信息论与编码第5章(2)

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论与编码技术》实验教案

信息论与编码技术》实验教案

信息论与编码技术实验教案第一章:信息论基础1.1 信息的概念与度量介绍信息的基本概念,信息源的随机性,信息的不确定性。

讲解信息的度量方法,如香农熵、相对熵等。

1.2 信道模型与容量介绍信道的概念,信道的传输特性,信道的噪声模型。

讲解信道的容量及其计算方法,如单符号信道、多符号信道等。

第二章:信源编码与压缩2.1 信源编码的基本概念介绍信源编码的定义、目的和方法。

讲解信源编码的基本原理,如冗余度、平均冗余度等。

2.2 压缩算法与性能评价介绍无损压缩算法,如霍夫曼编码、算术编码等。

讲解有损压缩算法,如JPEG、MP3等。

分析各种压缩算法的性能评价指标,如压缩比、重建误差等。

第三章:信道编码与错误控制3.1 信道编码的基本概念介绍信道编码的定义、目的和方法。

讲解信道编码的基本原理,如纠错码、检错码等。

3.2 常见信道编码技术介绍常用的信道编码技术,如卷积码、汉明码、奇偶校验等。

分析各种信道编码技术的性能,如误码率、编码效率等。

第四章:数字基带传输4.1 数字基带信号与基带传输介绍数字基带信号的概念,数字基带信号的传输特性。

讲解数字基带信号的传输方法,如无编码调制、编码调制等。

4.2 基带传输系统的性能分析分析基带传输系统的性能指标,如误码率、传输速率等。

讲解基带传输系统的优化方法,如滤波器设计、信号调制等。

第五章:信号检测与接收5.1 信号检测的基本概念介绍信号检测的定义、目的和方法。

讲解信号检测的基本原理,如最大后验概率准则、贝叶斯准则等。

5.2 信号接收与性能分析分析信号接收的方法,如同步接收、异步接收等。

讲解信号接收性能的评价指标,如信噪比、误码率等。

第六章:卷积编码与Viterbi算法6.1 卷积编码的基本原理介绍卷积编码的定义、结构及其多项式。

讲解卷积编码的编码过程,包括初始状态、状态转移和输出计算。

6.2 Viterbi算法及其应用介绍Viterbi算法的原理,算法的基本步骤和性能。

讲解Viterbi算法在卷积编码解码中的应用,包括路径度量和状态估计。

信息论与编码第五章习题参考答案

信息论与编码第五章习题参考答案

5.1某离散无记忆信源的概率空间为采用香农码和费诺码对该信源进行二进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。

解:计算相应的自信息量1)()(11=-=a lbp a I 比特 2)()(22=-=a lbp a I 比特 3)()(313=-=a lbp a I 比特 4)()(44=-=a lbp a I 比特 5)()(55=-=a lbp a I 比特 6)()(66=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特根据香农码编码方法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=由于每个符号的码长等于自信息量,所以编码效率为1。

费罗马编码过程5.2某离散无记忆信源的概率空间为使用费罗码对该信源的扩展信源进行二进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进行比较。

解:信息熵811.025.025.075.075.0)(=--=lb lb X H 比特/符号 (1)平均码长11=L 比特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=⨯+⨯+⨯+⨯=L 比特/符号 编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯+⨯⨯+⨯=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提高。

信息论基础第五章课后答案

信息论基础第五章课后答案

5.1设有信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321a a a a a a a X P X (1)求信源熵H(X)(2)编二进制香农码(3)计算其平均码长及编码效率解:(1)H(X)=-)(log )(21i ni i a p a p ∑=H(X)=-0.2log 20.2-0.19log 20.19-0.18log 20.18-0.17log 20.17-0.15log 20.15-0.log 20.1-0.01log 20.01H(X)=2.61(bit/sign)(2)ia i P(ai)jP(aj)ki码字a 001a 10.210.0030002a 20.1920.2030013a 30.1830.3930114a 40.1740.5731005a 50.1550.7431016a 60.160.89411107a 70.0170.9971111110(3)平均码长:-k =3*0.2+3*0.19+3*0.18+3*0.17+3*0.15+4*0.1+7*0.01=3.14(bit/sign)编码效率:η=R X H )(=-KX H )(=14.361.2=83.1%5.2对习题5.1的信源二进制费诺码,计算器编码效率。

⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛0.01 0.1 0.15 0.17 0.18 0.19 2.0 )(7654321a a a a a a a X P X 解:Xi)(i X P 编码码字ik 1X 0.2000022X 0.191001033X 0.18101134X 0.17101025X 0.151011036X 0.110111047X 0.01111114%2.9574.2609.2)()(74.2 01.0.041.0415.0317.0218.0319.032.02 )(/bit 609.2)(1.5=====⨯+⨯+⨯+⨯+⨯+⨯+⨯===∑KX H R X H X p k K sign X H ii i η已知由5.3、对信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制赫夫曼码,计算各自的平均码长和编码效率。

《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

信息论与编码理论习题解第二章-信息量和熵2.1解: 平均每个符号长为:1544.0312.032=⨯+⨯秒 每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特 2.4 解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯所以得到的信息量为 21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特)01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 & 2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特 所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X) = 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特 I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y)=1.0143比特 I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特 I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-==(b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(4226818p p p p u p u q w ii i+-+-==∑=bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.9 2.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式) 或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。

信息论与编码第5章

信息论与编码第5章

信息论与编码第5章第五章信源编码(第⼗讲)(2课时)主要内容:(1)编码的定义(2)⽆失真信源编码重点:定长编码定理、变长编码定理、最佳变长编码。

难点:定长编码定理、哈夫曼编码⽅法。

作业:5。

2,5。

4,5。

6;说明:本堂课推导内容较多,枯燥平淡,不易激发学⽣兴趣,要注意多讨论⽤途。

另外,注意,解题⽅法。

多加⼀些内容丰富知识和理解。

通信的实质是信息的传输。

⽽⾼速度、⾼质量地传送信息是信息传输的基本问题。

将信源信息通过信道传送给信宿,怎样才能做到尽可能不失真⽽⼜快速呢?这就需要解决两个问题:第⼀,在不失真或允许⼀定失真的条件下,如何⽤尽可能少的符号来传送信源信息;第⼆,在信道受⼲扰的情况下,如何增加信号的抗⼲扰能⼒,同时⼜使得信息传输率最⼤。

为了解决这两个问题,就要引⼊信源编码和信道编码。

⼀般来说,提⾼抗⼲扰能⼒(降低失真或错误概率)往往是以降低信息传输率为代价的;反之,要提⾼信息传输率常常⼜会使抗⼲扰能⼒减弱。

⼆者是有⽭盾的。

然⽽在信息论的编码定理中,已从理论上证明,⾄少存在某种最佳的编码或信息处理⽅法,能够解决上述⽭盾,做到既可靠⼜有效地传输信息。

这些结论对各种通信系统的设计和估价具有重⼤的理论指导意义。

§3.1 编码的定义编码实质上是对信源的原始符号按⼀定的数学规则进⾏的⼀种变换。

讨论⽆失真信源编码,可以不考虑⼲扰问题,所以它的数学描述⽐较简单。

图 3.1是⼀个信源编码器,它的输⼊是信源符号},,, {21q s s s S =,同时存在另⼀符号},,,{21r x x x X =,⼀般来说,元素xj 是适合信道传输的,称为码符号(或者码元)。

编码器的功能就是将信源符号集中的符号s i (或者长为N 的信源符号序列)变换成由x j (j=1,2,3,…r)组成的长度为l i 的⼀⼀对应的序列。

输出的码符号序列称为码字,长度l i 称为码字长度或简称码长。

可见,编码就是从信源符号到码符号的⼀种映射。

《信息论与编码》第5章哈夫曼编码

《信息论与编码》第5章哈夫曼编码
编码简介
什么是哈夫曼编码方法
1952年由美国计算机科学家戴维· 哈夫曼先生提出 是一种数据压缩技术 该方法依据字符出现的概率进行编码 ,其基本思想为: 出现概率高的字符使用较短的编码 出现概率低的则使用较长的编码 使编码之后的码字的平均长度最短
哈夫曼编码方法

哈夫曼编码方法包含两个过程

哈夫曼编码方法包含两个过程
编码过程和译码过程

编码过程 译码过程
构建哈夫曼树 CreatHT(W,&HT)

