第2讲周期性问题
初中周期问题教案
初中周期问题教案教学目标:1. 理解周期的概念,能够识别和应用周期性规律。
2. 学会用数学方法解决周期问题,提高逻辑思维和解决问题的能力。
3. 培养学生的团队合作精神和口头表达能力。
教学重点:1. 周期性规律的识别和应用。
2. 数学方法解决周期问题的步骤。
教学准备:1. 教学PPT或黑板。
2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引入周期的概念,举例说明周期性规律在日常生活中的应用。
2. 引导学生思考和讨论周期性规律的特点和意义。
二、新课讲解(15分钟)1. 讲解周期的定义和表示方法。
2. 介绍周期性规律的数学表达式和求解方法。
3. 通过具体例子解释和演示周期问题的解决步骤。
三、课堂练习(15分钟)1. 分组讨论和解决给定的周期问题,鼓励学生互相交流和合作。
2. 教师巡回指导,解答学生的问题,并提供帮助。
四、总结和复习(5分钟)1. 总结周期性规律的识别和应用方法。
2. 复习周期问题的解决步骤和技巧。
五、课后作业(布置作业)1. 根据课堂内容和练习题,布置相关的周期问题作业。
教学反思:本节课通过引入周期性规律的概念,让学生了解和认识到周期问题在日常生活中的应用。
通过新课讲解和课堂练习,学生能够掌握周期问题的解决方法和步骤。
在教学过程中,要注意引导学生主动思考和讨论,培养他们的逻辑思维和解决问题的能力。
同时,鼓励学生之间的合作和交流,提高他们的团队合作精神和口头表达能力。
通过课后作业的布置,巩固学生对周期问题的理解和应用。
高考数学热点必会题型第2讲 单调性、奇偶性、对称性和周期性解决函数问题(原卷版)
高考数学热点必会题型第2讲单调性、奇偶性、对称性和周期性解决函数问题——每天30分钟7天轻松掌握一、重点题型目录【题型】一、利用函数的奇偶性求参数值【题型】二、利用函数的奇偶性解抽象函数不等式 【题型】三、构造奇偶函数求函数值【题型】四、奇偶性和周期性综合解决函数问题 【题型】五、单调性和奇偶性综合解决函数问题 【题型】六、对称性和奇偶性综合解决函数问题 【题型】七、对称性、周期性和奇偶性综合解决函数问题 【题型】八、定义法判断证明函数的单调性 【题型】九、定义法判断证明函数的奇偶性 【题型】十、利用函数的周期性求函数值 二、题型讲解总结第一天学习及训练【题型】一、利用函数的奇偶性求参数值例1.(2022·江西·高三阶段练习(理))设函数()(0)a xf x a a x-=≠+,若()(1)1g x f x =-+是奇函数,则(2022)f =( ) A .20222021-B .20212023-C .20222021D .20212023例2.(2023·山西大同·高三阶段练习)已知2e ()e x xaf x +=满足()()0f x f x ,且()f x 在(,())b f b 处的切线方程为2y x =,则a b +=___________.例3.(2023·广东·高三学业考试)已知函数()()()3log 91xf x ax a =++∈R 为偶函数.(1)求a 的值;(2)当[)0,x ∈+∞时,不等式()0f x b -≥恒成立,求实数b 的取值范围. 【题型】二、利用函数的奇偶性解抽象函数不等式4.(2022·广东·高三阶段练习)已知()f x 是定义在R 上的偶函数,()f x 在[)0+∞,上是增函数,且()20f =,则不等式(3)0x f >的解集为( ) A .()()33,log 2log 2,-∞-⋃+∞ B .3(log 2,)+∞ C .3(,log 2)-∞-D .33(log 2,log 2)-例5.(2022·浙江·高三开学考试)已知()f x 是定义在{}0xx ≠∣上的奇函数,当210x x >>时,()()1212120x x f x f x x x ⎡⎤-+->⎣⎦恒成立,则( ) A .()y f x =在(),0∞-上单调递增 B .()12y f x x=-在()0,∞+上单调递减 C .()()1236f f +->D .()()1236f f -->第二天学习及训练【题型】三、构造奇偶函数求函数值例6.(2023·全国·高三专题练习)已知函数1()ln(4f x x x=++在[8-,8]上的最大值和最小值分别为M 、m ,则M m +=( )A .8B .6C .4D .2例7.(2022·河南·偃师市缑第四中学高三阶段练习(理))已知函数()3e e 3x xf x x -=-++ ,若()5f a =,则()f a -=( ) A .2B .1C .-2D .-5例8.(2022·甘肃·陇西县第二中学高三阶段练习(文))已知函数()()()22sin 11f x x x x x =--++,则()222log 6log 3f f ⎛⎫+= ⎪⎝⎭( )A .6B .4C .2D .3-【题型】四、奇偶性和周期性综合解决函数问题例9.(2022·河南·高三阶段练习(文))设函数()y f x =的定义域为R ,且满足()1y f x =+是偶函数,()()2f x f x -=--,当(]1,1x ∈-时,()21f x x =-+,则下列说法不正确的是( ) A .()20221f =-B .当[]9,11x ∈时,()f x 的取值范围为[]0,1C .()3y f x =+为奇函数D .方程()()lg 1f x x =+仅有5个不同实数解例10.(2022·河南安阳·高三阶段练习(理))已知函数()f x 的定义域为R ,()1f x -是偶函数,()2f x +是奇函数,则()2022f =( ) A .()1fB .()2fC .()3fD .()4f例11.(2023·全国·高三专题练习)已知定义域为R 的函数()f x 存在导函数()f x ',且满足()()()(),4f x f x f x f x -=-=-,则曲线()y f x =在点()()2022,2022f 处的切线方程可以是___________(写出一个即可)第三天学习及训练【题型】五、单调性和奇偶性综合解决函数问题例12.(2023·甘肃·模拟预测(理))设函数()()21ln 11f x x x =+-+,则使得()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭例13.(2023·全国·模拟预测)若()()R,11x f x f x ∀∈+=-,当1x ≥时,2()4f x x x =-,则下列说法错误的是( ) A .函数()f x 为奇函数B .函数()f x 在()1,+∞上单调递增C .()min 4f x =-D .函数()f x 在(,1)-∞上单调递减例14.(2022·全国·高三专题练习)设ππ,,44x y ⎡⎤∈-⎢⎥⎣⎦,若333πcos()2024sin cos 0x x a y y y a ⎧++-=⎪⎨⎪++=⎩,则cos(2)x y +=______.【题型】六、对称性和奇偶性综合解决函数问题例15.(2023·全国·高三专题练习)设()f x 的定义域为R ,且满足()()()()3221,2f x f x f x f x -=-+-=,若()12f =,则()()()()1232022f f f f ++++=( ) A .2023B .2024C .3033D .3034例16.(2023·全国·高三专题练习)设函数()()11sin 1e e 4x xf x x x --=-+--+,则满足()()326f x f x +-<的x 的取值范围是( )A .()3,+∞B .()1,+∞C .(),3-∞D .(),1-∞例17.(2022·福建·宁德市高级中学高三阶段练习)设()f x 的定义域为R ,且满足()()3221f x f x -=-,()()2f x f x -+=,若()12f =,则()()()()1232023f f f f ++++=______.第四天学习及训练【题型】七、对称性、周期性和奇偶性综合解决函数问题例18.(2023·江苏南京·高三阶段练习)设*n ∈N ,函数()f x 是定义在R 上的奇函数,且()()22110f x f x -++=,()f x 在[]0,1单调递增,()11f =,则( )A .()11f -=B .()40nf =C .()211f n -=D .()211nf -=例19.(2023·全国·高三专题练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是( )A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-【题型】八、定义法判断证明函数的单调性例20.(2023·全国·高三专题练习)设函数()ln(2f x x x =+且233()1)23a a f a --<--,则a 的取值范围为( )A .()3,+∞B .)C .)+∞D .(()3,∞⋃+例21.(2023·全国·高三专题练习)已知函数()e e 2x xf x --=,则()A .()()22f x y f x =为偶函数 B .()()2y f x f x =-是增函数 C .()()sin 1y f x =-不是周期函数 D .()()1y f x f x =++的最小值为1例22.(2023·广东·高三学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =; ④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增. 则上述所有正确结论的编号是________第五天学习及训练【题型】九、定义法判断证明函数的奇偶性例23.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( ) A .1B .2C .3D .4例24.(2023·全国·高三专题练习)已知函数()cos f x x x =⋅,x ∈R ,则下列说法正确的是( ) A .()f x 是奇函数 B .()f x 是周期函数C .()f x 的图象在点(π,(π))f 处的切线方程为0x y +=D .()f x 在区间π(,π)2上是减函数例25.(2023·全国·高三专题练习)判断函数()f x x =+.【题型】十、利用函数的周期性求函数值例26.(2023·全国·高三专题练习)已知函数()y f x =为定义在R 上的奇函数,且()()2f x f x +=-,当[)1,0x ∈-时,()f x x =,则()2021f =( )A .2021B .1C .1-D .0例27.(2023·全国·高三专题练习)已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022例28.(2023·全国·高三专题练习)已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x +-=,()()49g x f x --=,若y g x 的图象关于直线2x =对称,()24g =,则()221k f k ==∑( )A .47-B .48-C .23-D .24-例29.(2023·全国·高三专题练习)已知()f x 为偶函数,且()1f x +为奇函数,若()00f =,则( )A .()30f =B .()()35f f =C .()()31f x f x +=-D .()()211f x f x +++=例30.(2023·全国·高三专题练习)若函数()2,0,(1)(2),0,x x f x f x f x x -⎧≤=⎨--->⎩则()2023f =________.第六天学习及训练三、题型模拟演练 一、单选题1.(2022·全国·高三专题练习)函数11()f x x=,211()()f x x f x =+,…,11()()n n f x x f x +=+,…,则函数2018()f x 是( ) A .奇函数但不是偶函数 B .偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数2.(2022·全国·高三专题练习)已知函数()f x ,()g x 的定义域均为R ,若()12f x -为奇函数,()12g x +为偶函数,则( ) A .()()f x g x +的图象关于直线1x =对称 B .()()f x g x +的图象关于直线1x =对称 C .()()f x g x -的图象关于点()1,0对称 D .()()f x g x -的图象关于点()1,0对称3.(2022·海南昌茂花园学校高三阶段练习)已知函数()f x 是定义在R 上的偶函数,且在(],0-∞上是单调递增的,设()2log 4a f =,()1b f =-,23c f ⎛⎫=⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .c b a <<B .c b a >>C .b<c<aD .c a b >>4.(2022·陕西·咸阳市高新一中高一期中)定义在R 上的函数()f x 满足1(2)()f x f x +=-,且当(2,0)x ∈-时,2()(3)f x x x =-,则(103)f 等于( ) A .2B .12-C .2-D .45.(2022·陕西咸阳中学高三阶段练习(理))设奇函数 ()f x 在()0∞+,上单调递增,且(4)0f =,则不等式()()0f x f x x--<的解集是( )A .{04}x x <<∣B .{4xx <-∣或4}x > C .{4}xx >∣ D .{40xx -<<∣或04}x <<6.(2023·甘肃·模拟预测(理))设函数()()21ln 11f x x x =+-+,则使得()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭7.(2022·江苏·句容碧桂园学校高三期中)设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当(]1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .()7f x +为奇函数C .()f x 在()6,8上是减函数D .方程()lg 0f x x +=仅有6个实数解二、多选题8.(2022·河北沧州·高三阶段练习)函数()()1||x f x x αα=∈-R 的大致图象可能是( ) A . B .C .D .三、填空题9.(2022·辽宁葫芦岛·高三阶段练习)定义在R 上的偶函数()f x 满足()()40f x f x +-=,写出()f x 的一个正周期:______.四、解答题10.(2022·河南·偃师市缑第四中学高三阶段练习(文))已知()f x 是定义在R 上的偶函数,且0x ≤时,12()=log (+1)f x x - .(1)求()0f ,()1f ;(2)若()11f a -<- ,求实数a 的取值范围.11.(2022·陕西·蒲城县蒲城中学高三阶段练习(理))已知函数()221x x a f x +=+是奇函数.(1)求a 的值;(2)已知()()2212f m f m -<-,求m 的取值范围.。
第2讲 元素周期表和周期律(学生版)
