高中数学圆锥曲线之椭圆的常见题型

合集下载

椭圆题型二--定点

椭圆题型二--定点

圆锥曲线定点、定直线、定值专题1.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;,不是左右顶点),且以AB为直径的圆过椭(Ⅱ)若直线l:y kx m=+与椭圆C相交于A,B两点(A B圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.解:(1)由题意设椭圆的标准方程为由已知得a+c=3,a-c=1,∴a=2,c=1,∴b2=a2—c2=3∴椭圆的标准方程为。

(2)设A(x1,y1),B(x2,y2),联立得又因为以AB为直径的圆过椭圆的右顶点D(2,0)∴∴∴解得m1=—2k,且均满足3+4k 2-m 2〉0当m 1=-2k 时,l 的方程为y=k(x —2),直线过定点(2,0),与已知矛盾;当时,l 的方程为直线过定点所以,直线l 过定点,定点坐标为。

2.已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为21-,离心率为2e 2=﹒(Ⅰ)求椭圆E 的方程; (Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒解:(1), ∴所求椭圆E 的方程为:。

(2)当直线l 不与x 轴重合时,可设直线l 的方程为:x=ky+1,,把(2)代入(1)整理得:,(3)∴,假设存在定点M(m ,0),使得为定值,=,当且仅当5—4m=0,即时,(为定值).这时.再验证当直线l 的倾斜角α=0时的情形,此时取,, ,∴存在定点使得对于经过(1,0)点的任意一条直线l 均有(恒为定值).3。

已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率25e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点。

(I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由。

高中圆锥曲线题型及解题方法

高中圆锥曲线题型及解题方法

高中圆锥曲线题型及解题方法
高中数学中的圆锥曲线是指椭圆、双曲线和抛物线这三种曲线。

下面是一些常见的高中圆锥曲线题型及其解题方法:
1.椭圆题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。

o确定关键参数:通过比较方程的系数,确定椭圆的中心、长轴和短轴的长度。

o图形性质:通过关键参数判断椭圆的形状,并确定焦点和直径等性质。

2.双曲线题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。

o确定关键参数:通过比较方程的系数,确定双曲线的中心、焦距和各轴的长度。

o图形性质:通过关键参数判断双曲线的形状,确定焦点、渐近线和渐近角等性质。

3.抛物线题型:
o方程转化:将标准方程转化为顶点形式或焦点式。

o确定关键参数:通过比较方程的系数,确定抛物线的顶点、焦距和开口方向。

o图形性质:通过关键参数判断抛物线的形状,确定
对称轴、焦点和准线等性质。

解题方法的关键在于确定关键参数,然后利用这些参数来判断曲线的形状和性质。

同时,要熟练掌握方程转化的方法,以便在解题过程中将方程转化为更容易分析的形式。

除了掌握相应的公式和技巧,还需要多做练习,加深对圆锥曲线图形和性质的理解。

同时,理论和实践相结合,通过画图、观察和推理的方式加深对圆锥曲线的认识。

最重要的是理解概念和思想,而不只是死记硬背。

只有真正理解了圆锥曲线的几何性质,才能更好地应用于解题,并在应用过程中灵活运用。

【高中数学】圆锥曲线解答题椭圆C类题

【高中数学】圆锥曲线解答题椭圆C类题

C1. 线段AB 的两个端点A ,B 分别在x 轴上,y 轴上滑动,|AB|=5点M 是AB 上一点,且|AM|=2,点M 随线段AB 的运动而变化,求点M 的轨迹方程.14922=+y x 2. 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ② 则-①②2得αcos 12221+=⋅b PF PF .故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.3. 已知椭圆1222=+y x ,椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y y x . ⑤由①+②得()2222212221=+++y y x x , ○6 将③④平方并整理得212222124x x x x x -=+, ○7 212222124y y y y y -=+, ○8 将⑧⑨代入⑦得()224424212212=-+-y y y x x x , ⑨ 再将212121x x y y -=代入⑩式得 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .4. 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.解:椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .5. 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k , ∴设直线AB 的方程为n x y +-=41. 由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①∴13821nx x =+. 于是1342210n x x x =+=,13124100nn x y =+-=, 即点M 的坐标为)1312,134(n n . ∵点M 在直线m x y +=4上,∴m nn +⨯=1344. 解得m n 413-=. ②将式②代入式①得048169261322=-++m mx x ③∵A ,B 是椭圆上的两点,∴0)48169(134)26(22>-⨯-=∆m m .解得1313213132<<-m . (法2)同解法1得出m n 413-=,∴m m x -=-=)413(1340, m m m m x y 3413)(414134100-=--⨯-=--=,即M 点坐标为)3,(m m --.∵A ,B 为椭圆上的两点,∴M 点在椭圆的内部,∴13)3(4)(22<-+-m m . 解得1313213132<<-m . (法3)设),(11y x A ,),(22y x B 是椭圆上关于l 对称的两点,直线AB 与l 的交点M 的坐标为),(00y x .∵A ,B 在椭圆上,∴1342121=+y x ,1342222=+yx .两式相减得0))((4))((321212121=-++-+y y y y x x x x , 即0)(24)(23210210=-⋅+-⋅y y y x x x . ∴)(4321002121x x y x x x y y ≠-=--.又∵直线l AB ⊥,∴1-=⋅l AB k k ,∴14430-=⋅-y x , 即003x y = ①又M 点在直线l 上,∴m x y +=004 ② 由①,②得M 点的坐标为)3,(m m --. 以下同解法2.6. 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ,∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,134********b a ba 得⎪⎩⎪⎨⎧==.3,41522b a∴所求椭圆方程为1315422=+y x .7. 设椭圆的中心是坐标原点,长轴在x 轴上,离心率e=23,已知点P (0,23)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.[解析]:(1)由题设e=23可得a 2=4b 2, 于是,设椭圆方程为222222244,14y b x by b x -==+即又设M (x ,y )是椭圆上任意一点,且b y b ≤≤-,所以49344)23(222222+-+-=-+=y y y b y x PM34)21(322+++-=b y因为b y b ≤≤-,所以①若b<21,当y=-b 时,2PM 有最大值为4932++b b =2)7( 解得21237>-=b 与b<21相矛盾(即不合题意).②若b 21≥,当y=-21时,2PM 有最大值为342+b =2)7(解得 b=1,a=2.故所求椭圆方程为1422=+y x .(2) 把y=-21代入1422=+y x 中,解得3±=x ,因此椭圆上的点(3,21-),(3-,21-)到点P 的距离都是78. 设椭圆方程为18422=+y x ,过原点且倾斜角为)20(πθθπθ<<-和的两条直线分别交椭圆于A 、C 和B 、D 两点.(1)用θ表示四边形ABCD 的面积S ;(2)当)4,0(πθ∈时,求S 的最大值.[解析]:(1)设经过原点且倾斜角为θ的直线方程为y= x tan θ,代入18422=+y x ,求得θθθ22222tan 48tan 32,tan 4832+=+=y x .由对称性可知四边ABCD 为矩形,又由于)20(πθ<<,所以四边形ABCD 的面积S=4| x y|θθ2tan 2tan 32+=. (2)当40πθ≤<时, 1tan 0≤<θ,设t=tan θ,则S 2232t t +=t t+=232,)10(≤<t设t t t f +=2)(,因为)(t f 在(0,1]上是减函数,所以3112)1()(min =+==f t f .所以,当θ=4π时,332max =S .9. 已知点A 在圆C :31)2(22=-+y x 上运动,点B 在以)0,3(F 为右焦点的椭圆k ky x =+22上运动,求|AB|的最大值。

高中数学椭圆知识题型总结,高二升高三的你们复习必备

高中数学椭圆知识题型总结,高二升高三的你们复习必备

高中数学椭圆知识题型总结,高二升高三的你们复习必备
高中数学:椭圆知识题型总结,高二升高三的你们复习必备!-
或许,这就是数学的魅力吧,只需一二定理,三四公式,就可以制出成百上千道不同的题目。

今天来说说高中数学重要章节——圆锥曲线椭圆相关知识点。

椭圆题在高中数学中占据比较重要的位置,占的分数也比较多。

分析历年高考题可知,选择题、填空题、大题中都有椭圆相关的题型。

所以一定要系统的掌握知识,对各类题型和基本解题方法有一定的了解。

关于椭圆的复习指导:
1、熟悉椭圆的定义及其几何性质,能求出椭圆的标准方程。

2、掌握常见的几种数学思想方法—函数与方程、数形结合、转化与回归等。

体会解析几何的本质问题(用代数的方法解决几何问题)
为了帮助同学们更好地复习,边肖为大家整理了高中数学椭圆中的几种题型汇总。

高二高三的孩子就趁这个假期好好复习。

相信对你的数学会有帮助。

想要完整版打印出来学习的同学可以点击头像后私信学姐【数学椭圆题型】,即可免费领取!还有免费提分的试听课程等着你~。

圆锥曲线--椭圆_双曲线、抛物线的经典题型和相关练习

圆锥曲线--椭圆_双曲线、抛物线的经典题型和相关练习

FA P HBQ专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

椭圆的五种基本题型

椭圆的五种基本题型

椭圆专题训练(一)题型1、给出曲线方程,求相应量的值1、求椭圆400251622=+y x 的长轴长为 、短半轴长为 、离心率为 、焦点坐标为 、顶点坐标为 。

2、(练习)求下列各椭圆的长轴和短轴的长,离心率、焦点坐标、顶点坐标、准线方程: ①=+3610022y x 1 ②8222=+y x方法提练:①转化为相应的标准方程;②直接求出a 、b 、c 。

③判断焦点在哪一坐标轴上④将a 、b 、c 的值代入相应量公式(接第2题)③16422=+y x ④81922=+y x3、椭圆)0(022<<=++n m mn ny mx 的焦点为 。

4、曲线=+92522y x 1与=+--ky kx 925221(k<0)有相同的( )A 、长轴长;B 、离心率;C 、准线;D 、焦点题型2、给出相应量的值,求曲线方程1、焦点在x 轴上,焦距等于4,并且经过点P (3,-62)的椭圆方程为: 。

解:依题设椭圆的方程为)0(12222>>=+b a b y a x2、准线方程为x=±4,离心率为1/2的椭圆方程为: 3、两焦点为(±3,0),椭圆上一点P 到两焦点距离的和为10,椭圆方程为:3、两焦点为(±2,0)且过点(2325,-)的椭圆方程为: 方法提练:①判断焦点在哪一坐标轴上;②设出相应的椭圆方程③联立方程组求出a 、b 、c 。

(注意别忘记隐藏的公式)④将a 、b 、c 的值代入相应量公式4、写出适合下列条件的椭圆的标准方程: ①a=4,b=1,焦点在x 轴上。

②a=4,c=15,焦点在y 轴上③a+b=10 c=25.④a=6,c=1/3, 焦点在x 轴上。

⑤过点(-22,0)(0,5)⑥长轴是短轴的3倍,且过点(3,0)⑦离心率e=0.8,焦距为8的椭圆⑧若椭圆的焦点在x 轴上,焦点到短轴顶点的距离为2,到相应准线的距离为3,则椭圆的方程为:椭圆专题训练(二)题型3、给出某曲线方程,表达的是椭圆求所给方程中含的字母的范围。