输入是字符频度表W
表中记录的是原码报文中出现的不同符号个数和频率

输出是哈夫曼树HT
进行哈夫曼译码 HuffmanDecod(HT,CC,W,&OC)
输入的是哈夫曼树HT、代码报文CC和字符频度表W 输出的是原码报文OC
OC
输出OC 到哈夫曼译码系统之外 返回开头
字母a的编码为110 字母n的编码为111
1
4 n
因此,在电文中出现频率 高的字母的编码相对短, 而出现频率低的字母的编 码相对长
111 字符编码表HC=((d,0),(i,10),(a,110),(n,111))
哈夫曼编码过程演示
编码 A1 A2 A3 0.23 0.21 0.18
1
0 1 0 1 0.10 0
编码过程和译码过程

编码过程
构建哈夫曼树 CreatHT(W,&HT)

输入是字符频度表W
表中记录的是原码报文中出现的不同符号个数和频率

输出是哈夫曼树HT
进行哈夫曼编码 HuffmanCoding(HT,&HC)
输入是哈夫曼树HT 输出是字符编码表HC

信息论基础与编码(第五章)

信息论基础与编码(第五章)

5-1 有一信源,它有六种可能的输出,其概率分布如下表所示,表中给出了对应的六种编码12345C C C C C 、、、、和6C 。

(1) 求这些码中哪些是唯一可译码; (2) 求哪些是非延长码(即时码);(3) 对所有唯一可译码求出其平均码长。

解:(1(2)1,3,6是即时码。

5-2证明若存在一个码长为12,,,q l l l ⋅⋅⋅的唯一可译码,则一定存在具有相同码长的即时码。

证明:由定理可知若存在一个码长为Lq L L ,,2,1 的唯一可译码,则必定满足kraft 不等式∑=-qi l ir1≤1。

由定理44⋅可知若码长满足kraft 不等式,则一定存在这样码长的即时码。

所以若存在码长Lq L L ,,2,1 的唯一可译码,则一定存在具有相同码长P (y=0)的即时码。

5-3设信源126126()s s s S p p p P s ⋅⋅⋅⎡⎤⎡⎤=⎢⎥⎢⎥⋅⋅⋅⎣⎦⎣⎦,611i i p ==∑。

将此信源编码成为r 元唯一可译变长码(即码符号集12{,,,}r X x x x =⋅⋅⋅),其对应的码长为(126,,,l l l ⋅⋅⋅)=(1,1,2,3,2,3),求r 值的最小下限。

解:要将此信源编码成为 r 元唯一可译变长码,其码字对应的码长(l 1 ,l 2 ,l 3, l 4,l 5, l 6)=(1,1,2,3,2,3) 必须满足克拉夫特不等式,即132321161≤+++++=------=-∑r r r r r r ri li所以要满足122232≤++r r r ,其中 r 是大于或等于1的正整数。

可见,当r=1时,不能满足Kraft 不等式。

当r=2, 1824222>++,不能满足Kraft 。

当r=3,127262729232<=++,满足Kraft 。

所以,求得r 的最大值下限值等于3。

5-4设某城市有805门公务和60000门居民。

作为系统工程师,你需要为这些用户分配。

信息论与编码第五章课后习题答案

信息论与编码第五章课后习题答案

第五章课后习题【5.1】某信源按43)0(=P ,41)1(=P 的概率产生统计独立的二元序列。

(1)试求0N ,使当0N N >时有01.005.0)()(≤≥−S H N I P i α 式中,)(S H 是信源的熵。

(2)试求当0N N =时典型序列集N G ε中含有的信源序列个数。

解:(1)该信源的信源熵为811.0)(log )()(=−=∑i i s p s p S H 比特/符号自信息的方差为4715.0811.04log 4134log 43)()]([)]([22222=−+=−=S H s I E s I D i i 根据等长码编码定理,我们知道δεα−≤≥−1)()(S H N I P i 根据给定条件可知,05.0=ε,99.0=δ。

而[]2)(εδN s I D i =因此[]5.19099.0*05.04715.0)(220==≥δεi s I D N 取1910=N 。

(2)ε典型序列中信源序列个数取值范围为:])([])([22)1(εεεδ+−<<−S H N N S H N G代入上述数值得451.164351.1452201.0<<×N G ε【5.2】有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A 、B 、C 、D 、E 和F 。

表5.2消息 )(i a P A B C D E F 1a 1/2 000 0 0 0 0 0 2a 1/4 001 01 10 10 10 100 3a 1/16 010 011 110 110 1100 101 4a 1/16 011 0111 1110 1110 1101 110 5a 1/16 100 01111 11110 1011 1110 111 6a1/1610101111111111011011111011(1) 求这些码中哪些是惟一可译码; (2) 求哪些码是非延长码(即时码); (3) 求对所有惟一可译码求出其平均码长L 。

