数学八下易错题(含答案)

合集下载

数学八年级下册经典易错题集附答案解析

数学八年级下册经典易错题集附答案解析

八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

数学八下易错题(含答案)

数学八下易错题(含答案)

八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D )A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等,因此只能是:5cm ,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是(D )A .40°B .50°C .60°D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则最长边上的高是(D )A.2.4cmB.3cmC.4cmD. 4.8cm提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.84.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33. 解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3, ∵AB=AC , ∴∠ABC=∠ACB=21∠BAD=21(90°-30°)=30°, ∴∠ABD=∠ABC ,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30°∴∠A=90°-30°=60°,∴△ABC 是等边三角形,∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形(B )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”】 6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D ,交BC 于E ,则△ADC 的周长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60°证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60°则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180° 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立. ∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立【注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法】8. 如图所示,∠AOB=30°,OC 平分∠AOB,P 为OC 上任意一点,PD∥OA 交OB 于点D ,PE⊥OA 于点E ,若PE=2cm ,则PD=_________cm .解:过点P 作PF ⊥OB 于F ,∵∠AOB=30°,OC 平分∠AOB ,∴∠AOC=∠BOC=15°,∵PD ∥OA ,∴∠DPO=∠AOP=15°,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO ,∴PD=OD=4cm ,∵∠AOB=30°,PD ∥OA ,∴∠BDP=30°,∴在Rt △PDF 中,PF=21PD=2cm , ∵OC 为角平分线,PE ⊥OA ,PF ⊥OB,∴PE=PF ,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9解:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB ,∵MN ∥BC ,∴∠EBC=∠EBC ,∠ECN=∠ECB ,∴BM=ME ,EN=CN ,∴MN=BM+CN ,∵BM+CN=9,∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为(B ) A.11 B.5.5 C.7 D.3.5解:作DM=DE 交AC 于M ,作DN ⊥AC ,∵在△AED 和△AMD 中∴△AED ≌△AMD∴ADM ADE S S V V∵DE=DG ,DM=DE ,∴DM=DG ,∵AD 是△ABC 的外角平分线,DF ⊥AB ,∴DF=DN ,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMN (HL ),∵△ADG 和△AED 的面积分别为50和39,∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11=5.5考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是(A )A. B. C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC过C 作CD ⊥AB ,交AB 于点D ,则由ABC S V =21AC .BC=21AB .CD ,得CD=AB BC AC .=1512x 91=536考查知识:利用面积相等法12.如图,在△ABC 中AD⊥BC,CE⊥AB,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是(A )A.1 B.2 C.3 D.4解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,∴△AEH ≌△CEB (ASA )∴CE=AE ,∵EH=EB=3,AE=4,∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F ,AB=5,AC=2,则DF 的长为23.解:延长CF 交AB 于点G ,∵AE 平分∠BAC ,∴∠GAF=∠CAF ,∵AF 垂直CG ,∴∠AFG=∠AFC ,在△AFG 和△AFC 中,∴△AFG ≌△AFC (ASA )∴AC=AG ,GF=CF ,又∵点D 是BC 的中点,∴DF 是△CBG 的中位线,∴DF=21BG=21(AB-AG )=21(AB-AC )=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,交AD 于E ,交BC 的延长线于F.求证:∠CAF=∠B.解:∠B=∠CAF.∵FE 垂直平分AD ,∴FA=FD ,∴∠FAD=∠ADF ∵AD 为∠BAC 的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD ,∠B=∠ADF-∠BAD ,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA 、OB 表示两条相交的公路,点M 、N 是两个工厂,现在要在∠AOB 内建立一个货物中转站P ,使中转站到公路OA 、OB 的距离相等,并且到工厂M 、N 的距离也相等,用尺规作出货物中转站P 的位置.解:①作∠AOB 的角平分线;②连接MN ,作MN 的垂直平分线,交OM 于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED(2)解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.(1)证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°又∠AFE=∠BFD∴∠CAD=∠FBD又∠ADC=∠BDF=90°∴△ADC≌△BDF∴AC=BF∵AB=BC,BE⊥AC∴AC=2AE∴BF=2AE(2)解:设AD=x,则BD=x∴AB=BC=2+x∵△ABD是等腰直角三角形∴AB=2AD∴2+x=2x解得x=2+2即AD=2+218.如图,已知△ABC是等边三角形,D、E分别在BA、BC的延长线上,且AD=BE.求证:DC=DE证明:延长BE至F,使EF=BC∵△ABC是等边三角形∴∠B=60°,AB=BC∴AB=BC=EF∵AD=BE,BD=AB+AD, BF=BE+EF∴BD=BF∴△BDF是等边三角形∴∠F=60°,BD=FD在△BCD和△FED中,BC=EF∠B=∠F=60°BD=FD∴△BCD≌△FED(SAS)∴DC=DE19.如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90°∴∠DBC+∠AFC=∠FAC+∠AFC=90°∴∠DBC=∠FAC在△ACF 和△BCD 中∴△ACF ≌△BCD (ASA )∴AF=BD又AE=21BD ∴AE=EF,即点E 是AF 的中点∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD ,正△ABE ,BD 与AE 相交于F ,连接AF ,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD ,CE 于M ,N 两点∵△ABE 和△ACD 均为等边三角形,∴∠EAB=∠CAD=60°,AD=AC ,AB=AE∵∠EAC=∠BAD=60°+∠BAC ,∴△EAC ≌△BAD ,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD ∴AN=AM∴AF 平分∠DME (在角的内部到角两边距离相等的点在该角的平分线上)21.如图,已知:AB=AC ,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD.∵∠A=90° AB=AC D 是BC 的中点∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD (直角三角形中,中线等于斜边的一半)且BE=AF∴易证△BED ≌△AFD (SAS )∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90°∴∠ADF+∠ADE=90°∴ED ⊥FD如图,在Rt △ABC 中,D ,E 为斜边AB 上的两点,且BD=BC ,AE=AC ,则∠DCE 的大小为_____°.如图,在等腰△ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是_____.第二章 不等式(组) 不等式基本性质例:如果x >y ,那么下列各式中正确的是(C )A .x-2<y-2B . 2x <2y C .-2x <-2y D .-x >-y 1.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解出未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5∴a=3,b=-5(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 (B ) A .m >8 B.m ≥8 C.m <8 D.m ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8【“=”一定要考虑,这个题取“=”就满足题意】(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是(A ).A .m≤3B . m≥3C .m=3D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m≤3【“=”一定要考虑,这个题取“=”就满足题意】(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得∵有三个整数解∴2<x <6a+10∴三个整数解应该是3,4,5∴5<6a+10≤6解得65-<a ≤32- 【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【不等式组的结果不能写成大括号的形式】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; (2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上. 3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为(C ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折.那么(600×10x -500)÷500≥8% 解得x ≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是(B ) <y B .>y C .≤y D .≥y解:根据题意得,他买黄瓜每斤平均价是502030y x + 以每斤2y x +元的价格卖完后,结果发现自己赔了钱,则 502030y x +>2y x + 解得:x >y∴赔钱的原因是x>y(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

八年级数学全册全套试卷易错题(Word版 含答案)

八年级数学全册全套试卷易错题(Word版 含答案)

八年级数学全册全套试卷易错题(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.3.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作A E⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.4.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴CE=22()2CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)22+=当AC=3,CD=CB=7时,CE=2(37)52+=∴点E的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.5.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析【解析】【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .∵AD 是BC 边上的中线,∴DC DB =. 在ADC 和GDB △中,AD DG ADC GDB DC DB =⎧⎪∠=∠⎨⎪=⎩(对顶角相等), ∴ADC ≌GDB △(SAS ).∴CAD G ∠=∠,BG AC =.又BE AC =,∴BE BG =.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.8.已知等边△ABC 的边长为4cm ,点P ,Q 分别是直线AB ,BC 上的动点.(1)如图1,当点P 从顶点A 沿AB 向B 点运动,点Q 同时从顶点B 沿BC 向C 点运动,它们的速度都为lcm /s ,到达终点时停止运动.设它们的运动时间为t 秒,连接AQ ,PQ . ①当t =2时,求∠AQP 的度数.②当t 为何值时△PBQ 是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】(1)①∠AQP=30°;②当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP=QF,∴AP=BQ,∴BQ+CQ=BC=AC,∴AP+CQ=AC.【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.9.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°.理由:设AC、BD相交于点H,如图2,∵点A关于射线CP的对称点为点D,∴AC=DC,AE=DE,又∵CE=CE,∴△ACE≌△DCE(SSS),∴∠CAE=∠CDE,∵∠DBC=∠BDC,∴∠DBC=∠CAE,又∵∠BHC=∠AHE,∴∠AEB=∠BCA=60°,即∠AEB的大小不会发生变化,且∠AEB=60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.10.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.先阅读下列材料,然后解后面的问题.材料:一个三位自然数abc(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F(abc)=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数abc”,若满足b能被9整除,求证:“欢喜数abc”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.【答案】(1)详见解析;(2)99或297.【解析】【分析】(1)首先由题意可得a +c =b ,将欢喜数展开,因为要证明“欢喜数abc ”能被99整除,所以将展开式中100a 拆成99a +a ,这样展开式中出现了a +c ,将a +c 用b 替代,整理出最终结果即可;(2)首先设出两个欢喜数m 、n ,表示出F (m )、F (n )代入F (m )﹣F (n )=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵abc 为欢喜数,∴a +c =b . ∵abc =100a +10b +c =99a +10b +a +c =99a +11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数abc ”能被99整除;(2)设m =11a bc ,n =22a bc (且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n =100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n =99或m ﹣n =297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.12.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.13.阅读下列因式分解的过程,解答下列问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x +x (x +1)+x (x +1)2+…+x (x +1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)=(1+x)n +1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.14.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.15.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为正整数)则有:=m2+2n2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若()2,用含m、n的式子分别表示a、b,得a=,b=(2)若(2(其中a、b、m、n均为正整数),求a的值.【答案】(1)m2+3n2,2mn;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)∵)2,∴2+3n2∴a=m2+3n2,b=2mn.故a=m2+3n2,b=2mn;(2)由题意,得223 {42a m nmn=+=∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13四、八年级数学分式解答题压轴题(难)16.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80.经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =. 经检验,10009y =是原方程的解,且符合题意,∴小强跑的时间为:10001000(3)39÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.17.(1)请你写出五个正的真分数,____,____,____,____,____,给每个分数的分子和分母加上同一个正数得到五个新分数:____,____,____,_____,____.(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:一个真分数是a b (a 、b 均为正数),给其分子分母同加一个正数m ,得a m b m++,则两个分数的大小关系是a mb m ++_____a b . (3)请你用文字叙述(2)中结论的含义:(4)你能用图形的面积说明这个结论吗?(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你再提出一个类似的数学问题,或举出一个生活中与此结论相关例子.【答案】(1) 12;14;16;18;19;23;25;27;29;15;(2)>;(3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数;(4)答案见解析;(5)不相似,理由见解析;(6)答案见解析.【解析】【分析】(1)小于1的数叫做真分数;(2)根据实例易得规律;(3)抓住新分数大于原分数即可;(4)根据图形进行分析解答;(5)利用相关规律解决问题即可;(6)结合生活中的现象进行解答. 【详解】 解:(1)12、14、16、18、19,23、25、27、29、15;(2)a m a b m b+>+; (3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数; (4)思路1:如图2所示,由a b <,得12s s s s +>+,即ab bm ab am +>+,()().a b m b a m +=+,可推出a m a b m b+>+; 思路2:构造两个面积为1的长方形(如图3),将它们分成两部分,比较右侧的两个长方形面积可以发现:1a b a b b --=,1a m b a b m b m+--=++,因为a 、b 、0m >,且a b <,故1a b - 1a m b m +>-+,即a m a b m b+>+ (5)不相似.因为两个长方形长与宽的比值不相等;(6)数学问题举例:①若a b是假分数,会有怎样的结论? ②a 、b 不是正数,或不全是正数,情况如何?【点睛】本题实际考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.18.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.19.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?【答案】(1)120元(2)至少打7折.【解析】【分析】(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:。

