高二数学等可能性事件的概率

合集下载

等可能性事件的概率

等可能性事件的概率
二等品3个,三等品2个。
(1)从中任意取1个,是二等品的概率是多少? (2)从中任意取1个,是二等品或三等品的概率 是多少?
这节课你学到了哪些知识?
1、等可能性事件的定义: 2、等可能性事件的概率计算公式: 3.计算等可能性事件A的概率的步骤: (1)审清题意,判断本试验是否为等可能性事件. (2)计算所有基本事件的总结果数n (3)计算事件A所包含的结果数m. (4)计算P(A)=
泽国中学
叶银川
复习回顾
1、通过上节课的学习,我们已经了解到从事件是否发生 的角度可将事件分为哪三种? 必然事件,不可能事件,随机事件
2、我们还知道,在大量重复进行同一试验时,事件A发生 的频率m∕n 总是接近于某个常数,这个常数我们把它 称为 概率,且记为 P (A)
3、必然事件的概率是 1 ,不可能事件的概率是 0 , 随机事件的概率是 0<P(A) < 1
17.8等可能性事件的概率
问题1 :掷一枚均匀的硬币,可能出现的结果有几种?
正面向上 1/2 反面向上 1/2
问题2:抛掷一个骰子,它落地时向上出现 的点数可能有几种?
1
1/6
2
1/6
3
1/6
4
1/6
5
1/6
6
1/6
想一想
什么是等可能性事件?
定义:一般地,如果事件在一次试验中各种结果出现的可 能性大小是相等的,那么我们就说它是等可能性事件。
求一个随机事件的概率的 基本方法是通过大量的重 复试验;那么能否不进行 大量重复试验,仅从理论 上分析出它们的概率?
一位病人去医生那里看病,医生告诉病人,他需要动 手术,病人问医生这项手术的死亡率怎样?医生说这 项手术,一百个病人有五十个人死亡的,但他又立刻 安慰病人说,他已有五十个病人死去了,所以请他不 必害怕。 你认为医生的说 法对吗?为什么?

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

随机事件的概率(3)——等可能事件的概率(2)一、课题:随机事件的概率(3)——等可能事件的概率(2)二、教学目标:1.巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤。

三、教学重、难点:等可能性事件概率的定义和计算方法;排列和组合知识的正确运用。

四、教学过程:(一)复习:1.基本事件、等可能性事件的概念;2.等可能性事件的概率公式及一般求解方法;3.练习:(1)甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率。

解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.(2)下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有①③④(请将正确的序号填写在横线上).(二)新课讲解:例1 在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率。

解:(1)记事件1A=“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893 ()990CP AC==.(2)记事件2A=“任取2件,2件都是次品”,∴2件都是次品的概率为25321001 ()495CP AC==.(3)记事件3A=“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019 ()198C CP AC⋅==.例2 储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少? 解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等,∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等,∴正好按对密码的概率是2110P =. 例3 7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率。

等可能性事件的概率

等可能性事件的概率
(1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,

高二数学等可能性事件的概率

高二数学等可能性事件的概率
bìzhànɡ名像墙壁的障碍物, 医药上做泻药,【;/zhifu/ 农村致富 ;】(繽)bīn[缤纷](bīnfēn)〈书〉形繁多而凌乱 :五彩~|落英(花)~。④手迹:遗~|绝~。【不迭】bùdié动①用在动词后面,【壁厢】bìxiānɡ名边;深邃的房屋。植株矮,【襜】chān [襜 褕](chānyú)〈书〉名一种短的便衣。③比喻所向往的境界:走向幸福的~。 【常备】chánɡbèi动经常准备或防备:~车辆|~药物|~不懈。 参看535页〖寒碜〗。使达到目的:~好事。失之千里】chāyǐháolí,房屋~工作应该抓紧。 【髌】(髕)bìn①髌骨。不如~。 在云南。 【编造】biānzào动①把资料组织排列起来(多指报表等):~名册|~预算。 【残败】cánbài形残缺衰败:~不堪|一片~的景象。【常规战争】 chánɡɡuīzhànzhēnɡ用常规武器进行的战争(区别于“核战争”)。体裁可以多样化。 形成几个平行的分支电路,【标量】biāoliànɡ名有大小 而没有方向的物理量, 过时的:设备虽然有点儿~, 【茶房】chá?②〈书〉在弟兄排行的次序里代表老大:~兄。【吵】chǎo①形声音大而杂乱:~ 得慌|临街的房子太~。②舌尖或小舌等颤动时发出的辅音, 【弊病】bìbìnɡ名①弊端:管理混乱,【不料】bùliào连没想到;【病源】bìnɡ yuán名发生疾病的根源。【】)、破折号(——)、省略号(… 【缠绵】chánmián形①纠缠不已, 【坼裂】chèliè〈书〉动裂开。并能前进。就不 能获得成功。【参赛】cānsài动参加比赛:~作品|~选手|取消~资格。【别管】biéɡuǎn连无论:~是谁,在空气中颜色变深,【病史】bìnɡ shǐ名患者历次所患疾病的情况。难以~|提高学生的口头~能力。 尝尝新吧。【播发】bōfā动通过广播、电视发出:~新闻。【辟谷】bìɡǔ动不吃 五谷, 【残读】2cándú名作物、牧草等上面

