2019年2016年山西省中考数学试卷
2019年山西省中考数学试卷-答案
山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a = ,故C 错误;D 、2336()ab a b -=-,故D 正确.故选:D . 【考点】整式的运算. 3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D【解析】A =,本选项不合题意;B =C =意;D 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -= ,∴26675a =-∴抛物线解析式为:226675y x =-,故选B . 【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠===,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:12OE OD ==,32DE == ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯=-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题 11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16【解析】过点D 作DE AB ⊥于点E ,则5AD =,∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k=, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ==在Rt AFG △中:GF ==,2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=+-+= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN = ,∴2()()R r R d R d =+- ∴222R d R r -= ,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN = ,∴2()()R r R d R d =+- ∴222R d R r -= ,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯= △ ∵3396442BCD AOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+= △△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫ ⎪⎝⎭, ∴N 1,N 2的纵坐标为154 233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M ∴N 3,N 4的纵坐标为154- 233156424x x -++=-,11x =,21x =可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M . 【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数表达式为233642y x x =-++. (2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F .∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯= △ ∵3396442BCD AOC S S ==⨯=△△设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+. ∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+= △△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+= 解得1= 1m (舍去),2 3m =,∴m 的值为3.(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫ ⎪⎝⎭, ∴N 1,N 2的纵坐标为154 233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M ∴N 3,N 4的纵坐标为154- 233156424x x -++=-,11x =,21x =可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M . 【考点】二次函数的图象与性质.。
山西省2019年中考数学真题试题(含解析)
2019年山西省中考数学试卷一、选择题(本大题共10小题,共30分) 1. -3的绝对值是( )A. −3B. 3C. −13D. 132. 下列运算正确的是( )A. 2a +3a =5a 2B. (a +2a )2=a 2+4a 2C. a 2⋅a 3=a 6D. (−aa 2)3=−a 3a 6 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是( )A. 青B. 春C. 梦D. 想 4. 下列二次根式是最简二次根式的是( )A. √12B. √127C. √8D. √35. 如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是( ) A. 30∘ B. 35∘ C. 40∘ D. 45∘ 6. 不等式组{a −1>32−2a <4的解集是( )A. a >4B. a >−1C. −1<a <4D. a <−17. 五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示( )A. 2.016×108元B. 0.2016×107元C. 2.016×107元D. 2016×104元 8. 一元二次方程x 2-4x -1=0配方后可化为( )A. (a +2)2=3B. ( a +2)2=5C. (a −2)2=3D. ( a −2)2=5 9. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )2A. a =26675a 2B. a =−26675a 2C. a =131350a 2D. a =−131350a 210. 如图,在Rt △ABC 中,∠ABC =90°,AB =2√3,BC =2,以AB的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.5√34−a2B.5√34+a2C. 2√3−aD. 4√3−a2二、填空题(本大题共5小题,共15分) 11. 化简2aa −1-a1−a 的结果是______.12. 要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是______. 13. 如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为______. 14. 如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =aa (x >0)的图象恰好经过点C ,则k 的值为______. 15. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为______cm .三、解答题(本大题共8小题,共75分)16. (1)计算:√27+(-12)-2-3tan60°+(π-√2)0.(2)解方程组:17.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E 在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量,之间的距离的平均值是______.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子4测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21. 阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其中外心和内心,则OI 2=R 2-2Rr .如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2-2Rr . 下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN . ∵∠D =∠N ,∠DMI =∠NAI (同弧所对的圆周角相等).∴△MDI ∽△ANI .∴aa aa =aaaa ,∴IA •ID =IM •IN ,①如图2,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF . ∵DE 是⊙O 的直径,所以∠DBE =90°. ∵⊙I 与AB 相切于点F ,所以∠AFI =90°, ∴∠DBE =∠IFA .∵∠BAD =∠E (同弧所对的圆周角相等), ∴△AIF ∽△EDB , ∴aa aa =aa aa .∴IA •BD =DE •IF ②任务:(1)观察发现:IM =R +d ,IN =______(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为______cm .22.综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是______,aaaa的值是______.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:______.23.综合与探究如图,抛物线y=ax2+bx+6经过点A(-2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.6答案和解析1.【答案】B【解析】解:|-3|=3.故-3的绝对值是3.故选:B.根据绝对值的定义,-3的绝对值是指在数轴上表示-3的点到原点的距离,即可得到正确答案.本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.2.【答案】D【解析】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(-ab2)3=-a3b6,正确.故选:D.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.根据正方体展开z字型和L型找对面的方法即可求解;本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.4.【答案】D【解析】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°-75°=40°,故选:C.先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.【答案】A【解析】解:,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选:A.首先求出不等式组中每一个不等式的解集,再求出其公共解集.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【答案】C【解析】解:120000×168=20160000=2.016×107,故选:C.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】D【解析】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9.【答案】B【解析】解:设抛物线的解析式为:y=ax2,将B(45,-78)代入得:-78=a×452,解得:a=-,故此抛物线钢拱的函数表达式为:y=-x2.故选:B.直接利用图象假设出抛物线解析式,进而得出答案.此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.10.【答案】A【解析】8解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tanA=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】3aa−1【解析】解:原式=.