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.函数3y x =+中,自变量x 的取值范围是( ) A .x >3 B .x ≥3 C .x >﹣3 D .x ≥﹣3 2.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4B .4,5,6C .6,8,11D .5,12,133.四边形ABCD 中,对角线AC ,BD 相交于点O ,要使四边形ABCD 是平行四边形,则可以增加条件( ) A .AB CD =,//AD CB B .AO CO =,BO DO = C .AB CD =,BAD BCD ∠=∠D .AB CD =,AO CO =4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在四边形ABCD 中,AC =16,BD =12,且AC ⊥BD ,连接四边形ABCD 各边中点得到四边形EFGH ,下列说法错误的是( )A .四边形EFGH 是矩形B .四边形ABCD 的面积是92C .四边形EFGH 的面积是48D .四边形EFGH 的周长是286.如图,ABCD 的面积是12,E 是边AB 上一点,连结DE ,现将ADE 沿DE 翻折,点A 恰好落在线段AC 上的点F 处,且90BFC ∠=︒,则四边形EBCF 的面积是( )A .4B .4.5C .5D .5.57.如图,在平行四边形ABCD 中,连接AC ,若∠ABC =∠CAD =45°,AB =4,则平行四边形ABCD 的周长是( )A .82B .42+4C .828+D .168.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣9二、填空题9.已知实数x ,y 满足360x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是_____.10.已知菱形的边长为2cm ,一个内角为60︒,那么该菱形的面积为__________2cm . 11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________.12.如图,矩形ABCD 的对角线相交于O ,AB =2,∠AOB =60°,则对角线AC 的长为___.13.某生态体验园推出了甲、乙两种消费卡.甲、乙两卡所需费用y 甲,y 乙(单位:元)与入园次数x (单位:次)的函数关系如图所示.当x 满足________时,y y >甲乙.14.如图,在矩形ABCD 中,4AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.15.如图1,在长方形ABCD 中,动点P 从点A 出发,沿A B C D →→→方向运动至D 点处停止,设点P 出发时的速度为每秒cm b ,a 秒后点P 改变速度,以每秒1cm 向点D 运动,直到停止.图2是APD △的面积()2cm S 与时间()s x的图像,则b 的值是_________.16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).三、解答题17.计算题(1)32712+48 (221233 (321233+(130; (451512718.如图,牧童在离河边3km的A处牧马,小屋位于他南6km东9km的B处,他想把他的马牵到河边饮水,然后回小屋.他要完成此过程所走的最短路程是多少?并在图中画出饮水C所在在位置(保留作图痕迹).⨯的正方形网格中,每个小正方形的顶点称为格点.点A,点B都在格点19.如图在55上,按下列要求画图.(1)在图①中,AB为一边画ABC,使点C在格点上,且ABC是轴对称图形;(2)在图②中,AB为一腰画等腰三角形,使点C在格点上;(3)在图③中,AB为底边画等腰三角形,使点C在格点上.20.如图,在矩形AFCG中,BD垂直平分对角线AC,交CG于D,交AF于B,交AC 于O,连接AD,BC.(1)求证:四边形ABCD是菱形;∠的度数.(2)若E为AB的中点,DE AB⊥,求BDC21.(1)观察下列各式的特点:>21323223,>,23525265>…2021202020222021“>”“<”或“=”).(2)观察下列式子的化简过程: 1212121(21)(21)-==-++-, 1323232(32)(32)-==-++-, 14343(43)(43)-=++-=43-, …根据观察,请写出式子11n n +-(n ≥2,且n 是正整数)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:1111||||21323243+++-+-++|114354++-|+•••+|1110099101100-++|.22.我国传统的计重工具——秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤).如表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 y (斤)0.751.001.502.25(1)在图2中将表x ,y 的数据通过描点的方法表示,观察判断x ,y 的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?23.已知:如图,平行四边形ABCD 中,AB =5,BD =8,点E 、F 分别在边BC 、CD 上(点E 、F 与平行四边形ABCD 的顶点不重合),CE =CF ,AE =AF . (1)求证:四边形ABCD 是菱形;(2)设BE =x ,AF =y ,求y 关于x 的函数解析式,并写出定义域;(3)如果AE =5,点P 在直线AF 上,△ABP 是以AB 为腰的等腰三角形,那么△ABP 的底边长为 .(请将答案直接填写在空格内)24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y 与x的几组对应值.x…﹣3﹣2﹣10123…y…m10﹣1012…【探究】(1)m=;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是;【拓展】(4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是;(5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是,该四边形的面积为18时,则b的值是.25.已知,△ABC为等边三角形,BC交y轴于点D,A(a,0)、B(b,0),且a、b满足方程269-10++=.a a b(1)如图1,求点A、B的坐标以及CD的长.(2)如图2,点P是AB延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴的对称点.(3)如图3,若点M在CA延长线上,点N在AB的延长线上,且∠CMD=∠DNA,试求AN-AM的值是否为定值?若是请计算出定值是多少,若不是请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.D解析:D【分析】利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故不是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故是直角三角形,故正确.故选D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.解析:B 【解析】 【分析】根据平行四边形的判定条件,对选项进行逐一判断即可得到答案. 【详解】解:A 、如下图所示AB CD =,//AD CB ,四边形ABCD 是一个等腰梯形,此选项错误;B 、如下图所示,AO CO =,BO DO =,即四边形的对角线互相平分,故四边形ABCD 是平行四边形,此选项正确;C 、AB CD =,BAD BCD ∠=∠,并不能证明四边形ABCD 是平行四边形,此选项错误; D 、AB CD =,AO CO =,并不能证明四边形ABCD 是平行四边形,此选项错误; 故选B. 【点睛】本题主要考查了平行四边形的判定,解题的关键在于掌握平行四边形的五种判定方法.4.A解析:A 【解析】 【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可. 【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数, 要判断是否进入前8名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.解析:B 【分析】利用三角形的中位线定理证得四边形EFGH 为平行四边形,然后利用有一个角是直角的平行四边形是矩形可判断选项A 是否正确;由AC =8,BD =6,且AC ⊥BD ,可求出四边形EFGH 和ABCD 的面积,由此可判断选项CD 是否正确;题目给出的数据求出四边形EFGH 的周长,所以选项B 不符合题意. 【详解】解:∵点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点, ∴EF =12AC ,GH =12AC , ∴EF =GH ,同理EH =FG ∴四边形EFGH 是平行四边形; 又∵对角线AC 、BD 互相垂直, ∴EF 与FG 垂直.∴四边形EFGH 是矩形,故选项A 正确,不符合题意; ∵AC =16,BD =12,且AC ⊥BD ,∴四边形ABCD 的面积=12AC •BD =96,故选项B 错误,符合题意; ∵四边形EFGH 是矩形,且HG =12AC =8,HE =12BD =6, ∴四边形EFGH 的面积6×8=48,故选项C 正确,不符合题意; ∵EF =12AC =8,HE =12BD =6,∴四边形EFGH 的周长=2(6+8)=28,所以选项D 正确,不符合题意, 故选:B . 【点睛】本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题.6.A解析:A 【解析】 【分析】设DE 与AC 交于H ,由折叠的性质可知,AH =HF ,∠AHD =90°,AE =EF ,再由直角三角形斜边上的中线等于斜边的一半可以得到AE =BE ,再证明△DAH ≌△BCF ,得到AH =CF =HF ,则13CF AC =,23AF AC =,从而得出1=23FBC ABC S S =△△,2=43FBA ABC S S =△△,1=22BEF ABF S S =△△.【详解】解:设DE 与AC 交于H ,由折叠的性质可知,AH =HF ,∠AHD =90°,AE =EF∵∠BFC =90°,∴∠BFC =∠DHA =∠AFB =90°, ∴EF 是直角三角形AFB 的中线, ∴AE =BE , ∴=AEF BEF S S △△,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,1=62ABC ABCDS S=△∴∠DAH =∠BCF , ∴△DAH ≌△BCF (AAS ), ∴AH =CF =HF , ∴13CF AC =,23AF AC =, ∴1=23FBC ABC S S =△△,2=43FBA ABC S S =△△,∴1=22BEF ABF S S =△△,∴=4BEF FBC EBCF S S S +=△△四边形, 故选A .【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,折叠的性质,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】由平行四边形的性质可求∠B =∠D =45°,AB =CD =4,AD =BC ,由等角对等边可得AC =CD =4,∠ACD =90°,在Rt △ACD 中,由勾股定理可求AD 的长,即可求解. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠B =∠D =45°,AB =CD =4,AD =BC , ∴∠CAD =∠D =45°,∴AC=CD=4,∠ACD=90°,∴AD=∴平行四边形ABCD的周长=2×(CD+AD)=2×(4+8+,故选:C.【点睛】本题考查了平行四边形的性质,勾股定理等知识,利用勾股定理求出AD的长是解题的关键.8.D解析:D【分析】先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.【详解】解:把A(m,﹣3)代入y=13x得13m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>13 x,即kx﹣13x>﹣b的解集为x>﹣9.故选D.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题9.15【解析】【分析】根据绝对值及二次根式的非负性可得出x、y的值,由三角形三边关系可确定等腰三角形的三边长度,将其相加即可得出结论.【详解】∵实数x,y满足30x-,∴x=3,y=6,∵3、3、6不能组成三角形,∴等腰三角形的三边长分别为3、6、6,∴等腰三角形周长为:3+6+6=15,故答案是:15.【点睛】本题考查了等腰三角形的定义、二次根式(绝对值)的非负性以及三角形三边关系,根据绝对值及二次根式非负性结合三角形的三边关系找出等腰三角形的三条边的长度是解题的关键.10.A 解析:23【解析】【分析】连接AC ,过点A 作AM ⊥BC 于点M ,根据菱形的面积公式即可求出答案.【详解】解:过点A 作AM ⊥BC 于点M ,∵菱形的边长为2cm ,∴AB =BC =2cm ,∵有一个内角是60°,∴∠ABC =60°,∴∠BAM =30°,∴112BM AB ==(cm ), ∴223AM AB BM -cm ),∴此菱形的面积为:233=cm 2).故答案为:23【点睛】本题主要考查了菱形的性质和30°直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型. 1110【解析】【分析】利用勾股定理计算即可.【详解】解:∵直角三角形的两直角边长分别是1和3,∴斜边2213+1010【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12.A解析:4【分析】根据矩形的性质可得OA =OB 、AC =2OA ,再结合∠AOB =60°可得三角形AOB 为等边三角形,则OA =AB =2,最后根据 AC =2OA 解答即可.【详解】解:∵四边形是矩形,∴OA =OB ,AC =2OA又∵∠AOB =60°,∴△AOB 为等边三角形,∴OA =AB =2,∴AC =2OA =2×2=4.故填4.【点睛】本题主要考查了矩形的性质、等边三角形的判定与性质等知识点,灵活运用等边三角形的判定与性质是解答本题的关键.13.x >10【分析】运用待定系数法,即可求出y 与x 之间的函数表达式,联立方程组解答即可求出两直线的交点坐标,根据函数图象回答即可.【详解】解:设y 甲=k 1x ,根据题意得5k 1=100,解得k 1=20,∴y 甲=20x ;设y 乙=k 2x +100,根据题意得:20k 2+100=300,解得k 2=10,∴y 乙=10x +100;解方程组2010100y x y x =⎧⎨=+⎩,解得10200x y =⎧⎨=⎩, ∴两直线的交点坐标为(10,200);根据图象可知:当x >10时,y y >甲乙.故答案为:x >10.【点睛】本题主要考查了一次函数的应用、学会利用方程组求两个函数图象的解得交点坐标,正确由图象得出正确信息是解题关键.14.A解析:【分析】结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD 的长.【详解】∵四边形ABCD 是矩形,∴AO=BO=CO=DO ,∵AE 垂直平分OB 于点E ,∴AO=AB=4,∴AO=OB=AB=4,∴BD=8,在Rt △ABD 中故答案为【点睛】本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.15.【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:时,点P 在AB 上,,点P 在BC 上,时,点P 在CD 上,∴,∵,∴解得 解析:43【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:010x ≤≤时,点P 在AB 上,1016x <≤,点P 在BC 上,16x >时,点P 在CD 上,∴()161016cm BC AD =-⨯==, ∵()110136242AD a -⨯=-, ∴解得6a =,又∵1242AD ab =,即166242b ⨯⨯= ∴43b =,故答案为:43. 【点睛】本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.16.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC , 解析:①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC ,由勾股定理得, 设DG=x ,则CG=a-x ,FG=x , EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.三、解答题17.(1);(2);(3);(4)【分析】(1)根据立方根以及二次根式的加减运算求解即可;(2)根据二次根式的四则运算求解即可;(3)根据二次根式的除法以及零指数幂的运算求解即可;(4)根据平解析:(1)3-+2)63)6;(4)4-【分析】(1)根据立方根以及二次根式的加减运算求解即可;(2)根据二次根式的四则运算求解即可;(3)根据二次根式的除法以及零指数幂的运算求解即可;(4)根据平方差公式以及二次根式的加减运算,求解即可.【详解】解:(1)313=-+=-+(2)6==;(30(122116=⨯++=;(4)1)514=---【点睛】此题考查了二次根式的四则运算,涉及了零指数幂、立方根以及平方差公式,解题的关键是熟练掌握二次根式的有关运算.18.最短路程是;画图见解析.【分析】先作关于的对称点,连接,构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出点关于的对称点,连接交于点,则点是马饮水的位置, 根据对称性可得,,解析:最短路程是15km ;画图见解析.【分析】先作A 关于MN 的对称点,连接A B ',构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出A 点关于MN 的对称点A ',连接A B '交MN 于点C ,则点C 是马饮水的位置,根据对称性可得AC A C '=,326km AA '=⨯=,则A B A C BC ''=+,∴A B AC BC '=+,由已知得6km OA =,9km OB =,6612km A O A A AO ''=+=+=,在Rt A OB '△中,由勾股定理求得15km A B ',即15km AC BC +=,答:他要完成这件事情所走的最短路程是15km ,饮水C 所在位置.【点睛】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.19.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股解析:(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=5,利用平移作出点C即可.【详解】解:(1)∵以AB为边△ABC是轴对称图形,∴△ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点△ABC如图也可画以AB为直角边,点A为直角顶点△ABC如图;(2)根据勾股定理AB22+1310AB10A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A 向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222=+,AB AC BC即222m=,根据勾股定理AC=5,横1竖2,或横2竖1得图形,10+=,解得5m m点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A 向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.20.(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到,根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由解析:(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质,可以得到OA OC =,AD CD =,AB BC =,由矩形的性质,得到//CG AF , 根据平行线的性质,利用AAS 证明COD AOB △△≌从而得到CD AB =,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由题意,可以得到DE 垂直平分,AB 从而得出AD DB =,结合题意可得DBA ∠ 的度数,进而求得BDC ∠的度数【详解】(1)证明:BD 垂直平分AC ,OA OC ∴=,AD CD =,AB BC =,四边形AFCG 是矩形,//CG AF ∴,CDO ABO ∴∠=∠,DCO BAO ∠=∠,COD AOB ∴△≌△,CD AB ∴=,AB BC CD DA ∴===,∴四边形ABCD 是菱形.(2)E 为AB 中点,DE AB ⊥,DE ∴垂直平分AB ,AD DB ∴=, =AD AB ,ADB ∴为等边三角形,60DBA ∴∠=︒,//CD AB ,60BDC DBA ∴∠=∠=︒.【点睛】本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键.21.(1)>;(2)见解析;(3)【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2)把分子分母同时乘以,然后化简即可得到答案;(3)根据(2)中的规律可得,,,分别把绝对值解析:(1)>;(2)见解析;(39【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2(3)根据(21==⋯,【详解】解:(1)∵…,∴∴>故答案为:>;(2(3)原式|1)||||| =-+-++⋯+-1)=-+-+⋯+-1)=-1109.【点睛】此题主要考查了分母有理化,关键是注意观察题目所给的例题,找出其中的规律,然后再进行计算.22.(1),4.5斤;(2)最多13斤.【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,设函数关系式为,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平解析:(1)1142y x=+,4.5斤;(2)最多13斤.【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,设函数关系式为y kx b=+,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平距离为50厘米可知50x≤,求出y的取值范围即可.【详解】解:(1)利用描点法画出图像如下,观察图象可知x ,y 满足一次函数的变化关系,设y kx b =+,把107521x y .x y ====,,,,代入可得:0.7512k b k b =+⎧⎨=+⎩, 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当16x =时, 4.5y =,∴秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)由题意可得50x ≤ , 所以可得:311142x +≤, 即13y ≤,∴这杆秤的可称物重范围是13斤以内.【点睛】本题考查了一次函数的图象及应用,待定系数法,一元一次不等式等知识,利用数形结合的思想是解题的关键.23.(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的解析:(1)见解析;(2);(3)8或或6【分析】(1)连结AC ,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形ABCD 是菱形;(2)连结AC,交BD于点H,作于点G,由菱形的面积及边长求出菱形的高,再求BG的长,由勾股定理列出关于x、y的等式,整理得到y关于x的函数解析式;(3)以AB为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形ABCD的高求出BG的长,再求等腰三角形的底边长.【详解】解:(1)证明:如图1,连结AC,,,,,,即;四边形ABCD是平行四边形,∴,AB CD//,,,∴四边形ABCD是菱形(2)如图2,连结AC,交BD于点H,作于点G,则,由(1)得,四边形ABCD是菱形,,,,,,,由,且,得,解得;,,由,且,得,点E在BC边上且不与点B、C重合,,关于x的函数解析式为,(3)如图3,,且点P在的延长线上,,,,,,,,,,,,,,AB AD,,,即等腰三角形的底边长为8;如图4,,作于点M,于点G,则,,,,,,由(2)得,,,,即等腰三角形的底边长为;如图5,,点P与点F重合,连结AC,,,,,,即,等腰三角形的底边长为6.综上所述,以AB为腰的等腰三角形的底边长为8或或6,故答案为:8或或6.【点睛】此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∵y=|x|﹣1,y2=﹣|x|+b(b>0),∴y与y2的图象围成的正方形的对角线长为b+1,∵该四边形的面积为18,∴1(b+1)2=18,2解得:b=5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a=-3,b=1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出解析:(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a =-3,b =1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出OD ,DB 即可解决问题.(2)如图2中,连接EC ,设BE 交PC 于K .由△ACP ≌△BCE (SAS ),推出∠APC =∠CEB ,可证∠KBP =∠KCE =60°勾股定理求出OF ,可得D ,F 关于x 轴对称,即可解决问题;(3)如图3中,作DH ⊥AC 于H .想办法证明△DHM ≌△DON 即可解决问题;【详解】解:(1)∵269-10a a b +++=∴23-10a b ++=()∴a =-3,b =1,∴A (﹣3,0),B (1,0),如图1中,∵△ABC 是等边三角形,∴∠ABC =60°,AB =BC =AC ,∵A (﹣3,0),B (1,0),∴OA =3,OB =1,∴AB =BC =AC =4,在Rt △ODB 中,30,ODB ∠=︒2,BD ∴=∴CD =BC ﹣BD =2.(2)如图2中,连接EC ,设BE 交PC 于K .∵CP=PE,∠CPE=60°,∴△CPE是等边三角形,∴∠PCE=60°,CP=CE,∵△ABC是等边三角形,∴∠ACB=∠PCE=60°,∴∠ACP=∠BCE,∵CA=CB,CP=CE,∴△ACP≌△BCE(SAS),∴∠APC=∠CEB,∵∠PKB=∠EKC,∠ECK+∠CKE+∠CEK=180°,∠KBP+∠PKB+∠KPB=180°,∴∠KBP=∠KCE=60°,∴∠OBF=∠PBK=60°,∵∠BOF=90°,OB=1,∴BF=2∴OF=22413-=-=,BF OB∵223,=-=OD BD OB∴OD=OF,∴D,F关于x轴对称,∴直线EB必过点D关于x轴的对称点.(3)是定值,理由如下:如图3中,作DH⊥AC于H.在Rt△CDH中,∵∠CHD=90°,∠C=60°,CD=2,∴CH=1,∴DH=∴AH=3,∵OD∴DH=OD,∵∠DHM=∠DON,∠M=∠DNO,∴△DHM≌△DON(AAS),∴HM=ON,∴AN﹣AM=OA+ON﹣(HM﹣AH)=3+3=6.【点睛】本题属于三角形综合题,考查了等边三角形的性质和判定,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word版含答案)一、选择题1.下列式子中不一定是二次根式的是()A.3B.4C.a D.2a 2.下列条件中,满足ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=1:3:1C.(a+b)2=c2+2ab D.111,,51213 a b c===3.下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形②对角线相等的四边形是矩形③有一组邻边相等的矩形是正方形④对角线互相垂直的四边形是菱形,正确的个数是().A.1个B.2个 C.3个D.4个4.小明和小兵两人参加了5次体育项目训练,其中小明5次训练测试的成绩分别为11、13、11、12、13;小兵5次训练测试成绩的平均分为12,方差为7.6.关于小明和小兵5次训练测试的成绩,则下列说法不正确的是()A.两人测试成绩的平均分相等B.小兵测试成绩的方差大C.小兵测试的成绩更稳定些D.小明测试的成绩更稳定些5.如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.30°D.45°6.如图,在菱形ABCD中,CE AB⊥于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°7.如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片.如果按图①方式摆放,刚好放下4个;如果按图②方式摆放,刚好放下3个.若BC=4a,则按图③方式摆放时,剩余部分CF的长为()A.23aB.32aC.53aD.35a8.如图1,在矩形ABCD的边AD上取一点E,连接BE.点M,N同时以1cm/s的速度从点B出发,分别沿折线B-E-D-C和线段BC向点C匀速运动.连接MN,DN,设点M运动的时间为t s,△BMN的面积为S cm2,两点运动过程中,S与t的函数关系如图2所示,则当点M在线段ED上,且ND平分∠MNC时,t的值等于()A.2+25B.4+25C.14﹣25D.12﹣25二、填空题9.若121xx -+有意义,则x的取值范围为_______________.10.若菱形的两条对角线长分别是8cm和10cm,则该菱形的面积是________2cm.11.如图,每个方格都是边长为1的小正方形,则AB+BC=_____.12.如图,矩形ABCD的对角线相交于O,AB=2,∠AOB=60°,则对角线AC的长为___.13.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是__________________. 14.如图,矩形ABCD中,AB2,AD=2.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.15.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y (米)与时间t (分)的关系图象,则小明回家的速度是每分钟步行____________米.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.三、解答题17.计算(1)321224843274⎛⎫÷+- ⎪ ⎪⎝⎭(2)()()()()0221123223431+-+++--- 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么19.已知,在边长为1的小正方形组成的48⨯网格中,ABC 的顶点均为格点.,请按要求分别作出ABC ,并解答问题.(1)在图1中作钝角ABC ,图2中作直角ABC ,图3中作锐角ABC ,都使5BC =; (2)在图4中作直角ABC ,AB 为斜边,两直角边长度为无理数,并直接写出ABC 的面积.20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点M 为AD 的中点,过点M 作//MN BD 交CD 延长线于点N .(1)求证:四边形MNDO 是平行四边形;(2)请直接写出当四边形ABCD 的边AB 与BD 满足什么关系时,四边形MNDO 分别是菱形、矩形、正方形.21.阅读,并回答下列问题:公元3世纪,我国古代数学家刘徵就能利用近似公式22r a r a a +≈+得到2的近似值. (1)他的算法是:先将2看成211+,利用近似公式得到1321212≈+=⨯,再将2看成23124⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,由近似公式得到2≈___________≈______________;依次算法,所得2的近似值会越来越精确.(2)按照上述取近似值的方法,当2取近似值577408时,求近似公式中的a 和r 的值. 22.某农科所为定点帮扶村免费提供一种优质番茄苗及大棚栽培技术.这种番茄苗早期在温室中生长,长到大约20cm 时,移至大棚内,沿插杆继续向上生长.研究表明,30天内,这种番茄苗生长的高度()cm y 与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种番茄苗长到大约65cm 时,开始开花,试求这种番茄苗移至大棚后.继续生长大约多少天,开始开花?23.问题发现:(1)如图1,点A 为线段BC 外一动点,且BC =a ,AB =b .填空:当点A 位于CB 延长线上时,线段AC 的长可取得最大值,则最大值为 (用含a ,b 的式子表示);尝试应用:(2)如图2所示,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,M 、N 分别为AB 、AD 的中点,连接MN 、CE .AD =5,AC =3.①请写出MN 与CE 的数量关系,并说明理由.②直接写出MN 的最大值.(3)如图3所示,△ABC 为等边三角形,DA =6,DB =10,∠ADB =60°,M 、N 分别为BC 、BD 的中点,求MN 长.(4)若在第(3)中将“∠ADB =60°”这个条件删除,其他条件不变,请直接写出MN 的取值范围.24.如图,在平面直角坐标系中,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴正半轴于C ,且ABC ∆面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标; (3)如图2,若M 为线段BC 的中点,点E 为直线OM 上一动点,在x 轴上是否存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.25.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word版含答案)

