基于MpCCI的Abaqus和Fluent流固耦合案例

合集下载

abaqus与fluent流固耦合

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例基于MPCCI的流固耦合成功案例(一)机翼气动弹性分析1 问题陈述机翼绕流问题是流固耦合中的经典问题。

以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。

这个强硬的假设很难准确的描述流场的实际情况。

更无法预测机翼的振动。

MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。

我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。

采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。

2 模拟过程分析顺序MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。

后台调用ABAQUS和FLUENT。

在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。

启动MpCCI进行耦合。

3 边界条件设置图1 无人机模型和流体计算模型结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。

边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。

在固体中除了固定端的面外,其他三个面为耦合面。

流体部分采用四面体网格,采用理想气体作为密度模型。

流体的入口和出口以及对称性边界条件如下图所示。

图2 固体有限元模型4 计算方法的选择通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。

在本例中,固体在流场作用下产生很大的变形和运动。

在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。

在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。

采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。

5 计算结论通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

基于MpCCI的Abaqus和Fluent流固耦合案例1

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列基于MpCCI的Abaqus和Fluent流固耦合案例主讲人:mafuyin CAE联盟论坛总监摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。

信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。

1 分析模型用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。

值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。

用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。

a. 尺寸关系b. 管壁结构c. 流体模型图1. 几何模型示意图图2. 流固耦合传热分析模型示意图内壁面(耦合面)速度入口v=6m/s; T in=600K外壁面压力出口P=0Pa;T out=300K由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。

即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。

需要求解流体和管壁的温度场分布情况。

2 流体模型将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。

设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。

a. 导入Gambit软件中的流体模型b. 流场的网格模型图3. 流体模型及网格示意图进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。

abaqus与fluent流固耦合

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例基于MPCCI的流固耦合成功案例(一)机翼气动弹性分析1 问题陈述机翼绕流问题是流固耦合中的经典问题。

以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。

这个强硬的假设很难准确的描述流场的实际情况。

更无法预测机翼的振动。

MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。

我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。

采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。

2 模拟过程分析顺序MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。

后台调用ABAQUS和FLUENT。

在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。

启动MpCCI进行耦合。

3 边界条件设置图1 无人机模型和流体计算模型结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。

边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。

在固体中除了固定端的面外,其他三个面为耦合面。

流体部分采用四面体网格,采用理想气体作为密度模型。

流体的入口和出口以及对称性边界条件如下图所示。

图2 固体有限元模型4 计算方法的选择通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。

在本例中,固体在流场作用下产生很大的变形和运动。

在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。

在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。

采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。

5 计算结论通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

第三方平台软件流固耦合mpcci介绍(中文版)案例

第三方平台软件流固耦合mpcci介绍(中文版)案例
?基于mpcci的流固耦合解决方案能够解决大变形的问题基于mpcci的流固耦合解决方案能够解决大变形的问题流固耦合问题经常涉及到大位移和大变形fluent在动网格领域远远领先与其他cfd软件使用fluent和mpcci耦合可以顺利地模拟大变形问题?基于mpcci的流固耦合解决方案能够在各种环境如cluster下实现并行计算基于mpcci的流固耦合解决方案能够在各种环境如cluster下实现并行计算流固耦合的计算量远远大于单独流体或者单独固体的分析对硬件提出了很大的挑战mpcci采用clientserver体系结构客户机和服务器的通信采用tcpip协议使得流固耦合可以运行于任何的主流计算机平台以及网络环境客户端代码本身的并行仍然采用原有的并行机制?基于mpcci的流固耦合解决方案能够实现时间异步的流固耦合分析基于mpcci的流固耦合解决方案能够实现时间异步的流固耦合分析对于流固耦合问题来说流体和固体的响应时间往往相差很大cfd软件和fem软件对分析时间步长也有不同的要求基于mpcci的流固耦合可以对流体和固体单独设定各自的时间步长yesilovempcci
MpCCI的工作原理
• 结构和流体方程独 立求解,互相交换 边界条件
• MpCCI自动完成耦 合面上数据的插值 和传递
MpCCI的优势
• 适应性强。对特定的问题,使用“合适”的软件来解决
• 对运行平台,网络环境没有限制
• 支持大部分主流计算软件的直接耦合模拟
• MpCCI提供了API Toolkit,可以方便的与用户自己编写的程序进行耦 合计算
下,或站着,或随即坐在石头上,手 持那把 扇子, 边唠嗑 边乘凉 。孩子 们却在 周
围跑跑跳跳,热得满头大汗,不时听 到“强 子,别 ቤተ መጻሕፍቲ ባይዱ了, 快来我 给你扇 扇”。 孩

108-基于MpCCI的流固耦合技术的工程应用

108-基于MpCCI的流固耦合技术的工程应用

面向工程的流固耦合解决方案魏随利北京海基科技有限责任公司1基于MpCCI的流固耦合方案的流固耦合方案MpCCI (Mesh-based parallel Code Coupling Interface)是由德国SCAI开发出来的,其目的是为了提供一个独立于应用的接口来耦合不同的仿真代码。