第2讲 元素周期表和周期律一、周期表 1、周期表的结构①排列原则 ②③①短周期( )元素周期表的结构 周期(7个横行) ②长周期( )周期表结构 ①主族( ) 族(18个纵行) ②副族( )③Ⅷ族( )④零族( )2.元素周期表分区几个量的关系:(1)原子序数=_____________=_____________ =_____________ (2)周期序数=_____________(3)主族序数=_____________=_____________ (4) 非金属元素|最高正价数|+|负价数|=_________七主七副零和八三长三短一不全二、元素周期律元素的性质随着原子序数的递增而呈周期性的变化(即随着原子核电荷数的递增,核外电子排布呈现周期性的变化)表现在1.随着原子序数的递增,元素原子的最外层电子数重复着_________(K 层除外)的周期性变化。
2.随着原子序数的递增,元素(除稀有气体外)的原子半径重复着_________的周期性变化。
(1)同周期原子左→右半径_________(2)同一主族原子、离子从上→下半径_________(3)电子数相同,质子数越多半径_________(4)质子数相同,电子数越多半径_________3.随着原子序数的递增,元素的主要化合价(除H、He外)重复着正价由_________,负价由_________的规律性变化。
(1)O、F无正价,金属无负价(2)最高正化合价:_________ 最低负化合价:_________(3)最高正化合价=_________=_________(4)最高正化合价+∣最低负化合价∣=_________元素周期律的实质是由于______________ 的递增,核外电子排布呈周期性变化的结果。
三、元素金属性和非金属性的递变:说明:(1)周期表中金属性、非金属性之间没有严格的界线。
在分界线附近的元素具有金属性又具有非金属性。
周期问题教案(教师版)
课题:周期问题班级姓名一、本讲知识点和能力目标1、知识点:周期。
2、知识目标:(1)让学生知道许多事物的变化都具有周期性,掌握其中变化的周期,并能灵活运用周期变化规律解决实际问题。
(2)通过自主互动式的学习,提高学生主动探究问题的能力。
(3)初步渗透物质世界是变化的规律,引导学生善于自主发现规律,并生成认真研究规律的好习惯。
3、能力目标:能够运用数学方法解决生活中的周期问题.二、教学方法自主、启发与导学三、本讲内容安排第一课时周期的意义和初级类型。
第二课时较复杂的周期问题。
(代表性问题)第三课时周期问题的拓展和探索。
第四课时独立练习四、课外延伸、知识拓展周期与余数问题的结合五、需要理解和记忆的知识在日常生活中了那么多现象都是按照一定的规律、依次不断重复出现的,我们把这种现象叫做周期现象儿歌从前有座山,山里有个庙,庙里有个老和尚给小和尚讲故事。
讲的是,从前有座山,山里有个庙,庙里有个老和尚给小和尚讲故事。
讲的是,从前有座山,山里有个庙,……常见的简算形式有关时间的儿歌一、三、五、七、八、十、腊,三十一天永不差。
四、六、九与十一三十天要牢记。
二月只有二十八。
平年三百六十五,闰年再把一日加。
第一课时【经典例题】例1.根据周期找位置:(1)卡片出示:△○○△○○△○○△○○……3个一组——一个△两个○(2)学生同桌说一说排列规律,说出它的变化周期是几?答:变化周期是3(3)提问:第13个图形是什么?第60个呢?13÷3=4(组)………1(个)60÷3=20(组)答:第13个图形是△。
第60个是○。
例2.在3.4507507……中的第50位小数是几?50÷3=18(组)……2(个)答:第50位小数是0。
例 3.2007年六·一是星期五,明年的六、一儿童节将会是星期几?(365+1)÷7=366÷7=52(周)……2(天)答:明年的六、一儿童节将会是星期日。
2020版高考数学历史专用讲义:第二章 2.3 函数的奇偶性与周期性
§2.3函数的奇偶性与周期性最新考纲 1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.概念方法微思考1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有什么结论?提示在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f(x)满足下列条件,你能得到什么结论?(1)f(x+a)=-f(x)(a≠0);(2)f(x+a)=1f(x)(a≠0);(3)f(x+a)=f(x+b)(a≠b).提示(1)T=2|a|(2)T=2|a|(3)T=|a-b|题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x 2,x ∈(0,+∞)是偶函数.( × )(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( × ) (3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) 题组二 教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________. 答案 -2解析 f (1)=1×2=2,又f (x )为奇函数, ∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=______. 答案 1解析 f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0. 综上,f (x )<0的解集为(-2,0)∪(2,5]. 题组三 易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12答案 B解析 ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________. 答案 3解析 ∵f (x )为偶函数,∴f (-1)=f (1). 又f (x )的图象关于直线x =2对称,∴f (1)=f (3). ∴f (-1)=3.题型一 函数奇偶性的判断例1 判断下列函数的奇偶性: (1)f (x )=36-x 2+x 2-36; (2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧36-x 2≥0,x 2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称, ∴f (x )=36-x 2+x 2-36=0. ∴f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x , ∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ), ∴函数f (x )为奇函数.思维升华 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1 (1)下列函数中,既不是奇函数也不是偶函数的是( ) A .f (x )=x +sin 2x B .f (x )=x 2-cos x C .f (x )=3x -13xD .f (x )=x 2+tan x答案 D解析 对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x-13-x =-⎝⎛⎭⎫3x -13x =-f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)(2018·石景山模拟)下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数为( ) A .y =x B .y =-x 3 C .y =12log xD .y =x +1x答案 B解析 由题意得,对于函数y =x 和函数y =12log x 都是非奇非偶函数,排除A ,C.又函数y=x +1x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.题型二 函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________. 答案 -2解析 f (7)=f (-1)=-f (1)=-2.2.已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2 020)=________. 答案 -2- 3解析 由f (x +2)=1-f (x ),得f (x +4)=1-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (2 020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2 020)=-2- 3.3.(2017·山东)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.答案 6解析 ∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, ∴f (1)=f (-1)=6,即f (919)=6.4.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案2-1解析 依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0) =122-1+20-1 =2-1.思维升华 利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三 函数性质的综合应用命题点1 求函数值或函数解析式例2 (1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 021)=________. 答案 -12解析 设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2 021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则f (x )=________.答案 ⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0解析 ∵当x >0时,-x <0, ∴f (x )=f (-x )=e x -1+x ,∴f (x )=⎩⎪⎨⎪⎧e-x -1-x ,x ≤0,e x -1+x ,x >0.命题点2 求参数问题例3 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 答案 1解析 ∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2), ∴ln[(a +x 2)2-x 2]=0.∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________. 答案 [-1,0]解析 因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0,此时⎩⎪⎨⎪⎧-a -2=a 2≤0,-1-a ≤0,即⎩⎪⎨⎪⎧a ≤0,a ≥-1,即-1≤a ≤0. 命题点3 利用函数的性质解不等式例4 (1)(2018·聊城模拟)已知函数f (x )=|x |(10x -10-x ),则不等式f (1-2x )+f (3)>0的解集为( )A .(-∞,2)B .(2,+∞)C .(-∞,1)D .(1,+∞)答案 A解析 由于f (-x )=-f (x ),所以函数为奇函数,且为单调递增函数,故f (1-2x )+f (3)>0等价于f (1-2x )>-f (3)=f (-3),所以1-2x >-3,x <2,故选A. (2)设函数f (x )=ln(1+|x |)-11+x 2,解不等式f (x )>f (2x -1). 解 由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2, 因为y =ln(1+x )与y =-11+x 2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0, 解得13<x <1.所以符合题意的x 的取值范围为⎝⎛⎭⎫13,1.思维升华 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2 (1)定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=12log (1)x -,则f (x )在区间⎝⎛⎭⎫1,32内是( ) A .减函数且f (x )>0 B .减函数且f (x )<0 C .增函数且f (x )>0 D .增函数且f (x )<0答案 D解析 当x ∈⎝⎛⎦⎤0,12时,由f (x )=12log (1-x )可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以在区间⎣⎡⎭⎫-12,0上函数也单调递增,且f (x )<0.由f ⎝⎛⎭⎫x +32=f (x )知,函数的周期为32,所以在区间⎝⎛⎭⎫1,32上,函数单调递增且f (x )<0.故选D. (2)(2018·烟台模拟)已知偶函数f (x )在[0,+∞)上单调递增,且f (1)=-1,f (3)=1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A .[3,5] B .[-1,1] C .[1,3] D .[-1,1]∪[3,5]答案 D解析 由偶函数f (x )在区间[0,+∞)上单调递增,则在区间(-∞,0)上单调递减, 又f (1)=-1,f (3)=1,则f (-1)=-1,f (-3)=1, 要使得-1≤f (x -2)≤1,即1≤|x -2|≤3, 即1≤x -2≤3或-3≤x -2≤-1, 解得-1≤x ≤1或3≤x ≤5,即不等式的解集为[-1,1]∪[3,5],故选D.(3)已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,解不等式f (6-x 2)>f (x ). 解 ∵g (x )是奇函数,∴当x>0时,g(x)=-g(-x)=ln(1+x),易知f(x)在R上是增函数,由f(6-x2)>f(x),可得6-x2>x,即x2+x-6<0,∴-3<x<2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1(1)(2017·全国Ⅰ)已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案 C解析f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误;∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确;∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10]答案 B解析依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(3)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确命题的序号是________.