八年级数学下册期末试卷易错题(Word 版含答案) 一、选择题 1.()()1111a a a a +-=+⋅-成立的条件是( )A .﹣1≤a ≤1B .a ≤﹣1C .a ≥1D .﹣1<a <1 2.下列各比值中,是直角三角形的三边之比的是( ) A .1:2:3 B .2:3:4 C .3:4:5 D .1:3:1 3.在四边形ABCD 中,对角线AC 与BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AD ∥BC ,AB =DC C .AB ∥DC ,∠DAB =∠DCBD .AO =CO ,BO =DO4.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( )A .36.1℃B .36.6℃C .36.5℃D .36.9℃ 5.如图,在矩形纸片ABCD 中,AB =6,AD =8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,则线段EF 的长为( )A .3B .4C .5D .66.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .23B .3C .4D .437.如图,在平行四边形ABCD 中,BD 为对角线,点O 是BD 的中点,且//AD EO ,//OF AB ,四边形BEOF 的周长为10,则平行四边形ABCD 的周长为( )A .10B .12C .15D .208.如图所示,已知点C (1,0),直线7y x =-+与两坐标轴分别交于A ,B 两点,D ,E 分别是线段AB ,OA 上的动点,则△CDE 的周长的最小值是( )A .42B .10C .424+D .12二、填空题 9.若式子1x x -在实数范围内有意义,则x 的取值范围是________. 10.若菱形的两条对角线长分别是8cm 和10cm ,则该菱形的面积是________2cm . 11.若一直角三角形的两直角边长为3,1,则斜边长为_____.12.如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC 的长为 ___厘米.13.在平面直角坐标系中,直线1y kx =-与直线3y x =-交于点(4,)A m ,则k =______. 14.如图,在正方形ABCD 中,点E 、F 分别在对角线BD 上,请你添加一个条件____________,使四边形AECF 是菱形.15.A ,B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发,如图,l 1,l 2表示两人离A 地的距离:s (km )与时间t (h )的关系,则乙出发_____h 两人恰好相距5千米.16.“以自然之道,养自然之身”,生命在于运动,周末,小靓和小丽先后来到山脚,从山脚出发,沿着同一直线型登山步道进行锻炼,当小靓先匀速前行400米到达途中A 地观景台时,小丽开始从山脚匀速追赶,小靓继续以原速前行.追上后,小靓立即以原速的2倍率先到达山顶,然后立即以提高后的速度原路返回山脚.在上山过程中,小丽一直保持匀速登山,到达山顶后,立即以上山速度的1.5倍原路返回山脚.两人距A 地观景台的距离之和y (米)与小丽从山脚出发的时间t 分钟之间的部分函数关系如图所示,则两人第三次相遇时距A 地观景台________米.三、解答题17.计算:(1)02(52)()π++-;(2)3127683-+-. 18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),求秋千绳索(OA 或OB )的长度.19.如图,每个小正方形的边长都为1.(1)求线段CD 与BC 的长;(2)求四边形ABCD 的面积与周长;(3)求证:90BCD ∠=︒.20.如图,在矩形ABCD 中,4AB =,8AD =,将矩形折叠,折痕为EF ,使点C 与点A 重合,点D 与点G 重合,连接CF .(1)判断四边形AECF 的形状,并说明理由;(2)求折痕EF 的长.21.[观察]请你观察下列式子的特点,并直接写出结果:221111111212++=+-= ; 221111112323++=+-= ; 221111113434++=+-= ; …… [发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空: ()221111n n ++=+ (n 为正整数); (2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果: ()222222221111111111111223341n n ++++++++++ .22.由于持续高温和连日无雨,某水库的蓄水量y (万立方米)与干旱时间t (天)之间的关系满足一次函数y kt b =+,(k ,b 为常数,且k ≠0),其图象如图所示.(1)由图象知k = ,其实际意义是 ;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸?23.(1)如图1,在平行四边形ABCD 中,对角线AC 、BD 相交于O 点,过点O 的直线l 与边AB 、CD 分别交于点E 、F ,绕点O 旋转直线l ,猜想直线l 旋转到什么位置时,四边形AECF 是菱形.证明你的猜想.(2)若将(1)中四边形ABCD 改成矩形ABCD ,使AB =4cm ,BC =3cm ,①如图2,绕点O 旋转直线l 与边AB 、CD 分别交于点E 、F ,将矩形ABCD 沿EF 折叠,使点A 与点C 重合,点D 的对应点为D′,连接DD′,求△DFD′的面积.②如图3,绕点O 继续旋转直线l ,直线l 与边BC 或BC 的延长线交于点E ,连接AE ,将矩形ABCD 沿AE 折叠,点B 的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.24.如图,在平面直角坐标系中,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴正半轴于C ,且ABC ∆面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标; (3)如图2,若M 为线段BC 的中点,点E 为直线OM 上一动点,在x 轴上是否存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.25.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.【参考答案】一、选择题1.C解析:C【分析】直接利用二次根式有意义的条件、二次根式的乘法运算法则得出关于a 的不等式组,进而得出答案.【详解】解:由题意可得:1010a a +≥⎧⎨-≥⎩, 解得:a ≥1,故选:C .【点睛】本题考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.2.C解析:C【分析】先分别设三角形的三边,依据勾股定理的逆定理列式计算即可判断.【详解】解:A、设三边分别为x、2x、3x,∵222+≠,x x x(2)(3)∴三边比为1:2:3的三角形不是直角三角形;B、设三边分别为2x、3x、4x,∵222+≠,x x x(2)(3)(4)∴三边比为2:3:4的三角形不是直角三角形;C、设三边分别为3x、4x、5x,∵222+=,x x x(3)(4)(5)∴三边比为3:4:5的三角形是直角三角形;D、设三边分别为x、3x、x,∵222(3)+≠,x x x∴三边比为1:3:1的三角形不是直角三角形;故选:C.【点睛】此题考查应用勾股定理的逆定理判断三角形是否是直角三角形,熟记定理并应用解决问题是解题的关键.3.B解析:B【解析】【分析】依据平行四边形的定义和判定方法逐一判断即可得解;【详解】A、∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A不符合题意;B、由AD∥BC,AB=DC,即一组对边平行,一组对边相等,无法判断四边形ABCD是平行四边形,举反例如等腰梯形,故选项B符合题意;C、∵AB∥DC,∴∠ABC+∠DCB=180°,∠DAB+∠ADC=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故选项C不符合题意;D、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:B.【点睛】本题主要考查平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键,同时注意一组对边平行,一组对边相等得四边形不一定是平行四边形.4.C解析:C【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据,进行求解即可.【详解】解:∵36.5℃出现了两次,出现的次数最多,∴这组数据的众数为36.5℃,故选C.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义.5.A解析:A【分析】根据矩形的性质可得BC=AD,∠B=90°,利用勾股定理可求出AC的长,根据折叠的性质可得AF=AB,∠B=∠AFE=90°,BE=EF,在Rt△CEF中利用勾股定理列方程求出EF的长即可得答案.【详解】∵四边形ABCD是矩形,AD=8,∴∠B=90°,BC=AD=8,∴AC10,∵折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,∴BE=EF,AF=AB=6,∠AFE=∠B=90°,∴CF=AC-AF=10﹣6=4,在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,∴EF2+CF2=(BC-EF)2,即EF2+42=(8-EF)2,解得:EF=3,故选:A.【点睛】本题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.6.A解析:A【解析】【分析】连接OA ,由菱形的性质得AD =AB =8、AO ⊥BD 、∠ADB =∠CDB =30°,然后由含30°角的直角三角形的性质求解即可.【详解】连接OA ,如图所示:∵四边形ABCD 为菱形,点O 是对角线BD 的中点,∴AD =AB =8,AO ⊥BD ,∠ADB =∠CDB∵120BAD ∠=︒∴∠ADB =∠CDB =30°,在Rt △AOD 中,142OA AD ==, ∴2243OD AD OA =-=∵OE ⊥CD ,∴∠DEO =90°,∴在Rt △DOE 中,1232OE OD == 故选:A .【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.7.D解析:D【解析】【分析】根据点O 是BD 的中点,且AD //EO ,OF //AB ,可得OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,四边形OEBF 是平行四边形,则AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,由此可以推出OE +OF =5,再由四边形ABCD 的周长=AB +BC +AD +CD =2(AD +CD )=4(OE +OF )进行求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵点O 是BD 的中点,且AD //EO ,OF //AB ,∴OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,BC //EO ,∴四边形OEBF 是平行四边形,AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,∵四边形OEBF 的周长为10,∴OE+BE+BF+OF=10,∴OE+OF=5,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴四边形ABCD的周长=AB+BC+AD+CD=2(AD+CD)=4(OE+OF)=20,故选D.【点睛】本题主要考查了平行四边形的性质与判定,中位线定理,解题的关键在于能够熟练掌握相关知识进行求解.8.B解析:B【解析】【分析】点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=-x+7,∴直线CC″的解析式为y=x-1,由71 y xy x-+⎧⎨-⎩==解得43xy==⎧⎨⎩,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴14232mn+⎧=⎪⎪⎨+⎪=⎪⎩,解得:76mn=⎧⎨=⎩∴C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C10故答案为10.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.二、填空题9.1x>【解析】【分析】利用分式和二次根式有意义的条件确定关于x的不等式,从而确定答案.【详解】解:根据题意得:10x-≥且10x-≠,∴10x->,解得:1x>,故答案为:1x>.【点睛】考查了二次根式及分式有意义的条件,属于基础题,比较简单.10.40【解析】【分析】根据菱形的面积公式计算即可.【详解】解:这个菱形的面积为:12×8×10=40cm2,故答案为:40【点睛】本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键.11.2【解析】【分析】根据勾股定理计算,得到答案.【详解】2,故答案为2.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,∴AO=OC=OD=OB,∵矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,∴OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,∵矩形ABCD的周长是22厘米,∴2AB+2BC=22厘米,∴8OA=18厘米,∴OA=2.25厘米,即AC=BD=2OA=4.5厘米.故答案为:4.5.【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等.13.A解析:12【分析】利用y=x-3即可求得m的值,然后再把该点代入y=kx-1中可得k的值.【详解】解:把(4,m)代入y=x-3得:m=1,∴A(4,1),把(4,1)代入y=kx-1得1=4k-1,,解得k=12故答案为1.2【点睛】本题考查了两直线相交问题,首先会利用代入法求点的坐标,然后再根据待定系数法求k.14.B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果.【详解】添加的条件为:BE=DF,理由:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF,∴△ABE≌△CBE≌△DCF≌△DAF(SAS).∴AE=CE=CF=AF,∴四边形AECF是菱形;故答案为:BE=DF.【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.8或1【分析】分相遇前或相遇后两种情形分别列出方程即可解决问题.【详解】解:由题意可知,乙的函数图象是l2,甲的速度是=30(km/h),乙的速度是=20(km/h).设乙出发x小时两人解析:8或1【分析】分相遇前或相遇后两种情形分别列出方程即可解决问题.【详解】解:由题意可知,乙的函数图象是l2,甲的速度是602=30(km/h),乙的速度是603.50.5=20(km/h).设乙出发x小时两人恰好相距5km.由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,解得x=0.8或1,所以甲出发0.8小时或1小时两人恰好相距5km.故答案为:0.8或1.本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.16.【分析】设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,分析可知小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360;据此列方解析:【分析】设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,分析可知小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360;据此列方程组求出a 和b ;然后求出小丽下山追上小靓的时间,即可求出两人第三次相遇时与A 地观景台的距离.【详解】解:设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,函数关系图可知,小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360,此时小靓距离山顶(12a-6b)米,距A 地观景台(5a+6b) -(12a-6b)=(12b-7a)米,∴55400(56)(127)3360b a a b b a -=⎧⎨++-=⎩ ∴120200a b =⎧⎨=⎩∴A 地观景台距离山顶512062001800⨯+⨯=米,第11分钟时小靓距离山顶121206200240⨯-⨯=米,∴小丽下山追上小靓所需时间= 240(1.52002120)4÷⨯-⨯=(分钟)此时距离A 地观景台=1800 1.52004600-⨯⨯=,两人第三次相遇时距A 地观景台600米.故答案是:600.【点睛】本题考查了从函数图象获取信息的能力及二元一次方程组的应用,掌握数形结合思想是解题关键.三、解答题17.(1);(2)【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(1)=+3;(2)=3-解析:(13;(22【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(10()π+-2+13;(2=2,2.【点睛】此题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算;注意乘法运算公式的运用.18.秋千绳索的长度为尺.【分析】设OA=OB=x 尺,表示出OE 的长,在中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设尺,由题可知:尺,尺,∴(尺),尺,在中,尺,尺,尺,由勾股解析:秋千绳索的长度为14.5尺.【分析】设OA =OB =x 尺,表示出OE 的长,在Rt OEB 中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设OA OB x ==尺,由题可知:5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=(尺),()4OE OA AE x =-=-尺,在Rt OEB 中,()4OE x =-尺,OB x =尺,10EB =尺,由勾股定理得:()222410x x =-+,解得:14.5x =,则秋千绳索的长度为14.5尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,学会利用方程解决问题是解题的关键. 19.(1),;(2)四边形的面积,的周长;(3)见解析【解析】【分析】(1)利用勾股定理直接计算即可得到答案;(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;解析:(1)BC =CD =2)四边形ABCD 的面积12.5=,ABCD 的周长5=;(3)见解析【解析】【分析】(1)利用勾股定理直接计算即可得到答案;(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;(3)利用勾股定理的逆定理证明即可.【详解】解:(1)BC =CD(2)5AB =,AD∴四边形ABCD 的周长55=,四边形ABCD 的面积111542124311222=⨯-⨯⨯-⨯⨯-⨯⨯- 2014 1.51=----12.5=(3)连接BD ,5BD =,222225BC CD +=+=,22525BD ==,222BC CD BD ∴+=,90BCD ∴∠=︒.【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握利用勾股定理求解边长,利用勾股定理的逆定理判断直角三角形是解题的关键.20.(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理解析:(1)菱形,理由见解析;(2)25【分析】(1)根据矩形的性质,可知//AD BC ,进而可得AFE AEF ∠=∠,根据折叠的性质可知CEF AEF ∠=∠,则AFE AEF ∠=∠,进而可得AF AE =,又,AF CF AE EC ==,根据四边相等的四边形是菱形即可判断;(2)连接AC ,先根据折叠的性质,利用勾股定理求得AF ,进而勾股定理求得AC ,根据菱形的面积12AF AB AC EF ⋅=⋅即可求得EF . 【详解】(1)四边形ABCD 是矩形,∴//AD BC ,∴AFE AEF ∠=∠, 根据折叠的性质,可知CEF AEF ∠=∠,,AF CF AE EC ==,∴AFE AEF ∠=∠,∴AF AE =,∴AF CF AE EC ===,∴四边形AECF 是菱形;(2)连接AC ,如图,四边形ABCD 是矩形,90B BCD ∴∠=∠=︒,4AB =,8AD =,2245AC AB BC ∴+=折叠,90G BCD ∴∠=∠=︒4,AG CD AB GF FG ====,设AF x =,则8GF FD AD AF x ==-=-,在Rt AGF △中,222AF AG FG =+,即222(8)4x x =-+,解得5x =,5AF ∴=,12AF AB AC EF ⋅=⋅, 22545AF AB EF AC ⋅∴===【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,菱形的性质与判定,灵活晕用勾股定理是解题的关键.21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运解析:[观察]32,76,1312;[发现](1)1111n n +-+或221n n n n+++;(2)证明见解析;[应用]1n n n ++或221n n n ++. 【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可.【详解】[观察]32,76,1312, [发现](1)1111n n +-+或221n n n n +++(2)左=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左1111n n =+-=+右[应用11n +++111111111111223341n n =+-++-++-+++-+ (1111)n n =⨯+-+ 1n n n =++ 22=1n n n ++ ∴答案为:1n n n ++或221n n n ++. 【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b+⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)四边形AECF 是菱形,见解析;(2)① cm2;②BE 的长为cm 或cm 或4cm 或cm .【分析】(1)根据题意作图,先根据平行四边形得出∠FCO=∠EAO ,再证明△COF ≌△AOE ,结合题意解析:(1)四边形AECF 是菱形,见解析;(2)①147400 cm 2;②BE 的长为43cm 或16473-cm 或4cm 或16473+cm . 【分析】(1)根据题意作图,先根据平行四边形得出∠FCO =∠EAO ,再证明△COF ≌△AOE ,结合题意即可得出结论;(2)①根据四边形ABCD 是矩形,设DF =x cm ,则CF =(4﹣x )cm ,结合折叠和勾股定理得出CF ,过D′作D′H ⊥CF 于H ,由面积相等可得D′H =2125,进而得出所求面积; ②根据不同图示分情况设BE =x cm ,CE =(3﹣x )cm ,根据折叠并结合勾股定理得出x 即为所求.【详解】解:(1)猜想:当l ⊥AC 时,四边形AECF 是菱形,如图1:连接AF 、CE ,∵四边形ABCD 是平行四边形,∴OA =OC ,AB ∥CD ,∴∠FCO =∠EAO ,又∵∠FOC =∠EOA ,∴△COF ≌△AOE , ∴OE =OF ,∵AC ⊥EF ,∴四边形AECF 是菱形;(2)①∵四边形ABCD 是矩形,∴∠ADC =90°,CD =AB =4,AD =BC =3,设DF =x cm ,则CF =(4﹣x )cm ,由折叠性质可知:D′F =DF =x ,CD′=AD =3,∠CD′F =∠ADC =90°,由勾股定理得(4﹣x )2=32+x 2,解得x =78, ∴D′F =DF =78, ∴CF =4﹣78=258, 如图2,过D′作D′H ⊥CF 于H ,由面积相等可得,CF •D′H =D′F •CD′,∴D′H =2125, ∴S △DFD ′=12×78×2125=147400(cm 2); ②如图①,设BE =x cm ,CE =(3﹣x )cm ,∵AC =2234+=5cm ,∴B′C =5﹣4=1cm ,根据勾股定理可得B′C 2+B′E 2=CE 2,即:12+x 2=(3-x )2解得:x =43cm , 如图②,设BE =x cm ,则CE =(3﹣x )cm ,AB′=4cm ,B′E =x cm ,在R t △ADB′中,由勾股定理可得BD′22AB AD '-169-7,B′C =(47cm ,在R t △CB′E 中,B′C 2+CE 2=B′E 2,即16﹣7+7+9﹣6x +x 2=x 2,解得x 1647-cm , 如图③,当四边形ABEB′是正方形时,点B 和点B′关于直线AE 对称,△B′EC 是直角三角形, 此时CE =1cm ,BE =4cm ;如图④,BE =x cm ,AB′=4cm ,AD =3cm ,CE =(x ﹣3)cm ,在R t △ADB′中,B′D 22'AB AD -169-7,B′C 7,在R t △B′CE 中,7x 2﹣6x +9=x 2,解得x 1647+cm , 综上,BE 的长为43cm 1647-或4cm 1647+. 【点睛】此题属于四边形综合性试题,涉及到平行四边形,菱形,矩形,正方形的性质和勾股定理的应用,有一定难度,注意不同情况分别做图求解.24.(1),;(2)或;(3)存在,或或.【解析】【分析】(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.(2)设G (0,n )分两种情形:①当时,如图中,点落在上时,过作直线解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,(0,0)或(6,0)-或(6,0).【解析】【分析】(1)利用三角形的面积公式求出点C 坐标,再利用待定系数法即可解决问题. (2)设G (0,n )分两种情形:①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出(2,1)Q n n --.②当2n <时,如图22-中,同法可得(2,1)Q n n -+,利用待定系数法即可解决问题.(3)由(0,4)B ,(3,0)C 得3(2M ,2),即得直线OM 为43y x =,设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +,即得0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得(0,0)D ;②以BE 、CD 为对角线,同理可得:(6,0)D -;③以BD 、CE 为对角线,同理(6,0)D .【详解】解:(1)直线24y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,4)B ,2OA ∴=,4OB =,1102ABC S AC OB ∆=⋅⋅=, 5AC ∴=,3OC ∴=,(3,0)C ∴,设直线BC 的解析式为y kx b =+,则有403bk b =⎧⎨=+⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为443y x =-+; (2)FA FB =,(2,0)A -,(0,4)B ,(1,2)F ∴-,设(0,)G n ,①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .四边形FGQP 是正方形,90FGQ ∴∠=︒,=FG QG ,90FGM NGQ GQN ∴∠=︒-∠=∠,而90FMG GNQ ∠=∠=︒,()FMG GNQ AAS ∴∆≅∆,1MG NQ ∴==,2FM GN n ==-,(2,1)Q n n ∴--,点Q 在直线443y x =-+上, 41(2)43n n ∴-=--+, 237n ∴=, 23(0,)7G ∴; ②当2n <时,如图22-中,同法可得(2,1)Q n n -+,点Q 在直线443y x =-+上, 41(2)43n n ∴+=--+, 1n ∴=-,(0,1)G ∴-.综上所述,满足条件的点G 坐标为23(0,)7或(0,1)-; (3)存在,理由如下: (0,4)B ,(3,0)C ,M 为线段BC 的中点,3(2M ∴,2), 设直线OM 为y mx =,则322m =, 解得43m =,∴直线OM 为43y x =, 设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +, ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得30s t =⎧⎨=⎩, (0,0)D ∴;②以BE 、CD 为对角线,同理可得: ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得36s t =-⎧⎨=-⎩, (6,0)D ∴-;③以BD 、CE 为对角线,同理可得: ∴0344003t s s +=+⎧⎪⎨+=+⎪⎩,解得36s t =⎧⎨=⎩, (6,0)D ∴;综上所述,D 的坐标为:(0,0)或(6,0)-或(6,0).【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题 25.(1)m =5,n=5;(2)①证明见解析;②;(3)MN 的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE ≌△CNQ解析:(1)m=5,n=5;(2)①证明见解析;②5103;(3)MN的长度不会发生变化,它的长度为102.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR=5103;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN 的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=1 2FD,证明△PND≌△QNA,得DN=12AD,则MN=12AF,求出AF的长即可解决问题.【详解】解:(1)∵5|5|0n m-+-=,又∵5n-≥0,|5﹣m|≥0,∴n﹣5=0,5﹣m=0,∴m=5,n=5.(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°﹣45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=552,∵∠SDG=135°,∴∠SDH=180°﹣135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=5,FC 55,由勾股定理得:OF225552⎛⎫-⎪⎪⎝⎭=52,∴FM=5﹣52=52,设EN=x,则EM=5﹣x,FE=E′F=x+52,则(x+52)2=(52)2+(5﹣x)2,解得:x=53,∴EN=53,由勾股定理得:CE2222553CN EN⎛⎫+=+ ⎪⎝⎭510∴SR=CE=5103.故答案为5103.(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=12FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA(AAS),∴DN=AN,∴DN=12AD,∴MN=DM+DN=12DF+12AD=12AF,∵OF=OA=5,OC=3,∴CF2222534OF OC--=,∴BF=BC﹣CF=5﹣4=1,∴AF22221310BF AB++∴MN=12AF10∴当P、Q在移动过程中线段MN10【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.。