MpCCI是这样的一个软件环境,它可以交换两个或多个仿真代码在耦合区域的网格之间的数据。

一般而言,属于不同仿真代码的网格是互不兼容的,MpCCI需要完成插值。

在并行情况下,MpCCI保持对在不同进程网格区域分布的跟踪。

MpCCI允许交换耦合代码之间的任意的物理量,如能量和动量源、材料特性、网格定义或全局量。

数据交换的复杂细节被隐藏在简洁的MpCCI界面接口之后。

大多数商业CFD/FEM软件允许用户通过编程接口增加额外的特征、物理模型、边界条件,在用户定义子程序内部存取内部数据结构是可能的,甚至于通过子程序参数、全局变量或者通过内部模型来读取和保存数据。

MpCCI正是使用这种能力完成代码适配,在每一个迭代步或时间步后所调用的子程序是连接到MpCCI的挂钩。

固体结构软件采用MARC、ABAQUS、ANSYS,流体分析软件采用FLUENT,以MpCCI 为流固耦合接口可以方便地模拟流固耦合问题。

在流固耦合时,流体分析软件FLUENT起主导和控制作用。

首先由流体软件初始化流场,在初始化完成后,流体软件将耦合区域的受力传递给固体分析软件MARC 或ABAQUS,固体分析软件计算这一时刻的节点位移、应力,在固体软件完成初始时刻的计算后,固体软件将耦合区域的节点位移传递给流体软件FLUENT,作为FLUENT软件移动边界的依据。

这时流体软件将时间步推进到下一时刻,完成下一个时刻的流动模拟,并且将耦合区域的受力传递给固体分析软件,在固体完成计算后将位移传递得流体分析软件,如此循环直到耦合过程结束。

双方在耦合区域部分的网格可以是不匹配的,MpCCI实现二者之间的传递和插值。

一些关于使用MPCCI计算流固耦合问题时Fluent网格分块的经验

一些关于使用MPCCI计算流固耦合问题时Fluent网格分块的经验

一些关于使用MpCCI计算流固耦合问题时Fluent网格分块的经验下面的列子只是为了说明问题而构造的,实际问题要比这个复杂的多。

如下图所示,流体从左边以一定的攻角流入,绕过中间蓝色的固体障碍物,然后从右边流出。

图(一):问题背景示意图在使用MpCCI, Fluent和其它FEM软件(比如ABAQUS)进行流固耦合计算时,通常由于CFD计算很耗时,而不得不使用Fluent并行计算功能以缩短计算时间。

这里我将以四个节点并行计算来说明问题。

要使用Fluent并行计算功能,那么必需将Fluent的网格分块(partition),但是这时不能像单独使用Fluent进行流场计算那样进行分块了。

为了方便说明问题,我将假设使用ABAQUS作为FEM求解器。

由于上图中的流体和结构将在两个弧状的界面上进行耦合,而是将结构FEM网格上下两个弧线上的单元在ABAQUS中定义为两个不同的Set,请参考图二。

(当然由于这个耦合面的几何本身很简单,实际计算时没有必要做成几个Set,真正计算时设置为一个Set 就够了。

然而像在处理计算飞机整机蒙皮在气动力作用下的响应的流固耦合问题时,就应当把(结构的)耦合面按照某种方式做成不同的Set以利于后面流场网格的分块。

)MpCCI 要求Fluent网格中与结构FEM模型的某一Set对应的耦合面必需位于同一个分块(partition)里面。

比如,图一里面的(流场里面的)上弧线与结构网格里面的SetA_Element_Face对应,那么它不能属于不同的partition,同理,(流场里面的)下弧线也受到同样的限制。

因此图三的分块方式是错误的,而图四是一种正确的分块方法。

图(二):结构网格示意图图(三):错误的流场分块方式图(四):一种正确的流场分块方式要达到图四的分块效果实际只需在生成流场网格时注意几点就差不多了。

我是使用Gridgen生成的流场网格。

我把整个流场网格按照图五的方式创建了四个不同的block,然后再输出网格时,为四个不同的block设置为四个不同的用户自定义的VB(Volume Boundary ),实际上这与Gambit中的zone设置对应。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例【原创实用版】目录1.Fluent 流固耦合传热简介2.Fluent 软件的应用范围3.流固耦合传热的算例分析4.Fluent 软件在流固耦合传热中的应用技巧5.总结正文一、Fluent 流固耦合传热简介流固耦合传热是一种复杂的热传递过程,涉及到流体和固体之间的相互作用。

