人教版-数学-八年级上册-学案:整式的乘法——同底数幂的除法

合集下载

同底数幂的除法说课稿

同底数幂的除法说课稿

同底数幂的除法说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《同底数幂的除法》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析《同底数幂的除法》是人教版八年级上册第十四章整式的乘法与因式分解中的重要内容。

同底数幂的除法是整式运算的重要基础,它与同底数幂的乘法、幂的乘方、积的乘方共同构成了整式乘除运算的基础。

通过对同底数幂除法法则的学习,学生能够进一步理解幂的运算性质,为后续学习整式的除法、分式的运算以及函数的知识奠定基础。

在教材的编排上,先通过实际问题引入同底数幂的除法运算,让学生感受到数学与实际生活的紧密联系,然后通过对具体算式的计算,引导学生观察、分析、归纳出同底数幂的除法法则,体现了从特殊到一般、从具体到抽象的数学思维方法。

二、学情分析在学习本节课之前,学生已经掌握了同底数幂的乘法、幂的乘方和积的乘方等运算性质,具备了一定的代数运算能力和抽象思维能力。

但是,对于同底数幂的除法运算,学生可能会在理解法则的本质、应用法则进行计算以及处理符号等方面存在困难。

因此,在教学过程中,要注重引导学生通过自主探究、合作交流等方式,理解法则的推导过程,掌握法则的应用,提高学生的运算能力和数学思维能力。

三、教学目标1、知识与技能目标(1)理解同底数幂的除法法则,并能熟练运用法则进行计算。

(2)理解零指数幂和负整数指数幂的意义,并能正确进行相关运算。

2、过程与方法目标(1)通过对同底数幂除法法则的探究过程,培养学生的观察、分析、归纳和概括能力。

(2)在运用法则进行计算的过程中,提高学生的运算能力和数学思维能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。

(2)通过数学知识与实际生活的联系,培养学生的应用意识和创新精神。

四、教学重难点1、教学重点同底数幂的除法法则及其应用。

2、教学难点(1)对同底数幂除法法则的理解和推导。

同底数幂的除法以及整式的乘法

同底数幂的除法以及整式的乘法

同底数幂的除法一、同底数幂的除法同底数幂除法法则:同底数幂相除,底数不变,指数相减。

即a m ÷a n ==a m -n(a ≠0,m ,n 都是正整数,且m >n ) 正确理解法则的含义应注意的问题:1. 在运算公式n m n m a a a -=÷中,0≠a ,因为当a=0时,a 的非零次幂都为0,而0不能作除数,所以0≠a2. 底数相同,如23)5(6-÷-是除法运算,但不是同底数幂相除,不能运用这个法则 3. 相除运算,如23a a +是同底数幂,但不是相除运算,不能运用这个法则 4. 运算结果是底数不变,指数相减,而不是指数相除例1 计算 (1)22243647)4();())(3(;)())(2(;b bxy xy x x a a m ÷÷-÷-÷+二、 同底数幂的除法应用例2 计算:(1)8322158213)())(2(;a a a x x x ÷-÷-÷÷三、零指数与负整数指数的意义(1)零指数 )0(10≠=a a 即任何不等于0的数的0次幂都等于1 (2)负整数指数=-p a (p 是正整数 )0(≠a )即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数。

规律点拔:(1) 零指数幂和负整数指数幂中,底数都不能为0,即0≠a(2) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质就可以推广到整数指数幂 四、用小数或分数表示绝对值较小的数 例3 (1)423106.1)3(;87)2(;10---⨯+【知能整合提升】一、选择题1、如果mnnm aA a =÷)(,那么A 的值为( )A 、m a ;B 、na ; C 、1; D 、mna 。

2、如果m mm n x=÷+2,那么x 的值为( )A 、n +3;B 、n +2;C 、n +1;D 、3-n .3、已知下列四个算式:①、-3.4×310-=-0.00034;②、313332=÷; ③、827)32(3-=-;④、0099988)100001(=-。

《同底数幂的除法》教学设计

《同底数幂的除法》教学设计

《同底数幂的除法》教学设计《同底数幂的除法》教学设计《同底数幂的除法》教学设计一、教材分析教材的地位和作用本章内容《整式的乘除与因式分解》是基本而重要的代数初步知识,建立在已经学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

这些知识是以后学习分式和根式运算、函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。

本节内容是人教版八年级上册第十五章《整式的乘除与因式分解》第3节整式的除法第1课时。

在此前,学生已经掌握了《同底数幂的乘法》、《幂的乘方与积的乘方》,这为进一步学习《同底数幂的除法》做了很好的铺垫。

《同底数幂的除法》是整式的乘法和幂的意义的综合应用,是整式的四大基本运算之一,这节课以培养学生学习能力为重要内容,对进一步培养学生的逻辑思维能力有着重要意义。

通过本课的学习,使学生在解决问题的过程中了解到数学的价值,发展“用数学”的信心,提高了学生的数学素养。

综上所述,本节课无论是知识的运用上,还是在对学生技能形成、思维训练、能力发展、应用意识培养上,都有着举足轻重的作用。

二、教学目标分析依据教材的地位及作用,根据《数学课程标准》要求,结合学生的认知特点、心理特征及本节课的知识特点,将学习目标定位为:知识与技能:同底数幂的除法的运算法则及其应用.过程与方法:1、经历探索同底数幂的除法运算法则的过程,会进行同底数幂的除法运算;2、在进一步体会幂的'意义的过程中,发展学生的推理能力和有条理的表达能力,提高学生观察、归纳、类比、概括等能力。

情感态度与价值观:在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。

教学重难点分析教学重点:准确熟练地运用同底数幂的除法运算法则进行计算.教学难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则.三、教学方法自主─合作─探究归纳─总结─应用针对这节课的重难点,围绕新课程理念所强调的让学生亲身经历和体验数学知识的形成过程。

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算中的一节内容。

本节主要让学生掌握同底数幂的乘法法则,理解幂的运算性质,并能够熟练地进行计算。

为后续学习幂的乘方、积的乘方等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘法、幂的定义等知识。

他们对于幂的概念和运算有一定的了解,但还需要进一步引导他们理解同底数幂的乘法法则,并能够运用到实际计算中。

三. 教学目标1.理解同底数幂的乘法法则,掌握幂的运算性质。

2.能够熟练地进行同底数幂的乘法计算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.同底数幂的乘法法则的理解和运用。

2.幂的运算性质的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例教学,让学生直观地理解同底数幂的乘法;通过小组合作学习,培养学生的团队合作精神和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和习题3.笔记本和计算器七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,原价为2^5元,打8折后的价格是多少?引发学生思考,引出同底数幂的乘法运算。

呈现(10分钟)通过PPT展示同底数幂的乘法法则,用具体的案例进行解释,让学生直观地理解同底数幂的乘法运算。

操练(10分钟)学生独立完成一些同底数幂的乘法运算,教师巡回指导,及时解答学生的疑问。

巩固(10分钟)学生分组合作,解决一些实际问题,运用同底数幂的乘法运算。

教师参与各小组的讨论,给予指导和鼓励。

拓展(10分钟)引导学生思考同底数幂的乘法运算的推广,即幂的乘方和积的乘方。

通过案例和习题进行讲解和练习。

小结(5分钟)教师引导学生总结本节课所学的同底数幂的乘法法则和运算性质,学生分享自己的学习心得和体会。

家庭作业(5分钟)布置一些同底数幂的乘法运算的练习题,要求学生在课后进行巩固和复习。

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(第4课时整式的除法)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(第4课时整式的除法)

(3) 原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
(4)原式=-8a3·9a2 =[(-8)×9](a3·a2)=-72a5
小试牛刀
2、下面计算结果对不对?如果不对,应当怎样改正?
(1)3a3 ·2a2=6a6 (
×)
(2) 2x2 ·3x2=6x4 (
)
(3)3x2 ·4x2=12x2 ( × )
m8 m8
2.计算:
=
m0
= 1______
≠2
3.若(a-2)0=1,则a ________
单项式与单项式相除的法则

4a 2 x 3 3ab 2 12a 3 b 2 x 3
∴ 12a b x 3ab
3
2
3
2
这相当于
12a b x 3ab

12a 3 b 2 x 3 3ab 2
=abc5+2
(同底数幂的乘法)
=abc7.
根据以上计算,想一想如何计算单项式乘以单项式?
合作探究
单项式与单项式的乘法法则:
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于
只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
温馨提示:(1)系数相乘;
(2)相同字母的幂相乘;
(3)其余字母连同它的指数不变,作为积的因式.