答案①②③解析由f(x)+f(x+2)=0可得f(x+4)=-f(x+2)=f(x),∴函数f(x)的最小正周期是4,①对;由f(4-x)=f(x),可得f(2+x)=f(2-x),f(x)的图象关于直线x=2对称,②对;f(4-x)=f(-x)且f(4-x)=f(x),∴f(-x)=f(x),f(x)为偶函数,③对.二、函数性质的综合应用例2(1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()A.-50 B.0 C.2 D.50答案 C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 D解析 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11). (3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________. 答案 {a |a >4或a <0}解析 ∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是( ) A .f (x )=x B .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案 B解析 函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于( ) A .-3 B .-54 C.54 D .3答案 A解析 由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④ D .②④ 答案 D解析 由奇函数的定义f (-x )=-f (x )验证,①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数; ③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数; ④f (-x )+(-x )=-[f (x )+x ],为奇函数. 可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)等于( )A .-2B .0C .2D .1 答案 A解析 ∵函数f (x )为定义在R 上的奇函数,且周期为2, ∴f (1)=-f (-1)=-f (-1+2)=-f (1), ∴f (1)=0,f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-124=-2, ∴f ⎝⎛⎭⎫-52+f (1)=-2. 5.(2018·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( ) A .(2,+∞) B.⎝⎛⎭⎫0,12∪(2,+∞) C.⎝⎛⎭⎫0,22∪(2,+∞) D .(2,+∞)答案 B解析 f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2018·海南联考)已知函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),当x ∈[0,6]时,f (x )=log 6(x +1),若f (a )=1(a ∈[0,2 020]),则a 的最大值是( ) A .2 018 B .2 010 C .2 020 D .2 011 答案 D解析 由函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),可得f (-x )=f (12+x ),即f (x )=f (12+x ),故函数的周期为12.令log 6(a +1)=1,解得a =5, ∴在[0,12]上f (a )=1的根为5,7;又2 020=12×168+4, ∴a 的最大值在[2 004,2 016]上,即2 004+7=2 011.故选D. 7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________. 答案 -32解析 函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立, 所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 答案 -ln 2解析 由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是奇函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=-f (2)=-ln 2. 9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________. 答案 9解析 由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),那么t 的取值范围是________. 答案 ⎣⎡⎦⎤1e ,e解析 由于函数f (x )是定义在R 上的偶函数, 所以f (ln t )=f ⎝⎛⎭⎫ln 1t , 由f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),得f (ln t )≤f (1). 又函数f (x )在区间[0,+∞)上是单调递增的, 所以|ln t |≤1,即-1≤ln t ≤1,故1e ≤t ≤e.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. ∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2 023)=________. 答案 1解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ), 即函数f (x )的周期是4,所以f (2 023)=f (506×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2 023)=f (1)=1.14.(2018·天津河西区模拟)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x 2+1,0≤x <1,2-2x,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m 的最大值是( )A .-1B .-13C .-12 D.13答案 B解析 易知函数f (x )在[0,+∞)上单调递减, 又函数f (x )是定义在R 上的偶函数, 所以函数f (x )在(-∞,0)上单调递增, 则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立, 当m =-1时,g (x )=0,符合要求,当m ≠-1时,则⎩⎪⎨⎪⎧g (m )=(3m -1)(m +1)≤0,g (m +1)=(m +1)(3m +1)≤0,解得-1<m ≤-13,所以-1≤m ≤-13,即m 的最大值为-13.15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为______________________________. 答案 ⎝⎛⎭⎫-2,23 解析 易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x-2,m ∈[-2,2],此时,只需⎩⎪⎨⎪⎧h (-2)<0,h (2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2 020)的值. 解 因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0. 所以f (1)+f (2)+f (3)+f (4)+…+f (2 020)=0.。
四年级下册数学试题-奥数专题讲练:第二讲 周期性问题 竞赛篇(解析版)全国通用
第二讲周期性问题编写说明我们已经对规律性问题进行了研究,规律性问题和周期性问题紧密相连,所以我们在回忆相关内容时主要以规律性问题为主. 在您用学而思讲义讲解问题时,我们主张教师在条件允许的范围之内,尽量将题目的缘由讲解给学生,这样有利于学生“举一反三”,逐渐帮助学生拥有研究问题、发现问题的能力.内容概述呵呵! 小朋友们你们还记得春季第十四讲的“规律性问题”吗?在那一讲中我们其实已经接触到了周期问题的一些基本概念,规律性问题和周期问题两者相互交融,紧密联系,在解答问题时它们常常同时会来帮助你!下面让我们一起先来回忆一下基本概念和几道有关周期性问题的习题,然后一同研究几种新的知识点!基本概念:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.你还记得吗?【复习1】(福建迎春杯)有一串数列,第一个数是8,以后每个数的规律为:如果前一个数是奇数,就将它减去1以后再乘以3;如果前一个数是偶数,就将它除以2以后再加上2,那么这串数列的第102个数是多少?分析:写出这串数的若干项:8、6、5、12、8、6、5、12、……,每四个数一循环:102÷4=25…2,所以第102个数是6 .【复习2】有一列数:3、1000、997、3、994、991、…从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中最小的数是几?它第一次出现在这列数的第几个?分析:我们把这个数列延伸一下:3、1000、997、3、994、991、3、988、985、3、982、979、…,3间隔两项出现,大数(非3的数)以3为公差减小,如上下划线所示,每三个一组,每组第二个数字差为6,1000÷6=166…4,即在第167组中出现第一个数字为4,第二个数字为4-3=1,我们从第167组开始往下写为:3、4、1(第167组)、3、2、1、1、0、1、1、0、1、1、……,所以最小数为0 .它第一次出现在:167×3+5=506 位 .数字大排队【例1】如右图所示的数表中,从左往右依次看作五列.(1)第99行右边第一个数是几?(2)2006出现在第几行,第几列?分数:(1)每7个数,分成两行一个周期,99÷2=49……1,第98行中最大的那个数为:(49×7-1)×2=684,所以第99行从左到右的数依次为:686、688、690 ,第99行右边第一个数是690 .(2)2006÷2+1=1004,1004÷7=143……3,所以在第287行,第5列.【前铺】除0外的自然数都按右表排列,问:(1)21排在第几列的下面?(2)32排在第几列的下面?(3)54排在第几列的下面?分析:我们可以把7个看成一组(1)21=3×7 ,所以21在7的下面,所以在第二列;(2)32÷7=4…4,所以32在4的下面,所以在第七列;(3)54÷7=7…5,所以54在5的下面,所以在第六列。
四年级奥数综合复习之【周期问题】
四年级奥数综合复习之【周期问题】四年级奥数复习之:周期问题周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。
周期性问题的基本解题思路:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
1、观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,18÷2=9,所以第18个数是2。
2、如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16÷3=5……1,所以第16个数是1。
3、如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算。
例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(16-1) ÷2=7……1,所以第16个数是2.4、遇到日期问题,求星期几,如果求的日期 > 已知日期,则使用顺推,如果求的日期 < 已知日期,则倒推。
第一讲:图形中的周期问题1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【黑/26】2、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.第10颗黄珠子是从头起第几颗?第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【47/14】3、如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们, B”……第62组是什么?如果“爱,C”代表1991年,“科,D”代表1992年……问2008年对应怎样的组?【们,F/学,F】4、如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
函数周期性的题型和解题方法
函数周期性的题型和解题方法在高一数学教材中,函数的基本性质重点讲了函数的单调性和奇偶性,对于函数的另一个重要性质——周期性却基本没怎么涉及,但是不管是平时考试还是高考,函数周期性都是非常重要的考点,并且以不同方式告诉函数的周期。
在函数周期性的学习中,我们首先要能快速识别给出的函数是否是周期函数,其次需要学会利用函数周期性来解题。
一、判断周期函数若f(x+T)=f(x),那么f(x)就是以T为周期的周期函数。
在学习过程中,需要重点掌握以下几个函数的周期:①f(x+a)=f(x+b),T=|a-b|;特别地,f(x+a)=f(x-a),T=|2a|;②f(x+a)=-f(x),T=|2a|;③f(x+a)=±1/f(x),T=|2a|;④若f(x)的图像有两条对称轴x=a和x=b,那么f(x)的一个周期为T=2|a-b|;⑤若f(x)的图像有两个对称中心(x1,y1)和(x2,y2),那么f(x)的一个周期为T=2|x1-x2|;⑥若f(x)的图像既是轴对称又是中心对称图形,若对称轴是x=a,对称中心是(b,c),则T=4|a-b|。
二、求值利用函数周期性求函数值,通常会告诉函数在某个区间上的解析式,但是所求的函数值是在已知区间外的,此时需要利用周期性将所求函数值转换到已知的区间内。
比如上面的例题,利用周期性将f(-6)转化为f(0),将f(6)转化为-f(-1)的值。
三、求周期求函数的周期,除了掌握周期性的定义以及(一)中所讲的几种基本类型外,作出函数也是一个非常重要的方法。
作出图像后,直接在图像上找到图像循环部分对应点的横坐标之间的最小距离就是该函数的最小正周期,也是解题中最常用到的周期值。
四、周期性+奇偶性本题中,先根据关系式f(x-4)=-f(x)算出f(x)的周期为T=8,再根据单调性和奇偶性作出满足要求的一个函数图像,并根据函数图像分析解决问题。
如果f(x)的对称轴是直线x=a,其图像与直线y=b相交于x1,x2两点,那么必有x1+x2=2a。
五年级奥数(教案)第2讲:周期问题
练习1:[6分]
节日的公园大门口,挂着同样大小的红、绿、蓝气球共180只,按先6只红的,再4只绿的,再2只蓝的顺序排列着。第129只气球是什么颜色?