在这种过程中,流体与固体之间的热传递机制和热流动特性都需要考虑。

Fluent 是一款强大的计算流体力学(CFD)软件,可以模拟流固耦合传热过程,为研究人员和工程师提供可靠的解决方案。

二、Fluent 软件的应用范围Fluent 软件广泛应用于各种流体动力学问题的仿真和分析中,包括流固耦合传热问题。

它可以模拟多种流体流动和传热模式,如强制对流、自然对流和湍流等。

同时,Fluent 也可以考虑固体的热传导和热膨胀等特性,为研究者提供全面的热传递分析手段。

三、流固耦合传热的算例分析在 Fluent 中,可以通过设置耦合界面和热流边界条件来模拟流固耦合传热问题。

例如,可以考虑一个流体与固体相接触的系统,通过调整流体和固体的热传导系数、对流换热系数等参数,观察不同条件下的热传递特性。

四、Fluent 软件在流固耦合传热中的应用技巧为了获得准确的仿真结果,需要注意以下几点:1.网格划分:在仿真中,需要对流体和固体部分进行适当的网格划分,以确保计算精度。

2.耦合设置:在设置耦合界面时,需要选择正确的耦合方式,如耦合热流或耦合应力等。

3.边界条件:在设置热流边界条件时,需要考虑流体与固体之间的热交换方式,如对流换热或传导换热等。

4.物质属性:需要正确设置流体和固体的物质属性,如比热容、密度和热传导系数等。

五、总结Fluent 软件在流固耦合传热方面的应用具有广泛的实用性,可以模拟各种复杂的热传递过程。

fluent流固耦合案例

fluent流固耦合案例

fluent流固耦合案例
一个常见的流固耦合案例是风洞实验。

风洞是一个用于模拟飞行器在风场中运动的设备,其中飞行器模型放置在流场中,通过控制风洞内的气流运动来模拟不同飞行状态下的飞行器性能。

在风洞实验中,流体(空气)和固体(飞行器模型)之间存在耦合关系。

流体流动会受到飞行器模型的阻力、升力等力的影响,同时飞行器模型的形状、表面特性也会影响流体的流动状态。

通过调整风洞中的气流速度、飞行器模型的姿态等参数,可以模拟不同飞行状态下的流体流动和飞行器性能,帮助工程师评估飞行器设计的稳定性、升阻比、气动特性等。

在这个案例中,流体和固体之间的流固耦合是通过相互作用来实现的。

流体的速度和压力分布会受到固体表面的细微变化影响,而固体的运动和力学性能则会受到流体的作用力和流动状况的限制。

通过对风洞实验的观测和数据分析,可以获取关于飞行器在不同飞行状态下的气动性能的重要信息,为改进飞行器设计、提高性能和安全性提供参考。

abaqus与fluent流固耦合

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例基于MPCCI的流固耦合成功案例(一)机翼气动弹性分析1 问题陈述机翼绕流问题是流固耦合中的经典问题。