以这个单项式,再 把所得的商 相加 .
温馨提示:把多项式除以单项式问题转化为单项式除以单
项式问题来解决.
例8 计算:



2
(3)12a 6a 3a 3a
3
3a
12a
6a 2
解:原式=

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

人教版初中八年级数学上册《整式的除法》精品教案

人教版初中八年级数学上册《整式的除法》精品教案

第3课时整式的除法1.掌握同底数幂的除法法则与运用.(重点)2.掌握单项式除以单项式和多项式除以单项式的运算法则.(重点)3.熟练地进行整式除法的计算.(难点)一、情境导入1.教师提问:同底数幂的乘法法则是什么?2.多媒体展示问题:一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?学生认真分析后完成计算:需要滴数:1012÷109.3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?二、合作探究探究点一:同底数幂的除法【类型一】直接用同底数幂的除法进行运算计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy)看作一个整体;(2)把(x -2y)看作一个整体,2y-x=-(x-2y);(3)注意(a2+1)0=1.解:(1)(-xy)13÷(-xy)8=(-xy)13-8=(-xy)5=-x5y5;(2)(x-2y)3÷(2y-x)2=(x-2y)3÷(x-2y)2=x-2y;(3)(a2+1)6÷(a2+1)4÷(a2+1)2=(a2+1)6-4-2=(a2+1)0=1.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,再根据法则计算. 【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求am -n -1的值. 解析:先逆用同底数幂的除法,对am -n -1进行变形,再代入数值进行计算. 解:∵a m =4,a n =2,a =3,∴a m -n -1=a m ÷a n ÷a =4÷2÷3=23. 方法总结:解此题的关键是逆用同底数幂的除法得出am -n -1=a m ÷a n÷a .【类型三】 已知整式除法的恒等式,求字母的值 若a (x m y 4)3÷(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a (x m y 4)3÷(3x 2y n )2=4x 2y 2,∴ax 3m y 12÷9x 4y 2n =4x 2y 2,∴a ÷9=4,3m -4=2,12-2n =2,解得a =36,m =2,n =5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.【类型四】 整式除法的实际应用一颗人造地球卫星的速度为2.88×107m/h ,一架喷气式飞机的速度为1.8×106m/h ,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?解析:求人造地球卫星的速度是这架喷气式飞机的速度的多少倍,用人造地球卫星的速度除以喷气式飞机的速度,列出式子:(2.88×107)÷(1.8×106),再利用同底数幂的除法计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16.则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.方法总结:用科学记数法表示的数的运算可以利用单项式的相关运算法则计算.探究点二:零指数幂若(x -6)0=1成立,则x 的取值范围是( )A .x ≥6B .x ≤6C .x ≠6D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂,非0数的0次幂等于1,注意0指数幂的底数不能为0.探究点三:单项式除以单项式计算.(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z ). 解析:先算乘方,再根据单项式除单项式的法则进行计算即可.解:(1)(2a 2b 2c )4z ÷(-2ab 2c 2)2=16a 8b 8c 4z ÷4a 2b 4c 4=4a 6b 4z ;(2)(3x 3y 3z )4÷(3x 3y 2z )2÷(12x 2y 6z )=81x 12y 12z 4÷9x 6y 4z 2÷12x 2y 6z =18x 4y 2z . 方法总结:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除.探究点四:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).解析:根据多项式除单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1. 方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】 被除式、商式和除式的关系已知一个多项式除以2x 2,所得的商是2x 2+1,余式是3x -2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得:2x 2(2x 2+1)+3x -2=4x 4+2x 2+3x -2,则这个多项式为4x 4+2x 2+3x -2. 方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】 化简求值先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2015,y =2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x 与y 的值代入计算,即可求出答案.解:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =x -y ,把x =2015,y =2014代入上式得:原式=x -y =2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.三、板书设计同底数幂的除法1.同底数幂的除法法则:a m÷a n=a m-n(m,n为正整数,m>n,a≠0).2.同底数幂的除法法则逆用:a m-n=a m÷a n(m,n为正整数,m>n,a≠0).从计算具体的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.讲课时要多举几个具体的例子,让学生计算出结果.最后,让学生自己归纳出同底数幂的除法法则.性质归纳出后,应注意:(1)要强调底数a不等于零,若a为零,则除数为零,除法就没有意义了;(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数m、n都是正整数,并且,要让学生运用时予以注意.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。

人教版八年级上册数学:同底数幂的除法

人教版八年级上册数学:同底数幂的除法

am ÷ an = am-n
(a≠0,m、n为正整数,m≥n)
a 那么出现 mn 你应该想到什么?
同底数幂的除法的逆运用
mn
a
am an
已知xa=32,xb=4,求xa-b的值.
解:xa-b=xa÷xb 32 4 8
已知:am=3,an=5. 求: (1) am-n的值 (2) a3m-2n的值
1023÷1016 =
学习 目标
1、知识与能力:同底数幂的除法的运算法则及其 应用。
2、过程与方法:经历探索同底数幂的除法的运算 法则的过程,会进行同底数幂的除法运算;
3、情感与价值观:经历探索同底数幂的除法运算 法则的过程,获得成功的体验,积累丰富的数学 经验,渗透数学公式的简洁美与和谐美.
教学重难点
(3) 2a7 2a4
(4) x6 x
最后结果要化简
例 计算 a5 a3
(1) a 6 a2
(2) a b4 a b2
1.底数不同时,先化为同底数再运算; 2.把代数式看成整体进行计算。
攀登高峰
(1) a5 aቤተ መጻሕፍቲ ባይዱ a2; (2) ( x)7 x2;
(3)(ab)5 (ab)2;(4)(a b)6 (a b)4;
你能得出什么结论?
50=1
100=1
归纳 0次幂的规定: 任何不等于0的数的0次幂都等于1。 0 次幂公式:
a0 1 (a≠0)
巩固
1.(1)( 1)0 1 ; 3
(2)(a2 1)0 1 .
2.若 (2x 1)0 1 ,求x的取值范围。
解:由题意得 2x-1≠0 x≠ 1
2
同底数幂除法的法则
(a≠0,m、n都是正整数)

同底数幂的除法教学教案

同底数幂的除法教学教案

同底数幂的除法教学教案第一章:同底数幂的除法概念引入1.1 学习目标让学生理解同底数幂的除法概念。

让学生掌握同底数幂的除法法则。

1.2 教学内容引入幂的定义:幂是指一个数与另一个数的乘积,表示为a^n,其中a 是底数,n 是指数。

引导学生思考同底数幂的除法:当两个幂的底数相如何计算它们的除法?1.3 教学活动通过举例说明同底数幂的除法,如2^3 ÷2^2 = 2^(3-2) = 2^1 = 2。

