e +a ≥0即可,所以e1-e ≤a <-1.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫e 1-e ,-1,故选A . 调研3 利用导数研究函数的极值、最值问题 a .利用导数求解最值1.(2019·全国Ⅲ,20,12分)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性.(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.(1)解:f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,a 3上单调递减.若a =0,则f (x )在(-∞,+∞)上单调递增. 若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a 3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫a 3,0上单调递减.(2)解:满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.小提示:(1)求出f ′(x )=0的两根,比较根的大小并分类讨论.(2)利用(1)中的单调区间讨论f (x )在[0,1]上的最值,最终确定参数a ,b 的值. 第(2)问中分类讨论的标准是单调区间的端点与0,1的大小关系,从而确定函数在[0,1]上的最值.b .由极值求参数2.(2018·全国Ⅲ,21,12分)已知函数f (x )=(2+x +ax 2)ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)若x =0是f (x )的极大值点,求a .(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x 1+x. 设函数g (x )=f ′(x )=ln(1+x )-x 1+x, 则g ′(x )=x(1+x )2. 当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,故当x >-1时,g (x )≥g (0)=0,当且仅当x =0时,g (x )=0,从而f ′(x )≥0,当且仅当x =0时,f ′(x )=0.所以f (x )在(-1,+∞)上单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)解:(ⅰ)若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. (ⅱ)若a <0, 设函数h (x )=f (x )2+x +ax 2=ln(1+x )-2x2+x +ax 2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同.又h (0)=f (0)=0,故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点. h ′(x )=11+x -2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.若6a +1>0,则当0<x <-6a +14a ,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0,故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0, 故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3(x -24)(x +1)(x 2-6x -12)2,则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点.综上,a =-16. 小提示: 1.解题指导:(1)当a =0时,写出f (x )的解析式,对f (x )求导,易得f (0)=0,结合单调性可将问题解决.(2)对a 进行分类讨论,分析各类情况下的极大值点,进而求得参数a 的值. 2.易错警示: 容易忽略函数定义域.函数解析式中含有对数型的式子,则其真数部分应大于零. [对点提升](2018·北京,18,13分)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得,f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.提醒 完成专题训练(七)第4讲 导数的综合应用(不等式、零点问题)[记牢方能用活]一、利用导数证明不等式问题1.解决含参不等式恒成立(或有解)问题的方法(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.(2)先分离参变量,再构造函数,进而把问题转化为函数的最值问题. 2.解决有关不等式的证明问题的方法 (1)直接构造函数,转化为函数的最值问题. (2)证明f (x )≥g (x )时可转化为证明f (x )min ≥g (x )max . 3.常用的函数不等式第一组:与对数函数有关的不等式ln x ≤x -1(x >0),ln x<x (x >0),ln x ≤xe (x >0), ln x ≤x 2-x (x >0),ln x ≥1-1x (x >0), ln(1+x )≤x (x >-1), ln x<12⎝ ⎛⎭⎪⎫x -1x (x >1),ln x>12⎝ ⎛⎭⎪⎫x -1x (0<x <1),ln x<x -1x (x >1),ln x>x -1x(0<x <1), ln x>2(x -1)x +1(x >1),ln x<2(x -1)x +1(0<x <1),ln(x +1)≥x1+x(x >-1). 第二组:与指数函数有关的不等式 e x ≥x +1,e x >x ,e x ≥e x ,e x ≤11-x(x <1), e x <-1x (x <0),e x >x 2(x >0), e x≥1+x +12x 2(x >0).4.不等式与函数最值关系。
高考数学二轮复习主攻40个必考点函数与导数(三十五)课件理
则当 x∈(-1,α)时,g′(x)>0;当 x∈α,π2时,g′(x)<0. 所以 g(x)在(-1,α)单调递增,在α,π2单调递减, 故 g(x)在-1,π2存在唯一极大值点,即 f′(x)在-1,π2 存在唯一极大值点.
12/11/2021
函数零点个数的判断 [典例 1] (2020 届高三·武汉调研)已知函数 f(x)=ex-ax- 1(a∈R )(e=2.718 28…是自然对数的底数). (1)求 f(x)的单调区间; (2)讨论 g(x)=f(x)x-12在区间[0,1]上零点的个数.
12/11/2021
[解] (1)∵f′(x)=ex-a, 当 a≤0 时,f′(x)>0 恒成立, ∴f(x)的单调递增区间为(-∞,+∞),无单调递减区间. 当 a>0 时,令 f′(x)<0,得 x<ln a, 令 f′(x)>0,得 x>ln a, ∴f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).