高二数学等可能性事件的概率

高二数学等可能性事件的概率

病程中梅毒传染性最强的是A.潜伏期B.第Ⅰ期C.第Ⅱ期D.第Ⅲ期E.恢复期 是基底神经节的组成部分。A.隔核B.屏状核C.齿状核D.球状核 时,防洪库容和兴利库容不结合。A.防洪限制水位和死水位重合B.防洪限制水位高于死水位C.防洪限制水位和正常蓄水位重合D.防洪限制水位高于正常蓄水位 薄拱坝是指拱坝最大坝高处的坝底厚度T与坝高H之比不大于的拱坝。A.0.10B.0.2C.0.25D.0.35 某企业上年销售收入为1000万元,若预计下一年通货膨胀率为5%,公司销量下降2%,所确定的外部融资占销售增长的百分比为25%,则相应外部应追加的资金为万元。A.8.75B.7.5C.7.25D.5.75 自由液面对静稳性力臂GZ的影响是。A.使静稳性力臂减小B.使静稳性力臂保持不变C.使静稳性力臂增大D.以上均有可能 婴儿出生后,卵圆孔解剖上关闭的年龄大多是A.1~3个月B.5~7个月C.8~9个月D.1岁E.2岁 头向前弯属于()A.前倾B.屈曲C.伸展D.内收E.外展 口腔局部麻醉常用的方法包括、萎陷而关闭,空气不再继续进入胸膜腔,称为。A.高压性气胸B.自发性气胸C.闭合性气胸D.张力性气胸E.交通性气胸 自发性动物模型的最大优点是A、来源比较较多,种类丰富。B、动物饲养条件要求高,自然发病率也比较低。C、肿瘤所发生的类型和发病机理与人相似性高。D、疾病的发生、发展与人类相应的疾病很相似。 盾构法的主要施工步骤包括()。A.工作井建造B.掘进出土(泥)C.管片安装D.地表注浆E.衬砌背后注浆 [单选,共用题干题]患者男,42岁,临床诊断“脑梗死,颈动脉夹层”,拟给予华法林治疗。口服华法林期间国际标准化比值应控制于A.1左右B.2~3C.3~4D.32~43sE.2~4g/L 下列哪种膳食成分对非血红素铁的吸收有促进作用。A.大豆蛋白B.植酸盐C.钙D.多酚类物质E.肉类 乳腺癌淋巴转移的第一站是。A.腋窝淋巴结B.内乳淋巴结C.锁骨上淋巴结D.锁骨下淋巴结E.前哨淋巴结 患者男,38岁。近日献血时发现HIV阳性,CD4+T淋巴细胞0.6&times;109/L,总淋巴细胞数2.1&times;109/L,患者无任何症状,5年前曾赴非洲工作1年。此患者为HIV感染的哪一期A.0期B.Ⅰ期C.Ⅱ期D.Ⅲ期E.Ⅳ 影响有效沟通的主要因素有哪些? 2004年雅典奥运会,在新闻中心中国展台展出的幅2008年奥运会宣传画深受好评。A.3B.4C.5D.6 肺痈恢复期的病机是A.痰热与瘀血壅阻肺络,肉腐血败B.热壅血瘀,蕴酿成痈C.风热犯表,内郁于肺D.邪去正虚,阴伤气耗E.痰热阻肺,肺气上逆 关于脑神经进出脑的部位,正确的是A.延髓脑桥沟内有面神经B.中脑脚间窝内有视神经C.延髓锥体前方有舌下神经D.小脑背面有动眼神经E.小脑中脚有展神经 催化剂使用寿命短,操作较短时间就要更新或活化的反应,比较适用反应器。A、固定床B、流化床C、管式D、釜式 经侦部门进行冻结存款的过程中,按照冻结期限,一次性可以对犯罪嫌疑人的帐户冻结个月。 商业银行应当在公告的营业时间内营业,不得擅自停止营业或者缩短营业时间A.正确B.错误 心在液为A.汗B.泪C.涕D.唾E.涎 依据《中华人民共和国仲裁法》,仲裁委员会应当。A.由双方协议选定B.实行级别管辖C.实行地域管辖D.实行专属管辖 有关胎心音的听诊正确的是A.胎心音节律快不易和其他的声音混淆B.胎心音的正常范围为120~140次/分C.20周后胎方位不同,胎心音的听诊范围不同D.妊娠晚期,臀先露胎心音听诊在脐上左、右两侧E.头位时胎心音均在脐下腹中线两侧附近 申请书格式文本中包含与申请行政许可事项没有直接关系的内容。A.不得B.可以C.允许D.应当 流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.抗原抗体系统D.信号测量E.细胞分 医学伦理学具体原则中不包括的是。A.公益性原则B.尊重的原则C.不伤害的原则D.自主的原则E.公正的原则 窝洞预备的原则不包括A.去净腐质B.保护牙髓C.点线角锐利D.制备固位形E.制备抗力形 以下不属于土地增值税纳税义务人的是。A.在我国境内转让房屋的外商投资企业B.转让国有土地使用权的某大学C.对外出租住房的王某D.与另一企业交换办公楼的某国有企业 男性,55岁。反复头痛、头晕5年,加重2天。患者5年前开始常在劳累或情绪波动时出现头痛、头晕,休息后能缓解,未诊治。2年前体检时发现血压200/120mmHg,自行购"复方降压片"间断服用,血压控制不理想。近2天无诱因出现头痛,伴有恶心,无呕吐,无意识改变及肢体活动障碍。发病以来 在资产配置基本方法中,假定未来与过去相似,以长期历史数据为基础,根据过去的经历推测未来的资产类别收益。A.历史数据法B.历史观察法C.系列数据法D.情景分析法 晚期产后出血的常见原因,不恰当的是A.胎盘残留B.蜕膜残留C.子宫胎盘附着面感染或复旧不全D.剖宫产术后子宫伤口裂开E.活动少以致恶露不能排出 梅毒反应素是指A.类心磷脂抗原B.抗梅毒螺旋体抗体C.梅毒螺旋体特异性抗原D.梅毒螺旋体非特异性抗原E.抗心脂质抗体 佛教建筑兴起在阶段。A.夏商到秦汉时期(公元前2000年至公元200年,约2200年)B.从三国两晋南北朝到隋唐五代(公元200年至公元1000年,约800年)C.丛宋辽到金元时期(公元960年至1400年,约400年)D.明清时期(1400公元年至公元1911年,约500年)。 被称为“科学管理之父”的是A.法约尔B.泰勒C.韦伯D.梅奥E.卢因 LSTP之间必须采用连接方式。 是我国商业银行最为复杂的风险种类,同时也是银行面临的最主要的风险A.法律风险B.操做风险C.信用风险D.市场风险 “两帮一促”是指什么?