《信息论与编码》课程教学大纲

《信息论与编码》课程教学大纲

《信息论与编码》课程教学大纲一、课程基本信息课程代码:16052603课程名称:信息论与编码英文名称:Information Theory and Coding课程类别:专业课学时:48学分:3适用对象:信息与计算科学考核方式:考试先修课程:数学分析、高等代数、概率论二、课程简介《信息论与编码》是信息科学类专业本科生必修的专业理论课程。

通过本课程的学习,学生将了解和掌握信息度量和信道容量的基本概念、信源和信道特性、编码理论等,为以后深入学习信息与通信类课程、为将来从事信息处理方面的实际工作打下基础。

本课程的主要内容包括:信息的度量、信源和信源熵、信道及信道容量、无失真信源编码、有噪信道编码等。

Information Theory and Coding is a compulsory professional theory course for undergraduates in information science. Through this course, students will understand and master the basic concepts of information measurement and channel capacity, source and channel characteristics, coding theory, etc., lay the foundation for the future in-depth study of information and communication courses, for the future to engage in information processing in the actual work.The main contents of this course include: information measurement, source and source entropy, channel and channel capacity, distortion-free source coding, noisy channel coding, etc。

信息论与编码-曹雪虹-第五章-课后习题答案

信息论与编码-曹雪虹-第五章-课后习题答案

信息论与编码-曹雪虹-第五章-课后习题答案第五章(2) 哪些码是⾮延长码?(3) 对所有唯⼀可译码求出其平均码长和编译效率。

解:⾸先,根据克劳夫特不等式,找出⾮唯⼀可译码31123456231244135236:62163:22222216463:164:22421:2521:2521C C C C C C --------------?<+++++=<<++?=+?>+?<5C ∴不是唯⼀可译码,⽽4C :⼜根据码树构造码字的⽅法1C ,3C ,6C 的码字均处于终端节点∴他们是即时码(1) 因为A,B,C,D四个字母,每个字母⽤两个码,每个码为0.5ms, 所以每个字母⽤10ms当信源等概率分布时,信源熵为H(X)=log(4)=2平均信息传递速率为bit/ms=200bit/s(2) 信源熵为H(X)==0.198bit/ms=198bit/s5-541811613216411281128H(U)=1 2Log2() 14Log4() +18Log8() +116Log16 ()+132Log32 ()Log64()+1128Log128()+1128Log128()+ 1.984= (2) 每个信源使⽤3个⼆进制符号,出现0的次数为出现1的次数为P(0)=P(1)=(3)相应的费诺码(5)⾹农码和费诺码相同平均码长为编码效率为:5-11(1)信源熵(2)⾹农编码:平均码长:编码效率为(3)平均码长为:编码效率:4平均码长为:编码效率:5.16 已知⼆元信源{0,1},其p0=1/4,p1=3/4,试⽤式(4.129)对序列11111100编算术码,并计算此序列的平均码长。

解:根据算术编码的编码规则,可得:P(s=11111100) = P2(0)P6(1) = (3/4)6 (1/4)27)(1log =??=S P l根据(4.129)可得:F(S) = P(0) + P(10) + P(110) + P(1110) + P(11110) + P(111110) = 1–∑≥sy y P )(= 1 – P(11111111) – P(11111110) – P(11111101) – P(11111100)= 1– P(111111) = 1– (3/4)6 = 0.82202 = 0.110100100111⼜P(S) = A(S)= 0.0000001011011001,所以F(S) + P(S) = 0.1101010 即得C = 0.1101010 得S 的码字为1101010平均码长L 为 0.875。