分析:
从第一只气球开始,都是按照6只红的,再4只绿的,再2只蓝的顺序排列,也就是说12只气球为一组,129只气球有几组呢?129÷12=10[组]……9[只]。余数是9,那么就是第11组的9个,说明是第129只气球是绿色。
就是今天我们要学习的周期问题。
【板书课题:周期问题】
二、探索发现授课[40分]
[一]例题1:[13分]
米德放学回家的路上种了200棵树,第1棵是梧桐树,后面2棵是杨树,再后面3棵是松树,接下去总是1棵梧桐树,2棵杨树,3棵松树,问:第200棵是什么树?
师:同学们,米德走在回家的路上,他也是生活的有心人,你们知道:第15个数字是3214。
练习4:[7分]
用3、4、6、7这四张卡片可以组成不同的四位数,如果把它们按从小到大的顺序依次排列出来,第一个数是3467,第二个数是3476,第十六个数是多少?
分析:
一共可以组成24和不同的四位数,每个数字在千位上都出现6次,以6次为一个周期,16÷6=2[组]……4[个],第16个数应该是第3个周期中的第4个数,千位上是6的数有6347,6374,6437,6473,6734,6743。第4个数是6473。所以第16个数是6473。
师:是的,要求的第15个数在第3个周期里,第3个周期的数有哪些呢?谁来
说一说?
生:3124,3142,3214,3241,3412,3421。
师:第3个周期里的第3个数是多少呢?
生:3214。
师:也就是第15个数是3214。
板书:
高考数学复习考点题型专题讲解2 中心对称轴对称和周期性
高考数学复习考点题型专题讲解 第2讲 中心对称、轴对称与周期性7类【题型一】中心对称性质1:几个复杂的奇函数【典例分析】 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是() A .(]0,e B .[]0,e C .(]0,1 D .[]0,1【答案】D 【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【详解】 ()1e e 21x x xf x -=+-+Q , ()()1111e e e e 121212121x x x xx x x x f x f x ----∴+-=+-+-+=++=+++ 令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x xx x x x xg x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e xx ≥当且仅当1e e xx=,即0x =时等号成立;ln 2ln 214222x x ≤++当且仅当122xx=,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g axg ax g ax ≥--=-,即2210axax -+≥对x ∀∈R 恒成立.当0a =时显然成立;当0a ≠时,需2440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.【变式演练】1.对于定义在D 上的函数()f x ,点(),A m n 是()f x 图像的一个对称中心的充要条件是:对任意x D ∈都有()()22f x f m x n +-=,判断函数()32234f x x x x =+++的对称中心______.【答案】270327⎛⎫- ⎪⎝⎭,【分析】根据点(),A m n 是()f x 图像的一个对称中心的充要条件,列出式子,即可得出结果.解:因为()32234f x x x x =+++,由于()32322222223323234x f x f x x x x x ⎛⎫⎛⎫⎛⎫+-⨯-=-⨯--⨯- ⎪ ⎪ ⎪⎝⎭+++++⎝⎭⎝⎭+701403422327272x +=⨯=⎛⎫-⨯- ⎪⎝⎭.即23m =-,7027n =.所以270327⎛⎫- ⎪⎝⎭,是()32234f x x x x =+++的一个对称中心.故答案为:270327⎛⎫- ⎪⎝⎭,.2.设函数())ln f x x =,若a ,b 满足不等式()()22220f a a f b b -+-≤,则当14a ≤≤时,2a b -的最大值为 A .1 B .10 C .5 D .8【答案】B 【详解】因为()))()ln ln0f x f x x x +-=+=,所以函数()f x 为奇函数,又因为()))0ln-lnx f x x x >==时为单调减函数,且(0)0f =所以()f x 为R 上减函数,因此()()()()()()2222222202222f a a f b b f a a f b b f a a f b b -+-≤⇔-≤--⇔-≤-+222222(1)(1){{2020a b a ba ab b a b a b a b ≥≤⇔-≥-+⇔-≥-⇔+-≥+-≤或,因为14a ≤≤,所以可行域为一个三角形ABC 及其内部,其中(1,1),(4,4),(4,2)A B C -,因此直线2z a b =-过点C 时取最大值10,选B.3..已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为A .34B .54C D 【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln 2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+---2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020e e e e S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b =即24,33a b ==时等号成立;当0a <时1||1121212||222a a b a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b a a b -=-即2,4a b =-=时等号成立;因为3544<,所以1||2||a a b +的最小值为34.故选:A.【题型二】中心对称性质2:与三角函数结合的中心对称【典例分析】已知函数sin 1y x =+与2x y x+=在[]a a -,(a Z ∈,且2017a >)上有m 个交点11()x y ,,22()x y ,,……,()m m x y ,,则1122()()()m m x y x y x y ++++++=A .0B .mC .2mD .2017【答案】B 【详解】由图可知交点成对出现,每对交点关于点(0,1)对称,横坐标和为0,纵坐标和为2,所以()()()1122m m x y x y x y ++++++=22mm ⨯=,选B.【变式演练】1.函数11()2sin[()]12f x x x π=+--在[3,5]x ∈-上的所有零点之和等于______. 【答案】8 【详解】分析:通过化简函数表达式,画出函数图像,分析图像根据各个对称点的关系求得零点的和. 详解:零点即()0f x =,所以112sin 12x x π⎡⎤⎛⎫=-- ⎪⎢⎥-⎝⎭⎣⎦ 即12cos 1x x π=-,画出函数图像如图所示函数零点即为函数图像的交点,由图可知共有8个交点 图像关于1x =对称,所以各个交点的横坐标的和为8点睛:本题考查了函数的综合应用,根据解析式画出函数图像,属于难题.2.若关于的函数的最大值为,最小值为,且,则实数的值为___________.【答案】 【解析】试题分析:由已知22222sin 2sin ()=t+tx x t x x xf x x t x t++++=++,而函数22sin x x y x t +=+为奇函数 又函数()f x 最大值为,最小值为,且,()242M t N t M N t t ∴-=--∴+==∴=考点:函数的奇偶性和最值【名师点睛】本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.解释要充分利用已知条件将函数变形为22sin ()=t+x x f x x t ++,则函数22sin x xy x t+=+为奇函数,而奇函数的最值互为相反数,可得()M t N t ∴-=--,则问题得解.3.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x x f f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为()A .()1-∞ B .(),1-∞-C .()1-D .()1,-+∞【答案】A 【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围. 【详解】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-, ∴()g x 为奇函数,又()2cos 0g x x '=+>,即()g x 为增函数,∵()()39334x x xf f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--,∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113xx +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈()1-∞.故选:A【题型三】轴对称【典例分析】 已知函数()()222212222x x x f x ea a ---=-+-有唯一零点,则负实数a =( ) A .2- B .12-C .1-D .12-或1- 【答案】A 【解析】函数()()222212222x x x f x ea a ---=-+-有有唯一零点,设1x t -=,则函数()()212222t t t f x e a a -=-+-有唯一零点,则()212222t t t e a a--+= 3e |t|-a (2t +2-t )=a 2,设()()1122222222tt t t t tg t e a g t e a g t ---=-+-=-+=(),()(),∴g t ()为偶函数,∵函数f t ()有唯一零点,∴yg t =()与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .【变式演练】1.已知函数()()()22241x x f x x x ee x --=--++在区间[]1,5-的值域为[],m M ,则m M +=( )A .2B .4C .6D .8【答案】C【详解】解:()()24x xy x e ex -=--+ 在[]3,3-上为奇函数,图象关于原点对称,()()()()()222222412423x x x x f x x x e e x x e e x ----⎡⎤=--++=---+-+⎣⎦是将上述函数图象向右平移2个单位,并向上平移3个单位得到,所以()f x 图象关于()2,3对称,则6m M +=,故选C .2.已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=( )A .1B .2C .3D .4【答案】D【详解】∵f (x )=f (a-x ),∴f (x )的图象关于直线x=2a对称,又y=|x 2-ax-5|的图象关于直线x=2a对称, 当m 为偶数时,两图象的交点两两关于直线x=2a 对称,∴x 1+x 2+x 3+…+x m =2m•a=2m,解得a=4.当m 奇数时,两图象的交点有m-1个两两关于直线x=2a 对称,另一个交点在对称轴x=2a上, ∴x 1+x 2+x 3+…+x m =a•-12m +2a=2m .解得a=4.故选:D .3.已知函数()()()22sin 122xf x x x x π=+-+,下面是关于此函数的有关命题,其中正确的有①函数()f x 是周期函数;②函数()f x 既有最大值又有最小值;③函数()f x 的定义域为R ,且其图象有对称轴;④对于任意的()1,0x ∈-,()0f x '<(()f x '是函数()f x 的导函数) A .②③ B .①③ C .②④ D .①②③【答案】A 【详解】函数()f x 定义域为R ,当x →+∞或x -∞←时,()0f x →,又0x =,1x =±,2x =±,3x =±,……时,()0f x =,且均为变号零点.又因为函数满足()()()()()()()()2222sin 1sin 1122111212x xf x f x x x x x x x ππ-===-⎡⎤⎡⎤+-+-+---+⎣⎦⎣⎦,所以函数()f x 关于直线12x =对称,函数图像如下图,故②③正确.【题型四】中心对称和轴对称构造出周期性【典例分析】已知函数 为定义域为 的偶函数,且满足,当 , 时, .若函数在区间 , 上的所有零点之和为__________.【答案】5【详解】∵足,∴ ,又因函数 为偶函数,∴,即 ,∴ ,令 ,,,即求 与交点横坐标之和.,作出图象:由图象可知有10个交点,并且关于 , 中心对称,∴其和为故答案为:5【变式演练】1.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【答案】A【分析】根据条件可得出()f x 的图象关于1x =对称,()f x 的周期为4,从而可考虑()f x 的一个周期,利用[]1,3-,根据()f x 在[)0,1上是减函数可得出()f x 在(]1,2上是增函数,()f x 在()1,0-上是减函数,在[)2,3上是增函数,然后根据()1f x =-在[)0,1上有实数根,可判断该实数根是唯一的,并可判断()1f x =-在一个周期[]1,3-内有两个实数根,并得这两实数根和为2,从而得出()1f x =-在区间[]1,11-这三个周期内上有6个实数根,和为30.【详解】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .2.已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为()A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【分析】由函数()f x 的图像关于原点对称,得出()00f =,再由()()30f x f x -+-=得出函数()f x 的最小正周期为6T =,由原函数与导函数具有相同的周期性可得函数'()f x 的最小正周期为6T =,由此可得选项.【详解】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .3.若函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,且1211x x -??时,2121[()()]()0f x f x x x -->,比较(2017)f ,(2018)f ,(2019)f 的大小为()A .(2017)(2018)(2019)f f f <<B .(2018)(2017)(2019)f f f <<C .(2018)(2019)(2017)f f f <<D .(2019)(2018)(2017)f f f <<【答案】D【分析】由题意可知,函数()y f x =的周期4T =,再由当1211x x -??时,2121[()()]()0f x f x x x -->可知函数()y f x =在[]1,1-上为增函数,然后计算比较即可.【详解】函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,∴()()f x f x -=-,(1)(1)-+=+f x f x ,∴()(4)f x f x =+,即函数()y f x =的周期4T =,1211x x -??时,210x x ->,2121[()()]()0f x f x x x -->,∴21()()0f x f x ->即21()()f x f x >,函数()y f x =在[]1,1-上为增函数, ∴(2017)(14504)(1)f f f =+⨯=,(2018)(24504)(2)(0)f f f f =+⨯==,(2019)(14505)(1)f f f =-+⨯=-,∴(2019)(2018)(2017)f f f <<.