让学生尝试解决一些同底数幂的除法问题,并总结除法法则。

1.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。

让学生互相讨论解题过程,加深对同底数幂除法概念的理解。

第二章:同底数幂的除法法则2.1 学习目标让学生掌握同底数幂的除法法则。

让学生能够应用除法法则解决实际问题。

2.2 教学内容介绍同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

解释除法法则的应用:如何计算a^m ÷a^n 和a^m ÷b^n。

2.3 教学活动通过示例演示同底数幂的除法法则,如2^5 ÷2^3 = 2^(5-3) = 2^2 = 4。

让学生尝试解决一些同底数幂的除法问题,并应用除法法则。

2.4 练习与巩固设计一些同底数幂的除法练习题,让学生独立完成。

让学生互相讨论解题过程,加深对同底数幂除法法则的理解。

第三章:同底数幂的除法与乘法的关系3.1 学习目标让学生理解同底数幂的除法与乘法之间的关系。

让学生能够将除法问题转化为乘法问题。

3.2 教学内容解释同底数幂的除法与乘法之间的关系:同底数幂的除法可以转化为乘法的倒数。

展示如何将除法问题转化为乘法问题,如2^5 ÷2^3 可以写成2^5 ×2^(-3)。

3.3 教学活动通过示例说明同底数幂的除法与乘法之间的关系,如2^5 ÷2^3 = 2^5 ×2^(-3)。

让学生尝试解决一些同底数幂的除法问题,并应用除法与乘法之间的关系。

《同底数幂的除法》教案

《同底数幂的除法》教案

《同底数幂的除法》教案第一章:同底数幂的除法概念引入教学目标:1. 让学生理解同底数幂的除法概念。

2. 让学生掌握同底数幂的除法法则。

教学内容:1. 引入同底数幂的除法概念。

2. 讲解同底数幂的除法法则。

教学步骤:1. 通过具体例子引入同底数幂的除法概念,例如:\( 3^4 ÷3^2 = ? \)。

2. 引导学生观察例子,发现同底数幂的除法法则:\( a^m ÷a^n = a^{m-n} \)。

3. 让学生通过小组讨论,总结同底数幂的除法法则。

教学评价:1. 检查学生对同底数幂的除法概念的理解。

2. 检查学生对同底数幂的除法法则的掌握。

第二章:同底数幂的除法运算教学目标:1. 让学生掌握同底数幂的除法运算。

2. 让学生能够正确进行同底数幂的除法运算。

教学内容:1. 讲解同底数幂的除法运算规则。

2. 进行同底数幂的除法运算练习。

教学步骤:1. 讲解同底数幂的除法运算规则,例如:\( a^m ÷a^n = a^{m-n} \)。

2. 让学生进行同底数幂的除法运算练习,提供一些具体的例子,例如:\( 2^3 ÷2^2 = ? \),\( 5^4 ÷5^2 = ? \)。

3. 引导学生总结同底数幂的除法运算规则,并能够正确进行运算。

教学评价:1. 检查学生对同底数幂的除法运算规则的掌握。

2. 检查学生能够正确进行同底数幂的除法运算。

第三章:同底数幂的除法应用教学目标:1. 让学生能够将同底数幂的除法应用到实际问题中。

2. 让学生能够解决实际问题,提高解决问题的能力。

教学内容:1. 讲解同底数幂的除法在实际问题中的应用。

2. 进行同底数幂的除法应用练习。

教学步骤:1. 通过具体例子讲解同底数幂的除法在实际问题中的应用,例如:计算化学反应中物质的浓度。

2. 让学生进行同底数幂的除法应用练习,提供一些实际问题,例如:计算光强的减弱程度,计算放射性物质的衰变等。

2024年人教版八年级数学上册教案及教学反思第14章14.1.4 整式的乘法(第3课时)

2024年人教版八年级数学上册教案及教学反思第14章14.1.4 整式的乘法(第3课时)

第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。

学生:练习本、钢笔或圆珠笔。

六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2; (2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1:12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2 ;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x; (2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b; (2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解:(12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab; (4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。

同底数幂的除法教学教案

同底数幂的除法教学教案

同底数幂的除法教学教案第一章:导入教学目标:1. 让学生理解同底数幂的除法概念。

2. 引导学生运用已学的幂的运算法则来解决实际问题。

教学内容:1. 复习幂的定义和基本运算法则。

2. 引入同底数幂的除法概念。

教学活动:1. 通过举例让学生回顾幂的定义和基本运算法则。

2. 引导学生思考同底数幂的除法问题,并尝试解答。

教学评估:1. 观察学生在解答同底数幂的除法问题时的表现。

2. 收集学生的解答结果并进行评价。

第二章:同底数幂的除法法则教学目标:1. 让学生掌握同底数幂的除法法则。

2. 培养学生运用除法法则解决同底数幂的除法问题。

教学内容:1. 介绍同底数幂的除法法则。

2. 通过例题讲解和练习让学生熟悉除法法则的应用。

教学活动:2. 通过例题讲解让学生理解并掌握除法法则。

3. 布置练习题让学生进行实际操作。

教学评估:1. 观察学生在解答同底数幂的除法问题时是否能够正确运用除法法则。

2. 收集学生的练习结果并进行评价。

第三章:同底数幂的除法运算教学目标:1. 让学生能够熟练进行同底数幂的除法运算。

2. 培养学生运用除法运算解决实际问题。

教学内容:1. 通过例题讲解和练习让学生熟悉同底数幂的除法运算。

教学活动:1. 通过例题讲解让学生理解并掌握同底数幂的除法运算。

2. 布置练习题让学生进行实际操作。

教学评估:1. 观察学生在解答同底数幂的除法运算问题时是否能够熟练运用除法法则。

2. 收集学生的练习结果并进行评价。

第四章:解决实际问题教学目标:1. 让学生能够运用同底数幂的除法解决实际问题。

2. 培养学生运用数学知识解决实际问题的能力。

教学内容:1. 通过实际问题引导学生运用同底数幂的除法进行解决。

教学活动:1. 通过实际问题让学生运用同底数幂的除法进行解决。

教学评估:1. 观察学生在解决实际问题时是否能够正确运用同底数幂的除法。

2. 收集学生的解答结果并进行评价。

教学目标:1. 让学生巩固同底数幂的除法知识。

人教版八年级上册数学学案《整式的除法—同底数的幂相除》

人教版八年级上册数学学案《整式的除法—同底数的幂相除》

整式的除法—同底数的幂相除(第七课时) 姓名教学目标:1、掌握同底数幂的除法运算2、掌握任何一个非零数的零次幂都等于1.重点:1、掌握同底数幂的除法运算 2、掌握任何一个非零数的零次幂都等于1.难点:同底数幂的除法运算的推导。

学习过程一、复习1.叙述同底数幂的乘法运算法则: 。

(1)=⨯211211205 (2)=⋅r r 2222112、被乘数×乘数=积 ; 被乘数=积÷( ); 乘数=积÷( )二、探究新知探究一:1、计算填空:(1)( )·22168= (2)( )·5553=(3)( )·101075= (4)( )·a a 63=2、思考填空(1)22816÷=( ) (2)5535÷=( )(3)101057÷=( ) (4)a a 36÷=( )上面的式子有何特点?观察指数间的关系,你的发现是:语言叙述: .符号表示: .归纳法则:一般的,我们有:a m ÷a n = (a ≠0,m 、n 都是正整数,且m>n ) 即同底数幂相除, ,指数 。

规定a 0=1(a ≠0),探究二:1、一个非零数除以它本身商为 。

2、利用am ÷a n =a m-n 的方法计算 (1)32÷32= =30= (2)103÷103= =100 = (3)a a m m ÷= =a 0= (a ≠0)3、由以上计算可得结论:即任何不等于0的数的0次幂等于 。