信息论与编码

信息论与编码

信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。

2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。

信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。

单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。

(3) =0时, = , =0说明该事件是不可能事件。

(4)是的单调递减函数。

3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。

)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。

(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。

4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。

(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。

(3)信源熵H(X)反映了变量X 的随机性。

6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。

当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。

两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。

当且仅当p(z/x,y)=p(z/y)时取等号。

联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。

信息论与编码技术第五章课后习题答案

信息论与编码技术第五章课后习题答案

码,并求出其编码效率。
解:
信源符号 概率 编码
码字 码长
X1
3/8 0
0
1
X2
1/6 1
0
10 2
X3
1/8
1
11 2
X4
1/8 2
0
20 2
X5
1/8
1
21 2
X6
1/12
2
22 2
H(X)=-((3/8)*log(3/8)+(1/6)*log(1/6)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/8)*log(1/8)+(1/12)*log(1/12))
=2.3852 (三进制单位/信源符号)
H3(X)= H(X)/ 1.5850=2.3852/1.5850= 1.5049(三进制单位/信源符号)
L =(3/8)*1+ (1/6)*2+ (1/8)*2+ (1/8)*2+ (1/8)*2+ (1/12)*2=1.625(码符号/信源符号)
η= H3(X)/ L =1.5049/1.625= 92.61 %
5.8 已知符号集合 {x1, x2 , x3,"} 为无限离散消息集合,它们出现的概率分别为 p(x1) = 1/ 2 , p(x2 ) = 1/ 4 , p(x3 ) = 1/ 8 , p(xi ) = 1/ 2i ,……。
(1) 用香农编码方法写出各个符号消息的码字。 (2) 计算码字的平均信息传输速率。
L =4*(1/4)*1=1(码符号/信源符号)
Rt= H(X)/(t* L )=1/(1*10*10-2)=10(比特/秒)

信息论与编码姜丹第三版答案精编版

信息论与编码姜丹第三版答案精编版

信息论与编码习题参考答案 第一章 单符号离散信源信息论与编码作业是74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14还有证明熵函数的连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码曹雪虹第三版第五章

信息论与编码曹雪虹第三版第五章

信息论与编码曹雪虹第三版第五章1、在Windows 的"资源管理器" 窗口中,如果想一次选定多个分散的文件或文件夹,正确的操作是()。

[单选题] *A.按住Ctrl 键,用鼠标右键逐个选取B.按住Ctrl 键,用鼠标左键逐个选取(正确答案)C.按住Alt键,用鼠标右键逐个选取D.按住Alt键,用鼠标左键逐个选取2、72.在下列关于字符大小关系的说法中,正确的是()。

[单选题] *A.空格>a>AB.空格>A>aC.a>A>空格(正确答案)D.A>a>空格3、40.下列选项属于面向对象的程序设计语言是()。

[单选题] *A.Java和CB.Java和C++(正确答案)C.VB和CD.VB和Word4、76.计算机病毒的危害表现为()[单选题] *A.能造成计算机芯片的永久性失效B.使磁盘霉变C.影响程序运行,破坏计算机系统的数据与程序(正确答案)D.切断计算机系统电源5、在WPS表格中,关于筛选数据的说法正确的是()。

[单选题] *A.删除不符合设定条件的其它内容B.筛选后仅显示符合我们设定筛选条件的某一值或符合一组条件的行(正确答案)C.将改变不符合条件的其它行的内容6、执行删除操作时,()中的文件不能被送入回收站,而是直接删除。

[单选题] *A. C盘B. D盘C.U盘(正确答案)7、能够实现电子邮件服务器之间传输邮件的协议是()。

易[单选题] *A.DNSB.SNMPC.HTTPD.SMTP(正确答案)8、计算机硬件能直接识别和执行的只有()。

[单选题] *A.高级语言B.符号语言C.汇编语言D.机器语言(正确答案)9、把计算机网络看成是自治的计算机系统的集合,其中“自治的计算机”主要指()易[单选题] *A.可以独立运行的计算机(正确答案)B. 网络计算机C.裸机D. 网络终端10、在Internet 上,政府机构类别的域名中一般包括()。

信息论与编码第二版答案 (3)

信息论与编码第二版答案 (3)

信息论与编码第二版答案第一章:信息论基础1.问题:信息论的基本概念是什么?答案:信息论是一种数学理论,研究的是信息的表示、传输和处理。

它的基本概念包括:信息、信息的熵和信息的编码。

2.问题:什么是信息熵?答案:信息熵是信息的度量单位,表示信息的不确定度。

它的计算公式为H(X) = -ΣP(x) * log2(P(x)),其中P(x)表示事件x发生的概率。

3.问题:信息熵有什么特性?答案:信息熵具有以下特性:•信息熵的值越大,表示信息的不确定度越高;•信息熵的值越小,表示信息的不确定度越低;•信息熵的最小值为0,表示信息是确定的。