圆锥曲线-椭圆

圆锥曲线-椭圆

圆锥曲线-椭圆一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.26.已知椭圆(a>b>0)的离心率为,且过点A(0,1).(1)求椭圆的标准方程;(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点.求证:直线MN 恒过定点.27.已知椭圆C的中心在坐标原点,左焦点为F1(﹣,0),点M(,)在椭圆上.(1)求椭圆C的标准方程;(2)过点P(1,0)的直线l交椭圆C于两个不同的点A、B,若△AOB(O是坐标原点)的面积S=,求直线AB的方程.28.已知椭圆的长轴为,离心率为.(1)求C的方程;(2)若直线l与曲线C交于A,B两点,且,求证:直线l与圆E:x2+y2=2相切.圆锥曲线-椭圆参考答案与试题解析一.解答题(共28小题)1.求椭圆16x2+25y2=400的长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【分析】把椭圆方程化为标准方程,然后求解长轴长、短轴的长、焦点坐标、离心率、顶点坐标.【解答】(本小题12分)解:把已知方程椭圆16x2+25y2=400化为标准方程:,这里a=5,b=4,所以c==3因此,椭圆的长轴和短轴长分别是2a=10,2b=8离心率e==.两个焦点分别是F1(﹣3,0),F2(3,0),四个顶点分别是A1(﹣5,0),A1(5,0),B1(0,﹣4),B1(0,4).【点评】本题考查椭圆标准方程以及椭圆的简单性质的应用,考查计算能力.2.已知曲线9x2+y2=81(1)求其长轴长,焦点坐标,离心率(2)求与已知曲线共焦点且离心率为的双曲线方程.【分析】(1)化椭圆方程为标准方程,然后求解其长轴长,焦点坐标,离心率.(2)利用焦点坐标,结合离心率求解双曲线方程即可.【解答】(10分)解:(1)曲线9x2+y2=81,的标准方程为:,可得a=9,b=3,c==6,所以长轴长为:18,焦点坐标(0,).(2)与已知曲线共焦点,可得c=6,离心率为,则a=6,则b==6.所求的双曲线方程为:y2﹣x2=36.(5分)【点评】本题考查双曲线方程的求法,椭圆的简单性质的应用,考查计算能力.3.若过椭圆+=1(a>b>0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.【分析】设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,则4a=16,运用离心率公式可得c=2,求得b,进而得到椭圆方程.【解答】解:设左、右焦点分别为F,F',两个交点为A,B,由椭圆的定义可得|AF|+|AF'|=|BF|+|BF'|=2a,即有三角形的周长为4a=16,解得a=4,由e==,解得c=2,b==2,则椭圆的方程为+=1.【点评】本题考查椭圆的方程的求法,注意运用椭圆的定义和基本量的关系,考查运算能力,属于基础题.4.求适合下列条件的椭圆的标准方程(1)焦点在x轴上,焦距为4,并且经过点P(3,)(2)焦距为8,离心率为0.8.【分析】(1)设出椭圆方程,利用已知条件化简求解即可.(2)利用椭圆的性质转化求解椭圆方程即可.【解答】解:(1)焦点在x轴上,设椭圆的标准方程,焦距为4,可得a2﹣b2=4,…①,椭圆经过点P(3,),可得:…②,解①②,可以得到b2=32解:①②可得:a2=36,b2=32,所求椭圆方程为:.(2)焦距为8,离心率为0.8.可得c=4,a=5,则b=3,椭圆的标准方程为:或.【点评】本题考查椭圆的简单性质椭圆方程的求法,考查计算能力.5.已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0,).(1)求椭圆C的标准方程;(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q 两点,求线段PQ的长(提示:|PQ|=|x1﹣x2|).【分析】(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系和弦长公式计算弦长.【解答】解:(1)由题意可知椭圆焦点在x轴上,设椭圆方程为(a >b>0),由题意可知,∴a=3,b=.∴椭圆的标准方程为=1.(2)直线l的方程为y=x+2,联立方程组,得14x2+36x﹣9=0,设P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1x2=﹣,∴|PQ|=|x1﹣x2|===.【点评】本题考查了椭圆的性质,弦长公式,属于基础题.6.在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.【分析】(1)由题意可得A,B,C的坐标,写出直线BF的方程,再由AC的中点在直线BF上求得a,由隐含条件求得b,则椭圆方程可求;(2)由直线BF的斜率可得b,求出a,得到椭圆方程,联立直线方程和椭圆方程求得D的坐标,则点D到椭圆E右准线的距离可求.【解答】解:(1)由题意,A(﹣a,0),B(0,b),C(0,﹣b),又F(﹣1,0),∴c=1,直线BF:y=bx+b.∵M为AC的中点,∴,代入直线BF:y=bx+b,得a=3,由a2=b2+c2=b2+1,得b2=8,∴椭圆E的标准方程是;(2)∵直线BF的斜率为1,则,∴椭圆,又直线BF:y=x+1,联立,解得x=0(舍),或,∵右准线的方程为x=2,∴点D到右准线的距离为.【点评】本题考查椭圆的简单性质,考查了椭圆标准方程的求法,是基础的计算题.7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,求椭圆C 的方程.【分析】画出图形,结合图形以及椭圆的定义与性质,求出a、b的值,即可写出椭圆的方程.【解答】解:如图所示,设椭圆的长轴是2a,短轴是2b,焦距是2c;则离心率e==,∴4a=|AF1|+|AF2|+|BF1|+|BF2|=16;∴a=4,∴c=×4=2,∴b2=a2﹣c2=42﹣=8;∴椭圆的方程是.【点评】本题考查了椭圆的定义与简单的几何性质的应用问题,解题时应结合图形进行解答问题,是基础题.8.已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.【分析】(1)由已知可得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)由题意定义结合已知求得PF2,再由椭圆的第二定义可得点P到右准线的距离.【解答】解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.【点评】本题考查椭圆的简单性质,考查了椭圆定义的应用,是基础题.9.已知椭圆C:+y2=1,F1,F2分别是椭圆C的左、右焦点.(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.【分析】(Ⅰ)由椭圆的方程及性质直接求解.(Ⅱ)由椭圆的定义知①,勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得|PF1|•|PF2|即可.【解答】解:(Ⅰ)由椭圆知a2=2,b2=1,则,故c=1﹣﹣﹣(2分)所以椭圆C的长轴,短轴2b=2,离心率,左焦点F1(﹣1,0).(6分)(Ⅱ)解:由(Ⅰ)可得,b=1,c=1.由椭圆的定义知①,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)在Rt△PF1F2中,由勾股定理,得|PF1|2+|PF2|2=|F1F2|2=4c2②,①2﹣②,得2|PF1|•|PF2|=8﹣4=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴|PF 1|•|PF2|=2,∴S=|PF1|•|PF2|=×2=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了椭圆的方程及焦点三角形的面积,属于基础题.10.已知椭圆的焦点在y轴上,长轴长为10,短轴长为8,F1、F2为椭圆的左、右焦点.(1)求椭圆的标准方程;(2)求椭圆的焦点坐标、离心率;(3)求以椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.【分析】(1)由题意求得椭圆的长半轴和短半轴长,再由椭圆的焦点在y轴上可得椭圆的标准方程;(2)由隐含条件求得c,则椭圆的焦点坐标、离心率可求;(3)由题意求出双曲线的顶点坐标和焦点为坐标,进而得到双曲线的实半轴长和虚半轴长,则双曲线的标准方程可求.【解答】解:(1)由已知2a=10,2b=8,解得a=5,b=4,∵椭圆的焦点在y轴上,∴所求椭圆的标准方程为;(2)由c2=a2﹣b2=9,得c=3.因此椭圆的焦点坐标为F1(0,﹣3),F2(0,3),离心率;(3)由已知,所求双曲线的顶点坐标为(0,﹣3),(0,3),焦点为坐标为(0,﹣5),(0,5),∴双曲线的实半轴长a=3,半焦距c=5,则虚半轴长为b=.又双曲线的焦点在y轴上,∴双曲线的标准方程为.【点评】本题考查椭圆及双曲线的简单性质,考查了椭圆及双曲线标准方程的求法,是基础题.11.已知定圆C1:(x+1)2+y2=36及定圆C2:(x﹣1)2+y2=4,动圆P与C1内切,与C2外切,求动圆圆心P的轨迹方程.【分析】由题意分别表示出|PF1|=6﹣r,|PF2|=2+r,|PF1|+|PF2|=8>2,可知P 的轨迹是以F1,F2为焦点,长轴长为8的椭圆,即可求得P的轨迹方程.【解答】解:设所求点P(x,y),F1(﹣1,0),F2(1,0),动圆半径为r,由题易得|PF1|=6﹣r,|PF2|=2+r,∴|PF1|+|PF2|=8>2,由点P到两定点F1,F2距离之和为定长8,且大于|F1F2|=2c=2,满足椭圆定义,∴轨迹方程:.动圆圆心P的轨迹方程.【点评】本题考查轨迹方程的求法,考查椭圆的定义,属于基础题.12.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点的距离为2,(1)求椭圆的方程;(2)斜率k≠0的直线l:y=kx﹣2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.【分析】(1)设出椭圆的标准方程,由题意得b=2,再由a、b、c之间的关系及|FB|=2,求出a2=12,从而得到椭圆的方程.(2)假设存在直线l,则点A在线段MN的垂直平分线上,把直线l的方程代入椭圆的方程,转化为关于x的一元二次方程,由题意知判别式大于0,设出M、N的坐标,利用一元二次方程根与系数的关系,用斜率表示MN的中点P的坐标,求出AP的斜率,由AP⊥MN,斜率之积等于﹣1,求出直线l的斜率【解答】解:(1)依题意,设椭圆方程=1 (a>b>0 ),则其右焦点坐标为F(c,0),c=,由|FB|=解得c=2,又∵b=2,∴a2=c2+b2=12,即椭圆方程为.(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,把y=kx﹣2代入椭圆方程.消去y得x2+3(kx﹣2)2=12,即(1+3k2)x2﹣12kx=0由k≠0,得方程的△=(﹣12k)2=144k2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x0=,∴y0=kx0﹣2=,即P(),∵k≠0,∴直线AP的斜率为k1=,由AP⊥MN,得.∴2+2+6k2=6,解得:k=.∴存在直线l满足题意,直线l的方程y=±x﹣2.【点评】本题考查用待定系数法求椭圆的标注方程,直线与圆锥曲线的位置关系,一元二次方程根与系数的关系,两直线垂直的性质,以及直线的倾斜角与斜率的关系,属于压轴题.13.已知椭圆的左、右焦点分别为F1,F2,圆C的方程为(x+k)2+(y﹣2)2=25(k∈R).(1)求椭圆G的焦点坐标与离心率;(2)求△CF1F2的面积.【分析】(1)由椭圆方程,求得a和b,则c2=a2﹣b2,求得c,求得焦点坐标,根据椭圆的离心率公式求得椭圆的离心率;(2)根据圆的方程,求得圆心,根据三角形的面积公式,即可求得△CF1F2的面积.【解答】解:(1)由题意可得:c2=a2﹣b2=16﹣4=12,c=2,…(2分)a=4,所以e==,…(4分)椭圆的焦点F1(﹣2,0),F2(2,0);…(6分)(2)由(1)知丨F1F2丨=4,…(7分)圆C:(x+k)2+(y﹣2)2=25(k∈R)的圆心为点C(﹣k,2),…(8分)∴△CF1F2的面积为×2×丨F1F2丨=4.△CF1F2的面积4.…(10分)【点评】本题考查椭圆的标准方程及简单性质,圆的标准方程,三角形的面积公式,考查计算能力,属于基础题.14.在平面直角坐标系xOy中,椭圆C的方程为+y2=1,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=4.(1)写出直线l的直角坐标方程和曲线C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|x﹣y﹣4|的最小值.【分析】(1)根据直线的参数方程,即可求得直线l的直角坐标公式,由椭圆C 的参数方程即可求得曲线C的参数方程;(2)由(1)可得丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,根据辅助角公式及正弦函数的性质,即可求得|x﹣y﹣4|的最小值.【解答】解:(1)由ρcos(θ+)=4,则ρcosθ﹣ρsinθ=4,将x=ρcosθ,y=ρsinθ代入,即直线l的直角坐标方程为x﹣y﹣4=0,由题意可得:椭圆的参数方程(φ为参数),(2)因为点M在椭圆上,则M(2cosφ,sinφ),则丨x﹣y﹣4丨=丨2cosφ﹣sinφ﹣4丨,=丨cos(φ+α)﹣4丨=4﹣cos(φ+α)(tanα=),当cos(φ+α)=1时,|x﹣y﹣4|取最小值,最小值为4﹣,∴|x﹣y﹣4|的最小值为4﹣.