以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。

这个强硬的假设很难准确的描述流场的实际情况。

更无法预测机翼的振动。

MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。

我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。

采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。

2 模拟过程分析顺序MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。

后台调用ABAQUS和FLUENT。

在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。

启动MpCCI进行耦合。

3 边界条件设置图1 无人机模型和流体计算模型结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。

边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。

在固体中除了固定端的面外,其他三个面为耦合面。

流体部分采用四面体网格,采用理想气体作为密度模型。

流体的入口和出口以及对称性边界条件如下图所示。

图2 固体有限元模型4 计算方法的选择通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。

在本例中,固体在流场作用下产生很大的变形和运动。

在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。

在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。

采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。

5 计算结论通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

abaqus与fluent流固耦合

abaqus与fluent流固耦合

Abaqus与Fluent流固耦合什么是流固耦合?在工程学中,流固耦合是指流体和固体之间互相影响的现象。

它在许多工程领域都是非常重要的,例如航空航天、化学反应工程、海洋工程等。

在流固耦合中,流体可以影响固体的形状和运动,而固体则可以影响流体的速度和流动分布。

什么是Abaqus和Fluent?Abaqus是一款用于有限元分析的软件,它可以帮助工程师和科学家分析结构、热力学、电子力学、流体力学等领域的问题。

Fluent是ANSYS公司推出的一款用于计算流体动力学(CFD)的软件,它可以帮助用户进行流体模拟和分析。

Fluent在工业和学术领域都得到了广泛的应用。

为什么需要流固耦合?在某些工程问题中,我们需要同时考虑固体和流体的影响。

例如,飞机的机翼和风扇叶片在飞行时都会受到气流的影响。

对于这种情况,我们需要用到流固耦合分析来预测机翼或叶片的形变和应力变化,以及气流的速度和分布。

Abaqus与Fluent重叠网格法(Coupled Meshing)耦合Abaqus和Fluent之间可以通过重叠网格法来进行流固耦合分析。

这种方法可以实现固体表面的变形和流体速度场之间的相互作用。

它包括三个步骤:1.生成重叠网格在流固耦合分析中,我们需要生成重叠的网格,即一个网格同时覆盖了固体和流体的域。

这可以通过使用Abaqus或Fluent中的网格生成工具来实现。

在网格生成过程中,我们需要注意网格的质量和细密程度,以保证精度和计算效率。

2.定义边界条件在进行流固耦合分析之前,我们需要定义固定边界条件和物理边界条件。

固定边界条件是指固体的边界条件,例如支撑和约束。

物理边界条件是指流体的边界条件,例如入口速度和出口压力。

在定义边界条件时,我们需要考虑固体和流体的相互作用,以实现流固耦合的效果。

3.进行流固耦合分析在完成重叠网格和边界条件的定义后,我们可以使用Abaqus和Fluent中的耦合模块来进行流固耦合分析。

在分析过程中,Abaqus会将固体模型发送给Fluent进行流体分析,然后将流体分析结果反馈给Abaqus进行固体的力学分析。

【Fluent案例】11:流固耦合[2]

【Fluent案例】11:流固耦合[2]

【Fluent案例】11:流固耦合[2]上文获取到U型管最大Y方向振动振型所对应的频率为50.4Hz。

本文接上文继续。

1瞬态结构计算设置•Workbench界面中,双击B5单元格进入Transient Structural•右键选择模型树节点Transient,选择弹出菜单Insert → Fixed Support•选择管道进出口两侧最外圈的两个圆边,施加固定约束•右键选择模型树节点Transient,选择弹出菜单Insert →Displacement,属性窗口中,Geometry设置为图中所示选择面•选择Y Component设置框右侧的箭头按钮,选择Function,设置Y Component为0.000025*sin(50.4*360*time)•选择模型树节点Analysis Settings,属性窗口中设置Auto Time Stepping为Off,设置Step End Time为0.1s,设置Time Step为5e-4 s•右键点击模型树节点Transient,选择弹出菜单Insert →Fluid Solid Interface•属性窗口中设置Scoping Method为Named Selection,设置Named Selection为fsi_solid•右键选中模型树节点Solution,选择弹出菜单Insert → Deformation → Directional•属性窗口中,设置Scoping Method为Named Selection,设置Named Selection为Node1,设置Orientation为Y Axis•相同的步骤,插入Node2关闭Transient Structural,返回Workbench。

2稳态Fluent设置先进行稳态Fluent设置,将稳态计算结果作为初始值。

•双击C4单元格,以Double Precision方式启动Fluent•右键选中模型树节点Viscous,选择弹出菜单Model → SST k-omega启用SST k-w湍流模型•右键选择模型树节点Materials > Fluid,选择弹出菜单New…,在材料数据库中添加介质water-liquid,修改其密度Density为1000 kg/m3•右键选择模型树节点Cell Zone Conditions,选择弹出菜单Edit…,弹出计算域设置对话框•在弹出的对话框中设置Material Name为water-liquid•右键选择模型树节点Boundary > inlet,选择右键菜单Edit…,弹出边界条件设置对话框•在对话框中设置velocity Magnitude为20 m/s,设置Specification Method为Intensity and Hydraulic Diameter,设置Turbulent Intensity为1%,设置Hydraulic Diameter为0.02 m•设置outlet边界,如下图所示•双击模型树节点Solution > Method,右侧面板中设置Pressure-Velocity Coupling Scheme为Coupled,激活选项Pseudo Transient及High Order Term Relaxation•右键选择模型树节点Solution > Initialization,选择弹出菜单Initialize进行初始化•鼠标双击模型树节点Solution > Run Calculation,右侧面板中设置Number of Iterations为200,点击按钮Calculate进行计算•关闭Fluent返回Workbench3数据连接•Workbench中,复制Fluent组件,如下图所示•采用如下图所示的数据连接•添加System Coupling模块,并连接B5与D4单元格,如下图所示4瞬态Fluent设置•双击D5单元格进入Fluent•双击模型树节点General,右侧面板中设置Time为Transient•双击模型树节点Dynamic Mesh,右侧面板中激活选项Dynamic Mesh,点击下方按钮Settings…,在弹出的对话框中设置Method为Diffusion,设置Diffusion Parameter为1,点击OK按钮关闭对话框•点击Dynamic Mesh Zones下方的Create/Edit…按钮,在弹出的对话框中选择Zone Name为fsi_fluid,设置其Type为System Coupling,点击Create按钮创建动网格区域•双击模型树节点Run Calculation,右侧面板中设置Number of Time Steps为1,设置Max Iterations/Time Step为5注:这里其实可以随便设,反正Fluent 计算所采用的时间步和时间步长受systemcoupling控制•关闭Fluent,返回至Workbench•右键点击B5单元格,选择菜单Update更新组件5System Coupling设置•双击E2单元格进入System Coupling设置窗口•选中Analysis Settings,下方窗口中设置End Time为0.1 s,设置Step Size为0.0005 s,如下图所示•按住键盘ctrl键同时选择Fluid Solid Interface及fsi_fluid,选择右键菜单项Create Data Transfer•关闭System Coupling设置界面,返回至Workbench界面•右键选择E3单元格,选择菜单项Update进行求解求解时间较长,可能需要等待一两个小时。

abaqus和Fluent的流固耦合模拟

abaqus和Fluent的流固耦合模拟

耦合模拟为耦合模拟ABAQUS需做如下工作:l定义耦合步l定义耦合区域l定义耦合区域需要交换的物理量以上每一步骤将在下面详细叙述定义耦合步ABAQUS耦合模拟界面是和存在的ABAQUS程序联合使用的。