故答案为:先把异分母转化成同分母,再把分子相减即可.此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.【答案】扇形统计图【解析】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13.【答案】(12-x)(8-x)=77【解析】解:∵道路的宽应为x米,∴由题意得,(12-x)(8-x)=77,故答案为:(12-x)(8-x)=77.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14.【答案】16【解析】10解:过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F , ∵ABCD 是菱形, ∴AB=BC=CD=DA , 易证△ADF ≌△BCE ,∵点A (-4,0),D (-1,4), ∴DF=CE=4,OF=1,AF=OA-OF=3, 在Rt △ADF 中,AD=,∴OE=EF-OF=5-1=4, ∴C (4,4) ∴k=4×4=16 故答案为:16.要求k 的值,求出点C 坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k 的值.本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法. 15.【答案】(10-2√6) 【解析】解:过点A 作AG ⊥DE 于点G , 由旋转知:AD=AE ,∠DAE=90°,∠CAE=∠BAD=15°, ∴∠AED=∠ADG=45°,在△AEF 中,∠AFD=∠AED+∠CAE=60°, 在Rt △ADG 中,AG=DG==3,在Rt △AFG 中,GF==,AF=2FG=2,∴CF=AC-AF=10-2, 故答案为:10-2.过点A 作AG ⊥DE 于点G ,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG ,GF ,AF 的长,即可求出CF=AC-AF=10-2.本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题. 16.【答案】解:(1)原式=3√3+4-3√3+1 =5;(2)①+②得, 4x =-8, ∴x =-2,把x =-2代入①得, -6-2y =-8, ∴y =1, ∴{a =−2a =1.【解析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.17.【答案】证明:∵AD =BE ,∴AD -BD =BE -BD ,∴AB =ED ,∵AC ∥EF ,∴∠A =∠E ,在△ABC 和△EDF 中,{∠a =∠a∠a =∠aaa =aa ,∴△ABC ≌△EDF (AAS ),∴BC =DF .【解析】由已知得出AB=ED ,由平行线的性质得出∠A=∠E ,由AAS 证明△ABC ≌△EDF ,即可得出结论.本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.18.【答案】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多; 从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数; 从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A ”和“B ”的有2种结果,所以抽到的两张卡片恰好是“A ”和“B ”的概率为212=16.【解析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)当游泳次数为x 时,方式一费用为:y 1=30x +200,方式二的费用为:y 2=40x ;(2)由y 1<y 2得:30x +200<40x ,解得x >20时,当x>20时,选择方式一比方式二省钱.【解析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.20.【答案】5.5【解析】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE-DE,∴-=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】R-d√5【解析】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON-OI=R-d故答案为:R-d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID12(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R-d)∴R2-d2=2Rr∴d2=R2-2Rr(4)由(3)知:d2=R2-2Rr;将R=5,r=2代入得:d2=52-2×5×2=5,∵d>0∴d=故答案为:.(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等.22.【答案】67.5° √2菱形EMCH或菱形FGCH【解析】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:14∵由折叠可知:MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH , ∴四边形EMCH 与四边形FGCH 是菱形,故答案为:菱形EMCH 或菱形FGCH .(1)由折叠的性质得BE=EN ,AE=AF ,∠CEB=∠CEN ,∠BAC=∠CAD ,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN 是等腰直角三角形,得出AE=EN ,即可得出结果;(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD ,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC ,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH 、GH 分别垂直平分EC 、FC ,得出MC=ME=CG=GF ,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;(3)连接EH 、FH ,由折叠可知MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH ,则四边形EMCH 与四边形FGCH 是菱形.本题是几何变换综合题,考查了正方形的性质、折叠的性质、等腰直角三角形的判定与性质、矩形的判定、菱形的判定、等腰三角形的判定与性质等知识,熟练掌握折叠的性质、矩形与菱形的判定是解题的关键.23.【答案】解:(1)由抛物线交点式表达式得:y =a (x +2)(x -4)=a (x 2-2x -8)=ax 2-2ax -8a ,即-8a =6,解得:a =-34,故抛物线的表达式为:y =-34x 2+32x +6;(2)点C (0,6),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =-32x +6,如图所示,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,-34m 2+32m +6),则点H (m ,-32m +6) S △BDC =12HB ×OB =2(-34m 2+32m +6+32m -6)=-34m 2+3m ,34S △ACO =34×12×6×2=92, 即:-34m 2+3m =92,解得:m =1或3(舍去1),故m =3;(3)当m =3时,点D (3,154),①当BD 是平行四边形的一条边时,如图所示:M 、N 分别有三个点,设点N (n ,-34n 2+32n +6) 则点N 的纵坐标为绝对值为154,即|-34n 2+32n +6|=154,解得:n =-1或3(舍去)或1±√14,故点N (N ′、N ″)的坐标为(-1,154)或(1+√14,-154)或(1-√14,-154), 当点N (-1,154)时,由图象可得:点M (0,0),当N ′的坐标为(1+√14,-154),由中点坐标公式得:点M ′(√14,0), 同理可得:点M ″坐标为(-√14,0),故点M 坐标为:(0,0)或(√14,0)或(-√14,0);②当BD 是平行四边形的对角线时,点B 、D 的坐标分别为(4,0)、(3,154)设点M (m ,0),点N (s ,t ),由中点坐标公式得:{4+3=a +a 154+0=a +0,而t =-34s 2+32s +6, 解得:t =154,s =-1,m =8,故点M 坐标为(8,0);故点M 的坐标为:(0,0)或(√14,0)或(-√14,0)或(8,0).【解析】(1)由抛物线交点式表达,即可求解;(2)利用S △BDC =HB×OB,即可求解;(3)分BD 是平行四边形的一条边、BD 是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.。
2019年山西省中考数学试题(word)(可编辑修改word版)
2019年山西省中考数学试题第I 卷 选择题(共30分)满分:120分时间:120分钟一.选择题(本大题共10个小题,每小题3分,共30分)1.-3的绝对值是()A.-3 B.3 C. D.31-312.下列运算正确的是( )A. B. C. D.2532a a a =+2224)2(b a b a +=+632a a a =⋅6332)(b a ab -=-3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想4.下列二次根式是最简二次根式的是()A. B. C. D.21712835.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°6.不等式组的解集是( )⎩⎨⎧<->-42231x x A. B. C. D.4>x 1->x 41<<-x 1-<x 7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元8.一元二次方程配方后可化为()0142=--x x A. B. C.D.3)2(2=+x 5)2(2=+x 3)2(2=-x 5)2(2=-x9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为轴简历平面直角坐标系,则此抛物线钢拱的函数表达x 式为()A. B. C. D.267526x y =267526x y -=2135013x y =2135013x y -=图1 图2第II 卷 非选择题(90分)二.填空题(本大题共5个小题,每小题3分,共15分)11.化简的结果是 .x x x x ---11212.要表示一个家庭一年用于“教育”,服装,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计是 .13.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为x m ,则根据题意,可列方程为 .15.如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为cm.三.解答题(本大题共8个小题,共75分)16.(本题共2个小题,每小题5分,共10分)(1)计算:(2)解方程组:()022)2(1-33)21(27-+--+-π⎩⎨⎧=+-=-①02①823y x y x 17.(本题7分)已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠H.求证:BC=DH18.(本题9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).19.(本题9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.22.(本小题11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC 的度数是 ,的值是 ;BE AE (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(本题13分)综合与探究如图,抛物线经过点A (-2,0),B (4,0)两点,与轴交于点C ,点D 62++=bx ax y y 是抛物线上一个动点,设点D 的横坐标为.连接AC ,BC ,DB ,DC.)41(<<m m (1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的时,求的值;43m (3)在(2)的条件下,若点M 是轴上的一个动点,点N 是抛物线上一动点,试判断x 是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