故选:D.【题型五】画图:放大镜【典例分析】设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为1-,那么它是周期为2的周期函数; ②函数()2x f x =是“似周期函数”;③如果函数()cos f x x ω=是“似周期函数”,那么“2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ”. 以上正确结论的个数是() A .0 B .1C .2D .3【答案】C【分析】根据题意,首先理解“似周期函数”的定义,逐一分析,从而可判断命题的真假. 【详解】解:①∵“似周期函数”()y f x =的“似周期”为1-, (1)()f x f x ∴-=-,(2)(1)()f x f x f x ∴-=--=,故()y f x =它是周期为2的周期函数,故①正确;②若函数()2x f x =是“似周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅, 即22x T x T +=⋅恒成立,故2T T =成立,但无解,故②错误;③若函数()cos f x x ω=是“似周期函数”,则存在非零常数T ,则()()f x T T f x +=⋅, 即[]cos ()cos x T T x ωω+=恒成立,故cos()cos x T T x ωωω+=恒成立, 即cos cos sin sin cos x T x T T x ωωωωω⋅-⋅=恒成立,故cos sin 0T T T ωω=⎧⎨=⎩,故2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ,故③正确.所以以上正确结论的个数是2.故选:C.【变式演练】1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0=>a f x x a 且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是() A .(625,)+∞ B .(4,64)C .(9,625)D .(9,64)【答案】C 【分析】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可. 【详解】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,如图所示,当01a <<时,对称后的图象不可能与()f x 在(,0]-∞的图象有3个交点; 当1a >时,要使函数()f x 关于原点对称后的图象与所作的图象有3个交点,则11log 321log 54a a a ⎧⎪>⎪⎪->-⎨⎪⎪-<-⎪⎩,解得9625a <<.故选:C.2.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有1()2f x ≥-,则m 的取值范围是()A .3,2⎛⎤-∞ ⎥⎝⎦B.10,4⎛-∞ ⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D.⎛-∞ ⎝⎦【答案】B 【分析】作出图示,求出当23x <≤时,函数的解析式,求出1()2f x =-成立的x 的值,运用数形结合的思想可得选项. 【详解】解:(0,1]x ∈时,()=(1)f x x x -,(+1)=2()f x f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令14(2)(3)2x x --=-,解得12x x ==所以要使对任意(,]x m ∈-∞,都有1()2f x ≥-,则m ≤,m ⎛∴∈-∞ ⎝⎦, 故选:B .3.定义在R 上函数q 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是()A .72B .92C .134D .154【答案】D 【分析】 计算()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,画出图像,计算()116f x =,解得154x =,得到答案. 【详解】根据题设可知,当[)1,2x ∈时,[)10,1x -∈,故()()()11112322f x f x x =-=--, 同理可得:在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤.作函数()y f x =的图象,如图所示.在7,42⎡⎫⎪⎢⎣⎭上,由()11127816f x x =⎡--⎤=⎣⎦,得154x =. 由图象可知当154x ≥时,()116f x ≤. 故选:D .【题型六】利用对称解决恒成立和存在型【典例分析】已知函数()lg(f x x =,且对于任意的(12]x ∈,,21()[]01(1)(6)x mf f x x x ++>---恒成立,则m 的取值范围为()A .()0-∞,B .(]0-∞,C .[4)+∞,D .(12)+∞,【答案】B 【分析】本题根据函数的解析式先判断函数的奇偶性与单调性,再运用单调性转化不等式,接着运用参变分离构建新函数,最后借导函数求函数在指定区间内的最大值即可解题.【详解】()f x 的定义域为R ,()))()f x x x f x -===-=-,∴()f x 为奇函数,又()f x 在(0,)+∞上单调递增, ∴221()[][]1(1)(6)(1)(6)x m m f f f x x x x x +>-=------,∴211(1)(6)x mx x x +>----, 又(1,2]x ∈,则10x ->,60x -<,∴(1)(1)(6)x x x m +--<-恒成立; 设32()(1)(1)(6)66g x x x x x x x =+--=--+, 则22()31213(2)13g x x x x =--=--',当12x <≤时()0g x '<,∴()g x 在(12],内单调递减,()g x 的最大值为从负数无限接近于0,max ()0g x <, ∴0m ≤-,0m ≤,故选:B.【提分秘籍】基本规律常见不等式恒成立转最值问题:(1)min ()()x D f x m f x m ∀∈>⇔>,; (2)max ()()x D f x m f x m ∃∈>⇔>,;(3)()min ()()()()0x D f x g x f x g x ∀∈>⇔->,; (4)()max ()()()()0x D f x g x f x g x ∃∈>⇔->,; (5)12121min 2max ,()()()()x D x M f x g x f x g x ∀∈∈>⇔>,; (6)12121max 2min ,()()()()x D x M f x g x f x g x ∃∈∈>⇔>,; (7)12121min 2min ,()()()()x D x M f x g x f x g x ∀∈∃∈>⇔>,;(8)12121max 2max ,()()()()x D x M f x g x f x g x ∃∈∀∈>⇔>,;【变式演练】1.已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x =-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦【答案】D 【分析】问题转化为函数()f x 的值域是()g x 值域的子集,分别求出()f x 和()g x 的值域,得到关于m 的不等式组,解出即可. 【详解】对任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =, 即()f x 在[]0,1上的值域是()g x 在[]1,2上的值域的子集,22111()1212121x x x xxm m m f x +++--===++++, 当1m <时,∴10m -<,∴()f x 在[]0,1上单调递增,()f x ∴的值域为12,23m m ++⎡⎤⎢⎥⎣⎦, 又()(1)g x m x =-在[]1,2上单调递减,()g x ∴的值域为:[]22,1m m --,[]12,22,123m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦,1222213m m m m +⎧≥-⎪⎪∴⎨+⎪≤-⎪⎩,方程无解 当1m >时,10m ->,∴()f x 在[]0,1上单调递减,()f x ∴的值域为21,32m m ++⎡⎤⎢⎥⎣⎦()g x 的值域为:[]1,22m m --,[]21,1,2232m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦1222213m m m m +⎧≤-⎪⎪∴⎨+⎪≥-⎪⎩,解得5532m ≤≤ 当1m =时,()1,()0f x g x ==,显然不满足题意.综上,实数m 的取值范围为55,32⎡⎤⎢⎥⎣⎦故选:D .2.已知()f x 是定义在R 上的函数,且()1f x +关于直线1x =-对称.当0x ≥时,()211422,022log ,2x x f x x x -+⎧⎪≤<=⎨⎪-≥⎩,若对任意的[],1x m m ∈+,不等式()()22f x f x m -≥+恒成立,则实数m 的取值范围是()A .1,04⎡⎫-⎪⎢⎣⎭B .1,12⎡⎤⎢⎥⎣⎦C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D 【分析】结合复合函数的单调性,可知()f x 在[)0,+∞上单调递减,由()1f x +关于直线1x =-对称,可知()f x 为偶函数,从而可将题中不等式转化为22x x m -≤+,整理得223(82)40x m x m -++-≤对任意的[],1x m m ∈+恒成立,进而结合二次函数的性质,可求出m 的取值范围.【详解】当02x ≤<时,()21142x f x -+=,函数2114y x =-+在[)0,2上单调递减,且2x y =是R 上的增函数,根据复合函数的单调性可知,函数()f x 在[)0,2上单调递减,且()2121421f x -⨯+=>;当2x ≥时,()22log f x x =-,易知函数()f x 在[)2,+∞上单调递减,且()()22log 221f x f -==≤. ∴函数()f x 在[)0,+∞上单调递减.∵()1f x +关于直线1x =-对称,∴()f x 关于0x =对称,即()f x 为偶函数,∴不等式()()22f x f x m -≥+可化为()()22f x f x m -≥+,∴22x x m -≤+恒成立,即2222x x m -≤+,整理得223(82)40x m x m -++-≤,令()223(82)4g x x m x m =-++-,∴对任意的[],1x m m ∈+,()0g x ≤恒成立,∴2222()3(82)40(1)3(1)(82)(1)40g m m m m m g m m m m m ⎧=-++-≤⎨+=+-+++-≤⎩, 即840410m m -+≤⎧⎨--≤⎩,解得12m ≥.故选:D.3.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】⎡⎫+∞⎪⎢⎪⎣⎭【分析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果. 【详解】依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减.而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭.对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min ()(1)|ln1|g x g ===.故依题意知,1≥,即m ≥.所以实数m 的取值范围是⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:⎡⎫+∞⎪⎢⎪⎣⎭.【题型七】函数整数问题【典例分析】定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.【变式演练】1.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为A .15B .16C .17D .18【答案】D 【详解】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4?f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-==(),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D2.已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式在[150,150]-上有且只有150个整数解,则实数t 的取值范围是()A .12(0,)e - B .1322(,3)e e --C .312(3,2)e e --D .112(,2)e e --【答案】B 【分析】利用导函数讨论当[0,3]x ∈时的单调性,结合对称性周期性数形结合求解. 【详解】当[0,3]x ∈时,2()xf x xe -=,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(]2,3x ∈时,()0f x ¢<,当[)0,2x ∈时,()0f x ¢>, 所以函数()f x 在(]2,3x ∈单调递减,在[)0,2x ∈单调递增, ()32(0)0,330f f e-=>=,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-, 所以()(3)(3)3f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322(,3)t e e --∈。
四年级数学竞赛辅导讲义02周期性问题
星星星星星星星星星星星星星星星星星 星 期期期期期期期期期期期期期期期期期 … 期 六日一二三四五六日一二三四五六日一 ( )四年级数学竞赛辅导讲义(二) 年 月 日周 期 问 题在日常生活中,有许多现象每经过一段时间就会重复出现,这就是周期现象。
如每7天一个星期,它的周期就是7;每24小时重复出现白天、黑夜,它的周期就是24小时;每年重复出现中秋节,它的周期就是一年,等等。
数学上,我们把这类问题叫做周期问题。
下面我们来讨论一些有趣的周期问题。
例1、今天是星期六,从今天起第100天是星期几?[分析]:7天(一个周期)100天(1)周期是多少?——7天。
(2)100天有多少个周期?——100÷7=14(个)……2(天)也就是说,100天,是14个周期另2天,即第100天是第15个周期里的第2天,也就是星期日。
例2(1)、2006年元旦是星期日,2007年元旦是星期几?(2)、2008年元旦是星期二,2009年元旦是星期几? (3)、2006年元旦是星期日,2015年元旦是星期几?[分析]:(1)2006年元旦到2006年12月31日共365天(平年),2007年的元旦是第366天。
366÷7=52(个)…2(天)即到2007年元旦是第53个周期的第2天,是星期一。
从另一个角度看,到2007年元旦是经过了365天,由于365÷7=52(个)…1(天), 其实就是星期日的后一天,也是星期一。
(2)这题和刚才不同的地方是2008年是闰年,2009年元旦是第367天。
366÷7=52(个)……3(天),是第53个周期的第3天,是星期四。
用方法二,到2009年元旦是过了366天,365÷7=52(个)……2(天),星期二的后两天就是星期四。
(3)运用上面的方法可以知道,2010年元旦是星期四。
例3、有同样大小的红珠、白珠、黑珠共180颗,按5颗红珠、4颗白珠、3颗黑珠的顺序重复排列。
【高中数学函数专题】函数的周期性(解析版)