【点评】本题考查直线的极坐标方程,椭圆的参数方程,辅助角公式及余弦函数的最值,考查转化思想,属于中档题.15.求适合下列条件的圆锥曲线的标准方程.(1)准线方程为x=﹣1的抛物线;(2)离心率为,准线方程为y=±4的椭圆;(3)焦点在y轴上,一条渐近线方程为,实轴长为12.【分析】(1)利用抛物线的定义求解抛物线方程;(2)利用椭圆的性质列出方程求解a,b,然后得到椭圆方程.(3)利用双曲线的性质,求出双曲线的实半轴与虚半轴的长,得到双曲线方程.【解答】解:(1)准线方程为x=﹣1的抛物线;可得p=2,所求的抛物线方程为:y2=4x.(2)离心率为,准线方程为y=±4的椭圆;可得,解得a=2,c=1,则b=,所求椭圆方程为:.(3)焦点在y轴上,一条渐近线方程为,实轴长为12.可得a=6,,解得b=8,所求的双曲线方程为:.【点评】本题考查椭圆,双曲线,抛物线的简单性质,三种曲线方程的求法,考查计算能力.16.已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.【分析】(1)将点M分别直线方程及椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线m的方程,代入椭圆方程,利用韦达定理及直线的斜率公式求得k MA+k MB=0,即可求得△MEF为等腰三角形.【解答】解:(1)由直线l:bx﹣ay=0都经过点,则a=2b,将代入椭圆方程:,解得:b2=4,a2=16,∴椭圆C的方程为;(2)证明:设直线m为:,A(x1,y1),B(x2,y2)联立:,整理得x2+2bx+2b2﹣8=0,∴x1+x2=﹣2b,x1x2=2b2﹣8,设直线MA,MB的斜率为k MA,k MB,要证△MEF为等腰三角形,只需k MA+k MB=0,由,==0,所以△MEF为等腰三角形.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.17.已知椭圆的左右焦点分别为F1,F2,上顶点为M,若直线MF1的斜率为1,且与椭圆的另一个交点为N,△F2MN的周长为.(1)求椭圆的标准方程;(2)过点F1的直线l(直线l的斜率不为1)与椭圆交于P,Q两点,点P在点Q的上方,若,求直线l的斜率.【分析】(1)根据题意,由椭圆的定义分析可得4a=4,又由直线的斜率分析可得b、c的值,将a、b的值代入椭圆方程即可得答案;(2)根据题意,联立直线与椭圆的方程,解可得N的坐标,由分析可得|QF1|=2|PF1|,按直线的斜率存在与否分2种情况讨论,分析求出m的值,综合即可得答案.【解答】解:(1)根据题意,因为△F1MN的周长为,所以,即,由直线MF1的斜率1,得,因为a2=b2+c2,所以b=1,c=1,所以椭圆的标准方程为.(2)由题意可得直线MF1方程为y=x+1,联立得,解得,所以,因为,即,所以|QF1|=2|PF1|,当直线l的斜率为0时,不符合题意,故设直线l的方程为x=my﹣1,P(x1,y1),Q(x2,y2),由点P在点Q的上方,则y2=2y1,联立,所以(m2+2)y2﹣2my﹣1=0,所以,消去y2得,所以,得,又由画图可知不符合题意,所以,故直线l的斜率为.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是求出椭圆的标准方程.18.已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O 的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且•=.(1)求弦AB的长;(2)当直线l 的斜率k=,且直线l′∥l 时,l′交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x轴围成一个等腰三角形.【分析】(1)根据中点坐标公式及向量的坐标运算即可求得x02+y02=5,利用两点之间的距离公式即可求得丨AB丨的长.(2)根据题意求得直线AB的方程,根据x02+y02=5,即可求得A点坐标,代入即可求得a和b的值,求得椭圆的方程,要证直线MA,MB与x轴始终围成一个等腰三角形,只需证直线MA,MB的倾斜角互补即可,也即直线MA,MB的斜率互为相反数.可分别用A,B点坐标表示直线MA,MB的斜率,再计算k1+k2,消去参数,看结果是否为0.若是0,则问题得证.【解答】解:(1)由题意可知:2c=2,c=,设F(,0),A(x0,y0),B (﹣x0,﹣y0),则M(,),N(,﹣),由•==,则x02+y02=5,则丨AB丨=2=2,(2)由直线l的斜率k=时,且l′∥l,则l:y=x,设l′:y=x+m,y0=x0,由x02+y02=5,则A(2,1),由c=,代入椭圆方程解得:a=2,c=,∴椭圆的方程:,联立,整理得x2+2mx+2m2﹣4=0,设直线AP,AQ的斜率分别为k1,k2,设P(x1,y1),Q(x2,y2),则k1=,k2=.由x2+2mx+2m2﹣4=0,可得x1+x2=﹣2m,x1x2=2m2﹣4,k1+k2=•=====0.即k1+k2=0.直线AP,AQ与x轴围成一个等腰三角形.【点评】本题考查直线与椭圆的位置关系,考查中点坐标公式及向量的坐标运算,韦达定理及直线斜率公式的应用,考查计算能力,属于中档题.19.若A(x1,x2),B(y1,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.【分析】(1)设AB的中点为M,则M(1,),由,得=0,即可得k AB=﹣,线段AB的垂直平分线的斜率即可;(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①;由A(x1,y1),B(x2,y2)是椭圆E上位于x轴上方两点,∴k<0,m>0…②结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.【解答】解:(1)设AB的中点为M,则M(1,)由,得=0∴⇒即k AB=﹣,∴线段AB的垂直平分线的斜率为.∴线段AB的垂直平分线的方程为y﹣=,即9x﹣2y﹣8=0为所求.(2)设直线AB:y=kx+m.由得(1+9k2)x2+18kmx+9m2﹣9=0,x1+x2=﹣=2.⇒9k2+9km+1=0…①∵A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,∴k<0,m >0…②△=(18km)2﹣4(1+9k2)(9m2﹣9)>0⇒9k2﹣m2+1>0…③,结合①②得m=(﹣k)+,当且仅当k=﹣时,取等号.此时,k=﹣满足③.∴直线AB在y轴上截距的最小值为.【点评】本题考查了点差法,直线与椭圆的位置关系,考查了计算能力,属于中档题.20.已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.【分析】(1)由题意方程求出右焦点坐标,即抛物线焦点坐标,进一步可得抛物线方程;(2)设出直线方程,与抛物线方程联立,化为关于y的一元二次方程,利用根与系数的关系求得|y1﹣y2|,代入三角形面积公式,利用二次函数求最值;(3)分直线AB的斜率存在与不存在,证明有,可得CA⊥CB,又D为线段AB的中点,则|AB|=2|CD|.【解答】(1)解:由椭圆,得a2=10,b2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y2=2px的焦点为(1,0),则,p=2,∴Γ的方程为y2=4x;(2)解:设直线l:x=my+2,联立,得y2﹣4my﹣8=0.则y1+y2=4m,y1y2=﹣8.∴==,即△OAB的面积的最小值为;(3)证明:当AB所在直线斜率存在时,设直线方程为y+2=k(x﹣5),即y=kx ﹣5k﹣2.联立,可得ky2﹣4y﹣20k﹣8=0.,.=.===.∵C(1,2),∴,,则=(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1x2﹣(x1+x2)+1+y1y2﹣2(y1+y2)+4=,当AB所在直线斜率不存在时,直线方程为x=5,联立,可得A(5,﹣),B(5,2),,,有,∴CA⊥CB,又D为线段AB的中点,∴|AB|=2|CD|.【点评】本题考查椭圆与抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查向量垂直与数量积间的关系,是中档题.21.已知椭圆.(1)若椭圆C的一个焦点为(1,0),且点在C上,求椭圆C的标准方程;(2)已知椭圆C上有两个动点A(x1,y1),B(x2,y2),O为坐标原点,且OA ⊥OB,求线段|AB|的最小值(用a,b表示).【分析】(1)利用椭圆的定义,即可求得a的值,则b2=a2﹣c2=3,即可求得椭圆的方程;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,求出椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),运用三角函数的平方关系和诱导公式,以及基本不等式,即可得到.【解答】解:(1)由题意可知:椭圆的左焦点F1(﹣1,0),右焦点F2(1,0),则|PF1|+|PF2|=2a,则+=+=4=2a,则a=2,b2=a2﹣c2=3,∴椭圆C的标准方程为;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ2(b2cos2θ+a2sin2θ)=a2b2,设A(ρ1,θ),B(ρ2,θ+),则|AB|2=|OA|2+|OB|2=ρ12+ρ22=+=+,=[(b2cos2θ+a2sin2θ)+(b2sin2θ+a2cos2θ)](+)=(2++)≥,∴|AB|的最小值为.【点评】本题考查椭圆的方程的运用,考查椭圆的极坐标方程的应用,考查三角函数的化简及求值,考查基本不等式的运用,考查化简运算能力,属于中档题.22.已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m椭圆左焦点F1且斜率为1,交椭圆于A、B两点,求弦长|AB|.【分析】(1)根据抛物线y2=4x的焦点为F(1,0),求出c,再根据离心率求出a,再根据b2=a2﹣c2得:b2=4;问题得以解决,(2)求出直线方程,代入椭圆方程,根据韦达定理和弦长公式即可求出.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c∵抛物线y2=4x的焦点为F(1,0),∴c=1,又离心率,则:再由b2=a2﹣c2得:b2=4;所求椭圆标准方程为:,(2)由(1)知,左焦点为F1(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=【点评】本题考查了抛物线与椭圆的标准方程及其性质,弦长公式,直线的点斜式,考查了推理能力和计算能力,属于中档题.23.已知椭圆,四点中恰有三点在椭圆上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与P2B直线的斜率的和为﹣1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),与椭圆方程联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,得到P2,P3,P4三点在椭圆C上.把P2,P3代入椭圆C,得,得出a2=4,b2=1,由此椭圆C的方程为.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,=﹣1解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,…①∵直线P2A与P2B直线的斜率的和为﹣1,∴==…②①代入②得:又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.24.已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【分析】(1)由题意可知:b=4,根据椭圆离心率公式即可求得b的值,求得椭圆方程;(2)由点斜式方程求得直线AB方程,代入椭圆方程,求得A和B点坐标,利用中点坐标公式,即可求得AB的中点坐标.【解答】解:(1)由椭圆C:+=1(a>b>0)过点A(0,4),则b=4,椭圆离心率为e===,则a=5,∴C的方程为+=1;(2)过点(3,0)且斜率为的直线方程为y=(x﹣3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入C的方程,得x2﹣3x﹣8=0,解得:x1=,x2=,∴AB的中点M(x0,y0)坐标x0==,y0==(x1+x1﹣6)=﹣,即中点为(,﹣).【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,中点坐标公式,考查计算能力,属于中档题.25.已知椭圆C的中心在原点,焦点在x轴上,焦距为,离心率为(1)求椭圆C的方程;(2)设直线L经过点M(0,1),且与椭圆C交于A,B两点,若,求直线L的方程.【分析】(1)根据椭圆的焦距为2,离心率为,求出a,b,即可求椭圆C 的方程;(2)设直线l方程为y=kx+1,代入椭圆方程,由若可得x1=﹣2x2,利用韦达定理,化简可得,求出k,即可求直线l的方程.。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。

椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。

这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。

该性质主要用于求最值、轨迹检验等问题。

椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。

长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。

椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。

当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。

椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。

二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。

1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。

在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。

适用条件需要注意。

例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。

例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。

对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。

例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。

PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。

例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。

例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。

题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。

在解题时需要注重数形结合思想和不等式解法。

例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。

题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。

例1:求椭圆x^2/4+y^2/9=1的参数方程。

例2:求双曲线x^2/9-y^2/4=1的参数方程。

题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

高中数学圆锥曲线—椭圆经典题型

高中数学圆锥曲线—椭圆经典题型

高中数学圆锥曲线—椭圆经典题型M(2,1)是线段AB的中点,求直线AB的方程。

利用点差法,求出直线的斜率,即可求直线AB的方程.两式相减得:=2,【分析】利用消元法,转化为一元二次方程,利用韦达定理,表示出弦长,利用函数的性质,即可求弦长|AB|的取值范围.由$\left{ \begin{matrix} y = x + b \\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1 \.高中数学中,圆锥曲线一直是难点也是重点。

它不仅在高考中占据着重要的地位,同时也是数学思维和逻辑训练的重要载体。

本文旨在通过圆锥曲线篇的讲解,帮助同学们提升解决数学难题的能力,并培养对数学的兴趣和热爱。

圆锥曲线是平面截圆锥面所得的图形,包括椭圆、双曲线和抛物线。

这些曲线有着独特的性质和几何特征,如对称性、范围、离心率等。

理解和掌握这些性质,是解决圆锥曲线问题的关键。

建立坐标系:利用坐标法,将圆锥曲线的问题转化为代数问题,通过代数手段进行研究和解决。

观察对称性:圆锥曲线具有对称性,利用这一性质,可以简化问题,提高解题效率。

活用定义:熟练掌握圆锥曲线的定义,并根据定义来解决问题。

积累典型例题:通过分析典型例题,掌握解题思路和方法,触类旁通。

圆锥曲线在实际生活中有着广泛的应用,如物理学中的行星运动轨迹,光学中的折射和反射等。

理解这些应用,不仅可以提高数学学习的趣味性,同时也能更好地理解数学与生活的紧密。

深度理解概念:对于圆锥曲线的概念和性质,需要深入理解,不能只停留在表面。

大量练习:通过大量的练习,掌握解题技巧和方法,提高解题速度。

学会总结:对于做过的题目,需要学会总结,找出解题的规律和方法,形成自己的解题思路。

寻找拓展:在掌握基础的同时,寻找拓展,如研究更复杂的图形或者更深入的性质等。

形成系统:将圆锥曲线与其他数学知识进行,形成系统的数学知识体系。

圆锥曲线是高中数学的重要部分,也是高考的重点和难点。

通过深入理解概念,大量练习,学会总结以及寻找拓展等方式进行压轴培优,可以有效地提升解决圆锥曲线问题的能力。

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆(含解析)

圆锥曲线---椭圆一、填空题1. 已知椭圆x24+y2=1的左右焦点分别为F1,F2,过F2作直线交椭圆于A,B两点,若F2为线段AB的中点,则△AF1B的面积为.2. 椭圆x29+y25=1的左右焦点分别为F1,F2,过焦点F1的直线交该椭圆于A,B两点,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则▵ABF2的面积S=.二、解答题3. 设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.4.已知椭圆C的中心在原点,对称轴为坐标轴,且经过点(3,0),离心率为√63.求椭圆C的方程.5.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,短轴一个端点到右焦点的距离为3√2.(1)求椭圆C的方程;(2)若直线y=x−1与椭圆C交于不同的两点A、B,求|AB|.6. 椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,√3),离心率为12,左、右焦点分别为F 1(−c,0),F 2(c,0) (1)求椭圆的方程(2)斜率为−12的直线l 与椭圆交于A ,B 两点,当|AB |=√552时,求直线l 的方程7.已知椭圆C :x 26+y 2b2=1(b >0)的左、右焦点分别为F 1(−c,0)和F 2(c,0),P 为椭圆C 上任意一点,三角形PF 1F 2面积的最大值是3. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)的直线l 交椭圆C 于A ,B 两点,且Q(94,0),证明:QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ 为定值.8. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 为圆x 2+y 2+2x =0的圆心,且椭圆上的点到点F 的距离最小值为√2−1. (1)求椭圆方程;(2)已知经过点F 的动直线l 与椭圆交于不同的两点A ,B ,点M (−54,0),证明:MA⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ 为定值.答案和解析1.解:由x 24+y 2=1,得a =2,b =1,c =√3,又因为F 2为线段AB 的中点,则可知AB ⊥x 轴,把x =√3带入椭圆方程可得y =±12, 所以|AB |=1,2c =2√3,所以△AF 1B 面积为S =12×2c ×|AB |=√3故答案为:√3. 2.解:∵椭圆x 29+y 25=1的左右焦点分别为F 1,F 2,a =3,b =√5,c =2,过焦点F 1的直线交椭圆于A(x 1,y 1),B(x 2,y 2)两点, ∵△ABF 2的内切圆的面积为π,∴△ABF 2内切圆半径r =1.即△ABF 2面积S =12×1×(AB +AF 2+BF 2)=2a =6。

圆锥曲线:有关椭圆的小题总结 高考数学

圆锥曲线:有关椭圆的小题总结 高考数学

m足∠ = ∘ ,则



≥ = ,




【解析】由题意得: +
=


,所以当>>,则< < ,所


以表示焦点在轴上的椭圆,所以对,错,当 = >时,曲线


+
= ,所以表示圆,半径为 ,当 = , >时,曲线为





= ,所以 = ± ,所以表示两条直线,故选:




以只要求∠ 为直角时点横坐标的值,因为 = ,所以当
∠ 为直角时,点在圆 + = 上,解方程组:
得: =

±
,

所以点 横坐标的取值范围是:



+ =

�� +



<<
.


=
试卷讲评课件
【例3】已知椭圆
x2
上任意一点,则当点Q为椭圆短轴的端点时,∠AQB最大.
试卷讲评课件
【证明】如图,设 , ≤ <, < ≤ ,过点作
⊥ ,垂足为,则 = + , = − , = ,所以
∠ =
∠ =
+
,∠

=


迹E的方程为

+


=

所以动圆C的圆心轨迹E的方程为

+


=



+


=
试卷讲评课件
x2
练习3.已知A、B分别为椭圆E: 2

高考椭圆最常考的题型(140分推荐)

高考椭圆最常考的题型(140分推荐)