【即:规定:a 0=1(a≠0)】三、课堂练习1、计算:(1)x 8÷x 2 = (2)a 4÷a = (3)(ab )5÷(ab )2=2、下列计算正确的是( )A 、0)2(0= B 、0)14.3(0=-π C 、20190=1 四、课堂小结你知道a a a n m n m -=÷ 10=a 中a 为什么不能为零?五、课堂作业1、计算:(1) 7x ÷5x = (2) 10)(a -÷7)(a - = (3) 5)(xy ÷3)(xy =(4)(x+y )7÷(x+y)3 = (5) -a 6÷3)(-a = (3) 710÷102⨯310=2、下列计算正确的是( )A 、6x ÷2x =3xB 、3a ÷a =3aC 、x x x 224)()(=÷-- D 、5.05.00=3、计算:(1)23x x ⋅ = (2)23x x ÷ = (3)23)(x = (4)23)(xy =4、写出下列幂的运算公式的逆向形式,完成后面的题目.=+n m a ; =-n m a ; =mn a ;=n n b a(1)已知4,32==ba x x ,求b a x -.(2)已知3,5==n m x x,求n m x 32-.(3).若8127931122=÷⋅++a a ,求a 的值.5、已知 123 x =1, 则 x = ________.六、课后反思1、最困难的事就是认识自己。