在你想定义的耦合步中,无论耦合情况如何,你必须先有效的载荷和边界条件。

然后你再说明需要耦合的是这步,其中的一些量需要和三方软件进行数据交换。

如下的一些过程ABAQUS是可以进行耦合分析的:l准静态应力分析l直接积分的隐式动态分析l显式动态分析l无耦合的热传导分析l全积分热应力分析与MPCCI server 数据交流始于耦合步,终于耦合步。

由于ABAQUS和其它三方软件在耦合分析过程中是实时的进行数据交换以及启动和终止三方程序,你可以在一个工作项目中只定义一个耦合步。

输入文件格式为:*CO-SIMULATION定义接触区域接触区域是系统之间的连接区域。

这个表面对于ABAQUS而言必须是单元类型的面,任何对于MPCCI支持的单元类型均可以用于耦合步。

而只有如下单元类型可以定义为接触区域,如表7.9.2-1定义耦合区域的交换量对于每个耦合区域你必须指定ABAQUS和其它三方软件进行交换的物理量,表7.9.2-2列出了可以用于交换和选择的物理量输入输出的物理量的选择取决于分析的类型,如表7.9.2-3所示输入文件的格式为:*CO-SIMULA TION,IMPORTsurface_A,quantity_I1,quantity_I2,…surface_B,quatity_I3*CO-SIMULA TION,EXPORTsurface_A,quantity_E1surface_B,quantity_E2当前节点坐标和位移因为在CFD代码中流体形状可以变化,不保持初始几何构型,所以在流固耦合(FSI)中选择当前节点坐标(COORD),而不是选择节点位移(U)。

不管是做小变形还是大变形,COORD的定义是当前节点坐标。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例摘要:fluent 流固耦合传热算例I.引言- 简述流固耦合传热算例的重要性- 介绍fluent 软件在流固耦合传热计算中的应用II.fluent 软件介绍- 概述fluent 软件的特点和功能- 讲解fluent 软件在流固耦合传热计算中的操作流程III.流固耦合传热算例解析- 分析算例背景及目的- 详细描述算例的流固耦合传热计算过程- 解释算例结果及其意义IV.结论- 总结算例的流固耦合传热计算经验- 提出进一步研究和改进的建议正文:fluent 流固耦合传热算例I.引言流固耦合传热算例在工程领域中具有广泛的应用,可以帮助工程师们更好地理解和掌握流固耦合传热现象。

fluent 软件作为一种强大的流体动力学模拟软件,在流固耦合传热计算中具有重要的作用。

本文将通过一个具体的算例,详细介绍fluent 软件在流固耦合传热计算中的应用。

II.fluent 软件介绍fluent 软件是一款功能强大的流体动力学模拟软件,广泛应用于航空航天、汽车制造、能源等领域。

它具有丰富的物理模型和强大的数值计算能力,可以模拟流体流动、热传导、化学反应等多种物理现象。

在流固耦合传热计算中,fluent 软件可以实现流体与固体结构之间的热传递模拟,为工程师们提供准确的计算结果。

III.流固耦合传热算例解析为了具体阐述fluent 软件在流固耦合传热计算中的应用,我们选取了一个典型的算例进行详细分析。

算例背景为一组流固耦合传热实验,实验中涉及到流体流动、固体传热以及流固耦合传热现象。

我们使用fluent 软件对实验进行模拟,以获取流固耦合传热过程中的温度分布和热流密度等关键参数。

在fluent 软件的操作过程中,我们首先创建了流体和固体的几何模型,并定义了它们的材料属性。

接着,我们设置边界条件,包括流体进口、出口和固体表面的热交换条件。

在求解器设置中,我们选择了适用于流固耦合传热计算的求解器,并设置了相应的耦合条件。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例一、fluent简介Fluent是一款专业的流体动力学模拟软件,由美国ANSYS公司开发。