高考椭圆最常考的题型(140分推荐)一、单选题(本大题共8小题,共40.0分)1. 已知椭圆:x 24+y 2b2=1(0<b <2) ,左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A,B 两点,若|BF 2⃗⃗⃗⃗⃗⃗⃗ |+|AF 2⃗⃗⃗⃗⃗⃗⃗ |的最大值为5,则b 的值是( )A. 1B. √2C. 32D. √32. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√22,直线x =√2与椭圆C 交于A ,B 两点,O 为坐标原点,且OA ⊥OB ,则椭圆的方程为( )A.x 22+y 2=1B.x 24+y 22=1C.x 28+y 24=1D.x 26+y 23=13. 已知直线y =kx(k ≠0)与椭圆C :x 2a2+y 2=1(a >1)交于P ,Q 两点,点F ,A 分别是椭圆C 的右焦点和右顶点,若|FP|+|FQ|+|FA|=52a ,则a =( )A. 4B. 2C. 43D. 2√334. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB |=|AF 1|,则椭圆的方程为( )A. x 240+y 236=1B. x 220+y 216=1C. x 210+y 26=1D.x 25+y 2=15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. √32B. √22C. 12D. 136. 已知椭圆方程为x 2+ky 2=5的一个焦点是(0,2),那么k =( )A. 59B. 97C. 1D. 537. 已知焦点在x 轴上的椭圆C :x 2a 2+y 24=1的焦距为4,则C 的离心率( )A. 13B. 12C. √22D. 2√238. 已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为4√3,则椭圆C 的方程为( )A. x 23+y 2=1B. x 23+y 22=1 C. x 212+y28=1 D. x 212+y24=1二、单空题(本大题共2小题,共10.0分)9.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.10.椭圆E:x2a2+y23=1的右焦点为F2,直线y=x+m与椭圆E交于A,B两点.若△F2AB周长的最大值是8,则m的值等于________.三、解答题(本大题共20小题,共240.0分)11.设椭圆C∶x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的中点坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√33,短轴一个端点到右焦点的距离为√3.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆的左焦点且斜率为1的直线l交椭圆于A,B两点,求|AB|.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,√32)在椭圆C上,且△PF1F2的面积为32.(1)求椭圆C的标准方程;(2)若椭圆C上存在A,B两点关于直线x=my+1对称,求m的取值范围.14.已知点P(3,4)是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为2√3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,且线段AB的垂直平分线过定点(13,0),求k的取值范围.16.已知椭圆x2a2+y2b2=1(a>b>0)和直线l:xa−yb=1,椭圆的离心率e=√63,坐标原点到直线l的距离为√32.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.17.已知椭圆E:x2a2+y2b2=1(a>b>0)经过两点(0,1),(√3,12).(I)求椭圆E的方程;(II)若直线l:x−y−1=0交椭圆E于两个不同的点A,B,O是坐标原点,求△AOB 的面积S.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,M(√3,−12)是椭圆C上的一点.(1)求椭圆C的方程;(2)过点P(−4,0)作直线l与椭圆C交于不同两点A、B,A点关于x轴的对称点为D,问直线BD是否过定点?若是,求出该定点的坐标;若不是,请说明理由.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到右焦点的距离为3√2.(1)求椭圆的方程;(2)若直线y=x−1与椭圆相交于不同两点A、B,求|AB|.20.已知椭圆C1的方程为x24+y23=1,椭圆C2的短轴为C1的长轴且离心率为√32.(1)求椭圆C2的方程;(2)如上图,M,N分别为直线l与椭圆C1,C2的交点,P为椭圆C2与y轴的交点,△PON 的面积为△POM的面积的2倍,若直线l的方程为y=kx(k>0),求k的值.21.如图,在平面直角坐标系xOy中,已知A,B两点分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,且AB=√7,右准线l的方程为x=4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P,交l于点Q.若以PQ为直径的圆经过原点,求直线PQ的方程.22.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.23.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,长轴长为4,直线y=kx+2与椭圆C交于A,B两点且∠AOB为直角,O为坐标原点.(1)求椭圆C的方程;(2)求AB的长度.24.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.25.如图,在平面直角坐标系xOy中,已知圆C:(x−3)2+y2=1,椭圆E:x2a2+y2b2=1(a>b>0)的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当AN=127AM时,求直线l的方程.26.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.27.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆E上.(1)若F1F2=2√2,点P的坐标为(√3,√2),求椭圆E的方程;(2)若点P横坐标为a2,点M为PF1中点,且OP⊥F2M,求椭圆E的离心率.28.如图,在直角坐标系xOy中,设椭圆C:x2a2+y2b2=1 (a>b>0)的左右两个焦点分别为F1、F2过右焦点F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M( √2, 1 )(1)求椭圆C的方程;(2)设椭圆C的一个顶点为B( 0,−b ),直线BF2交椭圆C于另一点N,求△F1BN的面积29.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C 于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若ΔAEF与ΔBDF的面积比为1:7,求直线l的方程.30.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点坐标为F1(−√3,0),F2(√3,0),且椭圆E经过点P(−√3,12).(1)求椭圆E的标准方程;(2)设点M是椭圆E上位于第一象限内的动点,A,B分别为椭圆E的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求四边形ABCD的面积.答案和解析1.【答案】D【解析】【分析】本题主要考查椭圆的定义的应用,做题时要善于发现规律,进行转化,三角形AF2B为焦点三角形,周长等于两个长轴长,再根据椭圆方程,即可求出三角形AF2B的周长,欲使|BF2|+|AF2|的最大,只须|AB|最小,利用椭圆的性质即可得出答案.【解析】解:由椭圆的方程可知:长半轴长为a=2,由椭圆的定义可知:|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8−(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b2=3,即b=√3.故选D.2.【答案】D【解析】【分析】本题考查椭圆的方程和离心率,属于简单题.结合已知条件建立关系式求得a2=6,b2=3,即可得到椭圆方程.【解答】解:因为椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,所以ca =√22①又因为直线x=√2与椭圆C交于A,B两点,O为坐标原点,且OA⊥OB,所以A(√2,√2)代入x2a2+y2b2=1得2a2+2b2=1②又因为a2=b2+c2③联立①②③解得a2=6,b2=3,所以椭圆的方程为x26+y23=1.故选D.3.【答案】D【解析】【分析】本题主要考查了椭圆的概念与标准方程、椭圆的几何性质、直线与椭圆的位置关系,属于基础题.取椭圆的左焦点F′,由三角形全等知|PF|=|QF′|,由椭圆的概念及集合性质知|FP|+ |FQ|=|F′Q|+|FQ|=2a,|FA|=a−c,b=1,代入条件及利用a,b,c的关系式求得a.【解答】解:取椭圆的左焦点F′,因为直线过原点,∴|OP|=|OQ|,|OF|=|OF′|,由椭圆的对称性,∴|PF|=|QF′|,∴|FP|+|FQ|=|F′Q|+|FQ|=2a,∵|FP|+|FQ|+|FA|=52a,|FA|=a−c,所以2a+a−c=52a,即a=2c,∵a2=b2+c2=1+14a2,a=2√33.故选D.4.【答案】D【解析】【分析】本题考查椭圆的定义、标准方程以及简单的几何性质,属于基础题.由直线2x+y−4=0经过椭圆x2a2+y2b2=1(a>b>0)的右焦点F2,可求得c=2,由椭圆定义可求得即a=√5,故a2=5,b2=1,椭圆方程可解.【解答】解:直线2x +y −4=0与x 轴和y 轴的交点分别为F 2(2,0),B(0,4), 所以c =2,又2a =|AF 1|+|AF 2|=|AB|+|AF 2|=|BF 2|=2√5, 所以a =√5,从而b 2=5−4=1, 所以椭圆方程x 25+y 2=1.故选D .5.【答案】C【解析】 【分析】本题考查椭圆的几何性质,涉及向量的线性关系,属基础题.根据向量关系得出|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,根据平行线截线段成比例定理得出|AO||AF|的值,得到a ,c 的关系,求得离心率. 【解答】 解:如图所示:∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,∴|PA||AB|=23, 又∵PO//BF , ∴|AO||AF|=|PA||AB|=23, 即aa+c =23, ∴e =ca =12. 故选C .6.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4,∴k =59, 故选:A .7.【答案】C【解析】 【分析】本题主要考查椭圆的离心率,属于基础题.根据题意求出c =2,a =2√2,由e =ca 即可求出结果. 【解答】 解:∵椭圆C :x 2a 2+y 24=1的焦点在x 轴上,且焦距为4,∴a 2>4,c =2, ∴a 2−4=4, ∴a =2√2, ∴e =ca =2√2=√22. 故选C .8.【答案】B【解析】 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用△AF 1B 的周长为4√3,求出a =√3,根据离心率为√33,可得c =1,求出b ,即可得出椭圆的方程. 【解答】解:∵△AF 1B 的周长为4√3,∵△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , ∴4a =4√3, ∴a =√3, ∵离心率为√33,∴ca =√33,c =1,∴b =√a 2−c 2=√2, 即椭圆C 的方程为x 23+y 22=1.故选B .9.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解.【解答】解:设椭圆的标准方程为 x 2a2+y 2b 2=1(a >b >0),∵离心率为12, ∴e =ca =√a 2−b 2a=12, ∴b =√32a , 令a =2,则b =√3,∴椭圆的标准方程为x 24+y 23=1.故答案为x 24+y 23=1(答案不唯一).10.【答案】1【解析】 【分析】本题考查的知识要点:椭圆的定义和方程的应用,属于基础题型.首先利用椭圆的定义建立周长的等式,进一步利用三角形的边长关系建立等式,求出相应的值,最后求出结果. 【解答】 解:椭圆E :x 2a 2+y 23=1的右焦点为F 2,N 为左焦点,直线y =x +m 与椭圆E 交于A ,B 两点,则△F 2AB 周长l =AB +BF 2+AF 2=AB +2a −NB +2a −NA =4a +(AB −NA −NB), 由于NA +NB ≥AB ,所以当N 、A 、B 三点共线时,△F 2AB 的周长l =4a =8, 所以a =2, 所以椭圆的方程为x 24+y 23=1,直线y =x +m 经过左焦点,所以m =1. 故答案为1.11.【答案】解:(1)将(0,4)代入C 的方程得16b 2=1,则b =4,∵e =ca =35,∴a 2−b 2a 2=925,即1−16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线与C 的交点为A(x 1,y 1),B(x 2,y 2). 将直线方程y =45(x −3)代入C 的方程,得x 225+(x−3)225=1,即x 2−3x −8=0,故x 1+x 2=3.设线段AB 的中点坐标为(x′,y′),则x′=x 1+x 22=32,y′=y 1+y 22=25(x 1+x 2−6)=−65,即所求中点坐标为(32,−65).【解析】本题考查椭圆的标准方程及性质,以及直线与椭圆的综合应用,属于中档题目. (1)将(0,4)代入椭圆方程求出b ,再由椭圆的离心率求出a ,得到椭圆方程; (2)写出直线方程联立椭圆方程,利用中点坐标公式结合韦达定理得出.12.【答案】解:(Ⅰ)由题意:e =c a =√33,即a =√3c ,短轴一个端点到右焦点的距离为√3, 即b 2+c 2=(√3)2=3, 而a 2=b 2+c 2, 所以a 2=3,b 2=2, 所以椭圆的方程:x 23+y 22=1;(Ⅱ)由(Ⅰ),左焦点(−1,0),直线l 的方程:y =x +1, 设A(x,y),B(x′,y′),联立直线l 与椭圆的方程,消去y 整理得:5x 2+6x −3=0, 所以x +x′=−65,xx′=−35,∴|AB|=√1+k 2√(x +x′)2−4xx′ =√1+1×√(−65)2−4×(−35)=8√35.【解析】本题考查直线与椭圆的交点弦长,属于基础题.(Ⅰ)由题意得离心率及长半轴长及a ,b ,c 之间的关系,求出椭圆的方程;(Ⅱ)由题意写出直线l 的方程与椭圆联立写出两根之和及之积,再由弦长公式求出弦长.13.【答案】解:(1)由题意可得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2解得a =2,b =1,故椭圆C 的标准方程为x 24+y 2=1..(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0). 因为直线x =my +1过定点(1,0),所以(x 1−1)2+y 12=(x 2−1)2+y 22.因为A ,B 在椭圆上,所以x 124+y 12=1,x 224+y 22=1,所以(x 1−1)2+1−x 124=(x 2−1)2+1−x 224,整理得x 12−x 224=(x 1−x 2)(x 1+x 2−2),所以x 1+x 2=83,所以x 0=43.因为点M 在直线x =my +1上,所以x 0=my 0+1,则y 0=13m .由{x 24+y 2=1,x =43,得y =±√53, 则−√53<13m <0或0<13m <√53,解得m <−√55或m >√55.故m 的取值范围为(−∞,−√55)⋃(√55,+∞).【解析】本题考查椭圆的性质和标准方程,直线与椭圆的位置关系,属于中档题. (1)由题意得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2,解出a ,b ,进而求出答案.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0),由条件求出x 1+x 2=83,x 0=43,进而由条件求出y =±√53,进而求出答案.14.【答案】解:(1) 令F 1(−c,0),F 2(c,0),∵PF 1⊥PF 2,∴k PF 1·k PF 2=−1,即43+c ·43−c =−1,解得c =5,∴椭圆的方程为x 2a 2+y 2a 2−25=1.∵点P(3,4)在椭圆上,∴9a 2+16a 2−25=1,解得a 2=45,或a 2=5, 又a >c ,∴a 2=5舍去, 故所求椭圆方程为x 245+y 220=1.(2)P 点纵坐标的值即为F 1F 2边上的高,∴△PF1F2=12|F1F2|×4=12×10×4=20.【解析】本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.(1)设出焦点的坐标,利用垂直关系求出c值,椭圆的方程化为x2a2+y2a2−25=1,把点P的坐标代入,可解得a2的值,从而得到所求椭圆方程.(2)P点纵坐标的值即为F1F2边上的高,由S△PF1F2=12|F1F2|×4求得△PF1F2的面积.15.【答案】解:(Ⅰ)由题意可知:{2b=2√3ca=12a2=b2+c2,得{a=2b=√3c=1,故椭圆C的标准方程为x24+y23=1;(Ⅱ)设直线l:y=kx+m,A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程,消去y得(3+4k2)x2+8kmx+4m2−12=0,所以,即m2<4k2+3…………①由根与系数关系得x1+x2=−8km3+4k2,则y1+y2=k(x1+x2)+2m=6m3+4k2,所以线段AB的中点P的坐标为(−4km3+4k2,3m3+4k2).又线段AB的垂直平分线l′的方程为y=−1k (x−13),由点P在直线l′上,得3m3+4k2=−1k(−4km3+4k2−13),即4k2+3km+3=0,所以m=−13k(4k2+3)…………②由①②得(4k2+3)29k2<4k2+3,∵4k2+3>0,∴4k2+3<9k2所以k2>35,即k<−√155或k>√155,所以实数k的取值范围是.【解析】本题考查了椭圆方程的求法,考查了直线和圆锥曲线间的关系,考查了直线和圆锥曲线的关系问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,属于中档题.(Ⅰ)由离心率得到a ,c ,b 的关系,再代入椭圆的标准方程中即可求解.(Ⅱ)设出A ,B 的坐标,联立直线方程和椭圆方程,由判别式大于0得到m 2<4k 2+3,再结合根与系数关系得到AB 中点P 的坐标为(−4km3+4k 2,3m3+4k 2).求出AB 的垂直平分线l′方程,由P 在l′上,得到4k 2+3km +3=0.结合m 2<4k 2+3求得k 的取值范围.16.【答案】解:(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca=√63ab√a 2+b 2=√32,又a 2=b 2+c 2,解得:a 2=3,b =1, ∴椭圆的方程为x 23+y 2=1;(Ⅱ)假设存在这样的k ,使以CD 为直径的圆过定点E , 联立直线与椭圆方程得(1+3k 2)x 2+12kx +9=0, ∴△=(12k)2−36(1+3k 2)>0,∴k >1或设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=−12k1+3k 2x 1·x 2=91+3k2,② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4,EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,故EC ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0, 则y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0,③ 将②代入③整理得k =76>1, 经验证使得①成立,综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】本题考查椭圆的方程及直线与椭圆的位置关系,注意合理地进行等价转化,属于中档题.