4.问题:信息熵与概率分布有什么关系?答案:信息熵与概率分布之间存在着直接的关系。

当概率分布均匀时,信息熵达到最大值;而当概率分布不均匀时,信息熵会减小。

第二章:数据压缩1.问题:数据压缩的目的是什么?答案:数据压缩的目的是通过消除冗余和重复信息,使数据占用更少的存储空间或传输更快。

2.问题:数据压缩的两种基本方法是什么?答案:数据压缩可以通过无损压缩和有损压缩两种方法来实现。

无损压缩是指压缩后的数据可以完全还原为原始数据;而有损压缩则是指压缩后的数据不完全还原为原始数据。

3.问题:信息压缩的度量单位是什么?答案:信息压缩的度量单位是比特(bit),表示信息的数量。

4.问题:哪些方法可以用于数据压缩?答案:数据压缩可以通过以下方法来实现:•无结构压缩方法:如霍夫曼编码、算术编码等;•有结构压缩方法:如词典编码、RLE编码等;•字典方法:如LZW、LZ77等。

第三章:信道容量1.问题:什么是信道容量?答案:信道容量是指在给定信噪比的条件下,信道传输的最大数据速率。

2.问题:信道容量的计算公式是什么?答案:信道容量的计算公式为C = W * log2(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号的平均功率,N表示噪声的平均功率。

3.问题:信道容量与信噪比有什么关系?答案:信道容量与信噪比成正比,信噪比越高,信道容量越大;反之,信噪比越低,信道容量越小。

信息论与编码

信息论与编码

信息论与编码《信息论与编码》复习提纲第1章绪论1、信息的概念,通俗、⼴义、狭义的概念2、信息、消息、信号3、通信系统模型4、通信系统的技术指标,有效性、可靠性第2章信源与信息熵1、信源的分类2、信源的数学模型3、马尔克夫信源4、离散信源的⾃信息、信息熵5、条件熵和联合熵6、互信息及其性质7、条件熵之间的关系,维拉图8、信息熵的性质9、信息熵的计算,各种概率的计算、各种熵的计算(例2-9, p.21)10、连续信源的熵,绝对熵和相对熵11、最⼤熵定理,峰值功率受限、平均功率受限12、离散序列信源的熵,平均符号熵、条件熵、极限熵13、信源冗余度及产⽣的原因第3章信道与信道容量1、信道模型,转移矩阵、2、信道种类:BSC、DMC、离散时间⽆记忆信道、波形信道3、信道容量的定义4、⼏种特殊信道的信道容量、BSC信道C~ε曲线5、离散序列信道及其容量(BSC⼆次扩展信道)6、连续信道及其容量,Shannon公式7、信源与信道的匹配,信道冗余度第4章信息率失真函数1、失真函数、失真矩阵、平均失真2、信息率失真函数,定义、物理意义,保真度准则3、信息率失真函数的性质,信息率失真函数曲线4、信息率失真函数与信道容量的⽐较5、某些特殊情况下R(D) 的表⽰式第5章信源编码1、信源编码的基本概念(主要任务、基本途径)2、码的基本概念、分类3、唯⼀可译码的含义,充要条件4、码树图及即时码的判别5、定长编码定理,编码信息率,编码效率6、变长编码定理(Shannon第⼀定理),编码剩余度,紧致码7、Shannon编码,⾃信息与码长的联系8、Fano编码,与码树图的联系、是否是紧致码9、Huffman编码,计算平均码长、信息传输率、编码效率(例5-7, p.96)10、Shannon第三定理(限失真编码定理)及逆定理11、游程编码,基本原理、特性、主要应⽤12、算术编码,基本思想第6章信道编码1、差错,差错符号,差错⽐特,差错图样类型2、纠错码分类,差错控制系统分类3、随机编码,Shannon第⼆定理(信道编码定理),差错概率、译码规则、平均差错概率4、可靠性函数曲线5、差错控制途径、措施,噪声均化、交错(交织)6、码距与纠、检错能⼒7、最优译码、最⼤似然译码、最⼩汉明距离译码8、线性分组码,基本概念,码重9、⽣成矩阵和校验矩阵,系统形式(例6-2, p.137)10、伴随式与标准阵列译码11、循环码及其特征,⼏种常⽤循环码12、卷积码,基本概念、编码原理、编码器结构、卷积码描述⽅法、Viterbi译码第7章加密编码1、加密编码中的基本概念2、安全性,保密性,真实性3、对称(单密钥)体制与⾮对称(双密钥)体制1.信息论研究的⽬的是提⾼信息系统的___可靠性___,____有效性____,____安全性___,以便达到系统的最优化。