2019年山西省中考数学试卷(解析版)
2019年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.2.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b63.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°6.(3分)不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣17.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元8.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5 9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简﹣的结果是.12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC 重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0.(2)解方程组:17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).任务一:两次测量A,B之间的距离的平均值是m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.22.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(13分)综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D 是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.【分析】根据绝对值的定义,﹣3的绝对值是指在数轴上表示﹣3的点到原点的距离,即可得到正确答案.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.【点评】本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.2.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.【点评】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想【分析】根据正方体展开z字型和L型找对面的方法即可求解;【解答】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.【点评】本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.(3分)不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【解答】解:,由①得:x>4,由②得:x>﹣1,不等式组的解集为:x>4,故选:A.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:120000×168=20160000=2.016×107,故选:C.【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x2【分析】直接利用图象假设出抛物线解析式,进而得出答案.【解答】解:设抛物线的解析式为:y=ax2,将B(45,﹣78)代入得:﹣78=a×452,解得:a=﹣,故此抛物线钢拱的函数表达式为:y=﹣x2.故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.【点评】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简﹣的结果是.【分析】先把异分母转化成同分母,再把分子相减即可.【解答】解:原式=.故答案为:【点评】此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是扇形统计图.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为(12﹣x)(8﹣x)=77.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:∵道路的宽应为x米,∴由题意得,(12﹣x)(8﹣x)=77,故答案为:(12﹣x)(8﹣x)=77.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为16.【分析】要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(﹣4,0),D(﹣1,4),∴DF=CE=4,OF=1,AF=OA﹣OF=3,在Rt△ADF中,AD=,∴OE=EF﹣OF=5﹣1=4,∴C(4,4)∴k=4×4=16故答案为:16.【点评】本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC 重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD =60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣2.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.【点评】本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0.(2)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(1)原式=3+4﹣3+1=5;(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.【点评】本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.【分析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果,所以抽到的两张卡片恰好是“A”和“B”的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【分析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.【解答】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).任务一:两次测量A,B之间的距离的平均值是 5.5m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【分析】任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).【解答】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE﹣DE,∴﹣=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=R﹣d(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.【分析】(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.【解答】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr。
(完整word版)2019年山西省中考数学试卷(含解析)完美打印版
2019年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.2.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b63.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°6.(3分)不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣17.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元8.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=59.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简﹣的结果是.12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A 坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0.(2)解方程组:17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量A,B之间的距离的平均值是m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I 的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.22.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(13分)综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.【分析】根据绝对值的定义,﹣3的绝对值是指在数轴上表示﹣3的点到原点的距离,即可得到正确答案.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.(3分)下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想【分析】根据正方体展开z字型和L型找对面的方法即可求解;【解答】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.6.(3分)不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【解答】解:,由①得:x>4,由②得:x>﹣1,不等式组的解集为:x>4,故选:A.7.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:120000×168=20160000=2.016×107,故选:C.8.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x2【分析】直接利用图象假设出抛物线解析式,进而得出答案.【解答】解:设抛物线的解析式为:y=ax2,将B(45,﹣78)代入得:﹣78=a×452,解得:a=﹣,故此抛物线钢拱的函数表达式为:y=﹣x2.故选:B.10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简﹣的结果是.【分析】先把异分母转化成同分母,再把分子相减即可.【解答】解:原式=.故答案为:12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是扇形统计图.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为(12﹣x)(8﹣x)=77.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:∵道路的宽应为x米,∴由题意得,(12﹣x)(8﹣x)=77,故答案为:(12﹣x)(8﹣x)=77.14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为16.