数学八年级下册数学期末试卷易错题(Word版含答案)

数学八年级下册数学期末试卷易错题(Word版含答案)

数学八年级下册数学期末试卷易错题(Word 版含答案)一、选择题1.已知二次根式21x +,则x 的最小值是( )A .0B .-1C .12D .12-2.要做一个直角三角形的木架,以下面各组木棒为三边,刚好能做成的是( ) A .5,6,7 B .10,4,8C .10,26,24D .9,15,173.下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形 ②对角线相等的四边形是矩形 ③有一组邻边相等的矩形是正方形④对角线互相垂直的四边形是菱形,正确的个数是( ).A .1个 B .2个 C .3个D .4个4.校篮球队所买10双运动鞋的尺码统计如表,则这10双运动鞋尺码的众数和中位数分别为( ) 尺码(cm ) 25 25.5 26 26.5 27 购买量(双)11242A .4 cm ,26 cmB .4 cm ,26.5 cmC .26.5 cm ,26.5 cmD .26.5 cm ,26 cm 5.在 △ABC 中, AC = 9 , BC = 12 , AB = 15 ,则 AB 边上的高是( ) A .365B .1225C .94D .3346.如图,在△ABC 中,AC =22,∠ABC =45°,∠BAC =15°,将△ABC 沿直线AC 翻折至△ABC 所在的平面内,得△ADC .过点A 作AE ,使∠EAD =∠DAC ,与CD 的延长线交于点E ,则线段ED 的长为( )A .36B .6﹣3C .62D .267.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点P 为AB 边上任意一点过点P 分别作PE AC ⊥于点E ,PF BC ⊥于点F ,则线段EF 的最小值是( )A .2B .2.4C .3D .48.如图,在平面直角坐标系中,点A 的坐标是(4,0),点B 的坐标是(3,4),点P 是y 轴正半轴上的动点,连接AP 交线段OB 于点Q ,若△OPQ 是等腰三角形,则点P 的坐标是( )A .(0,53)B .(0,43)C .(0,43)或(0,163)D .(0,53)或(0,163)二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.如图,在菱形ABCD 中对角线AC 、BD 相交于点O ,若AB =3,BD =4,则菱形ABCD 的面积为_____.11.如图,一名滑雪运动员沿着坡比为1:3i =的滑道,从A 滑行至B ,已知300AB =米,则这名滑雪运动员的高度下降了_______米.12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;13.将一次函数24y x =-+的图象绕原点O 顺时针旋转90°,所得图象对应的函数解析式是______.14.如图,已知四边形ABCD 是一个平行四边形,则只须补充条件__________,就可以判定它是一个菱形.15.如图,在平面直角坐标系中,点()11,1A 在直线y x =图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作正方形1111D C B A ,11C D 所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作正方形2222A B C D 依此类推,按照图中反应的规律,第2020个正方形的边长是_______.16.已知如图,点()()()2,0,4,0,3,7A B D --,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以2D 后停止,当点F 的坐标是____时,点M 在整个运动过程中用时最少。

人教版数学八年级下册数学期末试卷易错题(Word版含答案)

人教版数学八年级下册数学期末试卷易错题(Word版含答案)