(完整版)信息论第五章答案

(完整版)信息论第五章答案

5.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X (1) 求信源熵H(X); (2) 编二进制香农码;(3) 计算平均码长和编码效率。

解: (1)symbolbit x p x p X H i i i /609.2)01.0log 01.01.0log 1.015.0log 15.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(2222222712=⨯+⨯+⨯+⨯+⨯+⨯+⨯-=-=∑=%1.8314.3609.2)()(14.301.071.0415.0317.0318.0319.032.03)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.2 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制费诺码,计算编码效率。

%2.9574.2609.2)()(74.201.041.0415.0317.0218.0319.032.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η5.3 对信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制哈夫曼码,计算各自的平均码长和编码效率。

解:%9.9572.2609.2)()(72.201.041.0415.0317.0318.0319.022.02)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η%4.913log 8.1609.2log )()(8.1)01.01.015.017.018.019.0(22.01)(22=⨯====+++++⨯+⨯==∑m LK X H R X H x p k K ii i η5.4 设信源⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡12811281641321161814121)(87654321x x x x x x x x X P X (1) 求信源熵H(X);(2) 编二进制香农码和二进制费诺码;(3) 计算二进制香农码和二进制费诺码的平均码长和编码效率; (4) 编三进制费诺码;(5) 计算三进制费诺码的平均码长和编码效率;解: (1)symbolbit x p x p X H i i i /984.1128log 1281128log 128164log 64132log 32116log 1618log 814log 412log 21)(log )()(22222222812=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=-=∑==127/64 bit/symbol (2)二进制费诺码:香农编码效率:%100984.1984.1)()(64/127984.17128171281664153214161381241121)(======⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η费诺编码效率:%100984.1984.1)()(984.17128171281664153214161381241121)(=====⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑KX H R X H x p k K ii i η(5)%3.943log 328.1984.1log )()(328.14128141281364133212161281141121)(22=⨯=⋅===⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==∑m K X H R X H x p k K ii i η5.5 设无记忆二进制信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡1.09.010)(X P X先把信源序列编成数字0,1,2,……,8,再替换成二进制变长码字,如下表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.48
3
011
a4
0.17
0.57
2.56
3
100
a5
0.15
0.74
2.743101 Nhomakorabeaa6
0.10
0.89
3.34
4
1110
a7
0.01
0.99
6.66
7
1111110
10
香农编码
• 由上表可以看出,一共有5个三位的代码组,各代 码组之间至少有一位数字不相同,故是唯一可译码。 还可以判断出,这7个代码组都属于即时码。
相等。如编二进制码就分成两组,编m进制码就分成 m组。 给每一组分配一位码元。 将每一分组再按同样原则划分,重复步骤2和3,直至概 率不再可分为止。
13
费诺编码
xi
符号概 率
x1
0.32
0
编码 0
码字 00
码长 2
x2
0.22
1
01
2
x3
0.18
0
10
2
x4
0.16
1
0
110
3
x5