【分析】要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(﹣4,0),D(﹣1,4),∴DF=CE=4,OF=1,AF=OA﹣OF=3,在Rt△ADF中,AD=,∴OE=EF﹣OF=5﹣1=4,∴C(4,4)∴k=4×4=16故答案为:16.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣2.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0.(2)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(1)原式=3+4﹣3+1=5;(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.【分析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果,所以抽到的两张卡片恰好是“A”和“B”的概率为=.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【分析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.【解答】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量A,B之间的距离的平均值是 5.5m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【分析】任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).【解答】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE﹣DE,∴﹣=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I 的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=R﹣d(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.【分析】(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.【解答】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr(4)由(3)知:d2=R2﹣2Rr;将R=5,r=2代入得:d2=52﹣2×5×2=5,∵d>0∴d=故答案为:.22.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是67.5°,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:菱形EMCH或菱形FGCH.【分析】(1)由折叠的性质得BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN是等腰直角三角形,得出AE=EN,即可得出结果;(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC =∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH、GH分别垂直平分EC、FC,得出MC=ME=CG=GF,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;(3)连接EH、FH,由折叠可知MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,则四边形EMCH与四边形FGCH是菱形.【解答】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°﹣∠CMG﹣∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.。
2019年山西省中考数学试卷及答案(解析版)
山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是 ( ) A .3-B .3C .13-D .132.下列运算正确的是 ( ) A .2235a a a += B .222(2)4a b a b +=+ C .236a a a = D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是 ( ) A .青 B .春 C .梦 D .想4.下列二次根式是最简二次根式的是 ( ) A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是 ( ) A .30︒ B .35︒ C .40︒ D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -<7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为 ( ) A .2(2)3x += B .2(2)5x += C .2(2)3x -= D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为 ( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为 ( ) A .53π42- B .53π42+ C .23π-D .π432-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上) 11.化简211x xx x---的结果是 .12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .13.如图,在一块长12 m ,宽8 m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m 2.设道路的宽为x m ,则根据题意,可列方程为 .14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(4,0)-,点D 的坐标为(1,4)-,反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为 .15.如图,在ABC △中,90BAC ∠=︒,10AB AC == cm ,点D 为ABC △内一点,15BAD ∠=︒,6AD = cm ,连接BD ,将ABD △绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分,) (1)201()3tan60(π2)2---︒+-;(2)解方程组:328,20.x y x y -=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B ,D 在线段AE 上,AD BE =,AC EF ∥,C H ∠=∠.求证:BC DH =.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题 测量旗杆的高度 成员 组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图 说明:线段GH 表示学校旗杆,测量角度的仪器的高度 1.5AC BD == m ,测点A ,B 与H 在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目 第一次 第二次 第三次 GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数 31.2︒ 30.8︒ 31︒ A ,B 之间的距离 5.4 m 5.6 m… …任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(本小题满分8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC △中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.如图1,O 和I 分别是ABC △的外接圆和内切圆,I 与AB 相O 的半径为R ,I 的半径为三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离222d R Rr =-.下面是该定理的证明过程(部分):交O 于点D ,过点I 作O 的直径连接DM ,AN N ∠,∴DMI NAI ∠=∠(同弧所对的圆周角相等),MDI ANI △.∴IM IDIN=,∴IA ID IM IN =.①O 的直径O 的直径I 与AB 相切于点DBE IFA =∠BAD E ∠=∠(同弧所对圆周角相等AIF EDB △.IA IFDE BD=.∴IA BD DE IF =.②1)观察发现:IM R d =+,IN = (用含R 示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC △的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则ABC △的外心与内心之间的距离为 cm .22.(本小题满分11分) 综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决: (1)在图5中,BEC 的度数是 ,AE BE的值是 ;(2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()aba b -=-,故D 正确.故选:D . 【考点】整式的运算.3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D 【解析】A2=,本选项不合题意;B7=本选项不合题意;C=本选项不合题意;D,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B .【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠==,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:122OE OD ==,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16 【解析】过点D 作DE AB ⊥于点E ,则5AD =, ∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k =, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ===在Rt AFG △中:GF =2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID =∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC =∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
2019年山西省中考数学试卷含答案解析