12/11/2021
②当 x∈0,π2时,由(1)知,f′(x)在(0,α)单调递增,在 α,π2单调递减,而 f′(0)=0,f′π2<0,所以存在 β∈α,π2, 使得 f′(β)=0,且当 x∈(0,β)时,f′(x)>0;当 x∈β,π2时, f′(x)<0.故 f(x)在(0,β)单调递增,在β,π2单调递减.又 f(0) =0,fπ2=1-ln1+π2>0,所以当 x∈0,π2时,f(x)>0.从而, f(x)在0,π2没有零点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)法一:直接法 易知当 x>0 时,函数 f(x)=-4-x+5 是单调递增函数,且
f(x)>4;当 x≤0 时,f(x)=4.由 f(x2-6)>f(x),得xx>2-0,6>x 或
x≤0, x2-6>0,
解得 x>3 或 x<-
6,所以 x 的取值范围是(-∞,
- 6)∪(3,+∞).故选 D.
2.(2019·全国卷Ⅲ)设 f(x)是定义域为 R 的偶函数,且在(0,
+∞)单调递减,则( ) A.flog314>f2-32>f2-23 B.flog314>f2-23>f2-32 C.f2-32>f2-23>flog314 D.f2-23>f2-32>flog314
[一题多解] (在发散思维中整合知识) 法一:定义法 因为 f(x)为奇函数, 所以 f(-x)=-f(x), 因为 f(x)的图象关于点(1,0)对称, 所以 f(2+x)+f(-x)=0, 从而有 f(2+x)=f(x),所以 2 为 f(x)的周期, 所以 f(1)=f(3)=2.
法二:特值法 因为 f(x)的图象关于点(1,0)对称, 所以 f(3)+f(-1)=0, 所以 f(-1)=-f(3)=-2. 因为 f(x)为奇函数, 所以 f(-1)=-f(1),所以 f(1)=2. [答案] 2
主攻 40 个必考点(三十) 函数的性质
1.(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=
ex-1,则当 x<0 时,f(x)=( )
A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
解析:选 D 当 x<0 时,-x>0, ∵当 x≥0 时,f(x)=ex-1, ∴f(-x)=e-x-1. 又∵f(x)为奇函数, ∴当 x<0 时,f(x)=-f(-x)=-e-x+1.
(2)一般地,定义在 R 上的函数如果满足 f(2a-x)+f(x)=0,
f(2b-x)+f(x)=0(a≠b),那么 f(x)的一个周期为 T=2|a-b|; 若函数 f(x)的图象同时关于点 A(a,c)和点 B(b,c)成中心对称 (a≠b),则 f(x)的一个周期为 T=2|a-b|;若函数 f(x)的图象既 关于点 A(a,c)成中心对称又关于直线 x=b 成轴对称(a≠b), 则 f(x)的一个周期为 4|a-b|.
又 f(1)=2,∴f(-1)=-2, ∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0- 2+0=0, ∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50) =0×12+f(49)+f(50) =f(1)+f(2)=2+0=2.
法二:由题意可设 f(x)=2sinπ2x,作出 f(x) 的部分图象如图所示.由图可知,f(x)的一个周 期为 4,所以 f(1)+f(2)+f(3)+…+f(50)=12[f(1) +f(2)+f(3)+f(4)]+f(49)+f(50)=12×0+f(1) +f(2)=2.
C.(-∞,- 6)∪( 6,+∞)
D.(-∞,- 6)∪(3,+∞)
[解析](1)令 t=x2-ax+3a,则 y=log12t, 易知 t=x2-ax+3a 在-∞,a2上单调递减,在a2,+∞上 单调递增. ∵y=log12(x2-ax+3a)在区间(2,+∞)上是减函数, ∴t=x2-ax+3a 在(2,+∞)上是增函数,且在(2,+∞) 上 t>0, ∴2≥a2,且 4-2a+3a≥0, ∴a∈[-4,4].故选 D.
法二:验证排除法 取 x=2,则 f(22-6)=f(-2)=4,而 f(2)=-4-2+5>4,所 以 x=2 不满足题意,排除 A;取 x=3,则 f(32-6)=f(3),所 以 x=3 不满足题意,排除 B、C,故选 D.
[答案] (1)D (2)A (3)D
增分方略 应用函数单调性解题的常见题型及解题策略
[提醒] (1)若函数在区间[a,b]上是单调的,则该函数在此 区间的任意子集上也是单调的;
(2)对于分段函数的单调性,除注意各段的单调性外,还要 注意衔接点的取值.
函数的奇偶性、周期性与对称性
[典例 2] (2019·唐山高三摸底考试)设函数 f(x)=x(ex+e- x),则 f(x)( )
解析:选 C 因为 f(x)是定义域为 R 的偶函数,
所以 flog314=f(-log34)=f(log34). 又因为 log34>1>2-23>2-32>0 且函数 f(x)在(0,+∞)单调 递减, 所以 f(2-32)>f(2-23)>flog314.故选 C.