2022年人教版八年级上册数学第十四章整式乘法与因式分解同步单元教案及教学反思

2022年人教版八年级上册数学第十四章整式乘法与因式分解同步单元教案及教学反思

第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法◇教学目标◇【知识与技能】在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.【过程与方法】经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感、态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.◇教学重难点◇【教学重点】同底数幂乘法运算性质的推导和应用.【教学难点】同底数幂的乘法的法则的应用以及逆用.◇教学过程◇一、情境导入“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.问题:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?二、合作探究探究点1同底数幂的乘法典例1计算a2·a3的正确结果是()A.a 5B.a 6C.a 8D.a 9 [解析] a 2·a 3=a 2+3=a 5.[答案] A【技巧点拨】本题是同底数幂的乘法运算,直接利用同底数幂的乘法运算法则运算即可,注意底数不变,指数相加.变式训练 化简-b ·b 3·b 4的正确结果是( )A.-b 7B.b 7C.-b 8D.b 8[答案] C探究点2 法则的逆用 典例2 已知3a =1,3b =2,则3a +b 的值为( )A.1B.2C.3D.27[解析] ∵3a ×3b =3a +b ,∴3a +b =3a ×3b =1×2=2.[答案] B三、板书设计同底数幂的乘法同底数幂的乘法{ 同底数幂的乘法法则{法则符号表达字母范围幂的乘法法则逆用◇教学反思◇本节课应注重同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2幂的乘方◇教学目标◇【知识与技能】1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;2.通过推理得出幂的乘方的运算性质,并且掌握这个性质.【过程与方法】经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力.【情感、态度与价值观】培养学生合作交流意义和探索精神,让学生体会数学的应用价值.◇教学重难点◇【教学重点】幂的乘方法则.【教学难点】幂的乘方法则的推导过程及灵活应用.◇教学过程◇一、情境导入木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么太阳和木星的体积是多少?二、合作探究探究点1幂的乘方典例1计算a6(a2)3=.[解析]根据幂的运算法则即可求出答案.原式=a6·a6=a12.[答案]a12变式训练计算:(-a2)2=.[答案]a4探究点2幂的乘方逆用典例2若10m=5,10n=3,则102m+3n=.[解析]102m+3n=102m·103n=(10m)2·(10n)3=52·33=675.[答案]675【技巧点拨】注意幂的乘方公式的逆用,a mn =(a m )n =(a n )m .变式训练 若a m =6,a n =3,则a m +2n 的值为 .[答案] 54三、板书设计幂的乘方幂的乘方{ 幂的乘方法则{法则符号表达字母范围幂的乘方逆用◇教学反思◇本节的内容是幂的乘方,教学过程中,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励,而且有启发、问在有疑之处.本课的主要教学任务是“幂的乘方”,即幂的乘方,底数不变,指数相乘.在课堂教学时,通过幂的意义引导学生探索发现得出这一性质.14.1.3积的乘方◇教学目标◇【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.◇教学重难点◇【教学重点】积的乘方的运算.【教学难点】积的乘方的推导过程的理解和灵活运用.◇教学过程◇一、情境导入我们前面学过同底数幂的运算法则;幂的乘方运算法则的内容,你知道它们的区别和联系吗?请同学们思考怎样计算(2a3)4,每一步的根据是什么?二、合作探究探究点1积的乘方法则典例1计算:(-2xy2)3=.[解析](-2xy2)3=(-2)3x3(y2)3=-8x3y6.[答案]-8x3y6根据积的乘方的性质把问题转化为几个幂的乘方,然后再进行运算,用准法则是解这类问题的关键.a2b)3=.变式训练计算:(-13[答案] -127a 6b 3探究点2 公式的逆用 典例2 阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4,…①归纳得(ab )n = ;(abc )n = ;②计算4100×0.25100= ;(12)5×35×(23)5= ; ③应用上述结论计算:(-0.125)2021×22022×42020.[解析] ①(ab )n =a n b n ,(abc )n =a n b n c n .②4100×0.25100=(4×0.25)100=1,(12)5×35×(23)5 =(12×3×23)5=1.③(-0.125)2021×22022×42020=-0.125×22×(-0.125×2×4)2020=-0.5×(-1)2020=-0.5.探究点3 幂的运算综合练习 典例3 计算:(-2x 2)3+x 2·x 4-(-3x 3)2.[解析] (-2x 2)3+x 2·x 4-(-3x 3)2=-8x 6+x 6-9x 6=-16x 6.三、板书设计积的乘方积的乘方{ 积的乘方法则{法则符号表达字母范围积的乘方逆用幂的运算综合练习◇教学反思◇本节主要是积的乘方,学生很容易得出计算公式,关键是利用公式进行运算,通过练习引导学生明确先利用法则把运算转化为几个幂的乘方的积,然后计算,通过小组练习,讨论,纠错得到正确的解法.14.1.4整式的乘法第1课时单项式与单项式相乘◇教学目标◇【知识与技能】会进行单项式乘单项式的运算.【过程与方法】经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.【情感、态度与价值观】培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.◇教学重难点◇【教学重点】单项式乘法运算法则的推导与应用.【教学难点】单项式乘法运算法则的推导与应用.◇教学过程◇一、情境导入前面我们学习了幂的运算,我们知道整式有两种,分别为单项式与多项式,那么整式的乘法应有几种,哪种最简单?二、合作探究探究点1单项式乘单项式法则典例1计算:4x2y·(-1x)=.4[解析]根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母x)=-x3y.连同它的指数不变,作为积的因式,计算即可.4x2y·(-14[答案]-x3y变式训练计算(-2x3y2)3·4xy2=.[答案]-32x10y8探究点2求代数式的值典例2如果x n y4与2xy m相乘的结果是2x5y7,求mn的值.[解析]由题意可知x n y4×2xy m=2x n+1·y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12.探究点3法则应用典例3计算(9×105)×(2.5×103)=.(用科学记数法表示) [解析](9×105)×(2.5×103)=9×2.5×105×103=22.5×108=2.25×109. [答案]2.25×109探究点4幂的运算综合练习典例4计算:(-3x2y2)2·2xy+(xy)3=.[解析](-3x2y2)2·2xy+(xy)3=9x4y4·2xy+x3y3=18x5y5+x3y3.[答案]18x5y5+x3y3三、板书设计单项式与单项式相乘单项式乘单项式{单项式乘单项式法则{法则符号表达单项式乘法法则的应用◇教学反思◇本节是单项式与单项式的乘法,学生通过面积的计算,或乘方分配律可以得出运算法则;通过学生小组练习、讨论、纠错提高学生的合作能力,以及在运算中提高学生的应用意识,总结出单项式乘单项式的步骤以及易错点,以引起学生的注意.第2课时单项式与多项式相乘◇教学目标◇【知识与技能】掌握单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.【过程与方法】经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.【情感、态度与价值观】培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.◇教学重难点◇【教学重点】单项式与多项式相乘的法则.【教学难点】整式乘法法则的推导与应用.◇教学过程◇一、情境导入有3家超市以相同价格n(单位:元/台)销售A牌电视机,它们在一年内的销售量(单位:台)分别是x,y,z,请你采用不同的方法计算它们在这一年内销售这种电视机的总收入.小明的答案是n(x+y+z),小芳的答案是nx+ny+nz,各说各有理,你能给他们评判一下吗?二、合作探究探究点1单项式乘多项式典例1计算:(x-3y)(-6x)=.[解析]根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.[答案]-6x2+18xyxy2.变式训练计算:(3x3y2-6x2y)·13[解析]原式=x4y4-2x3y3.探究点2求未知系数的值典例2 已知a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,求a ,b ,c 的值.[解析] ∵a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,∴(a +2b )x 2+(a -b )x -(ac +2b )=7x 2+4x +3,∴{a +2b =7,a -b =4,-(ac +2b )=3,解得a =5,b =1,c =-1.求未知系数的值,根据两个多项式相等时,如ax 2+bx =cx 2+dx ,则有a =c ,b =d ,得到方程组即可求解,关键是整式的乘法.探究点3 求代数式的值典例3 已知ab 2=-2,则-ab (a 2b 5-ab 3+b )=( )A.4B.2C.0D.14[解析] -ab (a 2b 5-ab 3+b )=-a 3b 6+a 2b 4-ab 2=-(ab 2)3+(ab 2)2-ab 2,当ab 2=-2时,原式=-(-2)3+(-2)2-(-2)=8+4+2=14.[答案] D【技巧点拨】这类问题先根据单项式的乘法计算得到多项式,然后把多项式用已知式子表示出来,整体代入求值,这种整体思想是我们经常用到的一种方法.三、板书设计单项式与多项式相乘单项式乘多项式{ 单项式乘多项式法则{法则符号表达几何意义法则的应用◇教学反思◇本节的内容是单项式乘多项式,法则的得到比较简单,教学中,应紧扣法则,单项式乘多项式转化为单项式乘单项式的问题计算,同学小组练习讨论理解多项式的每一项,包括它前面的符号.在实施“情境——探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.第3课时多项式与多项式相乘◇教学目标◇【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.◇教学重难点◇【教学重点】多项式与多项式的乘法法则的理解及应用.【教学难点】多项式与多项式的乘法法则的应用.◇教学过程◇一、情境导入试着用不同方式计算下图的面积,探讨你能得到什么结论.二、合作探究探究点1多项式乘多项式典例1计算(2m-3)(m+2).[解析](2m-3)(m+2)=2m×m+2m×2+(-3)×m+(-3)×2=2m2+4m-3m-6=2m2+m-6.整式的乘法就是根据运算法则转化为单项式乘单项式计算,最后把所得结果相加,注意有同类项的要合并同类项,需提醒是的多项式的项包括它前面的符号.注意不要漏项,漏字母,有同类项的合并同类项.探究点2求未知系数的值典例2若(x+m)(x-8)中不含x的一次项,则m的值为()A.8B.-8C.0D.8或-8[解析]∵(x+m)(x-8)=x2-8x+mx-8m=x2+(m-8)x-8m,又结果中不含x的一次项,∴m -8=0,∴m=8.[答案] A变式训练若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6[答案] B探究点3求代数式的值典例3若代数式(x+1)2+m(x+1)+n可以化简为x2+2x-3,则m+n=. [解析]∵(x+1)2+m(x+1)+n=x2+2x+1+mx+m+n=x2+(2+m)x+m+n+1,由题意得{m+2=2,m+n+1=-3,解得{m=0,n=-4,故m+n=-4.[答案]-4探究点4积中不含某项典例4(x2-mx+6)(3x-2)的积中不含x的二次项,则m的值是()A.0B.23C.-23D.-32[解析](x2-mx+6)(3x-2)=3x3-(2+3m)x2+(2m+18)x-12,∵(x2-mx+6)·(3x-2)的积中不含x的二次项,∴2+3m=0,解得m=-23.[答案] C三、板书设计多项式与多项式相乘多项式乘多项式{ 多项式乘多项式法则(法则符号表达几何意义法则的应用:求未知系数◇教学反思◇本节的内容是多项式的乘法,针对本节课学生的易错点,如“漏项”、“忘变号”的情况,在例题后进行强调,并总结规律,让学生以后在练习计算时避免“漏项”“忘变号”的发生.第4课时同底数幂的除法◇教学目标◇【知识与技能】1.掌握同底数幂的除法运算性质,并能运用它解决一些实际问题;2.理解零次幂的意义,了解规定a0=1(a≠0)的合理性;【过程与方法】经历同底数幂的除法运算性质的获得过程,掌握同底数幂的除法运算性质,会用同底数幂的除法运算性质进行有关计算,提高学生的运算能力,进一步体会幂的意义,发展推理能力,提高语言表达能力.【情感、态度与价值观】经历探索同底数幂的除法运算性质的过程,体验通过“转化”构建新知识体系,培养学生大胆猜想,善于观察、归纳的数学品质和创新精神.