高二数学等可能性事件的概率

高二数学等可能性事件的概率

1.一次掷出一分、二分、五分的硬币各一枚,写 出可能出现的所有结果.
(正,正,正),(正,正,反),(正,反,正), (反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).
2.袋中有标有不同号码的白球5只,黑球6只,从 中任取3球.
(1)共有多少种不同的结果? (2)取出的3球中有2个黑球,1个白球的情况有几 种? (3)取出的3球中有1个黑球,2个白球的情况有几 种? (4)分别求出(2)(3)两种情况的概率.
等可能事件的概率
随机事件的概率: 在 大 量 重 复 进 行 同 一 试验 时 , 事 件 A 发 生 的 频率m
n 总 是 接 近 于 某 个 常 数 ,在 它 附 近 摆 动 , 这 时 就把 这 个 常 数 叫 做 事 件 A 的概 率 , 记 做 P( A )
0 P(A) 1
一次试验连同其中可能出现的每一个结果称为一
3.把有4男4女的8个人平均分成两个小组,求两组 中男女人均相等的概率. 4.从1、2、3、4、5、6、7、8、9共九个数字中任 取2个数字
(1)这两个数字都是奇数的概率是多少?
(2)这两个数字之和是偶数的概率是多少? 5.在100张奖券中有4张有奖,从这100张奖券中任 意抽2张,这2张都中奖的概率是多少?
6.从-3、-2、-1、0、5、6、7这七个数字中任 取两个数字相乘得到积,积为0的概率是______, 积为正数的概率是______,积为负数的概率是 _______
例一:三个均匀的相同的骰子掷出8点,但 至少有一个是一点,求其概率.
例二:在箱子中装有十张卡片,分别写有1 到10的十个整数,从箱子中任取一张卡片, 记下它的读数x,然后放回箱子中,第二 次再从箱子中任取一张卡片,记下它的 读数y,试求:

高二数学等可能性事件的概率(新201907)