3.(2018·全国卷Ⅱ)已知 f(x)是定义域为(-∞,+∞)的奇
答案:-3
[把脉考情] 1.函数的单调性及应用
考什么 2.函数的奇偶性、周期性及应用 3.函数性质的综合应用 在选择题、填空题中进行考查,难度中低档,有时会
考多深 在 12 题或 16 题的位置考查,难度较大,分值 5 分
主要考查已知函数的单调性或奇偶性求参数的取值范 围以及利用单调性比较大小,利用函数周期性求值, 而函数的性质与导数相交汇问题,会在小题的压轴题 考多宽 中呈现,难度较大,考查逻辑推理、数学抽象、数学 运算的核心素养.注意数形结合,分类讨论思想的应 用
增分方略 1.已知函数奇偶性求参数的 2 种方法 (1)利用 f(-x)=-f(x)(奇函数)或 f(-x)=f(x)(偶函数)在定 义域内恒成立求解; (2)利用特殊值求解,奇函数一般利用 f(0)=0 求解,偶函 数一般利用 f(-1)=f(1)求解.用特殊值法求得参数后,一定要 注意验证.
2.记住常用结论 (1)f(x)的图象关于点(a,b)对称⇔f(2a+x)+f(-x)=2b;函 数 f(x)的图象关于直线 x=a 对称⇔f(x)=f(2a-x).
(2) 因 为 函 数 f(x) 为 偶 函 数 , 所 以 a = f(log30.2) = f( - log30.2),c=f(-31.1)=f(31.1).
因为 log319<log30.2<log313,所以-2<log30.2<-1,所以 1< -log30.2<2,
所以 31.1>3>-log30.2>1>3-0.2. 因为 y= x在(0,+∞)上为增函数,y=-4-x 在(0,+∞) 上为增函数, 所以 f(x)在(0,+∞)上为增函数, 所以 f(31.1)>f(-log30.2)>f(3-0.2), 所以 c>a>b.
函数性质的综合应用
[典例 5] (1)(2019·广东七校联考)设定义在 R 上的函数
f(x),对任意的 x∈R ,都有 f(1+x)=-f(1-x),且 f(2)=0,当 x>1 时,f′(x)+f(x)>0,则不等式 f(x)·ln|x-1|<0 的解集为( )
a=f(log30.2),b=f(3-0.2),c=f(-31.1),则( )
A.c>a>b
B.a>b>c
C.c>b>a
D.b>a>c
(3)设函数 f(x)=4-,4x-≤x+05,,x>0, 则满足不等式 f(x2-
6)>f(x)的 x 的取值范围是( )
A.(-2,3)
B.(-∞,-2)∪( 6,+∞)
4.(2017·全国卷Ⅰ)函数 f(x)在(-∞,+∞)单调递减,且
为奇函数.若 f(1)=-1,则满足-1≤f(x-2)≤1 的 x 的取值范
围是( )
A.[-2,2]
B.[-1,1]
C.[0,4]
D.[1,3]
解析:选 D ∵f(x)为奇函数,∴f(-x)=-f(x).
∵f(1)=-1,∴f(-1)=-f(1)=1.
A.是奇函数,且在(0,+∞)上是增函数 B.是偶函数,且在(0,+∞)上是增函数 C.是奇函数,且在(0,+∞)上是减函数 D.是偶函数,且在(0,+∞)上是减函数
[解析] 法一:定义法 由条件可知,f (-x )=(-x )(e-x +ex )=-x (ex+e-x)=-f (x ), 故 f(x)为奇函数.f′(x)=ex+e-x+x(ex-e-x),当 x>0 时,ex>e -x,所以 x(ex-e-x)>0,又 ex+e-x>0,所以 f′(x)>0,所以 f(x) 在(0,+∞)上是增函数. 法二:特值法 根据选项由 f(-1)=-f(1),可知函数 f(x)为奇函数.又 f(1)<f(2),所以 f(x)在(0,+∞)上是增函数,故选 A.
故由-1≤f(x-2)≤1,得 f(1)≤f(x-2)≤f(-1).
又 f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,
∴1≤x≤3.
5.(2015·全国卷Ⅰ)若函数 f(x)=xln(x+ a+x2)为偶函数, 则 a=________.
解析:∵f(x)为偶函数,∴f(-x)-f(x)=0 恒成立, ∴-xln(-x+ a+x2)-xln(x+ a+x2)=0 恒成立,∴xln a=0 恒成立,∴ln a=0,即 a=1.
函数,满足 f(1-x)=f(1+x).若 f(1)=2,则 f(1)+f(2)+f(3)+…
+f(50)=( )
A.-50
B.0
C.2
D.50
解析:选 C 法一:∵f(x)是奇函数,∴f(-x)=-f(x), ∴f(1-x)=-f(x-1). 由 f(1-x)=f(1+x),得-f(x-1)=f(x+1), ∴f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x), ∴函数 f(x)是周期为 4 的周期函数. 由 f(x)为奇函数得 f(0)=0. 又∵f(1-x)=f(1+x), ∴f(x)的图象关于直线 x=1 对称, ∴f(2)=f(0)=0,∴f(-2)=0.