函数的周期专题六性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ;结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ;结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.考点一已知函数的周期性(显性的),求函数值【方法总结】利用函数的周期性,可将其他区间上的求值等问题,转化到已知区间上,进而解决问题.【例题选讲】[例1](1)若f (x )是R 上周期为2的函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=__________.答案-1解析由f (x +2)=f (x )可得f (3)-f (4)=f (1)-f (2)=1-2=-1.(2)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则=________.答案14解析由题意可得-2=14,=14.(3)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )+a ,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若5(2f -=9(2f ,则f (5a )的值是________.答案-25解析:由题意可得5()2f -==-12+a,9()2f =|25-12|=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.【高中数学函数专题】(4)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.答案22解析由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.(5)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809答案B解析定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.【对点训练】1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.1.答案7解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.2.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)1≤x<0,0≤x≤1,其中a,b∈R.若=a+3b的值为________.2.答案-10解析因为f(x)是定义在R上且周期为2的函数,所以f f(-1)=f(1),故=,从而12b+212+1=-12a+1,即3a+2b=-2,①.由f(-1)=f(1),得-a+1=b+22,即b=-2a,②.由①②得a=2,b=-4,从而a+3b=-10.3.已知函数f(x)(1-x),0≤x≤1,-1,1<x≤2,如果对任意的n∈N*,定义f n(x)={[()]}n ff f f x⋅⋅⋅个,那么f2019(2)的值为()A.0B.1C.2D.33.答案C解析∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,f4(2)=f(2)=1,∴f n(2)的值具有周期性,且周期为3,∴f2019(2)=f3×673(2)=f3(2)=2,故选C.4.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2022)=__________.4.答案337解析由f(x+6)=f(x)可知,函数f(x)的周期为6,由已知条件可得f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以在一个周期内有f(1)+f(2)+f(3)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2022)=337×1=337.5.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f(6)=()A.-2B.-1C.0D.25.答案D解析当x>12时,由可得当x>0时,f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.6.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2019)+f(2020)=()A.0B.2C.3D.46.答案B解析∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0.则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),即函数的周期是2,又f(0)=2,则f(2019)+f(2020)=f(1)+f(0)=0+2=2,故选B.考点二已知函数的周期性(隐性1),求函数值【方法总结】已知函数的周期性(隐性1),可利用周期性的性质结论1到结论6,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例2](1)已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x),-1<x≤0,1,0<x≤1,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)答案D解析由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2为周期的周期函数,从而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故选D.(2)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为()A.2018B.-2018C.0D.4答案C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0.(3)已知f(x)是定义在R上的函数,并且f(x+2)=1f(x),当2≤x≤3时,f(x)=x,则f(2022)=__________.答案2解析由f(x+2)=1f(x)得f(x+4)=1f(x+2)=f(x),所以T=4,f(2022)=f(4×505+2)=f(2)=2.(4)已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2-3.(5)已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2018)的值为________.答案1348解析∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4.又x ∈(0,2]时,f (x )=2x -1,∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2018)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)=+3-11+3=1348.【对点训练】7.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则5(2f 的值为()A .12B .14C .-14D .-127.答案A解析由f (x +1)=-f (x )得f (x +2)=f (x ),即函数f (x )的周期为2,则5()2f =2×12×=12,故选A .8.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .-2B .2C .-98D .988.答案A解析由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A .9.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2019)=()A .5B .12C .2D .-29.答案D解析由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.10.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2014)=()A .0B .-4C .-8D .-1610.答案B解析由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B .11.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2018)=()A .-2-3B .-2+3C .2-3D .2+311.答案A解析由f (x +2)=1-f (x )得f (x +4)=f (x ).所以函数f (x )的周期为4,所以f (2018)=f (2).又f (4)=f (2+2)=1-f (2)=2-3,所以-f (2)=12-3=2+3,即f (2)=-2-3,故选A .12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则________.12.答案52解析∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.考点三已知函数的周期性(隐性2),求函数值【方法总结】已知函数的周期性(隐性2),可利用周期性的性质结论7到结论9,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例3](1)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=()A .π3B .2π3C .πD .4π3答案B解析由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2).∴f (x +4)=f (x ),则y =f (x )的周期为4.所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.(2)函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于()A .-9B .9C .-3D .0答案B解析因为f (x -1)是奇函数,所以f (-x -1)=-f (x -1),即f (-x )=-f (x -2).又因为f (x )是偶函数,所以f (x )=-f (x -2)=f (x -4),故f (x )的周期为4,所以f (0.5)=f (8.5)=9.故选B .(3)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为()A .2B .1C .-1D .-2解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1).∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A .(4)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案解析因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x+2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.(5)设函数f (x )是定义在R 上的奇函数,对任意实数x 有33()()22f x f x +=--成立.若f (1)=2,则f (2)+f (3)=________.答案-2解析由33()()22f x f x +=--,且f (-x )=-f (x ),知f (3+x )=f 32+-f 32-=-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(6)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x -1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2,故选C.【对点训练】13.定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3-2x),则()A.12B.-12C.-1D.113.答案C解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(-x+1)=f(x+1)=-f(x-1),f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),则f(x)的周期是4,∴f-12=-=-12·(3-1)=-1,故选C.14.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为() A.-3B.-2C.2D.314.答案D解析因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(5)+f(6)=f(1)+f(2)=0+3=3.选D.15.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.15.答案3解析解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x).又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.16.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.16.答案2解析根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),又由函数为奇函数,则f(-x)=-f(x),则有f(x)=-f(6-x)=f(x-12),则f(x)的最小正周期是12,故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.17.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),且f(1)=a,则f(2)+f(3)+f(4)=() A.0B.-a C.a D.3a17.答案B解析因为函数f(x)满足f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以f(2)=f(0),f(3)=f(-1),又f(x)是定义在R上的奇函数,所以f(0)=0,又由f(1+x)=f(1-x)可得f(x+1)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),故f(x+4)=-f(x+2)=f(x),因此,函数f(x)是以4为周期的周期函数,所以f(4)=f(0),又f(1)=a,因此f(2)+f(3)+f(4)=f(0)+f(-1)+f(0)=-f(1)=-a.故选B.18.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.18.答案4解析∵函数y=f(x-1)的图象关于点(1,0)对称,∴f(x)是R上的奇函数,又f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),故f(x)的周期为4,∴f(2017)=f(504×4+1)=f(1)=4,∴f(2016)+f(2018)=f(2016)+f(2016+2)=f(2016)-f(2016)=0,∴f(2016)+f(2017)+f(2018)=4.。
第2讲 函数的对称性与周期性(解析版)-2024高考数学常考题型
第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。
第二讲 循环小数
(4)若质数 p 5 ,则
q 的循环节长度是 ( p 1) 的因数. p
【具体题目和方法】 【第一单元 3】真分数
a 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是 7
2206,那么 a 是多少?