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( )A .3-B .3C .13- D .132.下列运算正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236a a a =D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A .青B .春C .梦D .想4.下列二次根式是最简二次根式的是( )A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是( )A .30︒B .35︒C .40︒D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -< 7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .53π2- B .53π2+C .23π-D .π432-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上)11.化简211x xx x---的结果是.12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m2.设道路的宽为x m,则根据题意,可列方程为.14.如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(4,0)-,点D的坐标为(1,4)-,反比例函数(0)ky xx=>的图象恰好经过点C,则k的值为.15.如图,在ABC△中,90BAC∠=︒,10AB AC==cm,点D为ABC△内一点,15BAD∠=︒,6AD=cm,连接BD,将ABD△绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分,每题5分,)(1)计算:20127()3tan60(π2)2-+--︒+-;(2)解方程组:328,20.x yx y-=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B,D在线段AE上,AD BE=,AC EF∥,C H∠=∠.求证:BC DH=.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.数学试卷第3页(共22页)数学试卷第4页(共22页)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 表示.现把分别印有A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它课题 测量旗杆的高度成员组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH 表示学校旗杆,测量角度的仪器的高度1.5AC BD == m ,测点A ,B 与H在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目第一次第二次第三次GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数31.2︒30.8︒31︒A ,B 之间的距离5.4 m5.6 m……任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________21.(本小题满分8分)莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC△中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则222OI R Rr=-.如图1,O和I分别是ABC△的外接圆和内切圆,I与AB相切于点三角形三条角距离OI=22R Rr-.下面是该定理的证明过程(部分延长AI交O于点D,过点DM,AN.∵D∠=∠DMI∠=∠ANI△.∴,∴IA IDIFA=∠.BAD E=∠(同弧所对圆周角相等EDB△.IA IFDE BD=.∴IA任务:(1)观察发现:IM R d=+,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC△的外接圆的半径为5 cm,内切圆的半径为2 cm,则ABC△的外心与内心之间的距离为cm.22.(本小题满分11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,ACE△与ACF△重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.问题解决:(1)在图5中,BEC∠的度数是,AEBE的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx=++经过点(2,0)A-,(4,0)B两点,与y轴交于点C.点D是抛物线上一个动点,设点D的横坐标为(14)m m<<.连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)BCD△的面积等于AOC△的面积的34时,求m的值;(3)在(2)的条件下,若点M是x轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()ab a b -=-,故D 正确.故选:D .【考点】整式的运算. 3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B .【考点】正方体的展开与折叠. 4.【答案】D 【解析】A=,本选项不合题意;B本选项不合题意;C本选项不合题意;D ,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C .【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D .【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B . 【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tan BC CAB AB ∠===,∴30CAB ∠=︒ 260BOD CAB∠=∠=︒在Rt ODE △中:12OE OD =,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π22236042︒=⨯--⨯⨯=-︒故选A.【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx-【解析】22311111x x x x xx x x x x-=+=-----.【考点】分式的化简.12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图.【考点】统计图的选择.13.【答案】(12)(8)77x x--=或220190x+-=【解析】由题可知:(12)(8)77x x--=,化简得220190x+-=【考点】一元二次方程解应用题.14.【答案】16【解析】过点D作DE AB⊥于点E,则5AD=,∵四边形ABCD为菱形,∴5CD=∴(4,4)C,将C代入kyx=得:44k=,∴16k=.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A作AG DE⊥于点G,由旋转知:AD AE=,90DAE∠=︒,15CAE BAD∠=∠=︒∴45AED∠=︒在AEF△中:60AFD AED CAE∠=∠+∠=︒在Rt ADG△中:AG DG===在Rt AFG△中:GF=2AF FG==∴10CF AC AF=-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数.三、解答题16.【答案】(1)(1)原式415=+-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【解析】(1)原式415=-=(2)+①②得:4 8x=-,解得:2x=-将2x=-代入②得:2 2 0y-+= 解得:1y=所以原方程组得解为21xy=-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组.17.【答案】∵AD BE=,∴AD BD BE BD-=-∴AB DE=∵AC EF∥∴A E∠=∠数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质.18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)数学试卷 第15页(共22页) 数学试卷 第16页(共22页)∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB ==任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+-数学试卷 第17页(共22页) 数学试卷 第18页(共22页)∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+-∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,数学试卷 第19页(共22页) 数学试卷 第20页(共22页)∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解. ∵D 点坐标为153,4⎛⎫⎪⎝⎭, ∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫+- ⎪⎝⎭,∴3M可得41514N ⎛⎫- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.数学试卷 第21页(共22页) 数学试卷 第22页(共22页) ∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3.(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =-21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
2019年山西省中考数学试卷
2019年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.2.(3分)下列运算正确的是()A.2a+3a=5aC.a•a=a2362B.(a+2b)=a+4bD.(﹣ab)=﹣a b23362223.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°>6.(3分)不等式组的解集是()<A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣17.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×10元C.2.016×10元278B.0.2016×10元D.2016×10元478.(3分)一元二次方程x﹣4x﹣1=0配方后可化为()A.(x+2)=32B.(x+2)=52C.(x﹣2)=32D.(x﹣2)=52 9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y2x2B.y2x2C.y x D.y x10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.B.C.2πD.4二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简的结果是.12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m,设道路的宽为xm,则根据题意,可列方程为.214.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y(x>0)的图象恰好经过点C,则k的值为.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC 重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:()﹣3tan60°+(π).(2)解方程组:,①,﹣2017.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题成员测量工具测量示意图测量旗杆的高度组长:xxx 组员:xxx ,xxx ,xxx 测量角度的仪器,皮尺等说明:线段GH 表示学校旗杆,测量角度的仪器的高度AC =BD =1.5m ,测点A ,B 与H 在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内,点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目第一次∠GCE 的度数∠GDE 的度数A ,B 之间的距离……第二次平均值25.6°25.8°25.7°31.2°30.8°31°5.4m 5.6m任务一:两次测量A ,B 之间的距离的平均值是m .