人教版数学八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.三条线段首尾相连,不能围成直角三角形的是( )A .1,2,3B .1,2,1C .3,4,5D .3,2,5 3.四边形BCDE 中,对角线BD 、CE 相交于点F ,下列条件不能判定四边形BCDE 是平行四边形的是( )A .BC ∥ED ,BE =CDB .BF =DF ,CF =EFC .BC ∥ED ,BE ∥CD D .BC =ED .BE =CD4.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )A .92分B .92.4分C .90分D .94分 5.如图,在四边形ABCD 中,1AB BC ==, 22CD =,10AD =,AB BC ⊥,则四边形ABCD 的面积是( )A .2.5B .3C .3.5D .4 6.如图,在菱形ABCD 中,EF 、分别为边BC CD 、的中点,且AE BC ⊥于,E AF CD ⊥于,F 则EAF ∠的度数为( )A .30B .45C .60D .757.如图,在等腰Rt △ACD 中,∠ACD =90°,AC =DC ,且AD 2AD 、AC 、CD 为直径画半圆,其中所得两个月形图案AGCE 和DHCF (图中阴影部分)的面积之和等于( )A.8B.42C.4D.28.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C.23D.32二、填空题9.若232(2)x x-+--有意义,则x的取值范围是_______________.10.在菱形ABCD中,AB=m,AC+BD=n,则菱形ABCD的面积为_________.(用含m、n的代数式表示)11.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;13.直线y=kx+3经过点(1,2),则k=_____________.14.如图,在正方形ABCD中,点E、F分别在对角线BD上,请你添加一个条件____________,使四边形AECF是菱形.15.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,90,ACB AC BC∠=︒=,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,正方形OABC 的顶点A 、C 分别在坐标轴的正半轴上,点B 是第一象限内直线132y x =+上的一点,则点B 的坐标为______.三、解答题17.计算:(1)13823282+- (2)101()|33|(1)272π--+----. 18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米.(假设绳子是直的)19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A 固定在格点上.(1)若a 是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则a = ,b = ;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD ,你画出的菱形面积为 ; 20.如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:(1)BE DE =.(2)四边形BEDF 是菱形.21.先观察下列等式,再回答问题:2211+2+()1=1+1=2; 2212+2+()212=2 12; 2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.已知如图1,四边形ABCD是正方形,.如图1,若点分别在边上,延长线段CB至G,使得,若求EF的长;如图2,若点分别在边延长线上时,求证:如图3,如果四边形ABCD不是正方形,但满足且,请你直接写出BE 的长.24.请你根据学习函数的经验,完成对函数y =|x |﹣1的图象与性质的探究.下表给出了y 与x 的几组对应值. x … ﹣3 ﹣2 ﹣1 01 2 3 … y … m 1 0 ﹣1 0 1 2 …【探究】(1)m = ;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y 随x 的增大而增大时,x 的取值范围是 ;【拓展】(4)函数y 1=﹣|x |+1的图象与函数y =|x |﹣1的图象交于两点,当y 1≥y 时,x 的取值范围是 ;(5)函数y 2=﹣|x |+b (b >0)的图象与函数y =|x |﹣1的图象围成的四边形的形状是 ,该四边形的面积为18时,则b 的值是 .25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.26.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.D解析:D【分析】根据勾股定理逆定理,验证两条较短边的平方和是否等于最长边的平方即可求解.【详解】解:A 、因为222142+== ,所以1,2意;B 、因为222112+== ,所以1,1能围成直角三角形,故本选项不符合题意;C 、因为22234255+== ,所以3,4,5能围成直角三角形,故本选项不符合题意;D 、因为222+2=7≠ 2意;故选:D .【点睛】本题主要考查了勾股定理逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形是解题的关键. 3.A解析:A【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A 、不能判定四边形ABCD 是平行四边形,故此选项符合题意;B 、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;C 、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;D 、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;故选;A .【点睛】本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键. 4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B .【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.A解析:A【分析】如下图,连接AC ,在Rt △ABC 中先求得AC 的长,从而可判断△ACD 是直角三角形,从而求得△ABC 和△ACD 的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB ⊥BC∴在Rt △ABC 中,2,111122ABC S=⨯⨯= ∵10,2又∵((2222210+= ∴三角形ADC 是直角三角形∴122ADC S == ∴四边形ABCD 的面积=12+2=52故选:A .【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC 是直角三角形,然后用勾股定理逆定理验证即可.6.C解析:C【解析】【分析】根据菱形的性质求出180C EAF ∠+∠=︒,又因为180B C ∠+∠=︒,得出EAF B ∠=∠,再由1122BE BC AB ==,可得60B ∠=︒最后可推出60EAF ∠=︒. 【详解】解:AE BC ⊥,AF CD ⊥,180AFC AEC ∴∠+=︒,180C EAF ∴∠+∠=︒.又180B C ∠+∠=︒,EAF B ∴∠=∠. 又12BE BC =,AB BC =,1BE AB 2∴=, 30BAE =∴∠︒,60B ∴∠=︒,60EAF ∴∠=︒.故选:C .【点睛】此题主要考查的知识点:(1)直角三角形中,30锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补;(3)同角的补角相等;(4)菱形的四边相等. 7.D解析:D【解析】【分析】由等腰三角形的性质及勾股定理可求解AC =CD =2,进而可求得S △ACD =2,再利用阴影部分的面积=以AC 为直径的圆的面积+△ACD 的面积-以AD 为直径的半圆的面积计算可求解.【详解】解:在等腰Rt △ACD 中,∠ACD =90°,AC =DC ,AD ,∴AC 2+DC 2=AD 2=8,∴AC =CD =2,∴S △ACD =12AC •DC =2, ∴221()()222ACD AC AD S S ππ∆=+-阴影 =π+2-π=2,故选:D .【点睛】 本题主要考查了等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACD 的面积-以AD 为直径的半圆的面积是解题的关键.8.D解析:D【分析】设点C 的横坐标为m ,则点C 的坐标为(m ,﹣3m ),点B 的坐标为(﹣3m k,﹣3m ),根据正方形的性质,即可得出关于k 的分式方程,解之经检验后即可得出结论.【详解】解:设点C 的横坐标为m ,∵点C 在直线y=-3x 上,∴点C 的坐标为(m ,﹣3m ),∵四边形ABCD 为正方形,∴BC ∥x 轴,BC=AB ,又点B 在直线y =kx 上,且点B 的纵坐标与点C 的纵坐标相等,∴点B 的坐标为(﹣3m k ,﹣3m ), ∴﹣3m k﹣m =﹣3m , 解得:k =32, 经检验,k =32是原方程的解,且符合题意. 故选:D .【点睛】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.二、填空题9.3x ≥-且2x ≠【解析】有意义可得30,x +≥ 由222x 有意义可得20,x -≠ 再解不等式组,从而可得答案.【详解】解: 22(2)x --有意义, 3020x x ①②由①得:3,x ≥-由②得:2,x ≠所以x 的取值范围是:3x ≥-且2,x ≠故答案为:3x ≥-且2x ≠【点睛】本题考查的是二次根式有意义的条件,负整数指数幂的含义,由二次根式有意义的条件,结合负整数指数幂的含义列出不等式组是解本题的关键.10.A 解析:2214n m - 【解析】【分析】根据菱形的性质及勾股定理计算即可;【详解】解:在菱形ABCD 中,AB =m ,AC +BD =n , ∴22221122AC BD AB m ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭, ∴AC 2+BD 2=4m 2,∴菱形ABCD 的面积=()()22211222AC BD AC BD AC BD +-+=⨯, =221422n m -⨯, =2214n m -, 故答案为:2214n m -. 【点睛】本题主要考查了菱形的性质,勾股定理,准确计算是解题的关键.11.12【解析】【分析】根据勾股定理求解即可.由勾股定理得:222213512BC AB AC -=-==.故答案为:12.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关概念是解题的关键.12.A解析:18【分析】作PM ⊥AD 于M ,交BC 于N ,根据矩形的性质可得S △PEB =S △PFD 即可求解.【详解】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,,,,,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S ∴=====,∴DFPM BEPN S S 矩矩=,12442DFP PBE S S ∴==⨯⨯=, ∴S 阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明DFP PBE SS =.13.-1.【详解】试题分析:把(1,2)代入直线y=kx+3,即可得方程k+3=2,解得k=-1.考点:一次函数图象上点的坐标特征. 14.B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS ,可得△ABF 与△CBF 与△CDE 与△ADE 的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果.【详解】添加的条件为:BE=DF ,理由:正方形ABCD 中,对角线BD ,∴AB=BC=CD=DA ,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF ,∴△ABE ≌△CBE ≌△DCF ≌△DAF (SAS ).∴AE=CE=CF=AF ,∴四边形AECF 是菱形;故答案为:BE=DF .【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =5, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =552, 若点O ,E ,B 在一条直线上,则OB =OE +BE =552, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为55+, 故答案为:55+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.【分析】根据正方形的性质可得点B 的横纵坐标相等计算即可;【详解】由题可知:点B 在直线上且点B 是正方形ABCD 的一个顶点,设,∴,解得: ,∴,∴;故答案是.【点睛】本题主要考解析:()6,6【分析】根据正方形的性质可得点B 的横纵坐标相等计算即可;【详解】由题可知:点B 在直线132y x =+上且点B 是正方形ABCD 的一个顶点, 设1,32B x x ⎛⎫+ ⎪⎝⎭, ∴132x x =+,解得:6x = , ∴1362x +=, ∴()6,6B ;故答案是()6,6B .【点睛】本题主要考查了一次函数的性质、正方形的性质,准确计算是解题的关键.三、解答题17.(1);(2).【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解.【详解】解析:(1)2)-【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解.【详解】解:(1)==(2)101()3|(1)2π--+--231=-+-=- 【点睛】本题考查了二次根式的混合运算,负整数指数幂,0指数幂,绝对值等知识,熟知相关知识并正确进行化简是解题关键.18.船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中解析:船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17-1×7=10(米),∴AD(米),∴BD=AB-AD=15-6=9(米),答:船向岸边移动了9米.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图解析:(12)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22112a=+=,∵b是图中能用网格线段表示的最大无理数,224225b=+=;(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC1D1的面积为12442⨯⨯=;菱形ABC2D2223110+=,故菱形ABC2D2的面积为1101052;5ABCD的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键.20.(1)见解析;(2)见解析【分析】(1)根据边角边证明全等即可得出结论;(2)同理可得,然后证明,即可得出,结论可得.【详解】解:(1)∵四边形是正方形,∴,,在和中,,∴,∴解析:(1)见解析;(2)见解析【分析】(1)根据边角边证明ABE ADE ≅△△全等即可得出结论;(2)同理可得BFC DFC ≅△△,然后证明()ABE CBF SAS ≅△△,即可得出BE BF DE DF ===,结论可得.【详解】解:(1)∵四边形ABCD 是正方形,∴AB AD CD BC ===,45DAE BAE BCF DCF ∠=∠=∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADE SAS ≅△△,∴BE DE =.(2)同理可得BFC DFC ≅△△,可得BF DF =,∵AF CE =,∴AF EF CE EF -=-,即AE CF =,在ABE △和CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE CBF SAS ≅△△,∴BE BF =,∴BE BF DE DF ===,∴四边形BEDF 是菱形.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1);(2)见解析;(3)【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求; (解析:(1);(2)见解析;(3) 【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求;(2)在DF 上取一点G,使得DG=BE, 连接AG ,先用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,且DG=BE ,故EF=DF-DG=DF-BE ; (3)在线段DF 上取BE=DG ,连接AG ,求证∠ABE=∠ADC ,即可用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF,设BE=x,则CE= 7+x,EF=18-x,根据勾股定理:,即可求得BE的长度.【详解】解:(1)证明:如图1所示,在正方形ABCD中,AB=AD,∠BAD=90°,在ABG和ADF中,∴ABG≌ADF(SAS),∴AG=AF,∠BAG=∠DAF,又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,∴∠EAG=∠FAG-∠EAF=45°=∠EAF,在GAE和FAE中,∴GAE≌FAE(SAS),∴EF=GE=GB+BE=2+3=5;(2)如下图所示,在DF上取一点G,使得DG=BE, 连接AG,∵四边形ABCD是正方形,故AB=AD,∠ABE=∠ADG=90°,在ABE和ADG中,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,在AEF和AGF中,∴AEF≌AGF(SAS),∴EF=GF,且DG=BE,∴EF=DF-DG=DF-BE;(3)BE=5,如下图所示,在线段DF上取BE=DG,连接AG,∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,∴∠ABE=∠ADC,在ABE和ADG中,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,在AEF和AGF中,∴AEF≌AGF(SAS),∴EF=GF,设BE=x,则CE=BC+BE =7+x,EF=GF=DC+CF-DG= DC+CF-BE=18-x,在直角三角形ECF中,根据勾股定理:,即:,解得x=5,∴BE=x=5.【点睛】本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y 1=﹣|x |+1的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,y 2=﹣|x |+3的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,∴函数y 2=﹣|x |+b (b >0)的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,∵y =|x |﹣1,y 2=﹣|x |+b (b >0),∴y 与y 2的图象围成的正方形的对角线长为b +1,∵该四边形的面积为18, ∴12(b +1)2=18,解得:b =5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(1)15,8;(2),见解析;(3);(4)4【分析】解决问题(1)只需运用面积法:,即可解决问题;(2)解法同(1);(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的 解析:(1)15,8;(2)PE PF CG +=,见解析;(3)534)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-ABC ∆的面积12532BC AM =⨯=ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++= (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =, ∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥,∴152BM BC ==, ∴222210553AM AB BM =--=∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯= ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=∴22533PE PF PG ⨯++== (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒, ∴2222534DC DF FC =--,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.26.(1)见解析;(2)AE =;(3)(3),理由见解析.【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(解析:(1)见解析;(2)AE =233)(3)12AG AF =. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x GE=3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 3x易得△GBE 是等腰直角三角形∴BG=EG 3x∴AB=BC=(31)x易得∠DHF=30°∴HD=2DF=23,HF=3∴BF=BH+HF=233∵Rt △AMC ≌Rt △AND(HL)∴易得3∴BC=BF-CF=233333∴(31)33x +=+∴3x =∴AE =223x =(3)12AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF =∴12AF AG =∴12AG AF =【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.。

八年级下册数学期末试卷易错题(Word版含答案)

八年级下册数学期末试卷易错题(Word版含答案)