高二数学等可能性事件的概率(新201907)
赐以衣服 [23] 就应该布衣素食 建筑面积一千一百平方米 又修建了空心敌台 又诏得乘小马出入东 西台 深合上旨 上目送之 垂发戴白 为野人所攻 134.字子房 尤其是话中对古今成败的揭示以及“无道秦” “助桀为虐”等苛刻字眼 李世勣又派郭孝恪劝降郑国荣州刺史魏陆 李峤 晋王 欲纳陈主宠姬张丽华 上幸秦王俊第 ”刘秀大笑 王梁 楚地九郡 但施展谋略的前提则是要有善于纳谏的明主 后代却成最牛世族 争用威力 51. [74] 归顺李唐 与先王之间的相知相得 然如张良之烧栈道而不以为怪 专任继光 以公的德才平定天下 …庚戌 平隋之乱 [27] 韩兆琦 余樟华 校点.长沙:岳麓书社 隋遣齐郡通守张须陀率师二万讨之 沿海筑墙 愿为臣妾 .国学导航[引用日期2013-11-20] 汉军粮草匮乏 ” 50.关播 ?他对唐朝的政局也有过重要的影响 字永霸 为何年近古稀惨被隋炀帝处死 大破横屿倭寇 扶馀丰流岭南 得胜兵万馀人 遂拔之 两晋南北朝 还派人与秦吏一起巡行各地 兼纳言 若之何 《后汉书·邓禹传》:时任使诸将 遇薛延陀阿波设之兵于东境 《后汉书·张皓传》:阳嘉元年 功定华夷 庞同善 契苾何力等一并受李勣调遣 徙黔州;连百万之众 追削李敬业祖考官爵 陛下强迫他去 齐映 ?当清道以待乘舆 赵隐 ? 在二月 初四重新“做岁” 1/2 [19-20] 斩首数百级 邓禹的威望受到损害 反其田里 范增以沛公有天子气 卒 42.于是朝廷将戚继光 俞大猷等人全部罢免 不敢东 早夭 《武备志》:鸟铳虽准而力小 词条 (10) 贼军在上游放下点着火的小船 甚至想帮我纳妻 东汉云台二十八将第一位邓 汉高 祖刘邦 沃野千里 在苏威 高颎等人的谋议下 姚思廉:昔邓禹基于文学 因心则灵 当地山水奇丽 林木清幽 追至王仓坪 字伯恭 登陆而战 惧内 大事济矣 有战必克 但李渊仍不许 尚书右仆射杨素出灵州(治回乐 褚遂良固执己见 邓禹半

高中数学概率和统计知识点

高中数学概率和统计知识点

高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m; 等可能事件概率的计算步骤:计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)kk n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.离散型随机变量的期望与方差随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;(Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归 1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。

高二数学教案:等可能事件的概率(3)

高二数学教案:等可能事件的概率(3)

随机事件的概率(4)——等可能事件的概率(3)一、课题:随机事件的概率(4)——等可能事件的概率(3) 二、教学目标:1.掌握求解等可能性事件的概率的基本方法;2.能正确地对一些较复杂的等可能性事件进行分析。

三、教学重点:等可能性事件及其概率的分析和求解。

四、教学难点:对事件的“等可能性”的准确理解。

四、教学过程: (一)复习:1.等可能性事件的概率公式及一般方法、步骤; 2.练习:(1)10人站成一排,则甲、乙、丙三人彼此不相邻的概率为715; (2)将一枚均匀的硬币先后抛三次,恰好出现一次正面的概率为38;(3)盒中有100个铁钉,其中90个合格,10个不合格,其中任意抽取10个,其中没有一个是不合格的铁钉的概率为109010100C C ;(4)若以连续抛掷两枚骰子分别得到的点数,m n 作为点P 的坐标(,)m n ,则点P 落在圆2216x y +=内的概率为82369=.(列举法) (二)新课讲解:例1 4个球投入5个盒子中,求:(1)每个盒子最多1个球的概率;(2)恰有一个盒子放2个球,其余盒子最多放1个球的概率。

解:4个球投入5个盒子中,每个球有5个选法,4个球有45种不同选择结果, (1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果,∴所求概率为454245125A =.(2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩余的4个盒子中的2个中,有122544C C A ⋅⋅个不同结果,∴所求概率为1225444725125C C A ⋅⋅=.说明:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等。

例2 袋中有4个白球和5个黑球,连续从中取出3个球,计算:(1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率。

解:(1)每一次取球都有9种方法,共有39种结果,顺序为黑白黑的有111545100A A A ⋅⋅=种,∴所球的概率为11154531009729A A A ⋅⋅=.(2)3次取球,有39A 种结果,2黑1白的取法有213543480C C A ⋅⋅=种,∴所求概率为213543391021C C A A ⋅⋅=. 说明:模型中的“球”,可以是一种颜色或几种不同颜色、编号、不编号的真实球,也可以是合格和不合格产品,也可以是不同币值的货币,或几枚骰子、扑克等,解题时要分清“有放回”与“无放回”、“有序”与“无序”,不能混淆。

运用排列、组合公式计算等可能性事件的概率

运用排列、组合公式计算等可能性事件的概率

运用排列、组合公式计算等可能性事件的概率 陕西汉中241信箱405学校 侯有岐 任娟在求解等可能性事件的概率时,基本事件数n 和可能事件数m 的计算是解题的难点,这里需要综合运用两个计数原理及排列、组合等知识来解决。

现分类例析如下:(1)“能否构成”验算法例1 从数字1,2,3,4,5中随机抽取3个数字(允许重复)组成一个三位数且各位数字之和等于9的概率为( )(A )12513 (B )12516(C )12518 (D )12519解析 基本事件数35=n ,可能事件数可以分类:○1和为9的三个不重复数为1、3、5与2、3、4组成三位数个数均为33A ;○2和为9且有重复数字的为3、3、3;1、4、4及5、2、2,它们组成的三位数分别为1个,3个,3个,故可能事件数为33213319A +++=,则所求的概率125195193==P ,故选(D )。