◇教学重难点◇【教学重点】同底数幂的除法运算.【教学难点】理解零次幂的意义.◇教学过程◇一、情境导入至此,我们已经学习了整式的加法、减法、乘法运算.在整式运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来讨论整式的除法.二、合作探究探究点1同底数幂的除法典例1计算(-a)10÷(-a)3的结果等于.[解析](-a)10÷(-a)3=(-a)10-3=(-a)7=-a7.[答案]-a7【技巧点拨】先把底数-a看作一个整体,直接运用同底数幂的除法法则;也可以将底数化为a,再运用同底数幂的除法法则,即(-a)10÷(-a)3=a10÷(-a3)=-a10-3=-a7.变式训练化简:(x+y)5÷(-x-y)2÷(x+y).[解析] 原式=(x +y )5÷(x +y )2÷(x +y )=(x +y )5-2-1=(x +y )2.探究点2 零次幂典例2 计算:(1)20220+(-3)0-4×(12)0; [解析] 原式=1+1-4×1=-2.三、板书设计同底数幂的除法1.同底数幂的除法法则:底数不变,指数相减.即a m ÷a n =a m -n (a ≠0).2.零指数幂:任何一个不等于零的数的零次幂都等于1.即a 0=1(a ≠0).◇教学反思◇本节课的学习对于学生来说,无论在知识上,还是在类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用.数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识.在培养学生合作与交流的同时,充分调动学生的参与意识和学习积极性,使学生体验到平等、自由和民主,同时也受到了激励和鼓舞,从而形成积极的人生态度.第5课时 整式的除法◇教学目标◇【知识与技能】会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.◇教学重难点◇ 【教学重点】整式除法的法则并应用其法则计算.【教学难点】理解整式除法的法则及其原理.◇教学过程◇一、情境导入一种数码照片的文件大小是28K,一个存储量为26M(1M =210K)的移动存储器能存储多少张这样的数码照片?二、合作探究探究点1 同底数幂的除法 典例1 32x =2,3y =5,则34x -2y = .[解析] 原式=34x 32y =(32x )2(3y )2,当32x =2,3y =5时,原式=2252=425. [答案] 425变式训练 若5=3x ,7=9y ,则3x -2y 的值为 .[答案] 57探究点2 单项式除以单项式 典例2 计算:10ab 3÷(-5ab )= .[解析] 根据单项式除法法则,系数和系数,相同的字母分别相除,作为商的一个因式,只在被除式的字母连同它的指数作为商的一个因式,即可求出答案.原式=-105a 1-1b 3-1=-2b 2.[答案] -2b 2变式训练 4x 2y 3÷(-12xy )2= . [答案] 16y探究点3 多项式除以单项式典例3 小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,商式必须是2xy ,则小亮报一个除式是 .[解析] (x 3y -2xy 2)÷2xy =12x 2-y.[答案] 12x 2-y三、板书设计整式的除法整式的除法{ 同底数幂的除法{法则符号表达单项式除以单项式多项式除以单项式◇教学反思◇本节的内容是整式的除法,内容较多,分三部分,通过运算要求学生说出式子每一步变形的根据,并要求学生养成检验的好习惯,利用乘除互为逆运算,检验商式的正确性.培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力,慢慢培养学生良好的思维习惯和主动参与学习的习惯.14.2乘法公式14.2.1平方差公式◇教学目标◇【知识与技能】会推导平方差公式,并且懂得运用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感、态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】平方差公式的推导和运用,以及对平方差公式的几何背景的了解.【教学难点】准确把握运用平方差公式的特征,应用平方差公式解题.◇教学过程◇一、情境导入从前有一个狡猾的地主,他把一块长为x米的正方形土地租给张老汉种植,有一天,他对张老汉说:“我把这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”张老汉一听觉得没有吃亏,就答应了.你能告诉张老汉他吃亏了吗?二、合作探究探究点1平方差公式的特征典例1下列多项式乘法中可以用平方差公式计算的是()A.(-a+b)(a-b)B.(x+2)(2+x)C.(x3+y)(y-x3) D.(x-2)(x+1)[解析]A项,原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;B项,原式=(x+2)2,故B不能用平方差公式;D项,原式=x2-x+1,故D不能用平方差公式.[答案] C平方差公式的特征:一是左边是两个多项式相乘,这两个多项式中有一项相同,另一项互为相反数;二是右边是相同项与相反项的平方差;三是公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.变式训练计算(2x3-3a)(-2x3-3a)的结果是()A.-4x6-9a2B.-4x6+9a2C.-4x6-12ax3+9a2D.-4x6-12ax3-9a2[答案] B探究点2平方差公式求值整体思想应用典例2如果(a-b-3)(a-b+3)=40,那么a-b的值为()A.49B.7C.-7D.7或-7[解析](a-b-3)(a-b+3)=(a-b)2-9=40,即(a-b)2=49,则a-b=7或-7.[答案] D探究点3平方差公式的计算典例3计算:69×71=.[解析]原式=(70-1)(70+1)=702-1=4900-1=4899.[答案]4899变式训练计算:20212-2020×2022=.[答案] 1探究点4平方差公式的几何意义典例4如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a -b )2=a 2-b 2D.a 2-b 2=(a +b )(a -b )[解析] 第一个图形阴影部分的面积是a 2-b 2,第二个图形的面积是(a +b )(a -b ).则a 2-b 2=(a +b )(a -b ).[答案] D三、板书设计平方差公式平方差公式{平方差公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇ 本节的内容是平方差公式,主要观察是否符合公式特点,只有符合公式特点才能用公式直接求解,利用公式计算.在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.2完全平方公式第1课时完全平方公式◇教学目标◇【知识与技能】会推导完全平方公式,并能运用公式进行简单的运算.【过程与方法】经历利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式的过程.【情感、态度与价值观】通过练习培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】完全平方公式的推导和应用.【教学难点】完全平方公式的应用.◇教学过程◇一、情境导入现有如图所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.二、合作探究探究点1完全平方公式典例1计算(3a-2b)2的结果为()A.9a2+4b2B.9a2+6ab+4b2C.9a2-12ab+4b2D.9a2-4b2[解析]原式=(3a)2-2×3a×2b+(2b)2=9a2-12ab+4b2.[答案] C【技巧点拨】解本题的关键是熟练运用完全平方公式,记忆完全平方公式可用口诀“首平方,尾平方,首位两倍在中间,中间符号随前面”.很多同学遗漏掉中间积的2倍这一项,应引起注意.探究点2简化运算典例2下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=9216[解析]962=(100-4)2=1002-2×100×4+42=9216,A项错误;962=(95+1)(95+1)=952+2×95×1+1=9216,B项错误;962=(90+6)2=902+2×90×6+62=9216,C项错误;962=(100-4)2=1002-2×100×4+42=9216,D项正确.[答案] D应用完全平方公式时,要注意:①公式中的a,b可以是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.探究点3完全平方式典例3若4a2-kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±12D.±6[解析]∵4a2-kab+9b2是完全平方式,∴-kab=±2×2a×3b=±12ab,∴k=±12.[答案] C变式训练已知x2-8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.-16[答案] C探究点4完全平方公式变形应用典例4已知a+b=3,ab=-2,求下列各式的值.(1)a2+b2;(2)a-b.[解析](1)∵a+b=3,ab=-2,∴a2+b2=(a+b)2-2ab=32-2×(-2)=13.(2)∵a +b =3,ab =-2,∴a -b =±√(a -b )2=±√a 2+b 2-2ab =±√13-2×(-2)=±√17.探究点5 完全平方公式的几何背景典例5 如图1是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为( )A.abB.(a +b )2C.(a -b )2D.a 2-b 2[解析] 中间空的部分的面积=大正方形的面积-4个小长方形的面积=(a +b )2-4ab =a 2+2ab +b 2-4ab =(a -b )2.[答案] C三、板书设计完全平方公式完全平方公式{完全平方公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇本节的内容是完全平方公式,在教学中,重视公式的几何背景,较直观地让学生理解代数中的某些问题.利用拼图游戏,调动学生的积极性,让学生关注几何与代数之间的内在联系,增强记忆,也可用口诀的形式让学生形象记忆,尤其针对学生易漏掉中间积的2倍这一项做好针对性的练习.第2课时添括号法则◇教学目标◇【知识与技能】掌握乘法公式的结构特征及公式的含义,理解添括号法则,会正确地添括号运用这些公式进行计算.【过程与方法】通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感、态度与价值观】培养良好的分析思想和与人合作的习惯,体会数学的重要价值.◇教学重难点◇【教学重点】正确应用乘法公式(平方差公式、完全平方公式).【教学难点】对乘法公式的结构特征以及内涵的理解.◇教学过程◇一、情境导入教室里有a名同学,第一次有b名同学被老师喊到办公室去了,第二次有c名同学被老师喊到办公室去了,请你用代数式表示教室里现在有多少名学生?你能用两种形式表示吗?二、合作探究探究点1添括号法则典例1①5x+3x2-4y2=5x-();②-3p+3q-1=3q-().[解析]①5x+3x2-4y2=5x-(4y2-3x2).②-3p+3q-1=3q-(3p+1).[答案]4y2-3x2;3p+1添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.注意遇负全变,遇正不变.探究点2添括号后用公式计算典例2 计算:(a -2b +1)(a +2b -1).[解析] (a -2b +1)(a +2b -1)=[a -(2b -1)][a +(2b -1)]=a 2-(2b -1)2=a 2-4b 2+4b -1.探究点3 用完全平方公式计算典例3 计算:(a +2ab -1)2.[解析] 原式=(a +2ab )2-2(a +2ab )·1+12=a 2+4a 2b +4a 2b 2-2a -4ab +1.变式训练 (a +2b -c )2.[解析] 原式=(a +2b )2+c 2-2c (a +2b )=a 2+4ab +4b 2+c 2-2ac -4bc.探究点4 代数式求值 典例4 先化简,再求值:(a +2b )(a -2b )+(a +2b )2+(2ab 2-8a 2b 2)÷2ab ,其中a =1,b =2.[解析] 原式=a 2-4b 2+a 2+4ab +4b 2-4ab +b =2a 2+b ,∵a =1,b =2,∴原式=2a 2+b =4.三、板书设计添括号法则添括号{ 添括号法则乘法公式{平方差公式完全平方公式应用◇教学反思◇本节的内容是添括号法则,添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确,添括号能利用乘法公式简单计算,重在理解遇负全变,遇正不变的口诀.14.3因式分解14.3.1提公因式法◇教学目标◇【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.◇教学重难点◇【教学重点】了解因式分解的意义,掌握用提公因式法把多项式分解因式.【教学难点】整式乘法与因式分解之间的关系.正确地确定多项式的最大公因式.◇教学过程◇一、情境导入试计算:37×337+63×337.这里用到了什么运算律?二、合作探究探究点1因式分解的意义典例1下列从左边到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.x2+2x+1=x(x+1)+1C.a2b+ab2=ab(a+b)D.(a-b)(n-m)=(b-a)(n-m)[解析](3-x)(3+x)=9-x2,是多项式乘法,故A错误;x2+2x+1=(x+1)2,故B错误;a2b+ab2=ab(a+b),C正确;(a-b)(n-m)≠(b-a)(n-m),不是因式分解,故D错误.[答案] C。