0.08
1
0
的码字总是0、00、000、0…0的式样; ✓ 码字集合是唯一的,且为即时码; ✓ 先有码长再有码字; ✓ 对于一些信源,编码效率不高,冗余度稍大,因此
其实用性受到较大限制。
12
费诺编码
费诺编码属于概率匹配编码 。
编码步骤如下: 将概率按从大到小的顺序排列,令
p(x1)≥ p(x2)≥…≥ p(xn) 按编码进制数将概率分组,使每组概率尽可能接近或
15
哈夫曼编码
哈夫曼编码也是用码树来分配各符号的码字。 哈夫曼(Huffman)编码是一种效率比较高的变长无失
真信源编码方法。 霍夫曼编码及其变种,在压缩编码领域中应用的非常广泛
数字图像:JPEG 运动图像:MPEG2、H.261、H.263
16
哈夫曼编码
哈夫曼编码的步骤如下:
1110
4
x6
0.04
1
1
1111
4
14
结论
➢ 费诺编码特点: ✓ 概率大,则分解的次数小;概率小, 则分解的次数多。
这符合最佳编码原则。 ✓ 码字集合是唯一的。 ✓ 分解完了,码字出来了,码长也有了。 ✓ 因此,费诺编码方法又称为子集分解法。 ✓ 费诺编码方法比较适合于每次分组概率都很接近的信
源,特别是对每次分组概率都相等的信源进行编码时, 可达到理想的编码效率。 ➢r 元费诺码: 前面讨论的费诺码是二元费诺码,对r元费诺码, 与二元费诺码编码方法相同,只是每次分组时应将符号分成概 率分布接近的r个组。
信源编码
1
无失真信源编码
X
Y
信源
信源编码器
信道
L长序列
码表
K长码字
实现无失真的信源编码,要求: 信源符号X1 X2…Xl …XL 是一一对应的
码字Y1 Y2…Yk… YK
能够无失真或无差错地从Y恢复X,也就是能正确地进行反 变换或译码 ; 传送Y时所需要的信息率最小
信息率最小就是找到一种编码方式使
_
K
KL
log m
1 log M
最小
L
L
2
定长编码定理
定长编码定理:
由L个符号组成的、每个符号的熵为HL(X)的无记忆 平稳信源符号序列X1…Xl…XL,可用 KL个符号 Y1…Yk…YKL(每个符号有m种可能值)进行定长编码。
KL L
log
m
H L (X)
则当L足够大时,必可使译码差错小于δ;反之,当
香农第一定理指出,选择每个码字的长度Ki满足下式:
或: -log2 p(xi)≤ Ki <-log2 p(xi)+1 就可以得到这种码。 这种编码方法称为香农编码
8
香农编码
二进制香农码的编码步骤如下: ⑴将信源符号按概率从大到小的顺序排列, p1≥ p2≥…≥ pn ⑵确定满足下列不等式的整数Ki, -log2 pi ≤ Ki <-log2 pi+1 ⑶计算第i个码字的累加概率,
2 (X)
L
2
信源序列的自信息方差
2(X) E{[I(xi) H(X)]2}
5
变长编码定理
单个符号变长编码定理:
若一离散无记忆信源的符号熵为H(X),每个信源符号用m进 制码元进行变长编码,一定存在一种无失真编码方法,其码
字平均长度满足下列不等式: H(X) K H(X) 1
log m
⑷将Pi用二进制表示,并取小数点后Ki位作为符号ai的编 码。
9
香农编码
例 有一个信源共有7个符号,其概率及其累加和如下表所示:
信源消息 符号概率 累加概率 logP(ai) 码字长
符号ai P(ai)
Pi
度Ki
码字
a1
0.20
0
2.34
3
000
a2
0.19
0.20
2.41
3
001
a3
0.18
0.39
⑵将定理的条件改写成
KL logm > LHL(X) H(X)
其中:左边:KL长码字所能携带的最大信息, 右边:L长信源序列携带的信息量。
4
定长编码定理
为了衡量编码效果,定义编码效率:
最佳编码效率: HL(X) , >0 HL(X)
对定长编码,若要实现几乎无失真编码,则信源长度
必须满足:
方法:将概率大的信源符号编以短的码字。概率小 的符号编以长的码字,这样使得平均码字长度最短。 主要有:
香农(Shannon) 费诺(Fano) 哈夫曼(Huffma )
7
香农编码
香农第一定理指出了平均码长与信源之间的关系,同 时也指出了可以通过编码使平均码长达到极限值,这 是一个很重要的极限定理。
• 平均码长 n K p(xi )ki 3.14 码元/符号 i 1
• 平均信息传输速率
R H (X ) 2.61 0.831 比特 / 码元 K 3.14
11
结论
➢ 香农编码方法特点: ✓ 由于ki总是进一取整,香农编码方法不一定是最佳的; ✓ 由于第一个消息符号的累加概率总是为0,故它对应
KL L
log
m
H L (X)
2
时,译码差错一定是有限值,而当L足够大时,译码几乎 必定出错
3
定长编码定理
⑴当编码器容许的输出信息率,也就是当每个信源符号所必须 输出的码长是
时,只要 K HL(X) ,这种编码器一定可以做到几乎无失真, 也就是收端的译码差错概率接近于零,条件是所取的符号数 L足够大。
log m
离散平稳无记忆序列变长编码定理 对于平均符号熵为HL(X)的离散平稳无记忆信源,必存在一种
无失真编码方法,使平均信息率 K 满足不等式
HL(X) K HL(X)
编码效率的下界: H L(X)
H L(X)
K
H L(X) log m
L
6
5.2.3最佳变长编码
最佳码: 对于某一信源和某一码符号集来说,若有一唯一可 译码,其平均码长小于所有其他唯一可译码的平均 长度。
相关文档
最新文档