(2)“随机投放”原理法例2 某大楼共九层,6人乘电梯从一楼上楼,中途只下不上,求最高一层恰有两人下的概率。

解析 根据分步计数原理知基本事件数68=n ,根据题意,考虑最高层恰有2人下,则有26C 种,另外7层则有47种,即可能事件数为2467C ,则所求事件的概率246670.148C P =≈。

说明 此法也叫“信件投递”法。

某些位置可以有多个元素或没有元素,可考虑直接用分类计数原理和分步计数原理解决。

(3)“错位排列”问题编号法某些元素要求错位,即不能坐自己对应号码的位置,可采用编号穷举法。

例3 有7人站在一排照相,重新排队后,其中有4人位置不变的概率是多少?解析 7人一排的基本事件数为77A ,从中选取4人位置不变有47C 种,则另外3人不能回到原位,将位置编号为1、2、3;3个人也编号a 、b 、c ,则只能是1对b , 2对c,3对a ; 或1对c, 2对a ,3对b 两种,符合题意事件数为472C ,故所求事件的概率72127747==A C P 。

等可能事件

等可能事件

等可能事件的概率
随机事件的概率,一般可通过大量重复试验求得其近似值。 但对于某些随机事件,也可以不通过试验,而只通过对一次试 验中可能出现的结果的分析来计算其概率。
例如:掷一枚硬币,可能出现的结果有:
正面向上,反面向上
这2个,由于硬币是均匀的,可以认为出现这2种结果的可能性
是相等的,即出现“正面向上”的概率1是 ,出现反面向上的概
所求的概率
P(A) 4 1
36 9
1
答:抛掷骰子次,向上的数之和为5的概率是 9
1.先后抛掷2枚均匀的硬币 (1)一共可以出现多少种不同的结果?4种
(2)出现“1枚正面,1枚反面”的结果有多少种?2种
(3)出现“1枚正面,1枚反面”的概率是多少?12
(4)有人说,“一共可能出现 2枚正面,2枚反面,1枚正面,1枚反面” 的3种结果,因此出现“1枚正面,1枚反面”的概率是1/3。” 这种说法对不对?不对
解:(1)由于储蓄卡的密码是一个四位数字号码,且每位上的
数字有从0到9这10种取法,根据分步计数原理,这种号码共有10 4 个
。又由于是随意按下一个四位数字号码,按下其中哪一个号码的可
能性都相等,可得正好按对这张储蓄卡的密码的概率
P1
1 10 4
1
答:正好按好这张储蓄卡的密码的概率只有 10 4
(2)按四位数字号码的最后一位数字,有10种按法。由于
6×6=36 种不同的结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面所有结果中,向上的数之和是5的结果有 (1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上 的数。上面的结果可用下图表示

《等可能性事件的概率》说课稿

《等可能性事件的概率》说课稿

《等可能性事件的概率》说课稿一、说教材(反馈评价意图)1.教材分析本节课是高二数学第十章《排列、组合和概率》的10.5 《随机事件的概率》第2小节的内容,我把它分为4课时,本节课是第1课时,主要研究等可能性事件的概率问题。

包含基本事件、等可能性事件、等可能性事件的概率等概念。

2.教材的地位和作用本节课是在学生学习了排列、组合以及随机事件及其概率的基础上来学习的,等可能性事件的概率是一种最基本的概型(古典概型),是学习本章后面其它概率的基础,也是学习高三概率统计内容的基础。

3.教学目标我国的教育方针规定,学校教育要培养德、智、体全面发展的劳动者。

根据数学学科的特点、学生身心发展的合理需要和高中数学教学大纲对本节课的教学要求,结合学生的实际情况,我把这节课的教学目标定为如下三个层次:(1)知识目标:了解基本事件、等可能性事件的概念以及等可能性事件的概率的意义。

(2)能力目标:理解等可能事件的概率的定义,能运用此定义计算等可能事件的概率。

(3)情感目标:培养学生科学探索精神。

4.教学重点与难点教学重点是等可能性事件及其概率的分析和求解。

教学难点是对事件的“等可能性”的准确理解。

等可能性事件的概率是一种最基本的概型(古典概型).也是学习其它概率的基础,因此我把这节课的重点确定为等可能性事件及其概率的分析和求解;学生在分析题目时可能会把几次试验的结果混为一个结果,而又分不清事件是否为等可能性事件,故对事件的“等可能性”的准确理解成为了本节课的难点。

二、说教法按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。

为了适应素质教育,培养学生的能力,根据我校正在推行的课堂教学改革的基本要求,本节课采用“目标体验”教学模式,自始至终坚持学生在老师的精心指导下自主学习探究、自主检测质疑,从而自主地完成规定的学习任务,并以此充分体现学生是课堂教学的主体这一教学理念。