新人教版八年级数学上册《 同底数幂的除法》教学设计

新人教版八年级数学上册《  同底数幂的除法》教学设计

同底数幂的除法教学目标1.知识与技能了解同底数幂的除法的运算性质,并会用其解决实际问题.2.过程与方法经历探究同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.3.情感、态度与价值观感受数学法则、公式的简洁美、和谐美.重、难点与关关键1.重点:同底数幂的除法法则.2.难点:同底数幂的除法法则的推导.3.关键:采用数学类比的方法,引入幂的除法法则.教学方法采用“问题解决”教学方法.教学过程一、创设情境,导入新知【情境引入】教科书P159问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?你是如何计算的?【教师活动】组织学生独立思考完成,然后先组内交流(4人小组),•接着再全班交流,鼓励学生积极探索,应用数学转化的思想化陌生为熟悉,鼓励学生算法多样化,同样强调算理的叙述.【学生活动】完成课本P159“问题”,踊跃发言,利用除法与乘法的互逆关系,求出216÷28=28=256.【继续探究】根据除法的意义填空,并观察计算结果,寻找规律:(1)77÷72=7( );(2)1012÷107=10( );(3)x7÷x3=x( ).【归纳法则】一般地,我们有a m÷a n=a m-n(a≠0,m,n都是正整数,m>n).文字叙述:同底数的幂相除,底数不变,指数相减.【教师活动】组织学生讨论为什么规定a≠0?二、范例学习,应用所学【例1】计算:(1)x9÷x3;(2)m7÷m;(3)(xy)7÷(xy)2;(4)(m-n)8÷(m-n)4.【特殊性质】探究课本P160“探究”题.根据除法的意义填空,并观察结果的规律:(1)72÷72=();(2)1005÷1005=()(3)a n÷a n=()(a≠0)【课堂活动】在学生完成上面的填空题之后,教师引导学生观察结论:(1)72÷72=72-2=70;(2)1005÷1005=1005-5=1000;(3)a n÷a n=a n-n=a0(a≠0)规定a0=1(a≠0),文字叙述如下:任何不等于0的数的0次幂都等于1.【法则拓展】一般,我们有a m÷a n=a m-n(a≠0,m,n都是正整数,并且m≥n),•即文字叙述为:同底数幂相除,底数不变,指数相减.三、随堂练习,巩固深化课本P160练习第1、2、3题.【探研时空】下列计算是否正确?如果不正确,应如何改正?(1)(-xy)6÷(-xy)2=-x4y4;(2)62m+1÷6m=63=216;(3)x10÷x2÷x=x10÷x=1010.四、课堂总结,发展潜能教师提问式总结:1.同底数幂的除法法则?2.a0=1(a≠0)意义?3.到目前为止,我们学习了哪些幂的运算法则?谈谈它们的异同点.五、布置作业,专题突破课本P164第1题.。

人教版八年级上册数学14.1.4整式的乘法同底数幂的除法教案设计

人教版八年级上册数学14.1.4整式的乘法同底数幂的除法教案设计

同底数幂的除法一、教学目标是:1.知识与技能:会进行同底数幂的除法运算,并能解决一些实际问题,了解零指数幂和负整数指数幂的意义,能进行零指数幂和负整数指数幂的乘除法运算.2.过程与方法:经历探索同底数幂除法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,体验解决问题方法的多样性,发展学生的合情推理和演绎推理能力以及有条理的表达能力.3.情感与态度:在解决问题的过程中了解数学的价值,体会数学的抽象性、严谨性和广泛性.二、教学重点:同底数幂除法法则的探索和应用,理解零指数和负整数指数幂的意义,将运算法则拓广到整数指数幂的范围教学难点:理解零指数幂和负整数指数幂的意义三、 教学过程设计本课时设计了七个教学环节:复习回顾、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业.第一环节 复习回顾活动内容:前面我们学习了哪些幂的运算? 在探索法则的过程中我们用到了哪些方法?(1)同底数幂相乘,底数不变,指数相加.n m n m a a a +=⋅ (m,n 是正整数)(2)幂的乘方,底数不变,指数相乘.mn n m a a =)((m,n 是正整数)(3)积的乘方等于积中各因数乘方的积.n n n b a ab =)( (n 是正整数)第二环节 情境引入活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,(1) 要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?(2) 你是怎样计算的?(3) 你能再举几个类似的算式吗?第三环节 归纳法则活动内容:1.计算你列出的算式(选作)2.计算下列各式,并说明理由(m >n );1010)1(n m ÷ ;)3()3)(2(n m -÷- ;)21()21)(3(n m -÷- 3.你能用字母表示同底数幂的除法运算法则并说明理由吗?活动内容:例1 计算:;)1(47a a ÷ ;)())(2(36x x -÷- ;)3(28m m ÷-);())(4(4xy xy ÷ ;)5(222b b m ÷+ ;)())(6(38n m n m +÷+第四环节 探索拓广(一)探索活动内容:1. 做一做:104 =10000, 24 =1610()=1000, 2()=810()=100, 2()=410()=10, 2()=22. 猜一猜:下面的括号内该填入什么数?你是怎么想的?与同伴交流:10()=1 2()=1 10()=0.1 2()=21 10()=0.01 2()=4110()=0.001 2()=81 3.你有什么发现?能用符号表示你的发现吗?4.你认为这个规定合理吗?为什么? (二)拓广活动内容:1. 例2 计算:用小数或分数分别表示下列各数:4203106.1)3(;87)2(10)1(---⨯⨯2. 议一议:计算下列各式,你有什么发现?与同伴交流20256153)8()8)(4(;)21()21)(3(;33)2(;77)1(------÷-÷÷÷ 3. 当指数拓广到零和负整数范围后,我们前面学过的同底数幂的乘法、幂的乘方与积的乘方的运算法则是否也成立呢?第五环节 课堂小结活动内容:1. 这节课你学到了哪些知识?2. 现在你一共学习了哪几种幂的运算?它们有什么联系与区别?谈谈你的理解3. 我们在探索运算法则的过程中用到了哪些方法?第六环节 布置作业完成课本习题1.4四、教学设计反思:1.关注知识和方法的前后衔接在小结中对四种幂的运算进行对比回顾.这样的设计充分利用了学生原有的知识和经验基础,有利于学生知识体系的形成,让学生深刻体会了解决不同的问题时蕴涵的相同数学思想方法.2.改进教学和评价方式,为学生提供自主探索的机会数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会.课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可.。