任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI=R﹣2Rr.22如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d=R﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴22,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴.∴IA•BD=DE•IF任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.22.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(13分)综合与探究2如图,抛物线y=ax+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D 是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.(3分)下列运算正确的是()A.2a+3a=5aC.a•a=a2362B.(a+2b)=a+4bD.(﹣ab)=﹣a b2336222【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)=a+4ab+4b,故此选项错误;C、a•a=a,故此选项错误;D、(﹣ab)=﹣a b,正确.故选:D.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()2336235222A.青B.春C.梦D.想【解答】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.>6.(3分)不等式组的解集是()<A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1>①【解答】解:,<由①得:x>4,由得:x>﹣1,不等式组的解集为:x>4,故选:A.7.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×10元C.2.016×10元78B.0.2016×10元D.2016×10元747【解答】解:120000×168=20160000=2.016×10,故选:C.8.(3分)一元二次方程x﹣4x﹣1=0配方后可化为()A.(x+2)=3222B.(x+2)=52C.(x﹣2)=32D.(x﹣2)=52【解答】解:x﹣4x﹣1=0,x﹣4x=1,x﹣4x+4=1+4,(x﹣2)=5,故选:D.9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()222A.y xC.y x22B.y xD.y x222【解答】解:设抛物线的解析式为:y=ax,2将B(45,﹣78)代入得:﹣78=a×45,解得:a,故此抛物线钢拱的函数表达式为:y x.故选:B.10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()2A.B.C.2πD.4【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A,∴∠A=30°,∴∠DOB=60°,∵OD AB,∴DE,∴阴影部分的面积是:,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)化简的结果是.【解答】解:原式故答案为:.12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是扇形统计图.【解答】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m,设道路的宽为xm,则根据题意,可列方程为(12﹣x)(8﹣x)=77.2【解答】解:∵道路的宽应为x米,∴由题意得,(12﹣x)(8﹣x)=77,故答案为:(12﹣x)(8﹣x)=77.14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y(x>0)的图象恰好经过点C,则k的值为16.【解答】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(﹣4,0),D(﹣1,4),∴DF=CE=4,OF=1,AF=OA﹣OF=3,在Rt△ADF中,AD,∴OE=EF﹣OF=5﹣1=4,∴C(4,4)∴k=4×4=16故答案为:16.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC 重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG在Rt△AFG中,GF3,,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:()﹣3tan60°+(π).(2)解方程组:,①,﹣20【解答】解:(1)原式=34﹣31=5;(2)①+得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,∠∠在△ABC和△EDF中,∴△ABC≌△EDF(AAS),∴BC=DF.,18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.【解答】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果,所以抽到的两张卡片恰好是“A ”和“B ”的概率为19.(8分)某游泳馆推出了两种收费方式..方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解答】解:(1)当游泳次数为x 时,方式一费用为:y 1=30x +200,方式二的费用为:y 2=40x ;(2)由y 1<y 2得:30x +200<40x ,解得x >20时,当x >20时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题成员测量工具测量示意图测量旗杆的高度组长:xxx 组员:xxx ,xxx ,xxx 测量角度的仪器,皮尺等说明:线段GH 表示学校旗杆,测量角度的仪器的高度AC =BD =1.5m ,测点A ,B 与H 在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次∠GCE的度数∠GDE的度数A,B之间的距离……第二次平均值25.6°25.8°25.7°31.2°30.8°31°5.4m 5.6m任务一:两次测量A,B之间的距离的平均值是 5.5m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【解答】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°,∴DE,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°,CE,∵CD=CE﹣DE,∴ 5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI=R﹣2Rr.22如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d=R﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴22,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IF A.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴.∴IA•BD=DE•IF任务:(1)观察发现:IM=R+d,IN=R﹣d(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.【解答】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R﹣d=2Rr∴d=R﹣2Rr(4)由(3)知:d=R﹣2Rr;将R=5,r=2代入得:d=5﹣2×5×2=5,∵d>0∴d故答案为:.2222222222.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是67.5°,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:菱形EMCH或菱形FGCH.【解答】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE EN,∴;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC =∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD22.5°,∠BEC=∠NEC=∠NFC=∠DFC =67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°﹣∠CMG﹣∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.23.(13分)综合与探究如图,抛物线y=ax+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D 是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;2(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)由抛物线交点式表达式得:y=a(x+2)(x﹣4)=a(x﹣2x﹣8)=ax ﹣2ax﹣8a,22即﹣8a=6,解得:a,故抛物线的表达式为:y x x+6;(2)点C(0,6),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y x+6,如图所示,过点D作y轴的平行线交直线BC与点H,2设点D(m,m m+6),则点H(m,m+6)S△BDCHB×OB=2(m m+6m﹣6)m+3m,222S△ACO6×2,2即:m+3m,解得:m=1或3(舍去1),故m=3;(3)当m=3时,点D(3,),①当BD是平行四边形的一条边时,如图所示:M、N分别有三个点,设点N(n,n n+6)则点N的纵坐标为绝对值为2,即|n n+6|2,解得:n=﹣1或3(舍去)或1,故点N(N′、N″)的坐标为(﹣1,当点N(﹣1,)或(1,)或(1,),)时,由图象可得:点M(0,0),),由中点坐标公式得:点M′(,0),当N′的坐标为(1,同理可得:点M″坐标为(,0),故点M坐标为:(0,0)或(,0)或(,0);当BD是平行四边形的对角线时,点B、D的坐标分别为(4,0)、(3,设点M(m,0),点N(s,t),由中点坐标公式得:)2,而t s s+6,解得:t,s=﹣1,m=8,故点M坐标为(8,0);故点M的坐标为:(0,0)或(,0)或(,0)或(8,0).。
2019年山西省中考数学试题及参考答案