八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.下列条件中,满足ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5B .a :b :c =1:3:1C .(a +b )2=c 2+2abD .111,,51213a b c === 3.下列命题:①对角线互相垂直且平分的四边形是菱形;②对角线相等的平行四边形是矩形;③有一组对边平行,另一组对边相等的四边形是平行四边形;④有一组对边相等且有一组对角相等的四边形是平行四边形.其中真命题的个数是( )A .1B .2C .3D .44.一次数学测试后,随机抽取八年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是( )A .极差是15B .中位数是86C .众数是88D .平均数是87 5.如图,在正方形ABCD 中,22CD =,若点P 为线段AD 上方一动点,且满足PD =2,∠BPD =90°,则点A 到直线BP 的距离为( )A .3B .3-C .31-D .31+ 6.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点P 为AB 边上任意一点过点P 分别作PE AC ⊥于点E ,PF BC ⊥于点F ,则线段EF 的最小值是( )A .2B .2.4C .3D .48.一个容器内有进水管和出水管,开始4min 内只进水不出水,在随后的8min 内既进水又出水,第12min 后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象有下列说法:①进水管每分钟的进水量为5L ;②412x ≤≤时,5154y x =+;③当12x =时,30y =;④当15y =时,3x =,或17x =.其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题9.使式子32x x -+有意义的x 的取值范围是______. 10.一个菱形的边长是5cm ,一条对角线长6cm ,则此菱形的面积为______2cm . 11.若一个直角三角形的两边长分别是3和4,那么以斜边为边长的正方形的面积为______.12.如图,把矩形ABCD 沿EF 折叠,若140∠=︒,则∠=AEF ______°.13.正比例函数(0)y kx k =≠经过点(1,3),则k =__________.14.如图,已知四边形ABCD 是一个平行四边形,则只须补充条件__________,就可以判定它是一个菱形.15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.16.如图,已知等腰△ABC 中,AB =AC =5,BC =8,E 是BC 上的一个动点,将△ABE 沿着AE 折叠到△ADE 处,再将边AC 折叠到与AD 重合,折痕为AF ,当△DEF 是等腰三角形时,BE 的长是___________.三、解答题17.计算(118232+ (2)13273 (3)(57)(57)2+(4)0214(37)8(12)2+ 18.如图,有一直立标杆,它的上部被风从B 处吹折,杆顶C 着地,离杆脚2m ,修好后又被风吹折,因新断处D 比前一次低0.5m ,故杆顶E 着地比前次远1m ,求原标杆的高度.19.如图,每个小正方形的边长都为1,AB的位置如图所示.(1)在图中确定点C,请你连接CA,CB,使CB⊥BA,AC=5;(2)在完成(1)后,在图中确定点D,请你连接DA,DC,DB,使CD=10,AD=17,直接写出BD的长.20.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC 上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.21.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性22232232121(2)212(12)+=+⨯⨯++⨯⨯+|12|=12解决问题:①146514235+=+⨯⨯_________________=________________=_________________②根据上述思路,试将下列各式化简:28103-3 12 +22.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强2月份希望有300元费用,则小强1月份需做家务多少时间?23.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转(),得到线段CE ,联结BE 、CE 、DE. 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE=CE 时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数; (3)联结AF ,求证:.24.如图1,已知一次函数6y kx =+的图象分别交y 轴正半轴于点A ,x 轴正半轴于点B ,且AOB 的面积是24,P 是线段OB 上一动点.(1)求k 值;(2)如图1,将AOP 沿AP 翻折得到AO P '△,当点O '正好落在直线AB 上时, ①求点P 的坐标;②将直线AP 绕点P 顺时针旋转45︒得到直线A P ',求直线A P '的表达式;(3)如图2,上题②中的直线A P '与线段AB 相交于点M ,将PBM 沿着射线PA '向上平移,平移后对应的三角形为P B M '''△,当APB '是以AP 为直角边的直角三角形时,请直接写出点P '的坐标.25.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.C解析:C【分析】由直角三角形的定义,只要验证最大角是否是90︒;由勾股定理的逆定理,只要验证两较短边的平方和是否等于最长边的平方即可.【详解】解:A 、∵::3:4:5A B C ∠∠=,518075345C ∴∠=⨯︒=︒++,故不能判定ABC 是直角三角形;B 、22211+≠,故不能判定ABC 是直角三角形;C 、由22()2a b c ab +=+,可得:222+=a b c ,故能判定ABC 是直角三角形;D 、222111()()()12135+≠,故不能判定ABC 是直角三角形;故选:C .【点睛】本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,也考查了三角形的内角和定理的应用. 3.B解析:B【解析】【分析】根据菱形的判定、矩形的判定、平行四边形的判定进行判断即可.【详解】解:①对角线互相垂直且平分的四边形是菱形,是真命题;②对角线相等的平行四边形是矩形,是真命题;③有一组对边平行且相等的四边形是平行四边形,原命题是假命题;④有一组对边相等且有一组对角相等的四边形不一定是平行四边形,原命题是假命题;故选B.【点睛】本题主要考查了菱形的判定、矩形的判定、平行四边形的判定,解题的关键在于能够熟练掌握相关四边形的判定条件.4.B解析:B【解析】【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【详解】解:A、极差是95-80=15,故A正确;B、中位数是86882+=87,故B错误;C、88出现了2次,则众数是88,故C正确;D、平均数是8085868888956+++++=87,故D正确.故选:B.【点睛】本题重点考查平均数,中位数,众数及极差的概念及求法.5.C解析:C【分析】由题意可得点P在以D为圆心,2为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解:作正方形ABCD的外接圆,另外以点D为圆心,2为半径作圆,两圆在线段AD上方的交点即为点P,连接AC、BD、PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE AP⊥,交BP于点E,如图,∵四边形ABCD 是正方形,∴∠ADB =45°, ∴2,90AB AD DC BC BAD ︒====∠=,∴BD =4,∵DP =2, ∴3BP =AE AP ⊥,90EAD DAP ∴∠+∠=,又90BAE EAD ∠+∠=,DAP BAE ∴∠=∠,,ADP ABE AD AB ∠=∠=,ADP ABE ∴∆≅∆,,BE DP AE AP ∴==, AEP 为等腰直角三角形,AH PE ⊥,2PE AH ∴=,2BP BE PE AH PD ∴=+=+, 即2322,AH +,31AH ∴=即点A 到BP 31.故选C .【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰三角形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用这些知识.6.D解析:D【解析】【分析】连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.7.B解析:B【解析】【分析】求出四边形PECF 是矩形,根据矩形的性质得出EF =CP ,根据垂线段最短得出C P ⊥AB 时,CP 最短,根据三角形的面积公式求出此时CP 值即可.【详解】解:连接CP ,∵PE ⊥AC ,PF ⊥BC ,∠ACB =90°,∴∠PEC =∠ACB =∠PFC =90°,∴四边形PECF 是矩形,∴EF =CP ,当CP ⊥AB 时,CP 最小,即EF 最小,在Rt △ABC 中,∠C =90°,AC =3,BC =4,由勾股定理得:AB =5,由三角形面积公式得:AC ×BC =AB ×C P ,CP =125,即EF 的最小值是125=2.4, 故选:B .【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF 最短时P 点的位置是解此题的关键.8.C解析:C【分析】根据图象可知进水的速度为5(L /min ),再根据第10分钟时容器内水量为27.5L 可得出水的速度,从而求出第12min 时容器内水量,利用待定系数法求出4≤x ≤12时,y 与x 之间的函数关系式,再对各个选项逐一判断即可.【详解】解:由图象可知,进水的速度为:20÷4=5(L /min ),故①说法正确;出水的速度为:5−(27.5−20)÷(10−4)=3.75(L /min ),第12min 时容器内水量为:20+(12−4)×(5−3.75)=30(L ),故③说法正确;15÷3=3(min ),12+(30−15)÷3.75=16(min ),故当y =15时,x =3或x =16,故说法④错误;设4≤x ≤12时,y 与x 之间的函数关系式为y =kx +b ,根据题意,得4201027.5k b k b +=⎧⎨+=⎩, 解得5415k b ⎧=⎪⎨⎪=⎩,所以4≤x ≤12时, y =54x +15,故说法②正确. 所以正确说法的个数是3个.故选:C .【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.A解析:24【解析】【分析】首先根据菱形的性质和勾股定理求出另一条对角线的长度,然后利用菱形的面积公式求解即可.【详解】如图,5,6AB cm AC cm ==,∵四边形ABCD 是菱形, ∴113,,22AO AC cm OB BD AC BD ===⊥, 90AOB ∠=︒∴ ,224BO AB AO cm ∴-,28BD OB cm ∴==,211682422S AC BD cm ∴=⋅=⨯⨯=, 故答案为:24.【点睛】本题主要考查菱形的性质和面积,勾股定理,掌握菱形的性质和勾股定理是解题的关键. 11.25或16【解析】【分析】分两种情况考虑:若4为直角边,利用勾股定理求出斜边;若4为斜边,利用勾股定理求出第三边,分别求出斜边边长的正方形面积即可.【详解】解:分两种情况考虑:若4为直角边,根据勾股定理得:斜边为2234+=5,此时斜边为边长的正方形面积为25;若4为斜边,此时斜边为边长的正方形面积为16,综上,以斜边为边长的正方形的面积为为25或16.故答案为:25或16【点睛】本题考查勾股定理,分类讨论利用勾股定理算出第三边是解题关键.12.110【分析】根据折叠的性质及140∠=︒可求出2∠的度数, 再由平行线的性质即可解答.【详解】解:四边形EFGH 是四边形EFBA 折叠而成,23∴∠=∠,231180∠+∠+∠=︒,140∠=︒,1123(18040)1407022∴∠=∠=︒-︒=⨯︒=︒,又//AD BC ,180AEF EFB ∴∠+∠=︒,18070110AEF ∴∠=︒-︒=︒.故答案为:110︒【点睛】本题主要考查了平行线的性质和折叠的性质, 解题时注意: 折叠前后的图形全等,找出图中相等的角是解答此题的关键.13.3【分析】把(1,3)代入(0)y kx k =≠,利用待定系数法求解k 即可得到答案.【详解】解:把(1,3)代入(0)y kx k =≠,故答案为:3.【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,掌握待定系数法是解题的关键.14.A解析:AB=BC(答案不唯一)【分析】根据有一组邻边相等的平行四边形是菱形添加即可.【详解】解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.【点睛】本题考查了平行四边形的性质和菱形的判定,注意:有一组邻边相等的平行四边形是菱形.此题是一道开放性的题目,答案不唯一.15.①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,解析:①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.【详解】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.故①正确;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故②错误;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+34=334,点B纵坐标为120﹣60×34=75,故③正确;④设快递车从乙地返回时的速度为y千米/时,则(y+60)(134344-)=75,故④正确.故答案为①③④.【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.16.或或.【分析】分三种情况讨论:DE=DF ,DE=EF ,EF=DF .利用等腰三角形的性质和全等三角形解题.【详解】解:由折叠可知,BE=DE ,DF=CF ,AD=AB=AC=5,当DE=DF 时 解析:52或258或74. 【分析】分三种情况讨论:DE=DF ,DE=EF ,EF=DF .利用等腰三角形的性质和全等三角形解题.【详解】解:由折叠可知,BE=DE ,DF=CF ,AD=AB=AC=5,当DE=DF 时,如图1,此时DE=DF=BE=CF ,∵AB=AC ,∴∠B=∠C ,在△ABE 和△ACF 中,AB AC B C BE CF =⎧⎪=⎨⎪=⎩∠∠ ∴△ABE ≌△ACF ,∴AE=AF ,∴AD 垂直平分EF ,∴EH=FH ,142BH CH BC ===, ∴2222543AH AB BH =-=-=,∴532HD =-=,设BE DE x ==,则4EH x =-,则在直角△DHE 中,()22242x x -+=,解得52x =, 当DE=EF 时,如图2,作AH ⊥BC 于H ,连接BD ,延长AE 交BD 于N ,可知BE=DE=EF ,∵AH ⊥BC ,AB=AC ,BC=8∴BH=CH=4,∴2222543AH AB BH -=-,设EH m =,则4BE EF m ==-,∴()8242CF m m =--=,即2DF m = ∵AB=AD ,∠BAN=∠DAN ,∴AN ⊥BD ,BN=DN ,∴12EN DF m ==, ∴EN EH =在△AHE 和△BNE 中,90AHE BNE EH ENAEH BEN ==︒⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△AHE ≌△BNE ,∴AE=BE ,设BE AE x ==,则4EH x =-,在直角△AEH 中,()22243x x -+=,解得258x =,当DF=EF时,如图3,过A作AH⊥BC于H,延长AF交DC于M,同理258 EF CF==∴252578884 BE=--=故答案为:52或258或74.【点睛】本题考查了折叠问题,全等三角形的判定和性质,等腰三角形的性质,注意分类讨论是解题的关键.三、解答题17.(1)1;(2);(3)0;(4).【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先解析:(1)1;(2143;(3)0;(4)322+【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.【详解】解:(118232+(1822322⨯=623 2+-=4-3=1;(2)=;(3)2+=5-7+2=0;(4)02(1+=41(12)⨯+-=423+-+=3+【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.18.5米【分析】由题中条件,可设原标杆AB 的高为x ,进而再依据勾股定理建立方程,进而求解即可.【详解】解:依题意得AC =2,AE =3,设原标杆的高为x ,∵∠A =90°,∴由题中条件可得AB解析:5米【分析】由题中条件,可设原标杆AB 的高为x ,进而再依据勾股定理建立方程,进而求解即可.【详解】解:依题意得AC =2,AE =3,设原标杆的高为x ,∵∠A =90°,∴由题中条件可得AB 2+AC 2=BC 2,即AB 2+22=(x ﹣AB )2,整理,得x 2﹣2ABx =4,同理,得(AB ﹣0.5)2+32=(x ﹣AB +0.5)2,整理,得x2﹣2ABx+x=9,解得x=5.∴原来标杆的高度为5米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理. 19.(1)见解析;(2).【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在Rt△DBG中,可求BD的长.【详解】解:(1)如图,∴∴BC⊥AB,在Rt△ACH中,A解析:(1)见解析;(2【解析】【分析】(1)利用网格即可确定C点位置;(2)由勾股定理在Rt△DBG中,可求BD的长.【详解】解:(1)如图,222===5,20,25,AB BC AC∴222+=AB BC AC∴BC⊥AB,在Rt△ACH中,AC=5;(2)∵CD AD D点位置如图,∴在Rt△DBG中,BD【点睛】本题考查勾股定理的应用,利用三角形内角和确定C点位置,由勾股定理确定D点的位置是解题的关键.20.(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出解析:(1)见解析;(2)当E为BC的中点时,四边形AECD是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【详解】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE ⊥BC ,BE =EC ,∵△ABC 平移得到△DEF ,∴BE ∥AD ,BE =AD ,∴AD ∥EC ,AD =EC ,∴四边形AECD 是平行四边形,∵AE ⊥BC ,∴四边形AECD 是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:3+②(1)5(2) 12 【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1)小强每月的基本生活费为元,当劳动时间不大于20小时,每小时劳动奖励为元,一个月内劳动时间超过小时,每小时劳动奖励为元;(2)小时【分析】(1)根据函数图象与轴的交点即可求得基本生活费,根据解析:(1)小强每月的基本生活费为150元,当劳动时间不大于20小时,每小时劳动奖励为2.5元,一个月内劳动时间超过20小时,每小时劳动奖励为4元;(2)45小时【分析】(1)根据函数图象与y 轴的交点即可求得基本生活费,根据函数图像是分段的,即可描述出父母是如何奖励小强做家务劳动的;(2)根据劳动时间超过30小时的部分的解析式即可求得1月份需做家务的时间【详解】解:(1)根据函数图象可知,当0x =时,150y =,∴小强每月的基本生活费为150元设劳动时间在20小时内的解析式为:1y ax b ()020x <≤将点()()0,150,20,200代入,得15020200b a b =⎧⎨+=⎩解得 2.5150a b =⎧⎨=⎩ ∴1 2.5150y x =+当20x >时,设2y mx n =+,将点()()20,200,30,240,代入得,2020030240m n m n +=⎧⎨+=⎩解得4120m n =⎧⎨=⎩ 则24120y x =+()20x >∴当020x <≤时,每小时劳动奖励为2.5元,一个月内劳动时间超过20小时,则每小时劳动奖励为4元(2)令2300y =,则3004120x =+解得45x =答:小强2月份希望有300元费用,则小强1月份需做家务45小时.【点睛】本题考查了一次函数的应用,理解题意,求得分段函数的解析式是解题的关键. 23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°.(2)因为△CED 是等腰三角形,再利用三角形的内角解析:(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°. (2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF=.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH.从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴=∠DCE=30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE=CD,∴∠CED=∠CDE=,在△CEB 中,CE=CB,∠BCE=,∴∠CEB=∠CBE=,∴∠BEF=.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD ,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH ,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1);(2)①点(3,0),②,(3)点的坐标(7,12)或(4,3).【解析】【分析】(1)根据函数解析式可知OA长,再由即可求出OB长,将B点坐标代入解析式即可求出k 值;(2)①由折叠解析:(1)34k =-;(2)①点P (3,0),②39y x =-,(3)点P'的坐标(7,12)或(4,3).【解析】【分析】(1)根据函数解析式可知OA 长,再由1242AOB SOA OB ==即可求出OB 长,将B 点坐标代入解析式即可求出k 值;(2)①由折叠性质可求得'BO P 中'4BO =、'=90BO P ∠︒,用勾股定理列方程即可求解;②通过构造等腰直角三角形,利用K 字形模型全等求出直线A P '上点Q 坐标,再由A 、Q 点坐标用待定系数法求出解析式A P '即可,(3)根据平移性质可知'//BB A P ',先求出直线'BB 的解析式;再当APB '是以AP 为直角边的直角三角形时,分两种情况求出直线'BB 与过A 、P 点垂直于AP 直线的解析式,联立函数解析式得方程求出点'B 坐标,由此得出图形平移方式,由此求出点P '的坐标.【详解】解:(1)当x =0时,y =6,故点A 坐标为A (0,6),∵11=62422AOB S OA OB OB ==, ∴=8OB ,∴点B 坐标为(8,0),代入6y kx =+得860k +=,∴34k =-, (2)①如图2-1,由折叠性质可知:'AO AO =,'PO O P =;'=90AOP AO P ∠=∠︒,∵2210AB OA OB +,∴''1064BO AB AO =-=-=,设'=PO O P x =,则8PB x =-,由222''PB O P O B =+得222(8)4x x -=+,∴'=3PO O P =,即P 点坐标为(3,0)②如图,过点A 作AQ ⊥AP ,并在AQ 上取点Q 使AQ =AP ,过Q 点作HQ ⊥y 轴,∴90QAH PAO ∠+∠=︒,∵90APO PAO ∠+∠=︒,∴APO QAH ∠=∠,∴AOP QHA ≅(AAS )∴HQ =AO =6,AH =OP =3,∴点Q 坐标为(6,9),∵△APQ 是等腰直角三角形,∴将直线AP 绕点P 顺时针旋转45︒得到直线A P ',直线A P '与PQ 重合,设经过P (3,0),Q (6,9)的直线A P '解析式为y kx b =+得3069k b k b +=⎧⎨+=⎩ , 解得:39k b =⎧⎨=-⎩, 即直线A P '为39y x =-,(3)由平移性质可知:'//BB A P ',由(2)得直线A P '为39y x =-,∴设直线'BB 解析式为3y x m =+,当x =8时,y =0,即324=0m ⨯+,解得:=24m -,∴直线'BB 解析式为324y x =-,由(2)得A (0,6)、Q (6,9),则直线AQ 解析式为:162y x =+, I .当AP 为直角边,90B AP '∠=︒时,如图3-1联立直线'BB 和直线AQ 得:324162y x y x =-⎧⎪⎨=+⎪⎩, 解得:1212x y =⎧⎨=⎩, 即'B 坐标(12,12),故点B (8,0)向右移动4个单位,向上移动12个单位得到点'B ,∴故点P (3,0)向右移动4个单位,向上移动12个单位得到点P'(7,12), 即当AP 为直角边,90B AP '∠=︒时,点P'(7,12),II .当AP 为直角边,90B PA '∠=︒时,如图3-2,∴'//PB AQ ,设直线'PB 解析式为:12y x n =+, ∵P 点坐标为(3,0),∴1032n =⨯+, ∴32n =-∴直线'PB 解析式为1322y x =-, 联立直线'BB 和直线'PB 得:3241322y x y x =-⎧⎪⎨=-⎪⎩, 解得:93x y =⎧⎨=⎩, 即'B 坐标(9,3),故点B (8,0)向右移动1个单位,向上移动3个单位得到点'B , ∴故点P (3,0)向右移动1个单位,向上移动3个单位得到点P'(4,3),, 即当AP 为直角边,90B PA '∠=︒时,点P'(4,3).【点睛】本题综合考查了一次函数与几何综合,待定系数法求解析式是基础,解(2)关键是利用等腰直角三角形构建三垂直全等从而求出旋转45°直线的解析式;解(3)关键是利用平行直线的性质求出解析式.25.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【详解】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE (SAS),即可得到AF=DE,∠DA解析:(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【详解】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.考点:1.四边形综合题;2.综合题.。

初中数学八年级下册几何易错题集锦(含答案)

初中数学八年级下册几何易错题集锦(含答案)

1、如图:在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF3、如图,点B和点C分别为∠MAN两边上的点,AB=AC。

(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连结BE;(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择其中的一对全等三角形予以证明。

已知:AB=AC,AD⊥BC,CE平分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE。

AB D CM NEB CP5、如图,△ABC中,p是角平分线AD,BE的交点. 求证:点p在∠C的平分线上6、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等7、如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM平分∠BAC8、如图,AP、CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F.求证:BP为∠MBN的平分线。

9、如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB 的平分线上.10、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.11、八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.ADEBFC12、如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF。

八年级下册数学选择题易错题

八年级下册数学选择题易错题

八年级下册数学选择题易错题一、二次根式部分。

1. 若√(x - 3)在实数范围内有意义,则x的取值范围是()A. x>3B. x≥3C. x<3D. x≤3解析:二次根式有意义的条件是被开方数为非负数。

所以在√(x - 3)中,x-3≥0,解得x≥3,答案为B。

2. 化简√((-2)^2)的结果是()A. - 2.B. 2.C. 4.D. ±2解析:√((-2)^2)=√(4) = 2,这里要注意算术平方根是非负的,答案为B。

二、勾股定理部分。

3. 一个直角三角形的两条直角边分别为3和4,则斜边为()A. 5.B. 6.C. 7.D. 8.解析:根据勾股定理a^2+b^2=c^2(其中a、b为直角边,c为斜边),所以斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5,答案为A。

4. 已知直角三角形的斜边为5,一条直角边为3,则另一条直角边是()A. 4.B. 3.C. 5.D. 6.解析:设另一条直角边为x,根据勾股定理可得3^2+x^2=5^2,即x^2=25 -9=16,解得x = 4,答案为A。

三、平行四边形部分。

5. 在平行四边形ABCD中,∠ A:∠ B = 1:2,则∠ C的度数为()A. 30^∘B. 60^∘C. 120^∘D. 150^∘解析:因为平行四边形邻角互补,即∠ A+∠ B=180^∘,又因为∠ A:∠ B = 1:2,设∠ A=x,∠ B = 2x,则x+2x=180^∘,3x=180^∘,x = 60^∘。

平行四边形的对角相等,所以∠ C=∠ A=60^∘,答案为B。

6. 平行四边形的对角线AC、BD相交于点O,若AC = 10,BD = 12,AB=m,则m 的取值范围是()A. 1B. 2C. 10D. 5解析:平行四边形的对角线互相平分,所以AO = 5,BO=6。

在三角形ABO中,根据三角形三边关系,BO - AO,即6 - 5,1,答案为A。

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.要使2100x 有意义,则x 的取值范围为( ) A .x ≠100 B .x >2 C .x ≥2 D .x ≤22.满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长分别为1、3、2C .三边长之比为3:4:5D .三内角之比为3:4:53.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF 4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )A .中位数B .平均数C .众数D .方差5.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .2B .322C .32D .256.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72° 7.如图,边长为22+的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )A .0B .22C .1D .28.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线3333y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+二、填空题9.使式子32x x -+有意义的x 的取值范围是______. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.已知ABC 中,90C =∠,3AC =,5AB =,则BC =______.12.如图,DE 为ABC 的中位线,点F 在DE 上,且AFB ∠为直角.若3AB =,4BC =,则EF 的长为______.13.将直线23y x =-+平移后经过原点,则平移后的解析式为___________.14.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.15.直线y =22x +3与两坐标轴围成的三角形面积是 __________________. 16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).三、解答题17.计算(1)()()10202131351274π-⎛⎫---++-- ⎪⎝⎭ (2)148348542÷-⨯+ 18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长是1,①在图①5②在图②中画出一个面积是8的正方形.20.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF =DC ;(2)若AB ⊥AC ,AB =8,AC =6,求BF 的长.21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.某专用医疗仪器厂有两间仓库,其中A 仓库是传统人工仓库,B 仓库是进、出仓速度更大的智能无人值守仓库,且A 、B 仓库的最大库存量相同.某日,该厂要将仪器全部出仓,通过铁路货运送往外地.A 仓库上午7:00达到最大库存量,此时停止进仓、开始出仓,A 仓库库存量y (单位:件)随出仓时间t (单位:h )的变化情况如图所示;B 仓库上午7:00库存量为15000件,此时继续进仓,达到最大库存量后停止进仓、开始出仓,且进、出仓的速度相同,B 仓库的工作进度如表所示.仪器全部出仓后即关闭仓库. 时刻7:00 8:00 12:00 B 仓库工作进度 继续进仓 停止进仓开始出仓 出仓完毕(2)若上午7:48这两个仓库的库存量相同,则两个仓库在12:00前是否还会有库存量相同的时刻?若有,求出该时刻;若无,请说明理由;(3)在进、出仓的过程中,两个仓库库存量的差值也会发生变化,①你认为哪些时刻两个仓库库存量的差值可能达到最大?请直接写出这些时刻; ②根据①中你的结论,若在8:00到12:00这段时间,出现两个仓库库存量差值最大的情形,则A 仓库最迟能否在13:30完成出仓任务?请说明理由.23.(1)如图1,在平行四边形ABCD 中,对角线AC 、BD 相交于O 点,过点O 的直线l 与边AB 、CD 分别交于点E 、F ,绕点O 旋转直线l ,猜想直线l 旋转到什么位置时,四边形AECF 是菱形.证明你的猜想.(2)若将(1)中四边形ABCD 改成矩形ABCD ,使AB =4cm ,BC =3cm ,①如图2,绕点O 旋转直线l 与边AB 、CD 分别交于点E 、F ,将矩形ABCD 沿EF 折叠,使点A 与点C 重合,点D 的对应点为D′,连接DD′,求△DFD′的面积.②如图3,绕点O 继续旋转直线l ,直线l 与边BC 或BC 的延长线交于点E ,连接AE ,将矩形ABCD 沿AE 折叠,点B 的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.24.已知:在平面直角坐标系中,点O 为坐标原点,直线y x b =-+交x 轴于点()8,0A ,交y 轴于点B .(1)如图1,求点B 的坐标;(2)如图2,点P 为线段AB 上一点,点Q 为x 轴负半轴上一点,连接BQ ,PQ ,且PQ BQ =,设点P 的横坐标为t ,AQ 的长为d ,求d 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点P 作BQ 的垂线,分别交x 轴,BQ 于点C ,D ,过点O 作OE CD ⊥于点E ,连接QE ,若QE 平分PQD △的周长,求d 的值.25.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.(1)如图1,当点E与点D重合时,BF的长为;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.26.如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。