(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca =√63√a 2+b 2=√32,由此能求出椭圆的方程;(Ⅱ)假设存在这样的值,联立方程得(1+3k 2)x 2+12kx +9=0,再由根的判别式和根与系数的关系进行求解即可.17.【答案】解:(1)由题意得{b 2=13a2+14b2=1,解得{a =2b =1,所以椭圆E 的方程为x 24+y 2=1.(2)记A(x 1,y 1),B(x 2,y 2),由{x 24+y 2=1x =y +1, 消去x 得5y 2+2y −3=0. 所以y 1,2=−1或35,直线l 与x 轴的交点为(1,0),记为点P ,S =12|OP||y 1−y 2|=45.【解析】本题主要考查了椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系,三角形面积的应用,属于简单题.(1)根据已知及椭圆的概念及标准方程,椭圆的性质及几何意义的计算,求出椭圆E 的方程;(2)根据已知及直线与椭圆的位置关系,三角形面积的计算,求出△AOB 的面积S .18.【答案】解:(1)∵c a =√32,a 2=b 2+c 2,∴a 2=4b 2,∴x 24b 2+y 2b 2=1,将M (√3,−12)代入椭圆C ,∴b 2=1, ∴椭圆C 方程为:x 24+y 2=1.(2)显然AB 斜率存在,设AB 为:y =k(x +4),{x 24+y 2=1,y =k(x +4)⇒(1+4k 2)x 2+32k 2x +64k 2−4=0,Δ=16−192k 2>0,∴k 2<112. 设A(x 1,y 1),B(x 2,y 2),D(x 1,−y 1), ∴x 1+x 2=−32k 21+4k2,x 1x 2=64k 2−41+4k 2,∵BD :y +y 1=y 2+y1x 2−x 1(x −x 1),∴y =0时x =x 1+x 2y 1−x 1y 1y 1+y 2=2kx 1x 2+4k(x 1+x 2)k(x 1+x 2)+8k=2k(64k 2−41+4k 2)+4k(−32k 21+4k 2)k(−32k 21+4k 2)+8k =128k 3−8k−128k 3−32k 3+8k+32k 3=−1,∴直线BD 过定点(−1,0).【解析】本题考查椭圆方程的求法,直线与椭圆的位置关系,直线的斜率的应用,考查转化思想以及计算能力.(1)根据点在椭圆上得3a 2+14b 2=1,与离心率联立方程组解得a 2=2,b 2=1,即得太严方程;(2)设直线l 的方程为y =k(x +4),A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=−32k 21+4k 2,x 1x 2=64k 2−41+4k 2求出BD 的方程,令y =0,解得横坐标,结合韦达定理化简可得横坐标为定值,即可证明直线BD 过定点.19.【答案】解:(1)根据题意,椭圆C 的短轴一个端点到右焦点的距离为3√2,则有a =3√2, 又由椭圆C 的离心率为√22,则有e =ca =√22,则有c=3,则b2=a2−c2=18−9=9,则椭圆的标准方程为:x218+y29=1;(2)设A(x1,y1),B(x2,y2).由(1)可得:椭圆的标准方程为:x218+y29=1,直线l的方程为:y=x−1,联立{x218+y29=1y=x−1,消去y得3x2−4x−16=0,则有x1+x2=43,x1x2=−163,|AB|=√1+12√(x1+x2)2−4x1x2=√2√169+643=4√263.【解析】本题考查椭圆的几何性质,直线与椭圆的位置关系,椭圆的标准方程,属基础题.(1)根据题意,由椭圆的几何性质可得e=ca =√22且a=3√2,解可得c的值,进而计算可得b的值,将a、b的值代入椭圆的标准方程,即可得答案;(2)联立直线与椭圆的方程,可得方程3x2−4x−16=0,结合根与系数的关系由弦长公式计算可得答案.20.【答案】解:(1)椭圆C1的方程为x24+y23=1的长轴长为4,设椭圆C2的方程为y2a2+x2b2=1(a>b>0),由题意可得b=2,e=ca =√32,a2−c2=4,解得a=4,b=2,c=2√3,可得椭圆C2的方程为y216+x24=1;(2)设M(x1,y1),N(x2,y2),△PON面积为△POM面积的2倍,可得|ON|=2|OM|,即有|x2|=2|x1|,联立{y =kx 3x 2+4y 2=12,消去y 可得x =±√123+4k2,即|x 1|=√123+4k 2,同样求得|x 2|=√164+k 2, 由√164+k 2=2√123+4k 2,解得k =±3, 由k >0,得k =3.【解析】本题考查椭圆的方程和性质及直线与椭圆位置关系,考查联立方程求交点,考查化简整理的运算能力,属于中档题. (1)由题意设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),运用离心率公式和a ,b ,c 的关系,解方程即可得到所求方程;(2)设M(x 1,y 1),N(x 2,y 2),由题意可得|x 2|=2|x 1|,联立直线y =kx 和椭圆方程,求得交点的横坐标,解方程即可得到所求值.21.【答案】解:(1)设椭圆的焦距为2c(c >0).由题意得{a 2c=4,a 2=b 2+c 2,√a 2+b 2=√7,解得a 2=4,b 2=3. 所以椭圆的标准方程为:x 24+y 23=1.(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y 23=1,消y 得(4k 2+3)x 2−16k 2x +16k 2−12=0. 又直线PQ 过点A(2,0),则方程必有一根为2,则x P =8k 2−64k 2+3. 代入直线y =k(x −2),得点P (8k 2−64k 2+3,−12k4k 2+3).联立{y =k(x −2),x =4,所以Q(4,2k).又以PQ 为直径的圆过原点,所以OP ⊥OQ , 则OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k 4k 2+3=8k 2−244k 2+3=0,解得k 2=3,所以k =±√3.所以直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x0−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0, 所以4x 0+2y 02x0−2=0 ①,又x 024+y 023=1 ②,联立①②,解得x 0=65或x 0=2(舍),所以P (65,−4√35)或P (65,4√35). 所以直线PQ 的斜率为±√3,从而直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.【解析】本题考查椭圆的标准方程,椭圆的性质以及直线与椭圆的位置关系,属于难题. (1)由题意列出关于a ,b ,c 的方程组,求解即可;(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y23=1,求出P (8k 2−64k 2+3,−12k 4k 2+3),Q(4,2k).利用OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k4k 2+3=8k 2−244k 2+3=0,求出k 即可求解;方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0,求出x 0=65,得到P (65,−4√35)或P (65,4√35).所以直线PQ 的斜率为±√3,即可求解.22.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(1,32),(−1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.23.【答案】解:(1)由题意2a =4,∴a =2,∴ca =√32,∴c =√3,b 2=a 2−c 2=1,∴椭圆C 的方程为x 24+y 2=1;(2)设A(x 1,y 1),B(x 2,y 2), 把y =kx +2代入x 24+y 2=1,得(4k 2+1)x 2+16kx +12=0,Δ=(16k)2−4×12×(4k 2+1)=64(k 2−3)>0,即k 2>3, ∴x 1+x 2=−16k 1+4k 2,x 1x 2=121+4k 2,∵∠AOB 为直角,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(k 2+1)x 1x 2+2k(x 1+x 2)+4=0, ∴12(k 2+1)1+4k 2−32k 21+4k 2+4=0,∴−4k 2+16=0,∴k 2=4,∴x 1+x 2=−16k1+4k 2=±3217,x 1x 2=121+4k 2=1217,∴|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√5⋅√(3217)2−4817=4√6517, 故|AB|的长度4√6517.【解析】本题考查了椭圆方程与几何性质、直线与椭圆的位置关系等基础知识,属于中档题.(1)根据离心率和长轴长,可得a ,b ,然后即可写出椭圆方程;(2)联立直线与椭圆,利用韦达定理以及∠AOB =90°,求出k.再用弦长公式求出弦长|AB|.24.【答案】解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点到右准线的距离为3.得{e =c a =12,a 2c −c =3解得{a =2,c =1所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),因为OAQB 为平行四边形,所以OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ , 则Q(x 1+x 2,y 1+y 2),当直线l 的斜率不存在时,直线l 过原点O ,此时O 、A 、B 三点共线,不符合题意: 当直线l 的斜率存在时,设直线l 的方程为y =kx +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2,将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意, 所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系,属于较难题.(1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =kx +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.25.【答案】解:(1)记椭圆E 的焦距为2c(c >0).因为右顶点A (a , 0)在圆C 上,右准线x =a 2c与圆C :(x −3)2+y 2=1相切.所以{(a −3)2+02=1 , | a 2c−3 |=1 ,解得{a =4 ,c =8,(舍去) { a =2 ,c =1 .于是b 2=a 2−c 2=3,所以椭圆方程为:x 24+y 23=1.(2)法1:设N (x N , y N ) , M (x M , y M ),显然直线l 的斜率存在,设直线l 的方程为:y =k (x −2). 由方程组 {y =k (x −2) , x 24+y 23=1消去y 得,(4k 2+3)x 2−16k 2x +16k 2−12=0.所以x N ⋅2=16k 2−124k 2+3,解得x N =8k 2−64k 2+3. 由方程组{ y =k (x −2) ,(x −3)2+y 2=1 ,消去y 得(k 2+1)x 2−(4k 2+6)x +4k 2+8=0 , 所以x M ⋅2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.因为AN =127AM ,所以2−x N =127(x M −2).即124k 2+3=127⋅21+k 2,解得 k =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.法2:设N (x N , y N ) , M (x M , y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为:x =ty +2 (t ≠0).由方程组{x =ty +2 , x 24+y 23=1消去x 得,(3t 2+4)y 2+12ty =0,所以y N =−12t3t 2+4 , 由方程组 {x =ty +2 ,(x −3)2+y 2=1消去x 得(t 2+1)y 2−2ty =0, 所以y M =2tt 2+1, 因为AN =127AM ,所以y N =−127y M ,即−12t3t 2+4=−127⋅2t t 2+1,解得 t =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.【解析】本题主要考查了椭圆的概念及标准方程,直线与椭圆的位置关系,直线与圆的位置关系及判定,直线的一般式方程,考查学生的计算能力和推理能力,属于较难题. (1)记椭圆E 的焦距为2c ,根据题意可知{ (a −3)2+02=1 ,| a 2c −3 |=1 ,从而即可得a ,c 的值,进而求得椭圆E 的方程.(2)法1:设N (x N , y N ) , M (x M , y M )且直线l 的方程为:y =k (x −2),从而联立直线和椭圆方程消去y 后可得x N =8k 2−64k 2+3,同理联立直线和圆可得x M =2k 2+4k 2+1,再根据AN =127AM 即可求得k 的值,从而求得直线l 的方程.法2:设N (x N , y N ) , M (x M , y M )且设直线l 的方程为:x =ty +2 (t ≠0),联立直线和椭圆方程消去x 可得y N =−12t3t 2+4,再联立直线和圆可得y M =2tt 2+1,从而据AN =127AM 即可求得t 的值,从而求得直线l 的方程.26.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.27.【答案】解:(1)设椭圆E 焦距为2c ,则2c =|F 1F 2|=2√2,所以c 2=a 2−b 2=2, ① 又点(√3,√2)在椭圆E :x 2a 2+y 2b 2=1上,所以3a 2+2b 2=1,②联立①②解得{a 2=6b 2=4或{a 2=1b 2=−1(舍去),所以椭圆E 的方程为x 26+y 24=1;(2)设椭圆E 焦距为2c ,则F 1(−c,0),F 2(c,0),将x =a2代入x 2a 2+y 2b 2=1,得y 2=3b24,不妨设点P 在x 轴上方, 故点P 坐标为(a2,√3b2), 又点M 为PF 1中点,故点M 坐标为(a−2c 4,√3b4), 所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(a−6c 4,√3b 4),OP ⃗⃗⃗⃗⃗ =(a 2,√3b2),由,得OP ⃗⃗⃗⃗⃗ ⋅F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =0, 即a−6c 4⋅a2+√3b4⋅√3b 2=0,化简得a 2−6ac +3b 2=0,将b 2=a 2−c 2代入得3c 2+6ac −4a 2=0, 即3(ca )2+6⋅ca −4=0, 所以3e 2+6⋅e −4=0, 解得e =−1±√213,因为e ∈(0,1),所以椭圆E 的离心率为e =√213−1.【解析】本题考查向量的数量积、椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系,为基础题.(1)把点(√3,√2)代入椭圆方程,求出a ,b ,即可求出结果; (2)将x =a2代入x 2a2+y 2b 2=1,得出点P 坐标为(a 2,√3b2),得出点M 的坐标和相应向量的坐标,利用数量积,即可求出结果.28.【答案】解:(1)因为l ⊥x 轴,所以F 2(√2,0),由题意可得{2a 2+1b 2=1a 2−b 2=2,解得{a 2=4b 2=2,∴椭圆C 的方程为x 24+y 22=1.(2)直线BF 2的方程为y =x −√2. 由{y =x −√2x 24+y 22=1得点N 的纵坐标为√23.又| F 1F 2 |=2√2, ∴S △F 1BN =12×(√2+√23)×2√2=83.【解析】本题考查求椭圆的方程,三角形的面积,是直线与椭圆位置关系,属于基础题(1)由题意可得F 2(√2,0),进而得到{2a 2+1b 2=1a 2−b 2=2,求解即可得到椭圆C 的方程;(2)根据题意可得直线BF 2的方程为y =x −√2.联立直线方程和椭圆方程即可得到N 的纵坐标为√23.再根据| F 1F 2 |=2√2和三角形的面积公式即可得解.29.【答案】解:(1)设椭圆的半焦距长为c ,∴{ c a =121a 2+94b 2=1, 又∵a 2=b 2+c 2,∴{a =2b =√3,∴椭圆C 的方程为x 24+y 23=1;(2)设直线DE 的方程为x =ky −1,D(x 1,y 1),E(x 2,y 2),,联立{x =ky −13x 2+4y 2=12⇒3(ky −1)2+4y 2=12 ∴(3k 2+4)y 2−6ky −9=0 ∴{y 1+y 2=6k3k 2+4 ①y 1y 2=−93k 2+4 ②y 2=−37y 1 ③,由①③得{y 1=21k2(3k 2+4)y 2=−9k 2(3k 2+4)代入 ②21⋅9⋅k 24(3k 2+4)2=93k 2+4⇒k =±43综合图象知k =43∴l 的方程为3x −4y +3=0【解析】本题考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系和圆锥曲线中的面积问题,是中档题.(1)由离心率为12和(1,32)在椭圆上,再结合a 2=b 2+c 2,可得a 、b ,从而得出椭圆方程;(2)设直线DE 的方程为x =ky −1,由ΔAEF 与ΔBDF 的面积比为1:7,可得y 2y 1=−37,直线DE与椭圆联立,计算可得k的值,即可得出直线l的方程.30.【答案】解:(1)因为椭圆焦点坐标为F1(−√3,0),F2(√3,0),且过点P(−√3,12),所以2a=PF1+PF2=12+√494=4,所以a=2,从而b=√a2−c2=√4−3=1,故椭圆的方程为x24+y2=1;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),因为A(−2,0),且A,D,M三点共线,所以y0x0+2=n2,解得n=2y0x0+2,所以BD=1+2y0x0+2=x0+2y0+2x0+2,同理得AC=x0+2y0+2y0+1,因此,S ABCD=12AC⋅BD=12⋅x0+2y0+2x0+2⋅x0+2y0+2y0+1=(x0+2y0+2)2 2(x0+2)(y0+1)=x02+4y02+4x0y0+4x0+8y0+42(x0y0+x0+2y0+2),因为点M(x0,y0)在椭圆上,所以x024+y02=1,即x02+4y02=4,代入上式得:S ABCD=4x0y0+4x0+8y0+82(x0y0+x0+2y0+2)=2,∴四边形ABCD的面积为2.【解析】本题考查的是椭圆的标准方程和计划意义,直线与椭圆的位置关系,属于较难题.(1)由2a=PF1+PF2=12+√494=4得到a,再由焦点坐标可得到c,利用b=√a2−c2,即可得到b,从而得到椭圆E的标准方程;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),A,D,M三点共线,所以y0x0+2=n2,从而得到BD=1+2y0x0+2=x0+2y0+2x0+2,AC=x0+2y0+2y0+1,由S ABCD=12AC⋅BD,即可得到四边形ABCD的面积.。