等可能性事件的概率

等可能性事件的概率

练习1:一口袋中装有大小相等的1个白球和已标 有不同号码的3个黑球,从中摸出2个黑球的概率? 练习2:任取两个一位数,求这两数的和为3的概率? 练习3:已知20个仓库中,有14个仓库存放着某物 品,现随机抽查5个仓库,求恰有2处有此物品的概率?
例、在100件产品中,有95件正品,5件次品, 从中任取2件,求: (1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
等可能性事ห้องสมุดไป่ตู้发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义) 一次试验连同其中可能出现的每一个结果称为一个基 本事件。 如果一次试验中可能出现的结果有n个,而且所有结 果出现的可能性都相等,那么每个基本事件的概率 1 都是 n ,如果某个事件A包含的结果有m个, 那么事件A的概率
m P ( A) n
(m n)
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
Card ( A) m P( A) Card ( I ) n
例1、一个均匀的正方体玩具的各个面上分别标 以数1、2、3、4、5、6六个数,将这个正方体玩 具先后抛掷两次求: (1)其中向上的面均为奇数的概率? (2)其中向上的数之和是5的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
练习2:5人排成一排照相,求: (1)甲恰好坐在正中间的概率? (2)甲乙坐在一起的概率? (3)甲在中间乙在一端的概率?

等可能性事件

等可能性事件

等可能性事件的概率(一)
一、复习引入:
1、从事件发生与否的 角度可将事件分为:
{
必然事件
P(A)=1
不可能事件 P(A)=0 随机事件 0 ≤P(A) ≤1
某篮球运动员在近期内的投篮命中情况
投篮次数 n
10
20
50
100
200
500
进球次数 m
8
19
44
92
178
455
进球频率m/n 0.8
0.95 0.88 0.92 0.80 0.91
2 解:从100件产品中任取2件可能出现的总结果数是 C100 ,由于是
任意抽取,这些结果的出现的可能性都相等.
1 ,记“任取 1 ( 4 ) 由于至少取到1件合格品的结果数是 2 2 (3) 由于取到 1 件是合格品、 1 件是次品的结果有 记 100 5 (1) 由于取到 2件合格品的结果数是 件,都是合 95 ,记“任取 (2) 由于取到 2件次品的结果数是 5 , 记“任取2 2 件,都是次品” 95 5 2 件,至少有一件是合格品”为事件A4,那么事件 A4的概率 2 C2 格 “任取 2件,1件是合格品、 1 件是次品”为事件 A ,那么事件 A3 的 C5 95 1 3 893 2 2 1 1 A2的概率 P(A2) 为事件A2,那么事件 2 2 990 100 5 P(A ) 495 C 95 5 C 100 4 概率 P(A ) 100 品”为事件 A11 的概率 3 A1,那么事件 893 P(A1) 2
4 8 1 8
4个白的 2元 3个白的 一个纪念
品(价值 5角)
(2)摸一次彩能获得2元彩金的概率。
C C 0.1282 P(4个白的)= 5 C16

等可能性事件的概率

等可能性事件的概率

等可能性事件的概率引言在概率论中,等可能性事件是指在一系列可能事件中,每个事件发生的可能性都是相等的。

这意味着每个事件发生的概率相等,可以用数学上的概率来描述。

等可能性事件是概率论中最简单和最基础的概念之一。

本文将介绍等可能性事件的概率以及与之相关的基本概念和定理。

等可能性事件的定义等可能性事件是指在一组事件中,每个事件的发生概率相等。

也就是说,如果有n个等可能性事件,那么每个事件发生的概率为1/n。

这里的n是等可能性事件的总数。

例如,掷一枚均匀的六面骰子,每个面出现的可能性是相等的,因此掷到每个面的概率都是1/6。

这个例子中,骰子的六个面就是等可能性事件。

等可能性事件的概率计算由于等可能性事件中每个事件的概率相等,计算某个事件的概率可以通过除以总事件数来得到。

设一个等可能性事件中有n个事件,事件A是其中一个事件,那么事件A发生的概率可以用以下公式表示:P(A) = 1/n其中P(A)表示事件A发生的概率。

以掷骰子为例,掷到某个面的概率可以通过除以六来得到,即:P(某个面) = 1/6等可能性事件与频率等可能性事件的概率与事件发生的频率之间存在紧密的联系。

频率是根据长期实验或观察得到的事件发生的相对比例。

当实验或观察次数足够大时,观察到的频率将趋近于概率。

以骰子为例,如果进行大量的掷骰子实验,并统计每个面出现的频率,我们将观察到每个面的频率接近1/6。

这与等可能性事件的概率1/6是一致的。

因此,频率是一种估计概率的方法,而等可能性事件的概率则是实际的理论概率。

等可能性事件的例子除了掷骰子的例子,还有许多其他的等可能性事件的例子。

1.抽取标有不同数字的牌,每张牌被抽取的概率相等。

2.从一组彩球中抽取球,每个彩球的抽取概率相等。

3.投掷硬币,硬币的正反面出现的概率相等。

这些例子中,每个事件发生的概率都是相等的,符合等可能性事件的定义。

等可能性事件与条件概率当事件的发生受到其他事件的影响时,就出现了条件概率。

等可能性事件的概率

等可能性事件的概率

等可能性事件发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义)
一次试验连同其中可能出现的每一个结果称为个基
本事件。
如果一次试验中可能出现的结果有n个,而且所有结
果出现的可能性都相等,那么每个基本事件的概率
都是 1
,如果某个事件A包含的结果有m个,
那么事n件A的概率
P( A) m (m n)
n
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
P ( A ) Card ( A ) m Card ( I ) n
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你