【答案】3 或 4
a 【分析】无论 a 是多少, 的循环节长度都是 6,数字之和都是 27. 2206 27 8119 ,恰好是 82 个 7
【答案】 (1) 0.63
①对齐数位,列竖式计算. 多写几位,直到发现得数的循环节为止(优点是直观,缺点是要保证发 现得数的循环节,就要把加数的循环节多写几次,竖式较长;进位容易出错,尤其是在循环节始 末处的进位). 例如第(2)题:
0.1 1 1 1 1 1 0.0 1 1 1 1 1 + 0.0 0 1 1 1 1 0.1 2 3 3 3 3 ②先把小数化成分数,再利用分数运算得到结果(优点是过程精简,不会有进位的问题,缺点是
要多进行一步小化分的过程). 例如第(2)题: 原式
1 1 1 111 37 9 90 900 900 300
对于循环小数的乘、除法,由于无法列出无限位的乘除法竖式,所以一般都先化成分数再计算.
学而思培优北京分校·小学理科教研组出品
3
A 0.9 10 A 9.9
【答案】
0.9 9 10 A A 9.9 9A 9 即 A 1 1 0.9
1 的过程,其思想是错位相减. 在前面知识点总结中,循环小数化分 【点评】这就是代数方法证明 0.9
数的方法,其实就是对错位相减过程的总结.
1 , 1 6 1 0.16 , 1 11 1 0.09 . 0.3 3 6 11
邳州市第二中学高三化学复习第五章第2讲元素周期律和元素周期表课件
⑥Cl2 与铁反应生成 FeCl3, S 与铁反 而 ⑧在周期表中 Cl ⑨还原性:Cl-<S2-
⑦Cl2 能与 H2S 反应生成 S
基础再现·深度思考
第2讲
(2)有三种金属元素 A、B、C,在相同条件下,B 的最高价 氧化物的水化物的碱性比 A 的最高价氧化物的水化物的碱 性强;若将 A、C 相连后投入稀硫酸中,发现 C 表面有明 显气泡产生。则这三种金属元素的原子失电子能力由强到 弱的顺序是________。
基础再现·深度思考
3.元素周期表中的特殊位置
第2讲
(1)过渡元素:元素周期表中部从ⅢB 族到 ⅡB 族10个纵列共 六十多种元素,这些元素都是金属元素。 (2)镧系:元素周期表第 六 周期中,57号元素镧到71号元素镥 共15种元素。 (3)锕系:元素周期表第 七 周期中,89号元素锕到103号元素 铹共15种元素。 (4)超铀元素:在锕系元素中92号元素铀(U)以后的各种元素。
基础再现·深度思考
第2讲
深度思考 5.(1)下列事实能说明氯元素原子得电子能力比硫元素原子强 的是________。 ①HCl 的溶解度比 H2S 大 的稳定性比 H2S 大 的酸性比 H2SO4 强 应生成 FeS 处于 S 同周期的右侧 ②HCl 的酸性比 H2S 强 ③HCl ④HCl 的还原性比 H2S 弱 ⑤HClO4
解析 H、 两元素同位于ⅠA 族, Li 原子序数之差为 2,故 A 错; 118 号元素位于第七周期 0 族,所以 114 号元素位于第七周期
第ⅣA 族,B 正确; 同一主族的元素相差 2、 18、 或上述数字间的和, 错误; 8、 32 C 同一周期第ⅠA 族与第ⅢA 族元素原子序数之间的差可能为 2、 12、26,D 错误。
(精选)小学奥数周期问题--周期问题精讲
第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592=(颗)=+47⨯+452⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524=+=(颗).⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20⨯=÷++=的周期.每个周期都有4盏蓝灯,20480(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5⨯+=(个).÷++=…5.52212【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】 ⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断200633÷=……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】 1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】 有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】 这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327++=(朵)花.因为249279÷=……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
第02讲函数的奇偶性单调性周期性综合
第02讲函数的奇偶性单调性周期性综合函数的奇偶性、单调性、周期性是函数的基本性质,可以帮助我们更好地理解函数的特点和行为。
本文将详细介绍函数的奇偶性、单调性和周期性,并综合讨论它们的关系及应用。
一、函数的奇偶性奇函数和偶函数是对于函数的自变量取相反数,函数值是否相同的特性进行分类的。
具体定义如下:1.奇函数:对于任意实数x,函数f(-x)=-f(x)成立。
也就是说,如果一个函数满足f(-x)=-f(x),那么它就是奇函数。
奇函数关于原点对称,即关于原点中心对称。
2.偶函数:对于任意实数x,函数f(-x)=f(x)成立。
也就是说,如果一个函数满足f(-x)=f(x),那么它就是偶函数。
偶函数关于y轴对称,即关于y轴中心对称。
对于一个给定的函数,我们可以通过观察函数图像或者计算函数表达式来判断它的奇偶性。
例如,对于一次函数f(x)=2x+3,我们可以发现它的函数图像关于原点对称,即f(-x)=-f(x),因此它是奇函数;对于二次函数f(x)=x^2,我们可以发现它的函数图像关于y轴对称,即f(-x)=f(x),因此它是偶函数。
奇函数和偶函数的性质:1.两个奇函数的和仍然是奇函数,两个偶函数的和仍然是偶函数。
2.一个奇函数和一个偶函数的和是一个既不是奇函数也不是偶函数的函数。
二、函数的单调性单调性是描述函数在定义域上的增减性质。
具体定义如下:1.递增函数:如果对于定义域上的任意两个实数x1和x2,当x1<x2时,有f(x1)≤f(x2),那么函数f(x)就是递增函数。
也就是说,递增函数的函数值随着自变量的增大而增大。
2.递减函数:如果对于定义域上的任意两个实数x1和x2,当x1<x2时,有f(x1)≥f(x2),那么函数f(x)就是递减函数。
也就是说,递减函数的函数值随着自变量的增大而减小。
我们可以通过求导或者观察函数图像来判断函数的单调性。
对于一次函数f(x)=kx+b,其中k为非零常数,我们可以发现它的函数图像为一条斜率为k的直线,当k>0时,它是递增函数;当k<0时,它是递减函数。
第2讲-函数的单调性和周期性
函数的单调性和周期性学习目标1、掌握单调函数、周期函数的定义2、能判断常见基本函数之单调性和周期性3、能利用函数的单调性和周期性解决常规问题1、单调函数: 设函数()f x 的定义域为I ,对于区间D I ⊆,如对任意的12,x x D ∈,当12x x <时,都有()()12f x f x <,则称()f x 是区间内D 上的单调递增函数;如果对任意的12,x x D ∈,当12x x <,都有()()12f x f x >,则称()f x 是区间D 上的单调递减函数。
单调递增函数和单调递减函数统称为单调函数。
函数的单调性的等价关系 对任意[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上单调递增; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上单调递减重要结论(1)如)(x f 和)(x g 都是减函数,则)()(x g x f +也是减函数; (2)如)(x f 和)(x g 都是增函数,则)()(x g x f +也是增函数;(3)如)(u f y =和)(x g u =都是减函数,则复合函数)]([x g f y =是增函数; (4)如)(u f y =和)(x g u =都是增函数,则复合函数)]([x g f y =是增函数; (5)如)(u f y =和)(x g u =一增一减,则复合函数)]([x g f y =是减函数;注意:函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接.周期函数:对于函数()f x ,如果存在正常数T ,使得对任意自变量x ,都有()()f x T f x +=,则称()f x 为周期函数,T 称为()f x 的一个周期。
第2讲 中心对称、轴对称和周期性(解析版)
第2讲中心对称、轴对称和周期性(解析版)第2讲中心对称、轴对称和周期性(解析版)在几何形体的研究中,中心对称、轴对称和周期性是非常重要的概念。
它们帮助我们理解形体的性质,并在实际应用中发挥重要作用。
本文将详细介绍中心对称、轴对称和周期性的概念、特点和应用。
一、中心对称中心对称是指一个几何形体可以围绕一个中心点进行旋转,旋转180度后,形体与原来的形体完全重合。
在平面几何中,常用字母“O”来表示中心点,形体上的点A关于中心点O对称,则用A'表示。
中心对称具有以下特点:1.1 对称性中心对称的最大特点是形体具有对称性。
对称轴即为连接原图形与对称图形上的点的直线,对称轴上的任意点到对称点的距离相等,对称轴将形体分为两个相似的部分。
1.2 数学表达以坐标系为基础,若一个点的坐标为(x, y),绕坐标原点旋转180度后的坐标为(-x, -y),即x轴和y轴都取相反数。
1.3 应用举例中心对称在日常生活中随处可见,比如电脑屏幕、墙上的钟表、手表表盘等都具有中心对称性。
二、轴对称轴对称是指一个几何形体可以沿着一条直线进行翻转,翻转后,形体与原来的形体完全重合。
轴对称的直线称为对称轴。
轴对称具有以下特点:2.1 对称性轴对称的最大特点是形体具有对称性。
对称轴将形体分为两个相似的部分,对称轴上的任意点到对称点的距离相等。
2.2 数学表达以坐标系为基础,若一个点的坐标为(x, y),绕以y轴为对称轴翻转后的坐标为(-x, y),绕以x轴为对称轴翻转后的坐标为(x, -y)。
2.3 应用举例轴对称也广泛应用于生活中的各个领域。
比如人体左右对称、自行车、汽车和建筑物等都具有轴对称性。
三、周期性周期性是指一个形体在某个方向上具有规律地重复。
周期性具有以下特点:3.1 重复性周期性的形体在某个方向上有规律地进行重复。
该方向称为周期方向,一个完整的周期包含了所有的重复单元。
3.2 应用举例周期性在自然界和科学研究中有广泛应用。
五年级奥数
周期问题(一)一、学法指导:如果某一件事物的变化具有周期性,那么,该事物在经历一段变化后,又会呈现原来的状态。