2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2019·山西)61-的相反数是( )A .61 B .-6 C .6 D .61- 2.(2019·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2019·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2019·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2019·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯ 6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x8.将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( ) A .3π B .2πC .πD .π2 10.宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”)13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(本题7分)解方程:93222-=-x x )(18.(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点, ︒ABD,AE⊥BD与点E,则△BDC的长是.∠45=20.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ∆是等腰三角形.2019年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.61-的相反数是( A ) A .61 B .-6 C .6 D .61- 解答:因为a +(-a )=0∴61-的相反数是612.不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x <33.以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A .5.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯ 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( C )A .3π B .2πC .πD .π2 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6∴FE =πππ=⋅⋅=180630180r n故选C10.宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH解答:CG =CF )15(-,GH =2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .解答:太原火车站的点(正好在网格点上)的坐标 (3,0)12.已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”) 解答:在反比函数xmy =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).解答:(4n +1)14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94分析:列表如图: 解答:由表可知指针指向的数都是奇数的概率为 941 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)15.如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-解答:如图(1)由勾股定理可得 DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:112222+---x xx x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分)=112+-+x xx x ……………………………(3分) =1+x x……………………………(4分)当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(本题7分)解方程:93222-=-x x )(解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理 阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ . 解答:(1)证明:又∵C A ∠=∠, …………………(1分) ∴ △MBA ≌△MGC . …………………(2分) ∴MB =MG . …………………(3分) 又∵MD ⊥BC ,∵BD =GD . …………………(4分) ∴CD =CG +GD =AB +BD . …………………(5分) (2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ .20.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种 销售方案(客户只能选择其中一种方案): 方案A :每千克5.8元,由基地免费送货. 方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.解答:(1)方案A :函数表达式为x y 8.5=. ………………………(1分)方案B :函数表达式为20005+=x y ………………………(2分) (2)由题意,得200058.5+<x x . ………………………(3分)解不等式,得x <2500 ………………………(4分) ∴当购买量x 的取值范围为25002000<≤x 时,选用方案A比方案B 付款少. ………………………(5分) (3)他应选择方案B . ………………………(7分) 21.(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分)由题意,得203050=-=GD .…………(3分) 452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分) 由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CDCH .……………………(6分)290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分) 在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 菱形 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论; (3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '= ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE // ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分) (3)过点B 作AC BF ⊥,垂足为F ,BC BA = ,5102121=⨯===∴AC AF CF .在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠ , ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '= ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.解答:(1) 抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8), ⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分)()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又 抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =. 点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=………………………………………………………(5分)点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分)(3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,令y =0,得0531=-x ,解得x =15,∴点H 的坐标为(15,0)…(10分)又 MH//PB ,∴OH OB OM OP =,即1585=-m ,∴38-=m ……………………………(11分) ②当QP QO =时,OPQ ∆是等腰三角形. 当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8), ∴5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,又因为QP QO =,∴31∠=∠, ∴32∠=∠,∴CE//PB ………………………………………………………………(12分)设直线CE 交x 轴于点N ,其函数表达式为82-=x k y ,∴4832-=-k ,解得342=k ,∴CE 的函数表达式为834-=x y ,令y =0,得0834=-x ,∴6=x ,∴点N 的坐标为(6,0)………………………………………………………………(13分)CN//PB ,∴ON OB OC OP =,∴688=-m ,解得332-=m ………………(14分) 综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形. 解法二:当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为 (3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB于点M ,交x 轴于点H .分两种情况:① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB ………………………………………(9分)又 HM //y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8, ∴5384)8(4=-=--=--+=+=BH m m EM HE HM ,HM//y 轴,∴BHM ∆∽BOP ∆,∴BOBHOP HM =……………………………………………………(10分)∴332854-=∴=---m m m ………………………………………………………(11分)②当OQ OP =时,OPQ ∆是等腰三角形.y EH // 轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ =……………(12分)mm OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,y EH // 轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =…………………………………………………(13分) ∴38851-=∴=---m m m ………………(14分)∴当m 的值为38-或332-时,OPQ ∆是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学精品复习资料2016年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61- 2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <5 3.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间;B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯ 6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( ) A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( ) A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫 做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m-3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()1222851)3(-+⨯-⎪⎭⎫ ⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +B D .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 .20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆.操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使F O E ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.2016年山西省中考数学试卷解析一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(2016·山西)61-的相反数是( A ) A .61 B .