八年级下册数学期末试卷易错题(Word版含答案)

八年级下册数学期末试卷易错题(Word版含答案)

八年级下册数学期末试卷易错题(Word 版含答案)一、选择题1.若式子4x -在实数范围内有意义,则x 的取值范围是( ) A .4x > B .4x < C .4x ≥ D .4x ≤ 2.下列各组长度的线段能构成直角三角形的是直( ) A .30,40,50B .7,12,13C .5,9,12D .3,4,63.下列关于平行四边形的命题中,错误的是( ) A .两组对角分别相等的四边形是平行四边形B .一组对边相等,另一组对边平行的四边形是平行四边形C .一组对边平行,一组对角相等的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作2S 甲、2S 乙,则下列结论正确的是( )A .22 S S <甲乙B .22S S >甲乙 C .22S S =甲乙 D .无法确定5.在棱长为1的正方体中,顶点A ,B 的位置如图所示,则A 、B 两点间的距离为( )A .1B 2C 3D 56.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF ∠的度数是( )A .90°B .60°C .45°D .30°7.如图,正方形ABCD 的边长为4,E 是AD 边的中点,连接BE ,将△ABE 沿直线BE 翻折至△FBE ,延长EF 交CD 于点G ,则CG 的长度是( )A .23B .34C .43D .328.如图,直线1:1l y x =+与直线21:22x l y =+相交于点P ,直线1l 与y 轴交于点A ,一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动……照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,32020A B , 2020A 则20202020AB 的长度为( )A .20202B .20192C .2020D .4040二、填空题9.2x +有意义,则实数x 的取值范围是_________. 10.菱形的一条对角线长为12cm ,另一条对角线长为16cm ,则菱形的面积为_____. 11.若直角三角形的三边分别为x ,8,10,则2x =__________.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是CD 中点,且∠COD =60°.如果AB =2,那么矩形ABCD 的面积是____.13.1y kx =+过点()2,3,则k =______.14.如图,在矩形ABCD 中,4AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.15.如图,点A 是一次函数21y x =+图象上的动点,作AC ⊥x 轴与C ,交一次函数4y x =-+的图象于B . 设点A 的横坐标为m ,当m =____________时,AB =1.16.如图,在平面直角坐标系xOy 中,一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为____.三、解答题17.计算: (19118325032(2124)3(223621)2. 18.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米? 19.如图,在平面直角坐标系中,网格中每一个小正方形的边长都是1个单位长度. (1)画出△ABC 关于y 轴对称的图形△A ′B ′C ′,写出C 的坐标; (2)求△ABC 中AC 边上的高.20.如图(1),Rt CEF 中,90C ∠=︒,CEF ∠,CFE ∠的外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)求证:四边形ABCD 是正方形.(2)若已知3BE =,2DF =,请求AEF 的面积;(3)如图(2),连接BD ,与AE ,AF 分别交于点M ,N ,求证:2MA MN MD =⋅. 21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a =123+=2323(23)(23)-=-+-, ∴23a -=-, ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-. 请你根据小明的分析过程,解决如下问题: (1)若a =121-,直接写出2481a a -+的值是 . (2)使用以上方法化简:1111315375121119++++++++22.甲乙两个批发店销售同一种苹果,批发店每千克苹果的价格为3元,乙批发店为了吸引顾客制定如下方案:当一次性购买不超过10千克时,每千克价格为4元,超过10千克时,超过部分每千克价格为2元.设小王在同一批发店一次性购买苹果的数量为x 千克(x >0).(1)若在甲批发店购买需花费y 1元,在乙批发店购买需花费y 2元,分别求y 1、y 2与x 的函数关系式;(2)请结合x 的范围,计算并说明在哪个批发店购买更省钱?23.如图,在▱ABCD 中,连接BD ,AB BD ⊥,且AB BD =,E 为线段BC 上一点,连接AE 交BD 于F .(1)如图1,若22AB =,BE =1,求AE 的长度;(2)如图2,过D 作DH ⊥AE 于H ,过H 作HG ⊥AD 交AD 于G ,交BD 于M ,过M 作MN ∥AD 交AE 于N ,连接BN ,证明:2NH BN =;(3)如图3,点E 在线段BC 上运动时,过D 作DH ⊥AE 于H ,延长DH 至Q ,使得12QH AH =,M 为AD 的中点,连接QM ,若42AD =,当QM 取最大值时,请直接写出△ADH 的面积.24.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A ,B 的三分点. 例如:A (﹣1,5),B (7,7),当点T (x ,y )满足x =173-+=2,y =573+=4时,则点T (2,4)是点A ,B 的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.25.如图1,已知Rt ABC中,∠BAC=90°,点D是AB上一点,且AC=8,∠DCA=45°,AE⊥BC于点E,交CD于点F.(1)如图1,若AB=2AC,求AE的长;(2)如图2,若∠B=30°,求CEF的面积;(3)如图3,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】x-≥,由题意得,40解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.A解析:A【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、302+402=502,能构成直角三角形,故选项正确;B、72+122≠132,不能构成直角三角形,故选项错误;C、52+92≠122,能构成直角三角形,故选项错误;D、32+42≠62,不能构成直角三角形,故选项错误.故选A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.A解析:A【解析】【分析】根据甲、乙的进球的统计图可知,甲的成绩波动幅度比乙的波动幅度小,由此即可得到答案.【详解】解:有题意可知,甲的成绩波动幅度比乙的波动幅度小,∴22S S <甲乙 ,故选A . 【点睛】本题主要考查了方差的定义,解题的关键在于能够熟练掌握,波动越小,方差越小.5.C解析:C 【分析】根据Rt △ABC 和勾股定理可得出AB 两点间的距离. 【详解】解:在Rt △ABC 中,AC =1,BC =22112+=,可得:AB =()22123+=,故选:C . 【点睛】本题考查了勾股定理,得出正方体上A 、B 两点间的距离为直角三角形的斜边是解题关键.6.B解析:B 【解析】 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数. 【详解】 解:连接AC ,∵AE 垂直平分边BC , ∴AB =AC ,又∵四边形ABCD 是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.7.C解析:C【解析】【分析】连接BG,根据折叠的性质和正方形的性质可得AB=BF=BC=4,AE=FE=12AD=2=DE,∠A=∠BFE=90°=∠C,即可证明Rt△BFG≌Rt△BCG得到FG=CG,设CG=FG =x,则DG=4﹣x,EG=2+x,在Rt△DEG中,由勾股定理进行求解即可.【详解】解:如图所示,连接BG,∵四边形ABCD是正方形,∴AB=BC=DC=4,∠A=∠ABC=∠C=90°,由折叠的性质可得,AB=BF=BC=4,AE=FE=12AD=2=DE,∠A=∠BFE=90°=∠C,∵∠BFE+∠BFG=180°,∴∠C=∠BFG=90°,又∵BG=BG,∴Rt△BFG≌Rt△BCG(HL),∴FG=CG,设CG=FG=x,则DG=4﹣x,EG=2+x,在Rt△DEG中,由勾股定理得,EG2=DE2+DG2,∴(2+x)2=22+(4﹣x)2,解得x=43,即CG=43,故选C.【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.8.B解析:B 【分析】先求出P 点坐标,再由直线l 1:y =x +1可知,A (0,1),则B 1纵坐标为1,代入直线l 2:y =12x +12中,得B 1(1,1),又A 1、B 1横坐标相等,可得A 1(1,2),则AB 1=1,A 1B 1=2-1=1,可判断AA 1B 1为等腰直角三角形,利用平行线的性质,得A 1A 2B 2、A 2A 3B 3、…、都是等腰直角三角形,根据平行于x 轴的直线上两点纵坐标相等,平行于y 轴的直线上两点横坐标相等以及直线l 1、l 2的解析式,分别求A 1B 1,A 2B 2的长得出一般规律,再利用规律解答即可. 【详解】解:由直线直线l 1:y =x +1可知,P (-1,0)A (0,1),根据平行于x 轴的直线上两点纵坐标相等,平行于y 轴的直线上两点横坐标相等以及直线l 1、l 2的解析式可知,B 1(1,1),A 1(1,2),B 2(3,2),A 2(3,4),B 3(7,4),A 3(7,8),A 1B 1=2-1,A 2B 2=4-2=2,A 3B 3=8-4=4,…A n B n =2n -2(n -1)当n =2020时,20202020A B =22020-22019=2×22019-22019=22019(2-1)=22019. 故选B . 【点睛】本题主要考查了一次函数的综合运用以及等腰三角形的知识.掌握平行于x 轴的直线上点的纵坐标相等,平行于y 轴的直线上点的横坐标相等成为解答本题的关键.二、填空题9.2x ≥-且0x ≠ 【解析】 【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案. 【详解】解:由题意得,x+2≥0,x≠0, 解得,x≥-2且x≠0, 故答案为:x≥-2且x≠0. 【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.10.96cm 2【解析】【分析】根据菱形的面积等于两对角线的积的一半求解即可.【详解】 由已知可得,这个菱形的面积1216962⨯==(2cm ), 故答案为:296cm .【点睛】本题考查了菱形的性质,解答此题的关键是掌握菱形的面积等于两对角线的积的一半. 11.36或164【解析】【分析】根据直角三角形斜边的情况分类讨论,然后根据勾股定理即可求出2x .【详解】解:若10为斜边的长度,根据勾股定理:22210836x =-=;若x 为斜边的长度,根据勾股定理:222108164x =+=.综上所述:2x =36或164故答案为36或164.【点睛】此题考查的是勾股定理,根据直角三角形斜边的情况分类讨论和用勾股定理解直角三角形是解决此题的关键. 12.A解析:【分析】由矩形的性质得出OA =BO ,证△AOB 是等边三角形,得出AB =OB =2,由勾股定理求出AD ,即可求出矩形的面积.【详解】解:∵四边形ABCD 是矩形∴OA =BO ,∠COD =∠AOB =60°∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =OB =2,∴∠BAD =90°,AO =CO 12=AC ,BO =DO 12=BD ,AC =BD =2OB =4, ∴AD===∴矩形ABCD 的面积=AB ×AD ==故答案:【点睛】本题考查了矩形的性质,等边三角形的判定和性质,勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明△AOB为等边三角形是解题的关键.13.1【分析】2,3代入函数解析式即可求解.把()【详解】()2,3代入1=+得3=2k+1y kx解得k=1故答案为:1.【点睛】此题主要考查求一次函数的解析式,解题的关键是熟知待定系数法的运用.14.A解析:【分析】结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.【详解】∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵AE垂直平分OB于点E,∴AO=AB=4,∴AO=OB=AB=4,∴BD=8,在Rt△ABD中故答案为【点睛】本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.15.或【分析】分别用m表示出点A和点B的纵坐标,用点A的纵坐标减去点B的纵坐标或用点B的纵坐标减去点A的纵坐标得到以m为未知数的方程,求解即可.【详解】解:∵点A是一次函数图象上的动点,且点A的解析:43或23 【分析】分别用m 表示出点A 和点B 的纵坐标,用点A 的纵坐标减去点B 的纵坐标或用点B 的纵坐标减去点A 的纵坐标得到以m 为未知数的方程,求解即可.【详解】解:∵点A 是一次函数21y x =+图象上的动点,且点A 的横坐标为m ,∴(,21)A m m +∵AC ⊥x 轴与C ,∴(,0)C m∴(,4)B m m -+∵1AB =∴|21(4)|1m m +--+=解得,43m =或23故答案为43或23 【点睛】本题考查了一次函数图象上点的坐标特征,根据A 点横坐标和点的坐标特征求得A 、B 点纵坐标是解题的关键.16.【分析】过点作轴于点,过点作轴于点,由正方形的性质就可以得出,就可以得出,,由一次函数的图象经过正方形的顶点和,设点,就可以得出代入解析式就可以求出的值,由正方形的面积等于就可以求出结论.【详解析:325【分析】过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,由正方形的性质就可以得出CDO AEO ∆≅∆,就可以得出CD AE =,OD OE =,由一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,就可以得出(24,)A a a --代入解析式就可以求出a 的值,由正方形的面积等于2OC 就可以求出结论.【详解】解:过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,90CDO AEO ∴∠=∠=︒.四边形OABC 是正方形,90AOC ∴∠=︒,OC OA =.90DOE ∠=︒,AOC DOE ∴∠=∠,AOC AOD DOE AOD ∴∠-∠=∠-∠,COD AOE ∴∠=∠.在CDO ∆和AEO ∆中,CDO AEO COD AOE OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDO AEO AAS ∴∆≅∆CD AE ∴=,OD OE =.一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,OD a ∴=,24CD a =-,OE a ∴=,24AE a =-,(24,)A a a ∴--,2(24)4a a ∴-=--,125a ∴=. 125OD ∴=,45CD =, 在Rt CDO ∆中,由勾股定理,得2222212432555OC OD CD ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 2OABC S CO =正方形,325OABC S ∴=正方形. 故答案为:325. 【点睛】 本题考查了正方形的性质及面积公式的运用,垂直的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,一次函数图象上点的坐标的特征的运用,构造K 字形全等,得出AC 两点坐标关系是解题的关键.三、解答题17.(1);(2).【分析】(1)先算乘法,化成最简二次根式,再算加减即可;(2)先算乘除和运用完全平方公式计算,再合并.【详解】解:(1);(2)(+(﹣1)2.【点睛】本解析:(12)3.【分析】(1)先算乘法,化成最简二次根式,再算加减即可;(2)先算乘除和运用完全平方公式计算,再合并.【详解】解:(12=1=-+;(21)2=-21=3=.3【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算的法则进行解答.18.(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了.【分析】(1)根据勾股定理即可求解;(2)先求出BD,再根据勾股定理即可求解.【详解】解:(1)由题意可知:,;,在中,解析:(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.【分析】(1)根据勾股定理即可求解;(2)先求出BD ,再根据勾股定理即可求解.【详解】解:(1)由题意可知:90B ∠=︒,25m AC DE ==;7m BC =,在Rt ABC 中,由勾股定理得:222AB BC AC +=, ∴AB ==24=,因此,这个梯子的顶端A 距地面有24m 高.(2)由图可知:AD =4m ,24420BD AB AD =-=-=,在Rt DBE 中,由勾股定理得:222BE BD DE +=, ∴BE ==15=,∴1578CE BE BC =-=-=.答:梯子的底部在水平方向滑动了8m .【点睛】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解.19.(1)作图见解析,点C 的坐标为(-1,1);(2)AC 边上的高为.【解析】【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可.(2)利用面积法求解即可.【详解】解:(1)如图,解析:(1)作图见解析,点C 的坐标为(-1,1);(2)AC . 【解析】【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)利用面积法求解即可.【详解】解:(1)如图,△A ′B ′C ′即为所求作.点C 的坐标为(-1,1);(2)设△ABC 边上的高为h ,∵AB 2212+5BC 2212+5AC 2213+10,(2225510+=, ∴222AB BC AC +=,且AB =BC ,∴△ABC 是等腰直角三角形,且AC 为斜边, ∴12551210×h , ∴h 10. 即AC 10. 【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(1)见解析;(2)15;(3)见解析【分析】(1)作AG ⊥EF 于G ,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB=AD ,即可得出四边形ABC解析:(1)见解析;(2)15;(3)见解析【分析】(1)作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB =AD ,即可得出四边形ABCD 是正方形;(2)根据全等三角形的判定得△AGF ≌△ADF ,进而推出EF =GE +GF =BE +DF ,设AG =x ,则正方形ABCD 边长BC =CD =x ,在Rt △ECF 中,由勾股定理得AG =6,根据三角形面积公式得S △AEF =15;(3)如图(2),由(1)、(2)得∠EAF =12∠BAD =12×90°=45°,根据相似三角形的判定得△AMN ∽△DMA ,根据相似的性质可得结论.【详解】(1)证明:作AG EF ⊥于G ,如图(1)所示:则90AGE AGF ∠=∠=︒,∵AB CE ,AD CF ⊥,∴90B D C ∠=∠=∠=︒,∴四边形ABCD 是矩形,又∵CEF ∠,CFE ∠外角平分线交于点A ,∴AB AG =,AD AG =,∴AB AD =,∴四边形ABCD 是正方形;(2)解:由(1)知,AB AG =,AD AG =,90B AGE AGF D ∠=∠=∠=∠=︒, 又AE AE =,AF AF =,∴ABE AGE ≅△△,AGF ADF ≅,∴BE GE =,DF GF =,∴EF GE GF BE DF =+=+,设AG x =,则正方形ABCD 边长BC CD x ==,由(2)知,EF BE DF =+,∴325EF BE DF =+=+=,3EC BC BE x =-=-,2FC DC DF x =-=-.∴在Rt ECF △中,由勾股定理得()()223225x x -+-=, 解得:16x =,21x =-(舍去). ∴6AG =, ∴561522AEF EF AG S ⋅⨯===△.(3)证明:如图(2),由(1)、(2)易知,11904522EAF BAD ∠=∠==︒⨯︒,45ADB ∠=︒, ∴EAF ADB ∠=∠,即MAN MDA ∠=∠,在AMN 和DMA △中,MAN MDA AMN DMA∠=∠⎧⎨∠=∠⎩, ∴AMN DMA △△, ∴MN MA MA MD=, ∴2MA MN MD =⋅.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1),;(2)当时,甲批发店购买更省钱;当时,甲乙批发店花同样多的钱;当时,乙批发店购买更省钱.【分析】(1)根据“甲批发店每千克苹果的价格为3元,乙批发店当一次性购买不超过10千克时,每千克解析:(1)13y x =,24(010)220(10)x x y x x <≤⎧=⎨+>⎩;(2)当020x <<时,甲批发店购买更省钱;当20x 时,甲乙批发店花同样多的钱;当10x >时,乙批发店购买更省钱.【分析】(1)根据“甲批发店每千克苹果的价格为3元,乙批发店当一次性购买不超过10千克时,每千克价格为4元,超过10千克时,超过部分每千克价格为2元”写出y 1、y 2与x 的函数关系式;(2)根据题意,分别在当010x <≤和10x >比较y 1、y 2,列不等式求得x 的范围.