我们把事物所经历的这一段,叫该事物变化的周期。
例如:在自然数列中,个位数字变化的周期是10;星期日出现的周期是7(天);用动物计年的周期是12(年)等等。
在数学中,我们把与周期性有关的数学问题叫做周期问题。
解决这类问题时,抓住以下两点:1.找出规律,发现周期现象2.把要求的问题和某一周期的变化相对应,以求得问题的解决二、精讲例题:例题1:我国农历用鼠牛虎兔龙蛇马羊猴鸡狗猪这12种动物轮流代表各年的年号,例如,第一年如果是鼠年,第二年就是牛年,第三年就是虎年·······问:如果公元1年是鸡年,那么公元2006年是什么年?例题2:有一列数:2,3,6,8,8······从第三个数起,每一个数都是前两个数乘积的个位数字,那么这列数的第81个数是多少?例题3:表示2006个7相乘,它积的末位上的数字是几?例题4:有同样大大小的红珠,白珠,黒珠共有160个,按4个红珠,3个白珠,2个黑珠的顺序排列着。
黑珠共有几个?第101个珠子是什么颜色?三、思考与练习:1:我国农历用鼠牛虎兔等12种动物按照顺序轮流代表各年的年号,如果1940年是龙年,那么1996年是什么年?2:有一列数2,9,8,2······从第三个数起,每一个数都是前两个数乘积的个位数字,那么这列数的第180个数是多少?3:124的15次方表示15个124相乘,所得的积末位数字是几?4:流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色5跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?6:1/7=0.142857142857……,小数点后面第100个数字是多少?7:有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期性问题人有悲欢离合,月有阴晴圆缺,此事古难全。
——苏轼在日常生活中,有不少“周而复始”的循环现象,如:日出日落、月缺月圆、四季轮回,我们称这样的现象叫周期现象。
在长期的实践中,人们还创造了具有这种周期性变化的记数方法和计时方法,如:计算钟点是“l ,2,3,4,5. 6,7,8. 9,10 ,11,12”这12个数循环,构成一个周期。
按照7天一轮计算天数是“日、一、二、三、四、五、六”,这也是一个周期,这相当于一些连续自然数被7除的余数0,l ,2,3,4,5,6的循环。
我们把与周期有关的数学问题叫做周期性问题。
12个数的循环,就说周期是12;7个数的循环,就说周期是7。
解周期性问题的关键是发现周期现象和利用周期,因此,我们在解这类问题时,要抓住两点: (1)找出规律,发现周期现象; (2)把要求解的问题和某一周期的变化相对应,以求得问题的解法。
例题解析 例1 今年6月l 日是星期六,今年6月20日是星期几? 分析与解:每星期有7天,就是以7为周期,把6月1 日作为周期的第1天,1除以7余l ,且6月1日是星期六。
将星期与余数排列成下表: 余数 1 2 3 4 5 6 0 星期 六 日 一 二 三 四 五 从6月1日到6月20日共20天,20÷7=2……6,说明6月20日是星期四。
答:今年6月20日是星期四。
用这种方法计算时,先排列出余数与星期一至星期日的对应关系来,再计算总天数,用总天数除以7,查看余数相对应是星期几就可以了。
例2 如图2 -1,数手指.大拇指为1,食指为2,中指为3,无名指为4,小拇指为5;然后换向,无名指为6.中指为7,食指为8,大拇指为9;再换向,食指为10.…这样数到2010时,应该停在哪个手指上?分析与解要依题意数手指.一个一个地数到2010是不太现实的,要找出规律,应通过观察。
1 2 3 4 5 6 7 8 9 10 11 12… 2010 大 食 中 无 小 无 中 食 大 食 中 无…( ) 可以发现8个数为一周期,因为2010÷8= 251……2,余数是2,一周期里第2个是食指,所以数到2010就应停在食指上。
答:应该停在食指上。
例3某部84集的电视连续剧在某星期日开播,从星期一到星期五以及星期日每天都要播出一集,星期六停播。
问:最后一集在星期 几播出? 分析与解:把从星期日直至星期五这样的6天当作一个播放周期,试着看看84集的连续剧可播出多少周期零几天。
由于84÷6 =14 可见这部连续剧恰可播14个周期,幸运的是,开播的那天恰是星期日,所以播完时恰逢星期五。
倘若是从星期二开播,就要先从84中减去4,得80,再看80÷6=13……2,这时,播最后一集的日子是星期一。
例4如图2-2,一个正四面体摆在桌面上,正对你的面(ABC )是红色,底面(BCD )是白色,右侧面(ACD)是蓝色,左侧面(ABD )是黄色。
先让四面体绕底面面对你的棱向你翻转,再让它绕底面右侧的棱翻转,第3次绕底面面对你的棱向你翻转,第4次绕底面左侧的棱翻转。
此后依次重复上述操作过程。
问:按规则完成第l00次操作后,面对你的面是什么颜色?解 由初始状态第1次翻转后,红面为底面;第2次翻转后,蓝面变为底面,这时黄面正对着你;第3次翻转后,黄面变为底面;第4次翻转后,红面变为底面,这时白面正对着你.继续按规则操作,会发现连续翻转到第8次时红面正对着你。
此后,每8次操作面对你的红面重复出现,形成周期有序的变化。
由于100÷8=12……4.所以完成第100次操作后,面对你的面与完成第4次操作面对你的面相同,是白色,研究数的循环,就是要发现周期性和确定周期。
在小学数学中,循环小数是大家较早遇到的周期性问题。
例 5 17 写成循环小数后,小数点后第2000位数字是什么?解 17=0.142857142857…它的循环节是6位,循环节的6个数字依次是1,4,2,8,5,7。
因为2000÷6=333…2,所以,17 展开成循环小数后,它的第2000位数字是循环节的第2位数字,是4。
答:小数点后第2000位数字是4.分母是7的分数有一个十分有趣的性质,它们的循环周期都是6,循环节中的6个数字都是1,4,2,8,5,7,只是排列的顺序不同而已.具体写出来就是:现在请想一想,你能回答下面的问题吗? “有一个六位数,无论用1,2,3,4,5,6这6个数中的哪一个去乘它,所得的结果仍然是六位数,而且6令数字也完全相同,只是排列的顺序不同,这个六位数是多少?” 答:142857。
1992年第三届“希望杯”全国数学邀请赛初一年级 第二试有这样一道题:一个自然数a ,若将其数字重新排列,可得一个新的自然数b 。
如果a 恰是b 的3倍,我们称a 是一个‘希望数’。
请你举例说明:‘希望数’一定存在。
这是一道很难的题目,因为怎样寻找“希望数”,既没有法则可依,也没有公式可套,一个个试吗?没有足够的时间,很多同学都放弃了,如果你能联想到分母是7的分数写成循环小数后的上述性质,此题的答案就唾手可得: 3×142857 =428571.即428571是一个“希望数”。
若干个同样的数相乘,个位数字的变化也有周期性。
例如,2²的连乘积:2,2²=4,23=8,24 =16,25=32,26=64,…个位数字的变化是2,4,8,6,2,4,…周期是4。
例6 求19931993的个位数字。
解:对于1993n,其个位数字随n 的变化呈现一定规律,当n=l ,2,3,4,5,6,7,8,…时,1993的末位数字依次为3,9,7,1,3,9,7,1,…每4个数出现周期性变化,又1993÷4=498……1。
故19931993的个位数字为3。
给定自然数a ,可从特例归纳出a 的末位数字随n 的增大而作周期性变化的规律,很容易得到:(1)当a 的末位数字是0,1,5或6时,周期是1;(2)当a 的末位数字是4或9时,周期是2;(3)当a 的末位数字是2,3,7或8时,周期是4。
一些有规律的数,被某个整数逐个去除,所得的余数也具有周期性。
例7有一串数:1,1,2,3,5,8,13,21,34,55,…其中第1、第2个数都是1,从第3个数开始,每个数都是它前面两个数的和,那么,在这串数中,第2000个数被3除后所得的余数是几?解 我们只要把前两个数被3除后所得的余数相加,然后再除以3,所得的余数就是后一个数被3除的余数。
(想一想:为什么?)这样就很容易算出前若干个数被3除的余数.列表如下:观察余数可以看出,第9、第10两个数被3除的余数与第l 、第2两个数被3除的余数对应相同,这样第11个数的余数,就与第3个数的余 数相同因此,这串数被3除的余数,每8个数循环一次。
因为2000÷8= 250,所以第2000个数被3除的余数,与第8个数被3除的余数一样,0。
题中的数列,是著名的斐波那契( Fibonacci)数列。
由上述例题可以看出,在解答周期性问题时,应当注意:(1)每个周期的长度是多少;(2)每个周期内变化的次序;(3)在求题目的答案时,通常用问句中的数据除以周期的长度,并把所得的余数同一个周期内某种状态相对应。
同步训练1.1992年1月l8日是星期六,再过十年的1月18日是星期 。
2.黑珠、白珠共102颗,穿成一串。
排列如图2-3:这串珠子中,最后一颗珠子应该是____色的,这种颜色的珠子在这串中共有____颗。
3.流水线上生产小木珠涂色的次序是先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白继续下去,第1993个小珠的颜色是____色。
4.把珠子一个一个地如图2-4按顺序往返不断投入A 、B 、C 、D 、E 、F袋中,第1992粒珠子投在__ __袋中。
5.将数列1,4,7,10,13,…依次如图2-5排列,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第____行第____列。
1 4 7 10 13 28 25 22 19 16 31 34 37 40 43 58 55 52 49 46 图2-56.分数913化成小数后,小数点后面第1993位上的数字是 。
7.314化成小数后,小数点后面第1993位上的数字是。
8.在一个循环小数0. 1234567…中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_ ___和__ __这两个数字上。
9. 1991个9与1990个8与1989个7的连乘,积的个位数是__ __。
10.算式(367367+762762)×123123的得数的尾数是_ _ __。
11.乘积l×2×3×4×…×1990×1991是一个多位数,而且末尾有许多0,从右到左第一个不等于O的数是多少?12.甲、乙二人对一根3米长的木棍涂色。
首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底。
然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底,最后,木棍上没有被涂黑部分的长度总和为___ _厘米。
上表中,将每列上下两个字组成一组,例如第一组为(共,社),第二组为(产,会),那么,第340组是_ ___。