人教版数学八年级上册14.1.4整式的乘除(三)同底数幂的除法实用教案

人教版数学八年级上册14.1.4整式的乘除(三)同底数幂的除法实用教案
2.同底数幂除法的性质与运算规律。
3.应用同底数幂除法简化表达式。
4.结合实际情境,解决涉及同底数幂除法的问题。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学语言进行表达和交流的能力,通过同底数幂的除法运算,提高学生运用数学概念和符号进行推理的能力。
2.培养学生的逻辑思维能力,使其能够理解和掌握同底数幂除法的运算规律,并能运用规律解决相关问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同底数幂的除法的基本概念。同底数幂的除法是指当两个幂的底数相同时,可以通过将指数相减来进行除法运算。这是因为在数学中,相同底数的幂的除法具有简化表达式和解决实际问题的作用。
2.案例分析:接下来,我们来看一个具体的案例。假设有两个相同的正方形,一个的边长是另一个的两倍,它们的面积比是多少?通过同底数幂的除法,我们可以得出4^2 ÷ 2^2 = 2^2,即面积比为4:1。
-底数不变的应用:在处理复杂表达式时,学生可能会忘记在除法运算中底数保持不变,只对指数进行运算。例如,(a^3b^2) ÷ (ab^3)中,a和b的底数不变,需要强调这一点。
-负指数的处理:当出现负指数时,如a^2b^(-1),学生可能不清楚其含义。教师需要解释负指数表示分数的倒数,即b^(-1) = 1/b。
小组讨论和成果展示环节,我看到了学生们的积极参与和合作精神。他们能够在小组内部分享观点,相互学习,这是非常可贵的。但同时,我也观察到有些小组在讨论时可能会偏离主题,这提示我在未来的教学中,需要更加明确讨论的主题和目标,同时提供更具体的指导。
实践活动的设计,我试图让学生通过动手操作来加深对同底数幂除法的理解。从实际操作来看,这个环节的学生参与度很高,但我也发现,对于一些操作细节,学生们的掌握程度并不均衡。这可能意味着我需要在活动前提供更清晰的指导,确保每个学生都能跟上步骤。

人教版2020八年级数学上册 14.1 整式的乘法 14.1.1.5 同底数幂的除法教案 (新版)新人教版

人教版2020八年级数学上册 14.1 整式的乘法 14.1.1.5 同底数幂的除法教案 (新版)新人教版

同底数幂的除法课题:同底数幂的除法课时一课时教学设计课标要求教材及学情分析整式的除法也是整式四则运算的重要组成部分,是今后学习因式分解、整数指数幂、分式运算等内容的基础。

考虑到《课程标准》没有单列条目,教科书是学习整式的乘法后,从逆运算角度介绍整式的除法的相关内容,主要包括同底数幂的除法、单项式除以单项式、多项式除以单项式等。

同底数幂相除的性质也是幂的运算性质之一。

它是整式除法的基础。

教科书是根据除法是乘法的逆运算,从同底数幂相乘的运算性质得出同底数幂相除的运算性质。

教学时要提醒学生注意性质中的一些条件。

在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行整式加减运算和乘法运算,对一次方程(组)、一次不等式(组)有了全面系统地认识;虽然通过全等三角形、对称变换学习,积累了初步的理性思辨及推理论证经验,但思维水平仍以经验型为主,理论型思维尚处于萌芽阶段,因此,在推理论证方面须坚持遵循“特殊——一般——特殊”规律。

课时教学目标1、掌握同底数幂除法的运算性质,能熟练运用性质进行同底数幂除法运算。

2、经历同底数幂除法性质的推导过程,进一步发展探究问题的能力;通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

3、通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;通过性质的推导体会“特殊——一般——特殊”的认知规律,发展学生的数学探究能力,感受数学的严谨性和数学结论的确定性;通过有一定梯次的变式训练,锻炼其克服困难的意志,发展学生的合作意识及数学表达能力。

重点理解性质的推导过程,掌握性质内容,能运用性质进行运算难点理解性质的推导过程及含义教法学法指导启发法、发现法、练习法、小组合作探究教具准备PPT教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课复习旧知分析问题引入新课1.(1)28×27;(2)52×53;(3)m2×m5 ;(4)a3·a3.2.(-x)·2x2; 2m2n·4n.3.同底数幂的乘法法则,单项式乘以单项式的法则各是什么?一种数码照片的文件大小是28 K,一个存储量为26M(1 M=210 K)的移动存储器能存储多少张这样的数码照片?你能将这一问题转化为数学问题吗?如何计算?巩固旧知,同时也为本节课的学习做铺垫通过生活情景揭示课题,帮助学生认识数学与生活的密切关系,引发认知冲突,激发其求知欲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、知识点的归纳总结:
(1)公式:同底数幂相除, 底数不变,指数相减.
即:am÷an=am-n.( )【m,n都是正整数,并且m>n】
(2)a0=1(a≠0)
即:任何不等于0的数的0次幂都等于1.
2、运用新知解决问题:(重点例习题的强化训练)
【例1】计算
(1)x8÷x2 (2)a4÷a (3)(ab)5÷(ab)2
2. 掌握零指数幂的意义
学习难点
根据乘、除互逆的运算关系得出同底数幂的除法运算法则
学具使用
多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动
设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P102 ~103 页,思考下列问题:
(1)同底数幂的除法的运算法则如何理解?
(2)零指数幂的意义是什么?
解:(1)x8÷x2 =x8-2=x6.
(2)a4÷a =a4-1=a3.
(3)((ab)5÷(ab)2=(ab)5-2=(ab)3=a3b3.
【练习】课本P104页练习第1题
五、课堂小测(约5分钟)
课后反思:
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:
(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】叙述同底数幂的乘法运算法则.
◆由同底数幂相乘可得: ,
所以根据除法的意义:216÷28 =28
【2】填空
(1)()·28=216(2)()·53=55
(3)()·105=107(4)()·a3=a6
【3】再计算:
(1)216÷28=( ) (2)55÷53=( )
(3)107÷105=( ) (4)a6÷a3=( )
◆提问:上述运算能否发现商与除数、被除数有什么关系?
◆分析:同底数幂相除,底数没有改变,商的指数应该等于被除数的指数减去除数的指数.
【4】得到结论:由除法可得:
32÷32=1 103÷103=1 am÷am =1(a≠0)
【5】利用am÷an=am-n的方法计算.
32÷32=32-2=30 103÷103=103-3=100
学习活动
设计意图
am÷am =am-m=a0(a≠0)
【6】这样可以总结得a0=1(a≠0)
四、归纳总结巩固新知(约15分钟)
整式的乘法——同底数幂的除法
学习目标
1. 同底数幂的除法的运算法则的理解及其应用.
2.同底数幂的除法的运算算理的掌握.
3.掌握零指数幂的意义
4.经历探索同底数幂的除法运算法则的过程,获得成功的体验, 积累丰富的数学经验.
5.渗透数学公式的简洁美与和谐美.
学习重点
1.准确熟练地运用同底数幂的除法运算法则进行计算.
相关文档
最新文档