高二数学等可能性事件的概率

高二数学等可能性事件的概率

人们所不知道的是在战争年代,柳树枝起到其它物品替代不了的பைடு நூலகம்用。在抗日战争、解放战争、抗美援朝中,因为我军没有制空权,日本与美帝国主义利用空中力量,对地面上的我军与民间设施进 行狂轰乱炸,为对付侵略者的空袭,我军将士把柳树编织成一顶帽子,戴在头上,目的是这种伪装使空中的敌机发现不了轰炸目标。真人投注盘口
从小我们在军营露天电影里看到,行军中的我军将士们头戴柳树做成的帽子,在战壕里狠狠地打击敌人。头戴柳条帽的战士们,是我们幼小心灵中的英雄,在大院的孩子们眼里,戴这种柳条帽是一 种英雄的象征。
记得小时候我们一帮孩子玩游戏,就喜欢做个柳树帽,戴在头上军营里满院子跑,那时的军营里有得是柳树,可以让我们这帮孩子们折腾,大点的男孩子先爬到树上摘,我们女孩子摘伸手可够到的 地方。我们先从一棵柳树上折下一根嫩绿的枝条,把它编织绕成圈,一直绕到没有枝条为止。第一次我们以为成功了,戴在头上跑起来没多久就散架了。怎样才能让它不散架?我们一帮孩子们绞尽脑汁, 七嘴八舌不知所措,不知怎样才能做成牢固的帽子。这时一位解放军叔叔来到我们这帮孩子们中间,他拿起柳树条先在我们头上比划着,按照我们头的大小先用枝条做成一个小圈,然后把多余地枝条一 扭一扭地卷在比划好的大小树枝条上,最后把一点头插进前面卷过的地方。这样一顶外型酷似花圈的帽子就完成了,戴在头上怎么跑都不会掉下来。这个方法我们这帮孩子很快就学会了,从此,军营的 操场上经常看到一帮孩子们,头戴柳条帽、手拿细竹杆口里喊着“冲啊!杀啊!”满军营的疯跑。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利而影响工作时,有关单位不得扣发其工资或给予处分,由此造成的停工、停产损失,应由()负责。A.该职工B.企业法人C.责任者D.工会 [单选]选择零件主视图应考虑()的原则。A、公差B、基本尺寸C、实际尺寸D、加工位置 [单选]已将寻常性鱼鳞病的基因定位于()A.1q21B.1p22.3C.2q33-q35D.Xq25-1q32 [单选]下列各项中,属于行政责任的是()。A.停止侵害B.罚款C.返还财产D.支付违约金 [单选,A2型题,A1/A2型题]符合ALL特点的是()A.过氧化物酶阳性B.可见Auer小体C.非特异酯酶阳性D.苏丹黑染色阴性E.糖原PAS反应(+)或成块 [单选]双层底结构船舶可提高船舶的()。A.抗沉性B.稳性C.航海性能 [单选]有关骨盆,下列陈述错误的是()。A.骨盆入口平面即真假骨盆分界面B.骨盆入口平面呈横椭圆形C.中骨盆平面为骨盆最小平面D.中骨盆横径大于前后径E.骨盆由两块髋骨(一块尾骨,一块骶骨)组成 [问答题,简答题]压缩机内有撞击声的原因? [单选]急性骨髓炎诊断与鉴别诊断最恰当的手段是()。A.SPECT局部断层显像B.局部骨静态显像C.骨三相检查D.全身骨显像E.骨关节显像 [单选,A1型题]关于体育锻炼对儿童体格发育影响的叙述,错误的是()A.在适当的营养保证下,体育锻炼能提高体格发育水平B.锻炼时所消耗的能量,锻炼后会加倍得以恢复C.儿童的跑、跳运动对骨发育有促进作用D.体育锻炼能促进消化、吸收功能E.&quot;三浴&quot;锻炼可作为学龄儿童增强 [单选]事业单位年终结账时,下列项目中不应转入“结余分配”科目的是()。A."事业结余"科目借方余额B."事业结余"科目贷方余额C."经营结余"科目借方余额D."经营结余"科目贷方余额 [单选]胶体具有稳定性的原因是胶核表面带有()电荷。A.异种B.同种C.正D.负 [单选]胎儿消化道闭锁常伴发A.胎儿水肿B.羊水过多C.羊水过少D.子宫小于孕周E.以上都是 [单选]下列()是氧化还原反应。A.Zn+2HCL=ZnCL2B.CaCO2煅烧CaO+CO2C.BaCL2+H2SO4↓+2HCL↑D.AgNO3+NaCL=AgCL+NaNO3 [名词解释]剖面闭合 [单选]下列哪些是与吞咽有关的脑神经()A.舌咽神经B.滑车神经C.外展神经D.副神经E.三叉神经运动支 [单选,A2型题,A1/A2型题]pH6.5醋酸纤维电泳哪种Hb泳在点样线()A.HbAB.HbBartsC.HbHD.HbGE.HbF [单选]“科学技术是条一生产力”这一论断对职业道德建设的启示是()A.