它具有强大的计算能力和广泛的适用范围,可以模拟多种流体流动、传热等问题。

在工程领域、科研单位和高校等领域具有广泛的应用。

二、流固耦合传热概述流固耦合传热问题是指在流体流动过程中,固体壁面与流体之间的热量传递。

这种问题涉及到流体力学、传热学和固体力学等多个学科,具有一定的复杂性。

通过Fluent 软件进行模拟分析,可以得到流场、温度场和应力场等多场耦合的数值解。

三、算例介绍本文将介绍一个简单的流固耦合传热算例,以演示Fluent 的操作方法和注意事项。

算例模型为一个矩形通道,通道内部流动的是水,壁面材料为铜。

通道两侧分别为冷却水进口和出口,冷却水的温度分别为30℃和40℃。

模拟目标是求解通道内水的流速、温度分布以及壁面的热应力。

四、操作步骤及注意事项1.打开Fluent 软件,创建新项目。

2.导入几何模型,本文采用矩形通道模型。

3.定义物理模型,包括流体物性(如密度、比热容等)、壁面材料(如铜)以及冷却水边界条件。

4.划分网格,选择合适的网格类型和密度。

5.设置求解器参数,包括收敛标准、迭代次数等。

6.启动计算,观察结果收敛情况。

7.分析结果,包括流速分布、温度分布以及壁面热应力。

注意事项:1.在设置物理模型时,要确保与实际情况相符。

2.网格划分要合理,以保证计算精度和收敛速度。

3.根据问题特点,选择合适的求解器参数。

五、结果分析与讨论通过Fluent 模拟,得到以下结果:1.通道内水流速分布均匀,无明显涡流产生。

2.通道内温度分布呈现梯度变化,进口处温度较低,出口处温度较高。

3.壁面热应力分布均匀,符合热应力计算公式。

分析与讨论:1.流速分布对传热性能有一定影响,适当提高流速可以增强传热效果。

2.温度分布反映了热量在通道内的传递情况,与实际工程应用中的需求相符。

3.壁面热应力的计算结果可以为工程设计提供参考,以避免因热应力导致的材料损伤或设备故障。

abaqus与fluent流固耦合

abaqus与fluent流固耦合

基于MPCC的流固耦合成功案例基于MPCC的流固耦合成功案例(一)机翼气动弹性分析1问题陈述机翼绕流问题是流固耦合中的经典问题。

以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。

这个强硬的假设很难准确的描述流场的实际情况。

更无法预测机翼的振动。

MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。

我们通过MPCCI能很好的预测真实情况下的机翼绕流问题。

采用ABAQU结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Flue nt软件来计算由于固体运动和变形对整个流场的影响。

2模拟过程分析顺序MpCC的图形用户界面可以方便的读入结构和流体的输入文件。

后台调用ABAQUS口FLUENT在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。

启动MpCCI进行耦合。

3边界条件设置图1无人机模型和流体计算模型结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。

边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。

在固体中除了固定端的面外,其他三个面为耦合面。

流体部分采用四面体网格,采用理想气体作为密度模型。

流体的入口和出口以及对称性边界条件如下图所示。

图2固体有限元模型4计算方法的选择通过结合ABAQUS口FLUENT使用MPCCI计算流固耦合。

在本例中,固体在流场作用下产生很大的变形和运动。

在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCC传输给FLUENT勺耦合界面,FLUENT计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQU S在MPCC的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。

采用ABAQU中的STANDAR算法,时间增量步长为0.1毫秒。

5计算结论通过MPCC结合ABAQUS口FLUENT成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例fluent流固耦合传热算例是针对流体和固体之间热量传递的一种数值模拟方法。