高中数学椭圆常见题型总结

高中数学椭圆常见题型总结

P
的轨迹方程。
8、已知动圆 C过点 A( 2,0) ,且与圆 C2 : ( x 2)2 y2 64 相内切,则动圆圆心的轨迹方
程为

9、已知椭圆的焦点在 y 轴上,焦距等于 4,并且经过点 P(2, 2 6) ,则椭圆方程为

10、已知中心在原点,两坐标轴为对称轴的椭圆过点
标准方程为

A( 3 , 5) , B( 3, 5) ,则该椭圆的 22
(C ) 16(2 3)
(D ) 16(2- 3)
x2 3、 P 是椭圆
25
y2 1 上的一点, F1 和 F2 为左右焦点,若
9
F1PF2 60 。
(1)求 F1PF2 的面积;( 2)求点 P 的坐标。
焦半径问题
x2
1椭圆
12
y2 3
1的左右焦点分别为 F1 、 F2 ,点 P 在椭圆上,如果线段 PF1 的中点在 y
轴上,那么 PF1 是的 PF2 的
倍;
椭圆的中点弦问题
例 1、已知椭圆 ax 2 by2 1(a b 0) 与直线 x y 1 0 相交于 A 、 B 两点, C 是 AB
的中点,若 AB 2 2 , OC 的斜率为 2 ,求椭圆方程。 2
高中数学
1、直线 l 交椭圆 x2 y 2 1于 A、 B 两点, AB 中点的坐标是 (2,1) ,则直线 l 的方程为 16 12
1 k2 x1 x2
1 k 2 (x1 x2) 2 4x1x2
3 、椭圆的中点弦:
x2 y2 设 A(x1, y1), B( x2 , y2 ) 是椭圆 a2 b2 1(a b 0) 上不同两点,
M ( x0, y0 ) 是线段 AB 的中点,可运用 点差法 可得直线 AB 斜率,且 kAB

高考数学圆锥曲线典型例题(必考)

高考数学圆锥曲线典型例题(必考)