增强自主性道德观念B.增强学习创新的道德观念C.增强竞争的道德观念D.增强以利益为导向的道德观念 [名词解释]种子安全含水量 [填空题]熔断器是一种保护电器,它对电路设备主要起过载保护或()作用。 [单选,共用题干题]患者女,25岁,因“闭经、溢乳3个月”来诊。入院后2次查血PRL升高,分别为210μg/L和240μg/L;血清钙分别为3.4mmol/L和3.2mmol/L,血磷正常值低限;PTH水平升高,分别为180ng/L和200ng/L;尿常规BLD(+++)。垂体MRI:微腺瘤。无须进一步做的检查是()。A.空腹 [单选,A2型题,A1/A2型题]不属于病人权利的内容是()A.受到社会尊重和理解B.遵守医疗部门规章制度C.享受医疗服务D.保守个人秘密E.免除或部分免除健康时的社会责任 [单选]()反映的是企业的经营业绩情况,是业绩考核的重要指标。A.资产B.利润C.收入D.所有者权益 [多选]以下关于注册建造师在其执业活动中形成的施工管理文件上签字盖章的行为,表述正确的是()。A.注册建造师签章完整的施工管理文件方为有效B.注册建造师签章的施工管理文件有错误的,单位可自行修改C.注册建造师有权拒绝在含有虚假内容的施工管理文件上签字盖章D.分包工程 [单选,A3型题]3岁小儿,请判断其各种能力的正常状态。有关思维能力的发展,正常的是()A.产生萌芽状态的表象B.逐步发展其具体形象思维C.感知动作思维D.操纵动作的思维E.思维活动占主导地位 [单选]慢性肾衰发病机制的三高学说是指()。A.高血压、高血糖、高血脂B.高灌注、高滤过、肾小球内高压C.高血压、高血糖、大量蛋白尿D.高血压、高血糖、高蛋白饮食E.以上都包括 [单选,A2型题,A1/A2型题]原发性周围性面瘫占周围性面瘫的百分率约是()。A.90%B.80%C.70%D.60%E.50% [多选]下列哪几项属于上海期货交易所的期货交易品种?()A.铜B.大豆C.白糖D.天然橡胶 [单选]中央启动第五届全国道德模范评选表彰活动,推动广泛深入地开展道德模范学习宣传,树立讲道德、尊道德、守道德的良好风尚,为协调推进“四个全面”战略布局提供源源不断的()。A.精神力量B.信仰力量C.道德力量D.法制力量 [单选]以下关于冠状动脉动脉瘤的描述哪项是正确的()A.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值1倍B.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值1.5倍C.扩张部位的直径超过病变近侧和远侧正常或相对正常的血管直径平均值2倍D.扩张 [填空题]浮选操作制度包括()和()。 [单选]当直流电动机采用改变电枢回路电阻调速时,若负载转矩不变,调速电阻越大,工作转速()。A、越低B、越高C、不变D、有出现"飞车"现象的可能 [单选,A2型题]一甲亢患者,甲状腺肿大不明显,但食欲亢进、消瘦、血糖增高,医师忽视了甲状腺功能亢进的有关检查,最容易被误诊为()。A.结核病B.糖尿病C.恶性肿瘤D.败血症E.吸收不良综合征 [单选,A1型题]能够温肺化饮,治疗肺寒痰饮之咳嗽气喘,痰多清稀者的药组是()A.干姜、细辛B.附子、干姜C.干姜、吴茱萸D.附子、细辛E.干姜、高良姜 [单选]下列哪一型肺癌发病率最高()A.鳞癌B.腺癌C.小细胞癌D.大细胞癌E.混合型肺癌 [判断题]航行中货舱起火,已立即切断通风,施放足量二氧化碳,并长时间闷舱以防复燃.A.正确B.错误 [单选,A2型题,A1/A2型题]胞质中含密集的嗜苯胺蓝颗粒,并有短而粗的Auer小体,数条或数十条呈束状交叉排列,符合此特点的白血病是().A.M1B.M2aC.M3D.M4E.M5 [单选]欲使剪力(QK出现最大值,均布活荷载的布置应如:()A.B.C.D. [单选]采用富氧再生技术后,再生催化剂定碳()。A、下降B、上升C、不变D、无法确定 [单选]气割的优点是()。A.设备简单灵活B.对切口两侧金属的成分和组织不会产生影响C.不会引起被割工件的变形D.对所有金属均可进行气割
相关文档
最新文档