在工程领域中,流固耦合传热问题广泛存在于换热器、散热器、核电站等领域,对于优化设计、提高传热效率以及解决实际工程问题具有重要意义。

一、流固耦合传热概念介绍流固耦合传热是指在流体与固体之间由于温度差引起的热量传递过程。

在这种传热方式中,流体和固体的温度场、速度场以及压力场之间存在相互影响的关系。

流固耦合传热问题可以分为内部耦合和外部耦合两种类型。

内部耦合是指流体和固体内部的热量传递过程,而外部耦合是指流体和固体之间的热量交换。

二、流固耦合传热算例背景及意义本文以某实际工程为背景,通过fluent软件对流固耦合传热问题进行数值模拟。

旨在揭示流体与固体之间热量传递的规律,为实际工程提供参考依据。

通过分析算例,可以优化传热装置设计,提高传热效率,降低能耗,从而降低生产成本。

三、算例具体内容与分析本算例采用fluent软件进行数值模拟,考虑流体在固体内部的流动与热量传递。

模拟过程中,流体与固体的温度、速度、压力等参数随时间和空间的变化关系。

通过计算得到流体与固体之间的热量交换,从而分析传热过程的性能。

四、结果讨论与启示通过对流固耦合传热算例的分析,得到以下结论:1.在流固耦合传热过程中,流体的温度分布和速度分布对固体表面的热量传递有显著影响。

2.固体内部的温度分布存在一定的规律,可通过优化固体材料、改变流体流动方式等方法提高传热效果。

3.流固耦合传热问题具有较强的非线性特点,需要采用数值模拟方法进行深入研究。

本算例为实际工程提供了有益的参考,启示我们在设计传热装置时,要充分考虑流体与固体之间的相互作用,从而实现高效、节能的目标。

综上所述,fluent流固耦合传热算例对于揭示流体与固体之间热量传递规律具有重要的实际意义。

双向流固耦合实例

双向流固耦合实例

双向流固耦合实例(Fluent与structure)说明:本例只应用于FLUENT14.0以上版本。

ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。

官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。

模块及数据传递方式如下图所示。

一、几何准备流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。

在geometry模块中同时创建流体模型与固体模型。

到后面流体模型或固体模块中再进行模型禁用处理。

模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。

由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。

当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。

这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。

二、流体部分设置1、网格划分双击B3单元格,进入meshing模块进行网格划分。

禁用固体部分几何。

设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。

这里设定全局尺寸为1mm。

划分网格后如下图所示。

2、进行边界命名,以方便在fluent中进行边界条件设置设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。

操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。

利用FLUENT软件模拟流固耦合散热实例

利用FLUENT软件模拟流固耦合散热实例
利用FLUENT软件模拟流固耦合散热 实例
摘要
Gambit创建模型 FLUENT计算及后处理
Gambit创建模型
• 创建几何模型 • 划分网格 • 指定边界条件
问题描述
Chip Board Fluid
Top wall (externally cooled) h = 1.5 W/m2∙K T∞ = 298 K
⑤ 指定压力出口条件
⑥ 指定symmetry条件
在Boundary Conditions面板中,Zone下面选择boardsymm,确认Type下为symmetry; 同样对chip-symm, fluid-symm, sym-1, sym-2进行确 认,不需要另外设置。
⑦ 指定模型跟外部氛围的换热条件
5 . 定义边界条件
Define—Boundary Conditions

指定流体区域材料类型
在Boundary Conditions面板中,Zone下面选择fluid,然后在Type一侧选择fluid,点击Set按扭, 在弹出的Fluid面板中选择Material Name 为air(实际默认正确)。
红色(chip) : solid
紫色(board): solid
10。输出网格
1 2
在File Name中自定义名称 然后 Accept
网格成功输出
FLUENT计算及后处理
读入mesh文件 选择物理模型 定义材料属性 指定边界条件 初始化 设置求解器控制 设置收敛监视器 计算 后处理
监测残差曲线
•Residual 各监测曲线都达 到设定的收敛标准。 •Fluent窗口中 显示达到收敛
后处理
1.显示chip附近的温度分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MpCCI 的Abaqus 和Fluent 流固耦合案例
mafuyin
摘要:通过MpCCI 流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus 和Fluent 相结合的流固耦合仿真分析。

信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。

1 分析模型
用三维建模软件solidworks 建立了一个管径为1m 的弯管,结构尺寸如图1a 所示,管的结构如图1b 所示,流体的模型如图1c 所示。

值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。

用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。

a. 尺寸关系
b. 管壁结构
c. 流体模型
图1. 几何模型示意图
图2. 流固耦合传热分析模型示意图
内壁面(耦合面) 速度入口
v=6m/s; T in =600K 外壁面
压力出口 P=0Pa ;T out =300K
由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。

即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。

需要求解流体和管壁的温度场分布情况。

2 流体模型
将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit 中,如图3a所示。

设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。

a. 导入Gambit软件中的流体模型
b. 流场的网格模型
图3. 流体模型及网格示意图
进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。

然后定义流体属性,名称定义为air,类型为Fluid。

这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。

定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。

打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。

读入模型后,进行求解参数和条件的设置。

(1)模型缩放:为了便于分析结果数据特征,统一采用国际单位制进行仿真,
点击【Grid】→【Scale】,弹出模型缩放对话框,在单位转换下将原有的m改为mm,模型自动缩小1000倍,然后点击【Scale】,结果如图4所示。

需要说明的是因为网格的生成尺寸是按照mm生成的,所以这里需要将网格尺寸缩放为m。

图4. 模型缩放示意图
(2)网格平滑处理:为了保证网格节点之间的连接和过度关系良好,Fluent 提供了网格smooth功能,可以通过网格节点调整来调整整体网格。

点击【Grid】→【Smooth/Swap】,然后接受默认参数,先后点击【Smooth】和【Swap】,直至出现“Number faces swapped: 0”和“Number faces visited: 0”为止。

(3)网格检查:为了保证计算能顺利进行和保证计算结果的可靠性,需对网格质量进行检查,如果存在负体积网格则计算无法进行。

点击【Grid】→【Check】,观察“minimum volume”是否为负,如果不是负值,则结束检查,如果是负值,需进行重新划分网格直至不出现负体积为止。

(4)定义求解器:点击【Define】→【Models】→【Solver】,弹出求解器对话框,接受默认设置,即压力相依、隐式、3D、稳态、完全分析模型,如图5所示。