【详解】(1)依题意,得13y x =;当010x <≤时,24y x =;当10x >时,24102(10)220y x x =⨯+⨯-=+∴24(010)220(10)x x y x x <≤⎧=⎨+>⎩(2)①当010x <≤,34x x <,则12y y <∴010x <≤,12y y <②当10x >:当12y y <时,即3220x x <+时,20x <当12y y =时,即3220x x =+时,20x当12y y >时,即3220x x >+时,20x >∴当020x <<时,甲批发店购买更省钱;当20x 时,甲乙批发店花同样多的钱;当10x >时,乙批发店购买更省钱.【点睛】本题考查了一次函数的应用,正确的列出函数关系式和掌握一次函数的性质是解题的关键.23.(1)见解析;(2)见解析;(3).【分析】(1)分别过点作,垂足分别为,勾股定理解即可;(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到解析:(1)见解析;(2)见解析;(3 【分析】(1)分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S R ,勾股定理解Rt ARE △即可; (2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=,经过角度的变换得出BAN HDB ∠=∠,再证明ATN △≌HGD △,得出,AN HD =,结合已知条件,继而证BAN ≌BDH △,得出ABN DBH ∠=∠,NB HB =,进而得到NBH △是等腰直角三角形,从而得证;(3)分别作,AD AQ 的中垂线,交于点O ,根据作图,先判断MQ 最大的时候的位置,进而由12QH AH =,AD =,AH HD ,从而求得△ADH 的面积 .【详解】(1)如图,分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S RAB BD ⊥,AB BD =,22AB =ABD ∴是等腰直角三角形,ASB △是等腰直角三角形224AD AB BD ∴=+=∴122AS SD AD ===,2BS AS == 四边形ABCD 是平行四边形//AD BC ∴,BS AD ER AD ⊥⊥,1BE =∴四边形SBER 是矩形∴SR BE =1=,2RE SB ==3AR AS SR ∴=+=在Rt ARE △中22223213AE AR RE =+=+=(2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=BAD 是等腰直角三角形45BAD BDA ∴∠=∠=︒45HAD BAD BAN α∴∠=∠-∠=︒-DH AE ⊥,9045ADH HAD α∴∠=︒-∠=︒+4545HDB ADH ADB αα∴∠=∠-∠=︒+-︒=BAN HDB ∴∠=∠NT AD ⊥9090(45)45ANT HAD αα∴∠=︒-∠=︒-︒-=︒+,90ATN ∠=︒ANT ADH HDG ∴∠=∠=∠HG AD ⊥90HGD ∴∠=︒ATN HGD ∴∠=∠又45BDA ∠=︒9045DMG MDG ∴∠=︒-∠=︒GD GM ∴=//MN AD ,HG AD ⊥,NT AD ⊥∴四边形TNMG 是矩形GM TN ∴=TN GD ∴=在ATN △和HGD △中ANT HDG TN GDATN HGD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ATN △≌HGD △(ASA )AN HD ∴=在BAN 和BDH △中AB BD BAN HDB AN HD =⎧⎪∠=∠⎨⎪=⎩∴BAN ≌BDH △(SAS )ABN DBH ∴∠=∠,NB HB =ABN NBD DBH NBD ∠+∠=∠+∠即ABD NBH ∠=∠AB BD ⊥90ABD ∴∠=︒90NBH ∴∠=︒NBH ∴△是等腰直角三角形∴NH =即NH =(3)分别作,AD AQ 的中垂线,交于点O ,由题意,当点E 在线段BC 上运动时,AQD ∠不变,AD 的长度不变,则,,A D Q 三点共圆,则点Q 在以O 为圆心OQ 为半径的圆上运动,DH AE ⊥,12QH AH =tan 2AH AQD QH∴∠== 在OMQ 中MQ MO OQ ≤+∴当,,M O Q 三点共线时,MQ 取得最大值,此时情形如图:,AB BD BM AD =⊥∴AM MD =,,M O Q 三点共线,∴点Q 在AB 的垂直平分线上QA QD ∴=DH AE ⊥,tan 2AH AQDQH∠== 设QH x =,则AH 2x =5AQ x ∴=QD =DH x ∴=-AD=222AH DH AD∴+=即222(2))x x+-=得:2x=△ADH的面积12AH DH=⋅12)2x x=⨯⋅-21)x=1)=∴当QM取最大值时,△ADH【点睛】本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.24.(1)见解析;(2)①y=2x﹣1;②点B的坐标(,6)或(﹣,);③﹣3≤t≤1【解析】【分析】(1)由“三分点”的定义可求解;(2)①由“三分点”定义可得:,消去t即可求解;②先求出点解析:(1)见解析;(2)①y=2x﹣1;②点B的坐标(32,6)或(﹣34,32);③﹣3≤t≤1【解析】【分析】(1)由“三分点”的定义可求解;(2)①由“三分点”定义可得:330233txty+⎧=⎪⎪⎨++⎪=⎪⎩,消去t即可求解;②先求出点M,点N的坐标,分两种情况:MN为一边或MN为对角线,利用平行四边形的性质可求解;(3)利用特殊位置,分别求出AT过点M和过点N时,t的值,即可求解.【详解】(1)∵1413-+=,8-223=,∴点D(1,2)是点C,点E的三分点;(2)①∵点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点,∴330233txty+⎧=⎪⎪⎨++⎪=⎪⎩,∴y=2x﹣1;②∵y=2x﹣1图象交y轴于点M,直线l交y轴于点N,∴点M(0,﹣1),点N(0,3),当四边形MTBN是平行四边形时,∴BT∥MN,∵B(t,2t+3),T(3+t3,2t+33),∴t=3+t3,∴t=32,∴点B的坐标(32,6);当四边形MTNB是平行四边形时,设BT与MN交于点P,则点P为BT与MN的中点,∴点P(0,1),∵B(t,2t+3),T(3+t3,2t+33),∴t+3+t3=0,∴t=﹣34,∴点B(﹣34,32),综上所述:点B的坐标为(32,6)或(﹣34,32);(3)当直线AT过点M时,∵点A(3,0),点M(0,﹣1),∴直线AM解析式为y=13x﹣1,∵点T是直线AM上,∴2t+33=13×3+t3﹣1∴t=﹣3,当直线AT过点N时,∵点A(3,0),点M(0,3),∴直线AN解析式为y=﹣x+3,∵点T 是直线AN 上, ∴2t+33=﹣3+t 3+3, ∴t =1,∵直线AT 与线段MN 有交点,∴﹣3≤t ≤1.【点睛】本题新定义考题,题目中给出一个新的概念,严格利用新的概念进行求解;但是,新定义问题实质上是课程内知识点的综合应用,比如本题考查了消元法,平行四边形的性质和一次函数,本类题目一定要注意分类讨论,利用合适条件确定边界条件是解题的关键. 25.(1);(2);(3)见解析【分析】(1)利用勾股定理求出BC ,再利用面积法求出AE 即可.(2)如图2中,过点作于点,先求得,根据含30度角的直角三角形的性质求得,设,勾股定理求得进而求得,利解析:(2)16-(3)见解析 【分析】(1)利用勾股定理求出BC ,再利用面积法求出AE 即可.(2)如图2中,过点F 作FG AC 于点G ,先求得30EAC ∠=︒,根据含30度角的直角三角形的性质求得EC ,设FG x =,勾股定理求得AF 进而求得EF ,利用三角形面积公式即可求得CEF 的面积;(3)如图3中,过A 点作AM ⊥CD 于点M ,与BC 交于点N ,连接DN ,证明△AMF ≌△DMN (ASA ),推出AF =DN =CN ,再证明△APF ≌△DBN (SAS ),可得结论.【详解】(1)∵AB =2AC ,AC =8,∴AB =16,∵∠BAC =90°,∴BC=∵AE ⊥BC ,∴S △ABC =1122BC AE AC AB ⨯⨯=,∴AE. (2)如图,过点F 作FG AC 于点G ,则90FGC ∠=︒,∠B =30°,90BAC ∠=︒,8AC =,60ACB ∠=︒∴,216BC AC ==, 2283AB BC AC ∴=-=, ∴1432AE AB == , AE ⊥BC ,30EAC ∴∠=︒,142EC AC ∴== 设FG x =,则2AF x =,2233AG AF FG FG x =-==,90,45FGC ACD ∠=︒∠=︒,FG GC x ∴==,8AC =,8AG x ∴=-,38x x ∴=-解得434x =-2838AF x ∴==-43(838)843EF AE AF ∴=-=--=-11(843)4168322CEF S EF AC ∴=⋅=-⨯=-△ (3)证明:如图3中,过A 点作AM ⊥CD 于点M ,与BC 交于点N ,连接DN .∵∠BAC =90°,AC =AD ,∴AM ⊥CD ,AM =DM =CM ,∠DAM =∠CAM =∠ADM =∠ACD =45°,∴DN =CN ,∴∠NDM =∠NCM ,∵AE ⊥BC ,∴∠ECF +∠EFC =∠MAF +∠AFM =90°,∵∠AFM=∠EFC,∴∠MAF=∠ECF,∴∠MAF=∠MDN,∵∠AMF=∠DMN,∴△AMF≌△DMN(ASA),∴AF=DN=CN,∵∠BAC=90°,AC=AD,∴∠DAM=∠CAM=∠ADM=∠ACD=45°,∴∠NAP=∠CDB=135°,∵∠MAF=∠MDN,∴∠PAF=∠BDN,∵AP=DB,∴△APF≌△DBN(SAS),∴PF=BN,∵AF=CN,∴PF+AF=CN+BN,即PF+AF=BC.【点睛】考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造全等三角形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D )A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等,因此只能是:5cm ,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是(D )A .40°B .50°C .60°D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则最长边上的高是(D )A.2.4cmB.3cmC.4cmD. 4.8cm提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.84.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33. 解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3, ∵AB=AC , ∴∠ABC=∠ACB=21∠BAD=21(90°-30°)=30°, ∴∠ABD=∠ABC ,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30°∴∠A=90°-30°=60°,∴△ABC 是等边三角形,∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形(B )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”】6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D ,交BC 于E ,则△ADC 的周长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60°证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60°则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180°即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立.∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立【注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法】8. 如图所示,∠AOB=30°,OC 平分∠AOB,P 为OC 上任意一点,PD∥OA 交OB 于点D ,PE⊥OA 于点E ,若PE=2cm ,则PD=_________cm .解:过点P 作PF ⊥OB 于F ,∵∠AOB=30°,OC 平分∠AOB ,∴∠AOC=∠BOC=15°,∵PD ∥OA ,∴∠DPO=∠AOP=15°,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO ,∴PD=OD=4cm ,∵∠AOB=30°,PD ∥OA ,∴∠BDP=30°,∴在Rt △PDF 中,PF=21PD=2cm , ∵OC 为角平分线,PE ⊥OA ,PF ⊥OB,∴PE=PF ,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9解:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB ,∵MN ∥BC ,∴∠EBC=∠EBC ,∠ECN=∠ECB ,∴BM=ME ,EN=CN ,∴MN=BM+CN ,∵BM+CN=9,∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为(B ) A.11 B.5.5 C.7 D.3.5解:作DM=DE 交AC 于M ,作DN ⊥AC ,∵在△AED 和△AMD 中∴△AED ≌△AMD∴ADM ADE S S V V∵DE=DG ,DM=DE ,∴DM=DG ,∵AD 是△ABC 的外角平分线,DF ⊥AB ,∴DF=DN ,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMN (HL ),∵△ADG 和△AED 的面积分别为50和39,∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11=5.5考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是(A )A. B. C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC过C 作CD ⊥AB ,交AB 于点D ,则由ABC S V =21AC .BC=21AB .CD ,得CD=AB BC AC .=1512x 91=536考查知识:利用面积相等法12.如图,在△ABC 中AD⊥BC,CE⊥AB,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是(A )A.1 B.2 C.3 D.4解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,∴△AEH ≌△CEB (ASA )∴CE=AE ,∵EH=EB=3,AE=4,∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F ,AB=5,AC=2,则DF 的长为23.解:延长CF 交AB 于点G ,∵AE 平分∠BAC ,∴∠GAF=∠CAF ,∵AF 垂直CG ,∴∠AFG=∠AFC ,在△AFG 和△AFC 中,∴△AFG ≌△AFC (ASA )∴AC=AG ,GF=CF ,又∵点D 是BC 的中点,∴DF 是△CBG 的中位线,∴DF=21BG=21(AB-AG )=21(AB-AC )=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形. 14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,交AD 于E ,交BC 的延长线于F.求证:∠CAF=∠B.解:∠B=∠CAF.∵FE 垂直平分AD ,∴FA=FD ,∴∠FAD=∠ADF∵AD 为∠BAC 的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD ,∠B=∠ADF-∠BAD ,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA 、OB 表示两条相交的公路,点M 、N 是两个工厂,现在要在∠AOB 内建立一个货物中转站P ,使中转站到公路OA 、OB 的距离相等,并且到工厂M 、N 的距离也相等,用尺规作出货物中转站P 的位置.解:①作∠AOB 的角平分线;②连接MN ,作MN 的垂直平分线,交OM 于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED(2)解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.(1)证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°又∠AFE=∠BFD∴∠CAD=∠FBD又∠ADC=∠BDF=90°∴△ADC≌△BDF∴AC=BF∵AB=BC,BE⊥AC∴AC=2AE∴BF=2AE(2)解:设AD=x,则BD=x∴AB=BC=2+x∵△ABD是等腰直角三角形∴AB=2AD∴2+x=2x解得x=2+2即AD=2+218.如图,已知△ABC是等边三角形,D、E分别在BA、BC的延长线上,且AD=BE.求证:DC=DE证明:延长BE至F,使EF=BC∵△ABC是等边三角形∴∠B=60°,AB=BC∴AB=BC=EF∵AD=BE,BD=AB+AD, BF=BE+EF∴BD=BF∴△BDF是等边三角形∴∠F=60°,BD=FD在△BCD和△FED中,BC=EF∠B=∠F=60°BD=FD∴△BCD≌△FED(SAS)∴DC=DE19.如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90°∴∠DBC+∠AFC=∠FAC+∠AFC=90°∴∠DBC=∠FAC在△ACF 和△BCD 中∴△ACF ≌△BCD (ASA )∴AF=BD又AE=21BD ∴AE=EF,即点E 是AF 的中点∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD ,正△ABE ,BD 与AE 相交于F ,连接AF ,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD ,CE 于M ,N 两点∵△ABE 和△ACD 均为等边三角形,∴∠EAB=∠CAD=60°,AD=AC ,AB=AE∵∠EAC=∠BAD=60°+∠BAC ,∴△EAC ≌△BAD ,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD ∴AN=AM∴AF 平分∠DME (在角的内部到角两边距离相等的点在该角的平分线上)21.如图,已知:AB=AC ,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD.∵∠A=90° AB=AC D 是BC 的中点∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD (直角三角形中,中线等于斜边的一半)且BE=AF∴易证△BED ≌△AFD (SAS )∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90°∴∠ADF+∠ADE=90°∴ED ⊥FD如图,在Rt △ABC 中,D ,E 为斜边AB 上的两点,且BD=BC ,AE=AC ,则∠DCE 的大小为_____°.如图,在等腰△ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是_____.第二章 不等式(组) 不等式基本性质例:如果x >y ,那么下列各式中正确的是(C )A .x-2<y-2B . 2x <2y C .-2x <-2y D .-x >-y 1.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解出未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5∴a=3,b=-5(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 (B ) A .m >8 B.m ≥8 C.m <8 D.m ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8【“=”一定要考虑,这个题取“=”就满足题意】(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是(A ).A .m≤3B . m≥3C .m=3D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m≤3【“=”一定要考虑,这个题取“=”就满足题意】(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得 ∵有三个整数解∴2<x <6a+10∴三个整数解应该是3,4,5∴5<6a+10≤6解得65-<a ≤32- 【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【不等式组的结果不能写成大括号的形式】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; (2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上. 3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为(C ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折.那么(600×10x -500)÷500≥8% 解得x ≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是(B ) <y B .>y C .≤y D .≥y解:根据题意得,他买黄瓜每斤平均价是502030y x + 以每斤2y x +元的价格卖完后,结果发现自己赔了钱,则 502030y x +>2y x + 解得:x >y∴赔钱的原因是x>y(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

相关文档
最新文档