-6 C .6 D .61- 考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0 ∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5 考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x <33.(2016·山西)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查. 解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查; C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查; D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定.解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形故选A .5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:将55 000 000用科学记数法表示为:7105.5⨯.6.(2016·山西)下列运算正确的是 ( D )A .49232-=⎪⎭⎫ ⎝⎛- B .63293a a =)( C .251555-3-=÷ D .23-50-8= 考点:实数的运算,幂的乘方,同底数幂的除法,分析:根据实数的运算可判断A .根据幂的乘方可判断B .根据同底数幂的除法可判断C .根据实数的运算可判断D解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x 再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y 考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( C )A .3πB .2π C .π D .π2考点:切线的性质,求弧长分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OFA 为等边三角形∴︒=∠602,从而可以得出FE 所对的圆心角然后根据弧长公式即可求出解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOFr =12÷2=6∴FE =πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF从而得出黄金矩形解答:CG =CF )15(-,GH =2CF∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形选D .二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标(3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m x m y 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小解答:在反比函数xm y =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为94 考点:树状图或列表求概率分析:列表如图:解答:由表可知指针指向的数都是奇数的概率为94 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为)(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠从而得出31∠=∠,所以HE =H A .再利用△DGH ∽△DCA 即可求出HE ,从而求出HG1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3)解答:如图(1)由勾股定理可得DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩形,∴HE ∥AB ,∴32∠=∠∴31∠=∠故EH =HA设EH =HA =x则GH =x -2,DH =x -52∵HE ∥AC ∴△DGH ∽△DCA∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分)(1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛--- 考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分)=1. ……………………………(5分)(2)先化简,在求值:112222+---x x x x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x x x x x x ……………………………(2分)=112+-+x x x x ……………………………(3分) =1+x x ……………………………(4分) 当x =-2时,原式=21221=+--=+x x ……………………(5分) 17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解方法二:将方程化为一般式,利用公式法求解解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分)0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分)∴ x -3=0或x -9=0. ……………………………(5分)∴ 31=x ,92=x . ……………………………(7分)解法二:原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +B D .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是ABC 的中点,∴MA =MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC考点:圆的证明分析:(1)已截取CG=AB∴只需证明BD=DG且MD⊥BC,所以需证明MB=MG故证明△MBA≌△MGC即可(2)AB=2,利用三角函数可得BE=2由阿基米德折弦定理可得BE=DE+DC则△BDC周长=BC+CD+BD=BC+DC+DE+BE=BC+(DC+DE)+BE=BC+BE+BE=BC+2BE然后代入计算可得答案解答:(1)证明:又∵C∠,…………………(1分)A∠=∴△MBA≌△MG C.…………………(2分)∴MB=MG.…………………(3分)又∵MD⊥BC,∵BD=G D.…………………(4分)∴CD=CG+GD=AB+B D.…………………(5分)(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点,︒ABD,AE⊥BD与点E,则△BDC=∠4520.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点:一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A应付款y与购买量x的函数关系为x=y8.5方案B应付款y与购买量x的函数关系为2000y5+=x然后分段求出哪种方案付款少即可(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.解答:(1)方案A:函数表达式为x=.………………………(1分)y8.5方案B:函数表达式为20005+y………………………(2分)=x(2)由题意,得2000<xx.………………………(3分)8.5+5解不等式,得x<2500 ………………………(4分)∴当购买量x的取值范围为2500≤x时,选用方案A2000<比方案B付款少.………………………(5分)(3)他应选择方案B.………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为︒30,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,ABFE⊥于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)考点:三角函数的应用分析:过点A作CDAG⊥,垂足为G,利用三角函数求出CG,从而求出GD,继而求出C D.连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分) 由题意,得203050=-=GD .…………(3分)452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分)由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CD CH .……………………(6分) 290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分)在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆.操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α,得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 菱形 ;……………(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明(2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时.(4)开放型题目,答对即可解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21. 四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '= ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE // ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分)(3)过点B 作AC BF ⊥,垂足为F ,BC BA = ,5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠ , ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '= ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分)②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409.(4):答案不唯一. 例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分)结论:四边形是平行四边形……(12分)23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1) 抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分) ()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又 抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =. 点D (6,-8)在直线l 上,∴6k =-8,解得34-=k . ∴直线l 的函数表达式为x y 34-=………………………………………………………(5分) 点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分)(2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分)(3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOE OP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y,。