高考数学圆锥曲线典型例题(必考)9.1 椭 圆典例精析题型一 求椭圆的标准方程【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 210=1或3x 210+y 25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下:据此,可推断椭圆C 1的方程为 . x 212+y 26=1.题型二 椭圆的几何性质的运用【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.【解析】(1)e 的取值范围是[12,1).(2)21F PF S =12mn sin 60°=33b 2,【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2,|PF 1|≥a -c . 【变式训练2】已知P 是椭圆x 225+y 29=1上的一点,Q ,R 分别是圆(x +4)2+y 2=14和圆(x -4)2+y 2=14上的点,则|PQ |+|PR |的最小值是 .【解析】最小值为9.题型三 有关椭圆的综合问题【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.(1) 22.(2)为x 218+y 29=1.【变式训练3】已知椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为e ,两焦点为F 1,F 2,抛物线以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若|PF 1||PF 2|=e ,则e 的值是( )A.32B.33C.22D.63【解析】选B 题型思 有关椭圆与直线综合问题【例4】【2012高考浙江理21】如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. .【变式训练4】【2012高考广东理20】在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e=23,且椭圆C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由. 总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a 、 b 的值(即定量),若定位条件不足应分类讨论,或设方程为mx 2+ny 2=1(m >0,n >0,m ≠n )求解.2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.练习1(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =u u u r u u u r ,则||AF u u u u r=( )A. 2B. 2C.3D. 3 选A.2(2009浙江文)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =u u u r u u u r,则椭圆的离心率是( ) A 32 C .13 D .12【答案】D3.(2009江西卷理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o ,则椭圆的离心率为 A .22 B .33 C .12D .13 【答案】B 4.【2012高考新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45【答案】C5【2012高考四川理15】椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。

高中数学圆锥曲线—椭圆经典题型

高中数学圆锥曲线—椭圆经典题型

圆锥曲线与方程——椭圆椭圆及其标准方程1、若点M 到两定点F 1(0,-1),F 2(0,1)的距离之和为2,则点M 的轨迹是( )A .椭圆B .直线21F FC .线段21F FD .线段21F F 的中垂线2、已知椭圆的焦点是1F 、2F ,P 为椭圆上的一动点,如果延长1F P 到Q ,使得2PQ PF =,那么动点Q 的轨迹是( )A 、圆B 、椭圆C 、双曲线的一支D 、抛物线3、6.=表示的曲线为________4、已知圆()1003:22=++y x A ,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,求圆心P 的轨迹方程5、已知椭圆22219x y m+=的焦点在x 轴上,则m 的取值范围是 6、设椭圆的标准方程为22135x y k k+=--,若其焦点在x 轴上,则k 的取值范围是 ( ) A 、k >3 B 、3<k <5 C 、4<k <5 D 、3<k <47、经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .8、已知1F 、2F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于点A 、B ,若5AB =,则12AF BF +=9、椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程10、P 为椭圆22110064x y +=上的一点,F 1和F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积为 .11、直线m x y +=与椭圆12514422=+y x 有两个交点,求m 的取值范围椭圆的简单几何性质12、椭圆的两个焦点和短轴的两个顶点,是一个含︒60角的菱形的四个顶点,则椭圆的离心率为( )A .21B .23C .33 D .21或23 13、如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为( ) (A )53 (B )312 (C )43 (D )910 14、椭圆22221x y a b +=(0a b >>)和2222x y k a b+=(k>0)具有相同的( ) A 、离心率 B 、焦点 C 、顶点 D 、长、短轴15、若椭圆经过原点,且焦点为12(1,0),(3,0)F F ,则其离心率为( ) A 、34 B 、23 C 、12 D 、1416、已知点12(4,0),(4,0)F F -,又(,)P x y 是曲线153x y +=上的一点,则( ) A 、1210PF PF += B 、1210PF PF +< C 、1210PF PF +≤ D 、1210PF PF +≥17、已知椭圆的短半轴长为1,离心率e满足0e <<,则长轴的最大值等于 18、已知12,F F 是椭圆的两个焦点,满足1MF --→· 2MF --→=0的点M 总在椭圆内部,则椭圆离心率的取值范围为( )A 、(0,1)B 、10,2⎛⎤ ⎥⎦⎝ C、 D、)2⎢⎣19、在平面直角坐标系xOy 中,设椭圆22221(0)x y a b a b+=>>的焦距为2c ,以点O 为圆心,a 为半径作圆M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)利用初中几何知识简化求解过程 (3)利用第一小问的结论减少设未知数 几何类问题 【2014全国I】设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直, 直线与C的另一个交点为N. (Ⅰ)若直线MN的斜率为,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且,求a,b. 【答案】 (1) (2) 【解析】 (1) (2)解法一: 解法二:利用中位线可求得点坐标为,利用相似可求得点的坐标为 代入椭圆方程可求得 总结:(1)利用三角形中位线定理或者相似,求解线段长,从而求得 点的坐标; (2)利用焦半径公式进行求解 【2013全国II】平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的 直线交M于A,B两点,P为AB的中点,且OP的斜率为.
一、椭圆定义的应用 (2012四川)椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大 时,的面积是____________。 解析:方法一: 设, 其中 当即时,周长最大,此时面积为3 方法二: 如图所示,(不严谨) 小结:
1、 涉及到椭圆上的点到焦点的距离问题,经常会利用到椭圆的定义 2、 最大值最小值问题可以结合图形,利用数形结合思想分析会更简
(I)求椭圆的标准方程; (II)当时,若直线与椭圆的交点分别为和,记四边形的面积为.
①求关于的表达式 ②若直线与圆的交点分别为和,记四边形的面积为. 试判断是否为定 值?若是,求出该定值;若不是,请说明理由. 解析:(I) (II)①联立直线可得 即 因为直线均过定点,只是斜率不一样 故可用替换,得到(新技能get) 故 ②同理可算出,故 总结:(1)对角线互相垂直的四边形的面积公式 (2)已知圆锥曲线和直线方程,求弦长的公式: 随堂练习: 椭圆有两顶点、,过其焦点的直线与椭圆 交于两点,并与轴交于点.直 线与直线交于点. (I)当时,求直线的方程; (II)当点异于两点时,求证: 为定值。 解析:由已知可得椭圆方程为,设的方程为为的斜率。 则 的方程为 (2)证明:当直线与轴垂直时与题意不符 设直线的方程为, 点的坐标为 由(1)知 且直线的方程为,直线的方程为 将两直线联立消去得 故与异号 为消去,等式两边分别平方得
成立?若存在,求出点的坐标;若不存在,请说明理由。 【答案】 解:(1)由题知椭圆过点。得 解得:。 所以,椭圆方程为:。 (2)假设存在满足题意的定点。 当直线平行于轴时,,两点关于轴对称,得在轴上。不妨设 当直线为轴时,。解得 下证对一般的直线,也满足题意。 由得轴为的角平分线。所以。 不妨设 ,化简得① 又椭圆方程与直线方程联立得: , 带入①得成立。 故假设成立。
何知识(如圆、切线等)求解出椭圆标准方程中参数,从而得到椭圆的 标准方程 【2015全国I】一个圆经过椭圆三个顶点,且圆心在 Image 轴正半轴上,则该圆的标准方程为____________. 答案: 解析:如图,该圆只可能过三个顶点,设圆心为, 半径为,则,在中,,解得,,故该圆的标准方程 为 随堂练习: (1)已知椭圆的左右焦点为,离心率为,过点的直线交椭圆于点. 若的 周长为,则椭圆的方程为__________________. 解析:(由椭圆定义)(注意和第一题的区别) (2)设分别是椭圆的左右焦点,过点的直线交椭圆于点,且,轴,则 椭圆的方程为___________。 解析:可设(通径为),由可求得,代入椭圆方程可求得(注意检验的 合法性,),故方程为 (3)若椭圆的焦点在轴上,过点作圆的切线,切点分别为,直线恰好 经过椭圆的右焦点和上顶点,则椭圆的方程为____________. 解析: 的直线方程为,(圆的切点弦方程)它与轴的焦点为,所以;它与轴的 交点为,即 故 三、椭圆综合问题 定值类问题 【2015成都二诊】已知椭圆的右焦点的坐标为,若,且点在椭圆上.
综上存在点满足题意。 总结:(1)存在性问题可由特殊情况(直线平行于轴或轴)找出满足 题意的点或直线,然后在证明一般情况下也成立或者不成立; (2)角平分线定理的运用 (3)角平分线到斜率的转化
【2015全国II】已知椭圆,直线不过原点O且不平行于坐标轴,l 与C有两个交点A,B,线段AB的中点为M. (Ⅰ) 证明:直线OM的斜率与的斜率的乘积为定值; (Ⅱ)若过点,延长线段OM与C交于点P,四边形OAPB能否平行四边行?
(1)求M的方程; (2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边 形ACBD面积的最大值. 解:(1)设A(x1,y1),B(x2,y2),P(x0,y0), 则,,, 由此可得. 因为x1+x2=2x0,y1+y2=2y0,, 所以a2=2b2. 又由题意知,M的右焦点为(,0),故a2-b2=3. 因此a2=6,b2=3.
所以M的方程为. (2)由 解得或 因此|AB|=. 由题意可设直线CD的方程为 y=,(注意取值范围) 设C(x3,y3),D(x4,y4). 由得3x2+4nx+2n2-6=0. 于是x3,4=. 因为直线CD的斜率为1, 所以|CD|=. 由已知,四边形ACBD的面积. 当n=0时,S取得最大值,最大值为. 所以四边形ACBD面积的最大值为. 总结(1)在解决焦点弦斜率以及其中点到原点连线直线斜率的问题 时,可利用交点得到的两个方程相减来解决,以减少计算量 (2)对角线互相垂直的四边形面积计算 (3)由直线方程和圆锥曲线方程求弦长的方法
若能,求此时的斜率,若不能,说明理由. 解析: (Ⅰ)证明:设,则 则, (Ⅱ)法一: 假设四边形为平行四边形,则 设直线方程为,则直线的方程为 联立直线和椭圆方程得 联立直线和椭圆方程得 法二:假设四边形为平行四边形,则 若,则 ① 直线的方程为 代入得 ② 整理①②得代入①得 直线的斜率为 总结:(1)在解决焦点弦斜率以及其中点到原点连线直线斜率的问题 时,可利用交点得到的两个方程相减来解决,以减少计算量
单 3、 涉及到椭圆上动点的问题,可以设其坐标为,以减少计算量 随堂练习: 已知椭圆,点与的焦点不重合. 若关于的焦点的对称点分别为,线段 的中点在上,则 解析:方法一: 左右焦点,则关于的对称点,关于的对称点,设的中点为,则 (是焦点) 由椭圆的定义知 方法二:
二、椭圆的性质及标准方程求解 该类题目主要是利用椭圆的相关性质(如离心率、焦点)及相关几
又 和异号,与同号 解得 故点坐标为 为定值 总结:(1)已知圆锥曲线方程和弦长,求解过焦点的直线方程; (2)当等式同时涉及,可采取平方手段并结合圆锥曲线的方程消去 存在性问题 【2015四川】如图,椭圆的离心率是,过点的动直线与椭圆相交于两 点。当直线平行于轴时,直线被椭圆截得的线段长为。
(1) 求椭圆的方程; (2) 在平面直角坐标系中
相关文档
最新文档