图5. 求解器设置示意图
(5)启动能量分析模型:传热分析需启动能量分析模型。

点击【Define】→【Models】→【Energy】,勾选能量准则。

(6)设置分析模型,选择“k-epsilon”模型。

点击【Define】→【Models】→【Viscous】,然后按照图6进行设置。

图6. 求解模型设置
(7)定义材料属性:定义为空气即可。

点击【Define】→【Materials】,接受默认设置,然后点击。

(8)定义边界条件:按照在Gambit中设置的面,定义速度进口边界条件、压力出口边界条件和壁面边界条件。

【Define】→【Boundary Conditions】,分别按照图7所示进行设置。

速度入口
压力出口
壁面
图7. 边界条件设置
(9)求解参数控制:在求解时需设置求解控制参数,点击【Solve】→【Controls】→【Solution】,打开设置窗口,接受默认设置即可。

(10)保存文件:将模型文件进行保存,准备进行计算。

点击【File】→【Write】→【Case】,保存模型。

3 结构模型
采用达索公司的Abaqus软件进行结构的计算。

首先导入图1b所示的管道模型,导入时将模型缩小1000倍,即缩放到m,采用国际单位制进行仿真。

导入模型后需进行材料属性、接触条件、分析步等设置,以及需要划分网格,具体过程和步骤如下:
(1)定义耦合面:由于需要进行流固耦合分析,所以要事先设置好耦合面,才能进行流固耦合的相关设置。

点击【Tools】→【Surface】→【Create】,在屏幕下方选择区域处将“individually”改为“by angle”,并接受默认角度为20°,然后点击模型的内壁面,所有壁面将会被选中,然后点击【Done】即可。

(2)定义材料属性:进入【Property】模块,点击按钮,弹出材料属性对话框,输入材料名称为“Steel”,点击【General】→【Density】,输入密度为6800Kg/m3;点击【Mechanical】→【Elasticity】→【Elastic】,输入杨氏模量为206e9Pa,泊松比为0.3;点击【Mechanical】→【Expansion】,输入扩散系数为1.38e-5;点击【Thermal】→【Conductivity】,定义导热系数为55;点击【Thermal】→【Specific Heat】,输入比热为446。

然后定义个均匀实体截面属性,并将所定义的材料属性赋值给模型。

(3)模型装配:进入【Assembly】模块,将模型进行装配,因为后面的设置都是针对装配体的,所有虽然是单一部件,也要进行装配。

(4)分析步:定义稳态传热分析步,设置总分析时间为20s,增量步为20000步,即步长为0.001。

如图8所示。

图8. 分析步设置示意图
(5)定义接触属性:进入【Interaction】模块,点击,选择“Surface film condition”,点击【Continue】,选择耦合面以外的三个面,设置如图9所示的接触参数。

图9. 接触属性设置示意图
(6)网格划分:设置种子点的单元尺寸为0.025m,划分六面体单元,一共得到23932个单元,如图10所示。

图10. 网格划分示意图
(7)生成计算文件:进入【Job】模块,定义一共job,然后点击Job Manager,
点击【Write Input】,就可以生成计算所需的inp文件。

4 耦合求解
在得到流体求解模型和结构模型后,可通过MpCCI接口进行流固耦合仿真计算。

具体过程和步骤如下:
(1)开启Abaqus、Fluent和MpCCI三个软件的许可服务(如果不是自动开启的话),然后打开MpCCI软件,配置为Fluent与Abaqus的耦合,并分别读入上文中得到的两个模型文件,如图11所示。

图11. 求解器耦合示意图
(2)设置耦合参数:点击【Next】,进入耦合参数设置界面,将流体的Wall和结构的内壁面设置为耦合面,耦合量为FilmTemp、WallHTCoeff和WallTemp,设置情况如图12所示。

(3)设置求解参数:连续点击两次【Next】,进入求解参数设置界面。

按照图13进行设置。

图12. 耦合参数设置示意图
图13. 求解参数设置示意图
(4)启动求解:从左到右先后点击三个【Start】,即先后启动MpCCI、Fluent 和Abaqus三个程序,出现图14所示界面后在Fluent中对流场进行初始化并开始迭代计算。

图14. 计算准备就绪示意图
5 计算结果
通过进行两个求解器间的数据交换,反复迭代,直至两者之间达到一个稳定的状态后求解收敛,停止计算,计算结果如图15所示。

图15. 耦合壁面能量分布示意图
从图15可以看出,虽然由于两个软件中网格密度不一样,导致了在网格较稀疏的Fluent模型中能量分布较为粗糙,但数值和云图分布上都基本与Abaqus 完全吻合,计算效果较好。

本文对一个大口径弯管及其管中流动的流体之间的换热过程进行了流固耦合模拟,得出了较好的计算结果。

主要介绍了在流体软件Fluent和结构软件Abaqus中如何设置,并如何通过MpCCI将两个软件连接起来进行流固耦合分析的全部详细过程,对相关分析人员具有参考价值。

11。

相关文档
最新文档